
Clean Code

Robert C. Martin Series
The mission of this series is to improve the state of the art of software craftsmanship.
The books in this series are technical, pragmatic, and substantial. The authors are
highly experienced craftsmen and professionals dedicated to writing about what
actually works in practice, as opposed to what might work in theory. You will read
about what the author has done, not what he thinks you should do. If the book is
about programming, there will be lots of code. If the book is about managing, there
will be lots of case studies from real projects.

These are the books that all serious practitioners will have on their bookshelves.
These are the books that will be remembered for making a difference and for guiding
professionals to become true craftsman.

Managing Agile Projects
Sanjiv Augustine

Agile Estimating and Planning
Mike Cohn

Working Effectively with Legacy Code
Michael C. Feathers

Agile Java™: Crafting Code with Test-Driven Development
Jeff Langr

Agile Principles, Patterns, and Practices in C#
Robert C. Martin and Micah Martin

Agile Software Development: Principles, Patterns, and Practices
Robert C. Martin

Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin

UML For Java™ Programmers
Robert C. Martin

Fit for Developing Software: Framework for Integrated Tests
Rick Mugridge and Ward Cunningham

Agile Software Development with SCRUM
Ken Schwaber and Mike Beedle

Extreme Software Engineering: A Hands on Approach
Daniel H. Steinberg and Daniel W. Palmer

For more information, visit informit.com/martinseries

Clean Code
A Handbook of Agile

Software Craftsmanship

The Object Mentors:
Robert C. Martin

Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert

James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonable excuse for doing anything less than your best.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
 Clean code : a handbook of agile software craftsmanship / Robert C. Martin.

p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-235088-2 (pbk. : alk. paper)

1. Agile software development. 2. Computer software—Reliability. I. Title.
QA76.76.D47M3652 2008
005.1—dc22 2008024750

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,

 New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-235088-4
ISBN-10: 0-13-235088-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Fourteenth printing January 2015

For Ann Marie: The ever enduring love of my life.

This page intentionally left blank

vii

Contents

Foreword.. xix

Introduction ..xxv

On the Cover... xxix

Chapter 1: Clean Code..1
There Will Be Code ...2
Bad Code ..3
The Total Cost of Owning a Mess ..4

The Grand Redesign in the Sky..5
Attitude...5
The Primal Conundrum..6
The Art of Clean Code?..6
What Is Clean Code?..7

Schools of Thought ..12
We Are Authors ..13
The Boy Scout Rule ...14
Prequel and Principles ..15
Conclusion..15
Bibliography...15

Chapter 2: Meaningful Names ...17
Introduction ...17
Use Intention-Revealing Names ...18
Avoid Disinformation ..19
Make Meaningful Distinctions ...20
Use Pronounceable Names..21
Use Searchable Names ..22

viii Contents

Avoid Encodings ..23
Hungarian Notation ..23
Member Prefixes...24
Interfaces and Implementations ...24

Avoid Mental Mapping ...25
Class Names ...25
Method Names...25
Don’t Be Cute ..26
Pick One Word per Concept...26
Don’t Pun ...26
Use Solution Domain Names ..27
Use Problem Domain Names ..27
Add Meaningful Context ..27
Don’t Add Gratuitous Context ...29
Final Words ..30

Chapter 3: Functions ...31
Small!..34

Blocks and Indenting..35
Do One Thing...35

Sections within Functions ..36
One Level of Abstraction per Function ...36

Reading Code from Top to Bottom: The Stepdown Rule..................37
Switch Statements ...37
Use Descriptive Names..39
Function Arguments..40

Common Monadic Forms...41
Flag Arguments ..41
Dyadic Functions..42
Triads..42
Argument Objects...43
Argument Lists ...43
Verbs and Keywords...43

Have No Side Effects ...44
Output Arguments ..45

Command Query Separation ...45

ixContents

Prefer Exceptions to Returning Error Codes46
Extract Try/Catch Blocks ...46
Error Handling Is One Thing..47
The Error.java Dependency Magnet ...47

Don’t Repeat Yourself ...48
Structured Programming ...48
How Do You Write Functions Like This? ..49
Conclusion..49
SetupTeardownIncluder ...50
Bibliography...52

Chapter 4: Comments ...53
Comments Do Not Make Up for Bad Code.......................................55
Explain Yourself in Code ..55
Good Comments ..55

Legal Comments...55
Informative Comments...56
Explanation of Intent ..56
Clarification..57
Warning of Consequences ..58
TODO Comments...58
Amplification..59
Javadocs in Public APIs..59

Bad Comments ..59
Mumbling ...59
Redundant Comments ..60
Misleading Comments..63
Mandated Comments..63
Journal Comments..63
Noise Comments ..64
Scary Noise ..66
Don’t Use a Comment When You Can Use a
Function or a Variable...67
Position Markers...67
Closing Brace Comments...67
Attributions and Bylines...68

x Contents

Commented-Out Code..68
HTML Comments ..69
Nonlocal Information ...69
Too Much Information ...70
Inobvious Connection...70
Function Headers..70
Javadocs in Nonpublic Code ..71
Example..71

Bibliography...74

Chapter 5: Formatting ..75
The Purpose of Formatting ..76
Vertical Formatting ...76

The Newspaper Metaphor ..77
Vertical Openness Between Concepts ..78
Vertical Density ..79
Vertical Distance ..80
Vertical Ordering ..84

Horizontal Formatting ..85
Horizontal Openness and Density ..86
Horizontal Alignment...87
Indentation..88
Dummy Scopes...90

Team Rules...90
Uncle Bob’s Formatting Rules..90

Chapter 6: Objects and Data Structures93
Data Abstraction..93
Data/Object Anti-Symmetry ..95
The Law of Demeter..97

Train Wrecks ..98
Hybrids ...99
Hiding Structure ...99

Data Transfer Objects...100
Active Record...101

Conclusion..101
Bibliography...101

xiContents

Chapter 7: Error Handling ...103
Use Exceptions Rather Than Return Codes104
Write Your Try-Catch-Finally Statement First105
Use Unchecked Exceptions ...106
Provide Context with Exceptions ...107
Define Exception Classes in Terms of a Caller’s Needs..................107
Define the Normal Flow ..109
Don’t Return Null..110
Don’t Pass Null ..111
Conclusion..112
Bibliography...112

Chapter 8: Boundaries ..113
Using Third-Party Code..114
Exploring and Learning Boundaries...116
Learning log4j...116
Learning Tests Are Better Than Free...118
Using Code That Does Not Yet Exist ..118
Clean Boundaries ..120
Bibliography...120

Chapter 9: Unit Tests ...121
The Three Laws of TDD ...122
Keeping Tests Clean ..123

Tests Enable the -ilities...124
Clean Tests ...124

Domain-Specific Testing Language..127
A Dual Standard ...127

One Assert per Test ...130
Single Concept per Test ..131

F.I.R.S.T..132
Conclusion..133
Bibliography...133

Chapter 10: Classes ..135
Class Organization ..136

Encapsulation ...136

xii Contents

Classes Should Be Small!..136
The Single Responsibility Principle...138
Cohesion...140
Maintaining Cohesion Results in Many Small Classes..................141

Organizing for Change ...147
Isolating from Change..149

Bibliography...151

Chapter 11: Systems ..153
How Would You Build a City? ..154
Separate Constructing a System from Using It154

Separation of Main ...155
Factories ...155
Dependency Injection...157

Scaling Up ..157
Cross-Cutting Concerns ...160

Java Proxies..161
Pure Java AOP Frameworks...163
AspectJ Aspects ...166
Test Drive the System Architecture..166
Optimize Decision Making ...167
Use Standards Wisely, When They Add Demonstrable Value168
Systems Need Domain-Specific Languages168
Conclusion..169
Bibliography...169

Chapter 12: Emergence ..171
Getting Clean via Emergent Design ..171
Simple Design Rule 1: Runs All the Tests ..172
Simple Design Rules 2–4: Refactoring ..172
No Duplication...173
Expressive...175
Minimal Classes and Methods ...176
Conclusion..176
Bibliography...176

Chapter 13: Concurrency ..177
Why Concurrency? ...178

Myths and Misconceptions...179

xiiiContents

Challenges ..180
Concurrency Defense Principles ..180

Single Responsibility Principle ..181
Corollary: Limit the Scope of Data ..181
Corollary: Use Copies of Data ...181
Corollary: Threads Should Be as Independent as Possible182

Know Your Library ...182
Thread-Safe Collections...182

Know Your Execution Models ..183
Producer-Consumer..184
Readers-Writers..184
Dining Philosophers ...184

Beware Dependencies Between Synchronized Methods185
Keep Synchronized Sections Small ..185
Writing Correct Shut-Down Code Is Hard.....................................186
Testing Threaded Code ...186

Treat Spurious Failures as Candidate Threading Issues187
Get Your Nonthreaded Code Working First....................................187
Make Your Threaded Code Pluggable ..187
Make Your Threaded Code Tunable..187
Run with More Threads Than Processors.......................................188
Run on Different Platforms ..188
Instrument Your Code to Try and Force Failures............................188
Hand-Coded ...189
Automated ..189

Conclusion..190
Bibliography...191

Chapter 14: Successive Refinement ..193
Args Implementation ..194

How Did I Do This? ...200
Args: The Rough Draft ...201

So I Stopped ...212
On Incrementalism ...212

String Arguments ..214
 Conclusion...250

xiv Contents

Chapter 15: JUnit Internals ..251
The JUnit Framework...252
Conclusion..265

Chapter 16: Refactoring SerialDate ...267
First, Make It Work...268
Then Make It Right...270
Conclusion..284
Bibliography...284

Chapter 17: Smells and Heuristics ...285
Comments ..286

C1: Inappropriate Information...286
C2: Obsolete Comment...286
C3: Redundant Comment ...286
C4: Poorly Written Comment..287
C5: Commented-Out Code ...287

Environment ..287
E1: Build Requires More Than One Step..287
E2: Tests Require More Than One Step ..287

Functions..288
F1: Too Many Arguments ..288
F2: Output Arguments ..288
F3: Flag Arguments ..288
F4: Dead Function ...288

General ...288
G1: Multiple Languages in One Source File288
G2: Obvious Behavior Is Unimplemented......................................288
G3: Incorrect Behavior at the Boundaries289
G4: Overridden Safeties ...289
G5: Duplication..289
G6: Code at Wrong Level of Abstraction ..290
G7: Base Classes Depending on Their Derivatives291
G8: Too Much Information ...291
G9: Dead Code...292
G10: Vertical Separation ..292
G11: Inconsistency ...292
G12: Clutter..293

xvContents

G13: Artificial Coupling ...293
G14: Feature Envy ..293
G15: Selector Arguments..294
G16: Obscured Intent ...295
G17: Misplaced Responsibility...295
G18: Inappropriate Static...296
G19: Use Explanatory Variables ..296
G20: Function Names Should Say What They Do297
G21: Understand the Algorithm ...297
G22: Make Logical Dependencies Physical...................................298
G23: Prefer Polymorphism to If/Else or Switch/Case299
G24: Follow Standard Conventions..299
G25: Replace Magic Numbers with Named Constants300
G26: Be Precise..301
G27: Structure over Convention ...301
G28: Encapsulate Conditionals ...301
G29: Avoid Negative Conditionals ...302
G30: Functions Should Do One Thing ...302
G31: Hidden Temporal Couplings ..302
G32: Don’t Be Arbitrary ...303
G33: Encapsulate Boundary Conditions..304
G34: Functions Should Descend Only
One Level of Abstraction ..304
G35: Keep Configurable Data at High Levels................................306
G36: Avoid Transitive Navigation...306

Java ...307
J1: Avoid Long Import Lists by Using Wildcards............................307
J2: Don’t Inherit Constants ..307
J3: Constants versus Enums ...308

Names ...309
N1: Choose Descriptive Names..309
N2: Choose Names at the Appropriate Level of Abstraction311
N3: Use Standard Nomenclature Where Possible...........................311
N4: Unambiguous Names...312
N5: Use Long Names for Long Scopes...312
N6: Avoid Encodings ..312
N7: Names Should Describe Side-Effects.313

xvi Contents

Tests ..313
T1: Insufficient Tests ...313
T2: Use a Coverage Tool! ...313
T3: Don’t Skip Trivial Tests ..313
T4: An Ignored Test Is a Question about an Ambiguity313
T5: Test Boundary Conditions ..314
T6: Exhaustively Test Near Bugs ..314
T7: Patterns of Failure Are Revealing ..314
T8: Test Coverage Patterns Can Be Revealing314
T9: Tests Should Be Fast...314

Conclusion..314
Bibliography...315

Appendix A: Concurrency II...317
Client/Server Example ..317

The Server ..317
Adding Threading...319
Server Observations ...319
Conclusion..321

Possible Paths of Execution ..321
Number of Paths...322
Digging Deeper ..323
Conclusion..326

Knowing Your Library ..326
Executor Framework ..326
Nonblocking Solutions ...327
Nonthread-Safe Classes..328

Dependencies Between Methods
Can Break Concurrent Code ...329

Tolerate the Failure ...330
Client-Based Locking...330
Server-Based Locking ..332

Increasing Throughput ...333
Single-Thread Calculation of Throughput......................................334
Multithread Calculation of Throughput..335

Deadlock...335
Mutual Exclusion ...336
Lock & Wait ...337

xviiContents

No Preemption..337
Circular Wait ..337
Breaking Mutual Exclusion..337
Breaking Lock & Wait..338
Breaking Preemption..338
Breaking Circular Wait...338

Testing Multithreaded Code...339
Tool Support for Testing Thread-Based Code342
Conclusion..342
Tutorial: Full Code Examples ..343

Client/Server Nonthreaded...343
Client/Server Using Threads ..347

Appendix B: org.jfree.date.SerialDate349

Appendix C: Cross References of Heuristics...........................409

Epilogue ..411

Index ..413

This page intentionally left blank

xix

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a
perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to
us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-
pack of the delicacy this morning and found that it bore this old Danish saw:

Ærlighed i små ting er ikke nogen lille ting.

“Honesty in small things is not a small thing.” It was a good omen consistent with what I
already wanted to say here. Small things matter. This is a book about humble concerns
whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls
contemporary arguments about the role of architecture in software development, and par-
ticularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in
this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms
of building that underlie great architecture. On the other hand, he also personally selected
every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that soft-
ware architecture has an important place in development, though we likely have different
visions of exactly what that means. Such quibbles are relatively unimportant, however,
because we can accept for granted that responsible professionals give some time to think-
ing and planning at the outset of a project. The late-1990s notions of design driven only by
the tests and the code are long gone. Yet attentiveness to detail is an even more critical
foundation of professionalism than is any grand vision. First, it is through practice in the
small that professionals gain proficiency and trust for practice in the large. Second, the
smallest bit of sloppy construction, of the door that does not close tightly or the slightly
crooked tile on the floor, or even the messy desk, completely dispels the charm of the
larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for
that part of software that delivers the initial product in the same sense that an architect
delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly
bringing product to market. We want the factory running at top speed to produce software.
These are human factories: thinking, feeling coders who are working from a product back-
log or user story to create product. The manufacturing metaphor looms ever strong in such
thinking. The production aspects of Japanese auto manufacturing, of an assembly-line
world, inspire much of Scrum.

xx Foreword

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in
maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called
“maintenance”: the act of repair. Rather than embracing the typical Western focus on pro-
ducing good software, we should be thinking more like home repairmen in the building
industry, or auto mechanics in the automotive field. What does Japanese management have
to say about that?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came
on the Japanese scene. Its focus is on maintenance rather than on production. One of the
major pillars of TPM is the set of so-called 5S principles. 5S is a set of disciplines—and
here I use the term “discipline” instructively. These 5S principles are in fact at the founda-
tions of Lean—another buzzword on the Western scene, and an increasingly prominent
buzzword in software circles. These principles are not an option. As Uncle Bob relates in
his front matter, good software practice requires such discipline: focus, presence of mind,
and thinking. It is not always just about doing, about pushing the factory equipment to pro-
duce at the optimal velocity. The 5S philosophy comprises these concepts:

• Seiri, or organization (think “sort” in English). Knowing where things are—using
approaches such as suitable naming—is crucial. You think naming identifiers isn’t
important? Read on in the following chapters.

• Seiton, or tidiness (think “systematize” in English). There is an old American saying:
A place for everything, and everything in its place. A piece of code should be where
you expect to find it—and, if not, you should re-factor to get it there.

• Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging
wires, grease, scraps, and waste. What do the authors here say about littering your
code with comments and commented-out code lines that capture history or wishes for
the future? Get rid of them.

• Seiketsu, or standardization: The group agrees about how to keep the workplace clean.
Do you think this book says anything about having a consistent coding style and set of
practices within the group? Where do those standards come from? Read on.

• Shutsuke, or discipline (self-discipline). This means having the discipline to follow the
practices and to frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book,
you’ll come to understand and appreciate the last point. Here, we are finally driving to the
roots of responsible professionalism in a profession that should be concerned with the life
cycle of a product. As we maintain automobiles and other machines under TPM, break-
down maintenance—waiting for bugs to surface—is the exception. Instead, we go up a
level: inspect the machines every day and fix wearing parts before they break, or do the
equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code,
refactor mercilessly. You can improve yet one level further, as the TPM movement inno-
vated over 50 years ago: build machines that are more maintainable in the first place. Mak-
ing your code readable is as important as making it executable. The ultimate practice,
introduced in TPM circles around 1960, is to focus on introducing entire new machines or

xxiForeword

replacing old ones. As Fred Brooks admonishes us, we should probably re-do major soft-
ware chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps
we should update Brooks’ time constant to an order of weeks, days or hours instead of
years. That’s where detail lies.

There is great power in detail, yet there is something humble and profound about this
approach to life, as we might stereotypically expect from any approach that claims Japa-
nese roots. But this is not only an Eastern outlook on life; English and American folk wis-
dom are full of such admonishments. The Seiton quote from above flowed from the pen of
an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.”
How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy
desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful
in little is faithful in much. How about being eager to re-factor at the responsible time,
strengthening one’s position for subsequent “big” decisions, rather than putting it off? A
stitch in time saves nine. The early bird catches the worm. Don’t put off until tomorrow
what you can do today. (Such was the original sense of the phrase “the last responsible
moment” in Lean until it fell into the hands of software consultants.) How about calibrat-
ing the place of small, individual efforts in a grand whole? Mighty oaks from little acorns
grow. Or how about integrating simple preventive work into everyday life? An ounce of
prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code
honors the deep roots of wisdom beneath our broader culture, or our culture as it once was,
or should be, and can be with attentiveness to detail.

Even in the grand architectural literature we find saws that hark back to these sup-
posed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive
to every variable name. You should name a variable using the same care with which you
name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end.
The architect Christopher Alexander—father of patterns and pattern languages—views
every act of design itself as a small, local act of repair. And he views the craftsmanship of
fine structure to be the sole purview of the architect; the larger forms can be left to patterns
and their application by the inhabitants. Design is ever ongoing not only as we add a new
room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrad-
ing the kitchen sink. Most arts echo analogous sentiments. In our search for others who
ascribe God’s home as being in the details, we find ourselves in the good company of the
19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a
poem is never done and bears continual rework, and to stop working on it is abandonment.
Such preoccupation with detail is common to all endeavors of excellence. So maybe there
is little new here, but in reading this book you will be challenged to take up good disci-
plines that you long ago surrendered to apathy or a desire for spontaneity and just
“responding to change.”

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of
programming. We abandon our code early, not because it is done, but because our value
system focuses more on outward appearance than on the substance of what we deliver.

xxii Foreword

This inattentiveness costs us in the end: A bad penny always shows up. Research, neither in
industry nor in academia, humbles itself to the lowly station of keeping code clean. Back
in my days working in the Bell Labs Software Production Research organization (Produc-
tion, indeed!) we had some back-of-the-envelope findings that suggested that consistent
indentation style was one of the most statistically significant indicators of low bug density.
We want it to be that architecture or programming language or some other high notion
should be the cause of quality; as people whose supposed professionalism owes to the
mastery of tools and lofty design methods, we feel insulted by the value that those factory-
floor machines, the coders, add through the simple consistent application of an indentation
style. To quote my own book of 17 years ago, such style distinguishes excellence from
mere competence. The Japanese worldview understands the crucial value of the everyday
worker and, more so, of the systems of development that owe to the simple, everyday
actions of those workers. Quality is the result of a million selfless acts of care—not just of
any great method that descends from the heavens. That these acts are simple doesn’t mean
that they are simplistic, and it hardly means that they are easy. They are nonetheless the
fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not
yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the
value of architectural approaches rooted in deep domain knowledge and software usability.
The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler
message whose profoundness should not be underappreciated. It fits with the current saw
of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni
Asproni. “The code is the design” and “Simple code” are their mantras. While we must
take care to remember that the interface is the program, and that its structures have much
to say about our program structure, it is crucial to continuously adopt the humble stance
that the design lives in the code. And while rework in the manufacturing metaphor leads to
cost, rework in design leads to value. We should view our code as the beautiful articulation
of noble efforts of design—design as a process, not a static endpoint. It’s in the code that
the architectural metrics of coupling and cohesion play out. If you listen to Larry Constan-
tine describe coupling and cohesion, he speaks in terms of code—not lofty abstract con-
cepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction
Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish
wisdom advises us not just to pay attention to small things, but also to be honest in small
things. This means being honest to the code, honest to our colleagues about the state of our
code and, most of all, being honest with ourselves about our code. Did we Do our Best to
“leave the campground cleaner than we found it”? Did we re-factor our code before check-
ing in? These are not peripheral concerns but concerns that lie squarely in the center of
Agile values. It is a recommended practice in Scrum that re-factoring be part of the con-
cept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty
and doing the best we can. To err is human; to forgive, divine. In Scrum, we make every-
thing visible. We air our dirty laundry. We are honest about the state of our code because

xxiiiForeword

code is never perfect. We become more fully human, more worthy of the divine, and closer
to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor
reduces accidents, and well-organized shop tools increase productivity, then I’m all for
them. As for this book, it is the best pragmatic application of Lean principles to software I
have ever seen in print. I expected no less from this practical little group of thinking indi-
viduals that has been striving together for years not only to become better, but also to gift
their knowledge to the industry in works such as you now find in your hands. It leaves the
world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Mørdrup, Denmark

This page intentionally left blank

xxv

Introduction

Which door represents your code? Which door represents your team or your company?

Why are we in that room? Is this just a normal code review or have we found a stream of

horrible problems shortly after going live? Are we debugging in a panic, poring over code

that we thought worked? Are customers leaving in droves and managers breathing down

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

(c
)

20
08

 F
oc

us
 S

hi
ft

http://www.osnews.com/story/19266/WTFs_m

xxvi Introduction

our necks? How can we make sure we wind up behind the right door when the going gets

tough? The answer is: craftsmanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain
the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and
you must also grind that knowledge into your fingers, eyes, and gut by working hard and
practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is
relatively straightforward. Gravity, friction, angular momentum, center of mass, and so
forth, can be demonstrated with less than a page full of equations. Given those formulae I
could prove to you that bicycle riding is practical and give you all the knowledge you
needed to make it work. And you’d still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “feel good” principles of clean
code and then trust you to do the work (in other words, let you fall down when you get on
the bike), but then what kind of teachers would that make us, and what kind of student
would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is hard work. It requires more than just the knowledge of
principles and patterns. You must sweat over it. You must practice it yourself, and watch
yourself fail. You must watch others practice it and fail. You must see them stumble and
retrace their steps. You must see them agonize over decisions and see the price they pay for
making those decisions the wrong way.

Be prepared to work hard while reading this book. This is not a “feel good” book that
you can read on an airplane and finish before you land. This book will make you work, and
work hard. What kind of work will you be doing? You’ll be reading code—lots of code.
And you will be challenged to think about what’s right about that code and what’s wrong
with it. You’ll be asked to follow along as we take modules apart and put them back
together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the prin-
ciples, patterns, and practices of writing clean code. There is quite a bit of code in these
chapters, and they will be challenging to read. They’ll prepare you for the second section
to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of
ever-increasing complexity. Each case study is an exercise in cleaning up some code—of
transforming code that has some problems into code that has fewer problems. The detail in
this section is intense. You will have to flip back and forth between the narrative and the
code listings. You will have to analyze and understand the code we are working with and
walk through our reasoning for making each change we make. Set aside some time
because this should take you days.

The third part of this book is the payoff. It is a single chapter containing a list of heu-
ristics and smells gathered while creating the case studies. As we walked through and
cleaned up the code in the case studies, we documented every reason for our actions as a

xxviiIntroduction

heuristic or smell. We tried to understand our own reactions to the code we were reading
and changing, and worked hard to capture why we felt what we felt and did what we did.
The result is a knowledge base that desribes the way we think when we write, read, and
clean code.

This knowledge base is of limited value if you don’t do the work of carefully reading
through the case studies in the second part of this book. In those case studies we have care-
fully annotated each change we made with forward references to the heuristics. These for-
ward references appear in square brackets like this: [H22]. This lets you see the context in
which those heuristics were applied and written! It is not the heuristics themselves that are
so valuable, it is the relationship between those heuristics and the discrete decisions we
made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end
of the book that shows the page number for every forward reference. You can use it to look
up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will
have read yet another “feel good” book about writing good software. But if you take the
time to work through the case studies, following every tiny step, every minute decision—if
you put yourself in our place, and force yourself to think along the same paths that we
thought, then you will gain a much richer understanding of those principles, patterns, prac-
tices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been
ground into your gut, fingers, and heart. They’ll have become part of you in the same way
that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible
for the stunning and creative pictures at the start of each chapter and also for the portraits
of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave
Thomas, Michael Feathers, and myself.

Angela is responsible for the clever pictures that adorn the innards of each chapter.
She has done quite a few pictures for me over the years, including many of the inside pic-
tures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my
firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey
Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were
relentless. They pushed me hard to make necessary improvements.

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial
countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for
keeping me honest and punctual.

xxviii Introduction

Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their
reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss,
Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett
Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button,
Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen
Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than
I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne
Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John
Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to
rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

xxix

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is
just under 30 million light-years from us. At its core is a supermassive black hole weigh-
ing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? I
vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying
away from that explosion. Since that scene, the equatorial ring has been a common artifact
in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions
of the first Star Wars movie.

What caused this ring to form around M104? Why does it have such a huge central
bulge and such a bright and tiny nucleus? It looks to me as though the central black hole
lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any
civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable frac-
tion of their mass to energy. E = MC2 is leverage enough, but when M is a stellar mass:
Look out! How many stars fell headlong into that maw before the monster was satiated?
Could the size of the central void be a hint?

The image of M104 on the cover is a
combination of the famous visible light pho-
tograph from Hubble (right), and the recent
infrared image from the Spitzer orbiting
observatory (below, right). It’s the infrared
image that clearly shows us the ring nature
of the galaxy. In visible light we only see the
front edge of the ring in silhouette. The cen-
tral bulge obscures the rest of the ring.

But in the infrared, the hot particles in
the ring shine through the central bulge. The
two images combined give us a view we’ve
not seen before and imply that long ago it
was a raging inferno of activity.

Cover image: © Spitzer Space Telescope

This page intentionally left blank

1

1

Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers.

2 Chapter 1: Clean Code

This is a book about good programming. It is filled with code. We are going to look at
code from every different direction. We’ll look down at it from the top, up at it from the
bottom, and through it from the inside out. By the time we are done, we’re going to know a
lot about code. What’s more, we’ll be able to tell the difference between good code and bad
code. We’ll know how to write good code. And we’ll know how to transform bad code into
good code.

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no
longer the issue; that we should be concerned about models and requirements instead.
Indeed some have suggested that we are close to the end of code. That soon all code will
be generated instead of written. That programmers simply won’t be needed because busi-
ness people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the
requirements. At some level those details cannot be ignored or abstracted; they have to be
specified. And specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

I expect that the level of abstraction of our languages will continue to increase. I
also expect that the number of domain-specific languages will continue to grow. This
will be a good thing. But it will not eliminate code. Indeed, all the specifications written
in these higher level and domain-specific language will be code! It will still need to
be rigorous, accurate, and so formal and detailed that a machine can understand and
execute it.

The folks who think that code will one day disappear are like mathematicians who
hope one day to discover a mathematics that does not have to be formal. They are hoping
that one day we will discover a way to create machines that can do what we want rather
than what we say. These machines will have to be able to understand us so well that they
can translate vaguely specified needs into perfectly executing programs that precisely meet
those needs.

This will never happen. Not even humans, with all their intuition and creativity,
have been able to create successful systems from the vague feelings of their customers.
Indeed, if the discipline of requirements specification has taught us anything, it is that
well-specified requirements are as formal as code and can act as executable tests of that
code!

Remember that code is really the language in which we ultimately express the require-
ments. We may create languages that are closer to the requirements. We may create tools
that help us parse and assemble those requirements into formal structures. But we will
never eliminate necessary precision—so there will always be code.

3Bad Code

Bad Code

I was recently reading the preface to Kent Beck’s
book Implementation Patterns.1 He says, “. . . this
book is based on a rather fragile premise: that
good code matters. . . .” A fragile premise? I dis-
agree! I think that premise is one of the most
robust, supported, and overloaded of all the pre-
mises in our craft (and I think Kent knows it). We
know good code matters because we’ve had to
deal for so long with its lack.

I know of one company that, in the late 80s,
wrote a killer app. It was very popular, and lots of
professionals bought and used it. But then the
release cycles began to stretch. Bugs were not
repaired from one release to the next. Load times
grew and crashes increased. I remember the day I
shut the product down in frustration and never
used it again. The company went out of business
a short time after that.

Two decades later I met one of the early employees of that company and asked him
what had happened. The answer confirmed my fears. They had rushed the product to
market and had made a huge mess in the code. As they added more and more features, the
code got worse and worse until they simply could not manage it any longer. It was the bad
code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of
any experience then you’ve felt this impediment many times. Indeed, we have a name for
it. We call it wading. We wade through bad code. We slog through a morass of tangled
brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some
clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you
didn’t have time to do a good job; that your boss would be angry with you if you took the
time to clean up your code. Perhaps you were just tired of working on this program and
wanted it to be over. Or maybe you looked at the backlog of other stuff that you had prom-
ised to get done and realized that you needed to slam this module together so you could
move on to the next. We’ve all done it.

We’ve all looked at the mess we’ve just made and then have chosen to leave it for
another day. We’ve all felt the relief of seeing our messy program work and deciding that a

1. [Beck07].

4 Chapter 1: Clean Code

working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of
course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically
approaching zero. As productivity decreases, management does the only thing they can;
they add more staff to the project in hopes of increasing productivity. But that new staff is
not versed in the design of the system. They don’t know the difference between a change
that matches the design intent and a change that thwarts the design intent. Furthermore,
they, and everyone else on the team, are under horrific pressure to increase productivity. So
they all make more and more messes, driving the productivity ever further toward zero.
(See Figure 1-1.)

Figure 1-1
Productivity vs. time

5The Total Cost of Owning a Mess

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop
in this odious code base. They demand a redesign. Management does not want to expend
the resources on a whole new redesign of the project, but they cannot deny that productiv-
ity is terrible. Eventually they bend to the demands of the developers and authorize the
grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-
field project. They get to start over and create something truly beautiful. But only the best
and brightest are chosen for the tiger team. Everyone else must continue to maintain the
current system.

Now the two teams are in a race. The tiger team must build a new system that does
everything that the old system does. Not only that, they have to keep up with the changes
that are continuously being made to the old system. Management will not replace the old
system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s
done, the original members of the tiger team are long gone, and the current members are
demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already
know that spending time keeping your code clean is not just cost effective; it’s a matter of
professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have
taken hours? Have you seen what should have been a one-line change, made instead in
hundreds of different modules? These symptoms are all too common.

Why does this happen to code? Why does good code rot so quickly into bad code? We
have lots of explanations for it. We complain that the requirements changed in ways that
thwart the original design. We bemoan the schedules that were too tight to do things right.
We blather about stupid managers and intolerant customers and useless marketing types
and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves.
We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the
requirements? What about the schedule? What about the stupid managers and the useless
marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make
promises and commitments; and even when they don’t look to us, we should not be shy
about telling them what we think. The users look to us to validate the way the requirements
will fit into the system. The project managers look to us to help work out the schedule. We

6 Chapter 1: Clean Code

are deeply complicit in the planning of the project and share a great deal of the responsi-
bility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not.
Most managers want the truth, even when they don’t act like it. Most managers want good
code, even when they are obsessing about the schedule. They may defend the schedule and
requirements with passion; but that’s their job. It’s your job to defend the code with equal
passion.

To drive this point home, what if you were a doctor and had a patient who demanded
that you stop all the silly hand-washing in preparation for surgery because it was taking
too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse
to comply. Why? Because the doctor knows more than the patient about the risks of dis-
ease and infection. It would be unprofessional (never mind criminal) for the doctor to
comply with the patient.

So too it is unprofessional for programmers to bend to the will of managers who don’t
understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years
experience know that previous messes slow them down. And yet all developers feel
the pressure to make messes in order to meet deadlines. In short, they don’t take the time
to go fast!

True professionals know that the second part of the conundrum is wrong. You will not
make the deadline by making the mess. Indeed, the mess will slow you down instantly, and
will force you to miss the deadline. The only way to make the deadline—the only way to
go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept
that the only way to go fast is to keep your code clean. Then you must ask yourself: “How
do I write clean code?” It’s no good trying to write clean code if you don’t know what it
means for code to be clean!

The bad news is that writing clean code is a lot like painting a picture. Most of us
know when a picture is painted well or badly. But being able to recognize good art from
bad does not mean that we know how to paint. So too being able to recognize clean code
from dirty code does not mean that we know how to write clean code!

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that
doctors were too busy and wouldn’t have time to wash their hands between patient visits.

7The Total Cost of Owning a Mess

Writing clean code requires the disciplined use of a myriad little techniques applied
through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key.
Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us
see whether code is good or bad, but it also shows us the strategy for applying our disci-
pline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the
mess but will have no idea what to do about it. A programmer with “code-sense” will look
at a messy module and see options and variations. The “code-sense” will help that pro-
grammer choose the best variation and guide him or her to plot a sequence of behavior
preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very
well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup, inventor of C++

and author of The C++ Programming

Language

I like my code to be elegant and efficient. The
logic should be straightforward to make it hard
for bugs to hide, the dependencies minimal to
ease maintenance, error handling complete
according to an articulated strategy, and per-
formance close to optimal so as not to tempt
people to make the code messy with unprinci-
pled optimizations. Clean code does one thing
well.

Bjarne uses the word “elegant.” That’s
quite a word! The dictionary in my MacBook®

provides the following definitions: pleasingly
graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the
emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to
read. Reading it should make you smile the way a well-crafted music box or well-designed
car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming
from the inventor of C++; but I think there’s more to it than the sheer desire for speed.
Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses

8 Chapter 1: Clean Code

to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep
truth here. Bad code tempts the mess to grow! When others change bad code, they tend to
make it worse.

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the meta-
phor of broken windows.3 A building with broken windows looks like nobody cares about
it. So other people stop caring. They allow more windows to become broken. Eventually
they actively break them. They despoil the facade with graffiti and allow garbage to col-
lect. One broken window starts the process toward decay.

Bjarne also mentions that error handing should be complete. This goes to the disci-
pline of paying attention to details. Abbreviated error handling is just one way that pro-
grammers gloss over details. Memory leaks are another, race conditions still another.
Inconsistent naming yet another. The upshot is that clean code exhibits close attention to
detail.

Bjarne closes with the assertion that clean code does one thing well. It is no accident
that there are so many principles of software design that can be boiled down to this simple
admonition. Writer after writer has tried to communicate this thought. Bad code tries to do
too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each
function, each class, each module exposes a single-minded attitude that remains entirely
undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object

Oriented Analysis and Design with

Applications

Clean code is simple and direct. Clean code
reads like well-written prose. Clean code never
obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines
of control.

Grady makes some of the same points as
Bjarne, but he takes a readability perspective. I
especially like his view that clean code should
read like well-written prose. Think back on a
really good book that you’ve read. Remember how the words disappeared to be replaced
by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you
heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the liter-
ary metaphor is not a bad one. Like a good novel, clean code should clearly expose the ten-
sions in the problem to be solved. It should build those tensions to a climax and then give

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

http://www.pragmaticprogrammer.com/booksellers/2004-12.html

9The Total Cost of Owning a Mess

the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation
of an obvious solution.

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron!
After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary
holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesi-
tation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words
carry a powerful message. Our code should be matter-of-fact as opposed to speculative.
It should contain only what is necessary. Our readers should perceive us to have been
decisive.

“Big” Dave Thomas, founder

of OTI, godfather of the

Eclipse strategy

Clean code can be read, and enhanced by a
developer other than its original author. It has
unit and acceptance tests. It has meaningful
names. It provides one way rather than many
ways for doing one thing. It has minimal depen-
dencies, which are explicitly defined, and pro-
vides a clear and minimal API. Code should be
literate since depending on the language, not all
necessary information can be expressed clearly
in code alone.

Big Dave shares Grady’s desire for readabil-
ity, but with an important twist. Dave asserts that
clean code makes it easy for other people to enhance it. This may seem obvious, but it can-
not be overemphasized. There is, after all, a difference between code that is easy to read
and code that is easy to change.

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows.
But the discipline of Test Driven Development has made a profound impact upon our
industry and has become one of our most fundamental disciplines. Dave is right. Code,
without tests, is not clean. No matter how elegant it is, no matter how readable and acces-
sible, if it hath not tests, it be unclean.

Dave uses the word minimal twice. Apparently he values code that is small, rather
than code that is large. Indeed, this has been a common refrain throughout software litera-
ture since its inception. Smaller is better.

Dave also says that code should be literate. This is a soft reference to Knuth’s literate
programming.4 The upshot is that the code should be composed in such a form as to make
it readable by humans.

4. [Knuth92].

10 Chapter 1: Clean Code

Michael Feathers, author of Working

Effectively with Legacy Code

I could list all of the qualities that I notice in
clean code, but there is one overarching quality
that leads to all of them. Clean code always
looks like it was written by someone who cares.
There is nothing obvious that you can do to
make it better. All of those things were thought
about by the code’s author, and if you try to
imagine improvements, you’re led back to
where you are, sitting in appreciation of the
code someone left for you—code left by some-
one who cares deeply about the craft.

One word: care. That’s really the topic of
this book. Perhaps an appropriate subtitle
would be How to Care for Code.

Michael hit it on the head. Clean code is
code that has been taken care of. Someone has taken the time to keep it simple and orderly.
They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming

Installed and Extreme Programming

Adventures in C#

Ron began his career programming in Fortran at
the Strategic Air Command and has written code in
almost every language and on almost every
machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck’s
rules of simple code. In priority order, simple code:

• Runs all the tests;

• Contains no duplication;

• Expresses all the design ideas that are in the
system;

• Minimizes the number of entities such as classes,
methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over,
it’s a sign that there is an idea in our mind that is not well represented in the code. I try to
figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the
names of things several times before I settle in. With modern coding tools such as Eclipse,
renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes

11The Total Cost of Owning a Mess

beyond names, however. I also look at whether an object or method is doing more than one
thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a
method, I will always use the Extract Method refactoring on it, resulting in one method
that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean
code, and improving dirty code with just these two things in mind can make a huge differ-
ence. There is, however, one other thing that I’m aware of doing, which is a bit harder to
explain.

After years of doing this work, it seems to me that all programs are made up of very
similar elements. One example is “find things in a collection.” Whether we have a data-
base of employee records, or a hash map of keys and values, or an array of items of some
kind, we often find ourselves wanting a particular item from that collection. When I find
that happening, I will often wrap the particular implementation in a more abstract method
or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but
since now all the references to that search are covered by my little abstraction, I can
change the implementation any time I want. I can go forward quickly while preserving my
ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really”
going on, and keeps me from running down the path of implementing arbitrary collection
behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions.
That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No
duplication, one thing, expressiveness, tiny abstractions. Everything is there.

Ward Cunningham, inventor of Wiki,

inventor of Fit, coinventor of eXtreme

Programming. Motive force behind

Design Patterns. Smalltalk and OO

thought leader. The godfather of all

those who care about code.

You know you are working on clean code when each
routine you read turns out to be pretty much what
you expected. You can call it beautiful code when
the code also makes it look like the language was
made for the problem.

Statements like this are characteristic of Ward.
You read it, nod your head, and then go on to the
next topic. It sounds so reasonable, so obvious, that it barely registers as something
profound. You might think it was pretty much what you expected. But let’s take a closer
look.

12 Chapter 1: Clean Code

“. . . pretty much what you expected.” When was the last time you saw a module that
was pretty much what you expected? Isn’t it more likely that the modules you look at will
be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing
about trying to grab and hold the threads of reasoning that spew forth from the whole sys-
tem and weave their way through the module you are reading? When was the last time you
read through some code and nodded your head the way you might have nodded your head
at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you
won’t even expend much effort. You will read it, and it will be pretty much what you
expected. It will be obvious, simple, and compelling. Each module will set the stage for
the next. Each tells you how the next will be written. Programs that are that clean are so
profoundly well written that you don’t even notice it. The designer makes it look ridicu-
lously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our lan-
guages weren’t designed for our problems. But Ward’s statement puts the onus back on us.
He says that beautiful code makes the language look like it was made for the problem! So
it’s our responsibility to make the language look simple! Language bigots everywhere,
beware! It is not the language that makes programs appear simple. It is the programmer
that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think
clean code is? This book will tell you, in hideous
detail, what I and my compatriots think about
clean code. We will tell you what we think makes
a clean variable name, a clean function, a clean
class, etc. We will present these opinions as abso-
lutes, and we will not apologize for our stridence.
To us, at this point in our careers, they are abso-
lutes. They are our school of thought about clean
code.

Martial artists do not all agree about the best
martial art, or the best technique within a martial
art. Often master martial artists will form their
own schools of thought and gather students to
learn from them. So we see Gracie Jiu Jistu,
founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded
and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by
Bruce Lee in the United States.

13We Are Authors

Students of these approaches immerse themselves in the teachings of the founder.
They dedicate themselves to learn what that particular master teaches, often to the exclu-
sion of any other master’s teaching. Later, as the students grow in their art, they may
become the student of a different master so they can broaden their knowledge and practice.
Some eventually go on to refine their skills, discovering new techniques and founding their
own schools.

None of these different schools is absolutely right. Yet within a particular school we
act as though the teachings and techniques are right. After all, there is a right way to prac-
tice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not inval-
idate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The
techniques and teachings within are the way that we practice our art. We are willing to
claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed,
and you will learn to write code that is clean and professional. But don’t make the mistake
of thinking that we are somehow “right” in any absolute sense. There are other schools and
other masters that have just as much claim to professionalism as we. It would behoove you
to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will proba-
bly not agree with all of them. You might violently disagree with some of them. That’s fine.
We can’t claim final authority. On the other hand, the recommendations in this book are
things that we have thought long and hard about. We have learned them through decades of
experience and repeated trial and error. So whether you agree or disagree, it would be a
shame if you did not see, and respect, our point of view.

We Are Authors

The @author field of a Javadoc tells us who we are. We are authors. And one thing about
authors is that they have readers. Indeed, authors are responsible for communicating well
with their readers. The next time you write a line of code, remember you are an author,
writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into
writing it?

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs
that kept track of every keystroke. You could work for an hour and then play back your whole
edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module.
He scrolls down to the function needing change.
He pauses, considering his options.
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.

14 Chapter 1: Clean Code

Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is
called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

. . .

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1.
We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes
the writing harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier to write.

There is no escape from this logic. You cannot write code if you cannot read the sur-
rounding code. The code you are trying to write today will be hard or easy to write
depending on how hard or easy the surrounding code is to read. So if you want to go fast,
if you want to get done quickly, if you want your code to be easy to write, make it easy to
read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all
seen code rot and degrade as time passes. So we must take an active role in preventing this
degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession.

Leave the campground cleaner than you found it.5

If we all checked-in our code a little cleaner than when we checked it out, the code
simply could not rot. The cleanup doesn’t have to be something big. Change one variable
name for the better, break up one function that’s a little too large, eliminate one small bit of
duplication, clean up one composite if statement.

Can you imagine working on a project where the code simply got better as time
passed? Do you believe that any other option is professional? Indeed, isn’t continuous
improvement an intrinsic part of professionalism?

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a
little better than you found it . . .”

15Bibliography

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software
Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself
with the principles of object-oriented design, and many of the practices used by profes-
sional developers. If you have not read PPP, then you may find that it continues the story
told by this book. If you have already read it, then you’ll find many of the sentiments of
that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These
include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and
the Dependency Inversion Principle (DIP) among others. These principles are described in
depth in PPP.

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the
tools, techniques, and thought processes that other artists have used. So too this book can-
not promise to make you a good programmer. It cannot promise to give you “code-sense.”
All it can do is show you the thought processes of good programmers and the tricks, tech-
niques, and tools that they use.

Just like a book on art, this book will be full of details. There will be lots of code.
You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good
code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after
example. After that, it’s up to you.

Remember the old joke about the concert violinist who got lost on his way to a perfor-
mance? He stopped an old man on the corner and asked him how to get to Carnegie Hall.
The old man looked at the violinist and the violin tucked under his arm, and said: “Prac-
tice, son. Practice!”

Bibliography

[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of Language
and Information, Leland Stanford Junior University, 1992.

This page intentionally left blank

413

Index

detection, 237–238
++ (pre- or post-increment) operator,

325, 326

A
aborted computation, 109
abstract classes, 149, 271, 290
ABSTRACT FACTORY pattern, 38, 156,

273, 274
abstract interfaces, 94
abstract methods

adding to ArgumentMarshaler, 234–235
modifying, 282

abstract terms, 95
abstraction

classes depending on, 150
code at wrong level of, 290–291
descending one level at a time, 37
functions descending only one level

of, 304–306
mixing levels of, 36–37
names at the appropriate level of, 311
separating levels of, 305
wrapping an implementation, 11

abstraction levels
raising, 290
separating, 305

accessor functions, Law of Demeter
and, 98

accessors, naming, 25
Active Records, 101
adapted server, 185

affinity, 84
Agile Software Development: Principles,

Patterns, Practices (PPP), 15
algorithms

correcting, 269–270
repeating, 48
understanding, 297–298

ambiguities
in code, 301
ignored tests as, 313

amplification comments, 59
analysis functions, 265
“annotation form”, of AspectJ, 166
Ant project, 76, 77
AOP (aspect-oriented programming),

160, 163
APIs. See also public APIs

calling a null-returning method
from, 110

specialized for tests, 127
wrapping third-party, 108

applications
decoupled from Spring, 164
decoupling from construction

details, 156
infrastructure of, 163
keeping concurrency-related code

separate, 181
arbitrary structure, 303–304
args array, converting into a list, 231–232
Args class

constructing, 194
implementation of, 194–200
rough drafts of, 201–212, 226–231

414 Index

ArgsException class
listing, 198–200
merging exceptions into, 239–242

argument(s)
flag, 41
for a function, 40
in functions, 288
monadic forms of, 41
reducing, 43

argument lists, 43
argument objects, 43
argument types

adding, 200, 237
negative impact of, 208

ArgumentMarshaler class
adding the skeleton of, 213–214
birth of, 212

ArgumentMarshaler interface, 197–198
arrays, moving, 279
art, of clean code, 6–7
artificial coupling, 293
AspectJ language, 166
aspect-oriented programming (AOP),

160, 163
aspects

in AOP, 160–161
“first-class” support for, 166

assert statements, 130–131
assertEquals, 42
assertions, using a set of, 111
assignments, unaligned, 87–88
atomic operation, 323–324
attributes, 68
authors

of JUnit, 252
programmers as, 13–14

authorship statements, 55
automated code instrumentation, 189–190
automated suite, of unit tests, 124

B
bad code, 3–4. See also dirty code;

messy code
degrading effect of, 250

example, 71–72
experience of cleaning, 250
not making up for, 55

bad comments, 59–74
banner, gathering functions beneath, 67
base classes, 290, 291
BDUF (Big Design Up Front), 167
beans, private variables manipulated,

100–101
Beck, Kent, 3, 34, 71, 171, 252,

289, 296
behaviors, 288–289
Big Design Up Front (BDUF), 167
blank lines, in code, 78–79
blocks, calling functions within, 35
Booch,Grady, 8–9
boolean, passing into a function, 41
boolean arguments, 194, 288
boolean map, deleting, 224
boolean output, of tests, 132
bound resources, 183, 184
boundaries

clean, 120
exploring and learning, 116
incorrect behavior at, 289
separating known from unknown,

118–119
boundary condition errors, 269
boundary conditions

encapsulating, 304
testing, 314

boundary tests, easing a migration, 118
“Bowling Game”, 312
Boy Scout Rule, 14–15, 257

following, 284
satisfying, 265

broken windows metaphor, 8
bucket brigade, 303
BUILD-OPERATE-CHECK pattern, 127
builds, 287
business logic, separating from error

handling, 109
bylines, 68
byte-manipulation libraries, 161,

162–163

415Index

C
The C++ Programming Language, 7
calculations, breaking into intermediate

values, 296
call stack, 324
Callable interface, 326
caller, cluttering, 104
calling hierarchy, 106
calls, avoiding chains of, 98
caring, for code, 10
Cartesian points, 42
CAS operation, as atomic, 328
change(s)

isolating from, 149–150
large number of very tiny, 213
organizing for, 147–150
tests enabling, 124

change history, deleting, 270
check exceptions, in Java, 106
circular wait, 337, 338–339
clarification, comments as, 57
clarity, 25, 26
class names, 25
classes

cohesion of, 140–141
creating for bigger concepts, 28–29
declaring instance variables, 81
enforcing design and business

rules, 115
exposing internals of, 294
instrumenting into ConTest, 342
keeping small, 136, 175
minimizing the number of, 176
naming, 25, 138
nonthread-safe, 328–329
as nouns of a language, 49
organization of, 136
organizing to reduce risk of

change, 147
supporting advanced concurrency

design, 183
classification, of errors, 107

clean boundaries, 120
clean code

art of, 6–7
described, 7–12
writing, 6–7

clean tests, 124–127
cleanliness

acquired sense of, 6–7
tied to tests, 9

cleanup, of code, 14–15
clever names, 26
client, using two methods, 330
client code, connecting to a server, 318
client-based locking, 185, 329, 330–332
clientScheduler, 320
client/server application, concurrency in,

317–321
Client/Server nonthreaded, code for,

343–346
client-server using threads, code changes,

346–347
ClientTest.java, 318, 344–346
closing braces, comments on, 67–68
Clover, 268, 269
clutter

Javadocs as, 276
keeping free of, 293

code, 2
bad, 3–4
Beck's rules of, 10
commented-out, 68–69, 287
dead, 292
explaining yourself in, 55
expressing yourself in, 54
formatting of, 76
implicity of, 18–19
instrumenting, 188, 342
jiggling, 190
making readable, 311
necessity of, 2
reading from top to bottom, 37
simplicity of, 18, 19
technique for shrouding, 20

416 Index

code, continued
third-party, 114–115
width of lines in, 85–90
at wrong level of abstraction, 290–291

code bases, dominated by error
handling, 103

code changes, comments not always
following, 54

code completion, automatic, 20
code coverage analysis, 254–256
code instrumentation, 188–190
“code sense”, 6, 7
code smells, listing of, 285–314
coding standard, 299
cohesion

of classes, 140–141
maintaining, 141–146

command line arguments, 193–194
commands, separating from queries, 45–46
comment header standard, 55–56
comment headers, replacing, 70
commented-out code, 68–69, 287
commenting style, example of bad, 71–72
comments

amplifying importance of
something, 59

bad, 59–74
deleting, 282
as failures, 54
good, 55–59
heuristics on, 286–287
HTML, 69
inaccurate, 54
informative, 56
journal, 63–64
legal, 55–56
mandated, 63
misleading, 63
mumbling, 59–60
as a necessary evil, 53–59
noise, 64–66
not making up for bad code, 55
obsolete, 286
poorly written, 287
proper use of, 54

redundant, 60–62, 272, 275, 286–287
restating the obvious, 64
separated from code, 54
TODO, 58–59
too much information in, 70
venting in, 65
writing, 287

“communication gap”, minimizing, 168
Compare and Swap (CAS) operation,

327–328
ComparisonCompactor module, 252–265

defactored, 256–261
final, 263–265
interim, 261–263
original code, 254–256

compiler warnings, turning off, 289
complex code, demonstrating failures

in, 341
complexity, managing, 139–140
computer science (CS) terms, using for

names, 27
concepts

keeping close to each other, 80
naming, 19
one word per, 26
separating at different levels, 290
spelling similar similarly, 20
vertical openness between, 78–79

conceptual affinity, of code, 84
concerns

cross-cutting, 160–161
separating, 154, 166, 178, 250

concrete classes, 149
concrete details, 149
concrete terms, 94
concurrency

defense principles, 180–182
issues, 190
motives for adopting, 178–179
myths and misconceptions about,

179–180
concurrency code

compared to nonconcurrency-related
code, 181

focusing, 321

417Index

concurrent algorithms, 179
concurrent applications, partition

behavior, 183
concurrent code

breaking, 329–333
defending from problems of, 180
flaws hiding in, 188

concurrent programming, 180
Concurrent Programming in Java: Design

Principles and Patterns, 182, 342
concurrent programs, 178
concurrent update problems, 341
ConcurrentHashMap implementation, 183
conditionals

avoiding negative, 302
encapsulating, 257–258, 301

configurable data, 306
configuration constants, 306
consequences, warning of, 58
consistency

in code, 292
of enums, 278
in names, 40

consistent conventions, 259
constants

versus enums, 308–309
hiding, 308
inheriting, 271, 307–308
keeping at the appropriate level, 83
leaving as raw numbers, 300
not inheriting, 307–308
passing as symbols, 276
turning into enums, 275–276

construction
moving all to main, 155, 156
separating with factory, 156
of a system, 154

constructor arguments, 157
constructors, overloading, 25
consumer threads, 184
ConTest tool, 190, 342
context

adding meaningful, 27–29
not adding gratuitous, 29–30
providing with exceptions, 107

continuous readers, 184
control variables, within loop statements,

80–81
convenient idioms, 155
convention(s)

following standard, 299–300
over configuration, 164
structure over, 301
using consistent, 259

convoluted code, 175
copyright statements, 55
cosmic-rays. See one-offs
CountDownLatch class, 183
coupling. See also decoupling; temporal

coupling; tight coupling
artificial, 293
hidden temporal, 302–303
lack of, 150

coverage patterns, testing, 314
coverage tools, 313
“crisp abstraction”, 8–9
cross-cutting concerns, 160
Cunningham, Ward, 11–12
cuteness, in code, 26

D
dangling false argument, 294
data

abstraction, 93–95
copies of, 181–182
encapsulation, 181
limiting the scope of, 181
sets processed in parallel, 179
types, 97, 101

data structures. See also structure(s)
compared to objects, 95, 97
defined, 95
interfaces representing, 94
treating Active Records as, 101

data transfer-objects (DTOs),
100–101, 160

database normal forms, 48
DateInterval enum, 282–283
DAY enumeration, 277

418 Index

DayDate class, running SerialDate
as, 271

DayDateFactory, 273–274
dead code, 288, 292
dead functions, 288
deadlock, 183, 335–339
deadly embrace. See circular wait
debugging, finding deadlocks, 336
decision making, optimizing, 167–168
decisions, postponing, 168
declarations, unaligned, 87–88
DECORATOR objects, 164
DECORATOR pattern, 274
decoupled architecture, 167
decoupling, from construction

details, 156
decoupling strategy, concurrency

as, 178
default constructor, deleting, 276
degradation, preventing, 14
deletions, as the majority of

changes, 250
density, vertical in code, 79–80
dependencies

finding and breaking, 250
injecting, 157
logical, 282
making logical physical, 298–299
between methods, 329–333
between synchronized

methods, 185
Dependency Injection (DI), 157
Dependency Inversion Principle (DIP),

15, 150
dependency magnet, 47
dependent functions, formatting, 82–83
derivatives

base classes depending on, 291
base classes knowing about, 273
of the exception class, 48
moving set functions into, 232,

233–235
pushing functionality into, 217

description
of a class, 138
overloading the structure of code

into, 310
descriptive names

choosing, 309–310
using, 39–40

design(s)
of concurrent algorithms, 179
minimally coupled, 167
principles of, 15

design patterns, 290
details, paying attention to, 8
DI (Dependency Injection), 157
Dijkstra, Edsger, 48
dining philosophers execution model,

184–185
DIP (Dependency Inversion Principle),

15, 150
dirty code. See also bad code;

messy code
dirty code, cleaning, 200
dirty tests, 123
disinformation, avoiding, 19–20
distance, vertical in code, 80–84
distinctions, making meaningful, 20–21
domain-specific languages (DSLs),

168–169
domain-specific testing language, 127
DoubleArgumentMarshaler class, 238
DRY principle (Don't Repeat Yourself),

181, 289
DTOs (data transfer objects), 100–101, 160
dummy scopes, 90
duplicate if statements, 276
duplication

of code, 48
in code, 289–290
eliminating, 173–175
focusing on, 10
forms of, 173, 290
reduction of, 48
strategies for eliminating, 48

419Index

dyadic argument, 40
dyadic functions, 42
dynamic proxies, 161

E
e, as a variable name, 22
Eclipse, 26
edit sessions, playing back, 13–14
efficiency, of code, 7
EJB architecture, early as over-engineered,

167
EJB standard, complete overhaul of, 164
EJB2 beans, 160
EJB3, Bank object rewritten in, 165–166
“elegant” code, 7
emergent design, 171–176
encapsulation, 136

of boundary conditions, 304
breaking, 106–107
of conditionals, 301

encodings, avoiding, 23–24, 312–313
entity bean, 158–160
enum(s)

changing MonthConstants to, 272
using, 308–309

enumeration, moving, 277
environment, heuristics on, 287
environment control system, 128–129
envying, the scope of a class, 293
error check, hiding a side effect, 258
Error class, 47–48
error code constants, 198–200
error codes

implying a class or enum, 47–48
preferring exceptions to, 46
returning, 103–104
reusing old, 48
separating from the Args module,

242–250
error detection, pushing to the edges, 109
error flags, 103–104
error handling, 8, 47–48

error messages, 107, 250
error processing, testing, 238–239
errorMessage method, 250
errors. See also boundary condition errors;

spelling errors; string comparison
errors
classifying, 107

Evans, Eric, 311
events, 41
exception classification, 107
exception clauses, 107–108
exception management code, 223
exceptions

instead of return codes, 103–105
narrowing the type of, 105–106
preferring to error codes, 46
providing context with, 107
separating from Args, 242–250
throwing, 104–105, 194
unchecked, 106–107

execution, possible paths of, 321–326
execution models, 183–185
Executor framework, 326–327
ExecutorClientScheduler.java, 321
explanation, of intent, 56–57
explanatory variables, 296–297
explicitness, of code, 19
expressive code, 295
expressiveness

in code, 10–11
ensuring, 175–176

Extract Method refactoring, 11
Extreme Programming Adventures

in C#, 10
Extreme Programming Installed, 10
“eye-full”, code fitting into, 79–80

F
factories, 155–156
factory classes, 273–275
failure

to express ourselves in code, 54

420 Index

failure, continued
patterns of, 314
tolerating with no harm, 330

false argument, 294
fast tests, 132
fast-running threads, starving longer

running, 183
fear, of renaming, 30
Feathers, Michael, 10
feature envy

eliminating, 293–294
smelling of, 278

file size, in Java, 76
final keywords, 276
F.I.R.S.T. acronym, 132–133
First Law, of TDD, 122
FitNesse project

coding style for, 90
file sizes, 76, 77
function in, 32–33
invoking all tests, 224

flag arguments, 41, 288
focussed code, 8
foreign code. See third-party code
formatting

horizontal, 85–90
purpose of, 76
Uncle Bob’s rules, 90–92
vertical, 76–85

formatting style, for a team of
developers, 90

Fortran, forcing encodings, 23
Fowler, Martin, 285, 293
frame, 324
function arguments, 40–45
function call dependencies, 84–85
function headers, 70
function signature, 45
functionality, placement of, 295–296
functions

breaking into smaller, 141–146
calling within a block, 35
dead, 288
defining private, 292

descending one level of abstraction,
304–306

doing one thing, 35–36, 302
dyadic, 42
eliminating extraneous if statements,

262
establishing the temporal nature

of, 260
formatting dependent, 82–83
gathering beneath a banner, 67
heuristics on, 288
intention-revealing, 19
keeping small, 175
length of, 34–35
moving, 279
naming, 39, 297
number of arguments in, 288
one level of abstraction per, 36–37
in place of comments, 67
renaming for clarity, 258
rewriting for clarity, 258–259
sections within, 36
small as better, 34
structured programming with, 49
understanding, 297–298
as verbs of a language, 49
writing, 49

futures, 326

G
Gamma, Eric, 252
general heuristics, 288–307
generated byte-code, 180
generics, improving code readability, 115
get functions, 218
getBoolean function, 224
GETFIELD instruction, 325, 326
getNextId method, 326
getState function, 129
Gilbert, David, 267, 268
given-when-then convention, 130
glitches. See one-offs

421Index

global setup strategy, 155
“God class”, 136–137
good comments, 55–59
goto statements, avoiding, 48, 49
grand redesign, 5
gratuitous context, 29–30

H
hand-coded instrumentation, 189
HashTable, 328–329
headers. See comment headers; function

headers
heuristics

cross references of, 286, 409
general, 288–307
listing of, 285–314

hidden temporal coupling, 259, 302–303
hidden things, in a function, 44
hiding

implementation, 94
structures, 99

hierarchy of scopes, 88
HN. See Hungarian Notation
horizontal alignment, of code, 87–88
horizontal formatting, 85–90
horizontal white space, 86
HTML, in source code, 69
Hungarian Notation (HN), 23–24, 295
Hunt, Andy, 8, 289
hybrid structures, 99

I
if statements

duplicate, 276
eliminating, 262

if-else chain
appearing again and again, 290
eliminating, 233

ignored tests, 313
implementation

duplication of, 173
encoding, 24

exposing, 94
hiding, 94
wrapping an abstraction, 11

Implementation Patterns, 3, 296
implicity, of code, 18
import lists

avoiding long, 307
shortening in SerialDate, 270

imports, as hard dependencies, 307
imprecision, in code, 301
inaccurate comments, 54
inappropriate information, in

comments, 286
inappropriate static methods, 296
include method, 48
inconsistency, in code, 292
inconsistent spellings, 20
incrementalism, 212–214
indent level, of a function, 35
indentation, of code, 88–89
indentation rules, 89
independent tests, 132
information

inappropriate, 286
too much, 70, 291–292

informative comments, 56
inheritance hierarchy, 308
inobvious connection, between a comment

and code, 70
input arguments, 41
instance variables

in classes, 140
declaring, 81
hiding the declaration of, 81–82
passing as function

arguments, 231
proliferation of, 140

instrumented classes, 342
insufficient tests, 313
integer argument(s)

defining, 194
integrating, 224–225

integer argument functionality,
moving into ArgumentMarshaler,
215–216

422 Index

integer argument type, adding
to Args, 212

integers, pattern of changes for, 220
IntelliJ, 26
intent

explaining in code, 55
explanation of, 56–57
obscured, 295

intention-revealing function, 19
intention-revealing names, 18–19
interface(s)

defining local or remote, 158–160
encoding, 24
implementing, 149–150
representing abstract concerns, 150
turning ArgumentMarshaler into, 237
well-defined, 291–292
writing, 119

internal structures, objects hiding, 97
intersection, of domains, 160
intuition, not relying on, 289
inventor of C++, 7
Inversion of Control (IoC), 157
InvocationHandler object, 162
I/O bound, 318
isolating, from change, 149–150
isxxxArg methods, 221–222
iterative process, refactoring as, 265

J
jar files, deploying derivatives and bases

in, 291
Java

aspects or aspect-like mechanisms,
161–166

heuristics on, 307–309
as a wordy language, 200

Java 5, improvements for concurrent
development, 182–183

Java 5 Executor framework, 320–321
Java 5 VM, nonblocking solutions in,

327–328
Java AOP frameworks, 163–166

Java programmers, encoding not
needed, 24

Java proxies, 161–163
Java source files, 76–77
javadocs

as clutter, 276
in nonpublic code, 71
preserving formatting in, 270
in public APIs, 59
requiring for every function, 63

java.util.concurrent package, collections
in, 182–183

JBoss AOP, proxies in, 163
JCommon library, 267
JCommon unit tests, 270
JDepend project, 76, 77
JDK proxy, providing persistence support,

161–163
Jeffries, Ron, 10–11, 289
jiggling strategies, 190
JNDI lookups, 157
journal comments, 63–64
JUnit, 34
JUnit framework, 252–265
Junit project, 76, 77
Just-In-Time Compiler, 180

K
keyword form, of a function name, 43

L
L, lower-case in variable names, 20
language design, art of programming as, 49
languages

appearing to be simple, 12
level of abstraction, 2
multiple in one source file, 288
multiples in a comment, 270

last-in, first-out (LIFO) data structure,
operand stack as, 324

Law of Demeter, 97–98, 306

423Index

LAZY INITIALIZATION/
EVALUATION idiom, 154

LAZY-INITIALIZATION, 157
Lea, Doug, 182, 342
learning tests, 116, 118
LeBlanc’s law, 4
legacy code, 307
legal comments, 55–56
level of abstraction, 36–37
levels of detail, 99
lexicon, having a consistent, 26
lines of code

duplicating, 173
width of, 85

list(s)
of arguments, 43
meaning specific to programmers, 19
returning a predefined immutable, 110

literate code, 9
literate programming, 9
Literate Programming, 141
livelock, 183, 338
local comments, 69–70
local variables, 324

declaring, 292
at the top of each function, 80

lock & wait, 337, 338
locks, introducing, 185
log4j package, 116–118
logical dependencies, 282, 298–299
LOGO language, 36
long descriptive names, 39
long names, for long scopes, 312
loop counters, single-letter names for, 25

M
magic numbers

obscuring intent, 295
replacing with named constants,

300–301
main function, moving construction to,

155, 156

managers, role of, 6
mandated comments, 63
manual control, over a serial ID, 272
Map

adding for ArgumentMarshaler, 221
methods of, 114

maps, breaking the use of, 222–223
marshalling implementation,

214–215
meaningful context, 27–29
member variables

f prefix for, 257
prefixing, 24
renaming for clarity, 259

mental mapping, avoiding, 25
messy code. See also bad code; dirty code

total cost of owning, 4–12
method invocations, 324
method names, 25
methods

affecting the order of execution, 188
calling a twin with a flag, 278
changing from static to instance, 280
of classes, 140
dependencies between, 329–333
eliminating duplication between,

173–174
minimizing assert statements in, 176
naming, 25
tests exposing bugs in, 269

minimal code, 9
misleading comments, 63
misplaced responsibility, 295–296, 299
MOCK OBJECT, assigning, 155
monadic argument, 40
monadic forms, of arguments, 41
monads, converting dyads into, 42
Monte Carlo testing, 341
Month enum, 278
MonthConstants class, 271
multithread aware, 332
multithread-calculation, of throughput,

335

424 Index

multithreaded code, 188, 339–342
mumbling, 59–60
mutators, naming, 25
mutual exclusion, 183, 336, 337

N
named constants, replacing magic

numbers, 300–301
name-length-challenged languages, 23
names

abstractions, appropriate level of, 311
changing, 40
choosing, 175, 309–310
of classes, 270–271
clever, 26
descriptive, 39–40
of functions, 297
heuristics on, 309–313
importance of, 309–310
intention-revealing, 18–19
length of corresponding to scope,

22–23
long names for long scopes, 312
making unambiguous, 258
problem domain, 27
pronounceable, 21–22
rules for creating, 18–30
searchable, 22–23
shorter generally better than longer, 30
solution domain, 27
with subtle differences, 20
unambiguous, 312
at the wrong level of abstraction, 271

naming, classes, 138
naming conventions, as inferior to

structures, 301
navigational methods, in Active

Records, 101
near bugs, testing, 314
negative conditionals, avoiding, 302
negatives, 258
nested structures, 46

Newkirk, Jim, 116
newspaper metaphor, 77–78
niladic argument, 40
no preemption, 337
noise

comments, 64–66
scary, 66
words, 21

nomenclature, using standard, 311–312
nonblocking solutions, 327–328
nonconcurrency-related code, 181
noninformative names, 21
nonlocal information, 69–70
nonpublic code, javadocs in, 71
nonstatic methods, preferred to static, 296
nonthreaded code, getting working

first, 187
nonthread-safe classes, 328–329
normal flow, 109
null

not passing into methods, 111–112
not returning, 109–110
passed by a caller accidentally, 111

null detection logic, for ArgumentMarshaler,
214

NullPointerException, 110, 111
number-series naming, 21

O
Object Oriented Analysis and Design with

Applications, 8
object-oriented design, 15
objects

compared to data structures, 95, 97
compared to data types and proce-

dures, 101
copying read-only, 181
defined, 95

obscured intent, 295
obsolete comments, 286
obvious behavior, 288–289
obvious code, 12

425Index

“Once and only once” principle, 289
“ONE SWITCH” rule, 299
one thing, functions doing, 35–36, 302
one-offs, 180, 187, 191
OO code, 97
OO design, 139
Open Closed Principle (OCP), 15, 38

by checked exceptions, 106
supporting, 149

operand stack, 324
operating systems, threading policies, 188
operators, precedence of, 86
optimistic locking, 327
optimizations, LAZY-EVALUATION

as, 157
optimizing, decision making, 167–168
orderings, calculating the possible, 322–323
organization

for change, 147–150
of classes, 136
managing complexity, 139–140

outbound tests, exercising an interface, 118
output arguments, 41, 288

avoiding, 45
need for disappearing, 45

outputs, arguments as, 45
overhead, incurred by concurrency, 179
overloading, of code with description, 310

P
paperback model, as an academic

model, 27
parameters, taken by instructions, 324
parse operation, throwing an

exception, 220
partitioning, 250
paths of execution, 321–326
pathways, through critical sections, 188
pattern names, using standard, 175
patterns

of failure, 314
as one kind of standard, 311

performance
of a client/server pair, 318
concurrency improving, 179
of server-based locking, 333

permutations, calculating, 323
persistence, 160, 161
pessimistic locking, 327
phraseology, in similar names, 40
physicalizing, a dependency, 299
Plain-Old Java Objects. See POJOs
platforms, running threaded code, 188
pleasing code, 7
pluggable thread-based code, 187
POJO system, agility provided by, 168
POJOs (Plain-Old Java Objects)

creating, 187
implementing business logic, 162
separating threaded-aware code, 190
in Spring, 163
writing application domain logic, 166

polyadic argument, 40
polymorphic behavior, of functions, 296
polymorphic changes, 96–97
polymorphism, 37, 299
position markers, 67
positives

as easier to understand, 258
expressing conditionals as, 302
of decisions, 301precision
as the point of all naming, 30

predicates, naming, 25
preemption, breaking, 338
prefixes

for member variables, 24
as useless in today’s environments,

312–313
pre-increment operator, ++, 324, 325, 326
“prequel”, this book as, 15
principle of least surprise, 288–289, 295
principles, of design, 15
PrintPrimes program, translation into

Java, 141
private behavior, isolating, 148–149

426 Index

private functions, 292
private method behavior, 147
problem domain names, 27
procedural code, 97
procedural shape example, 95–96
procedures, compared to objects, 101
process function, repartitioning, 319–320
process method, I/O bound, 319
processes, competing for resources, 184
processor bound, code as, 318
producer consumer execution model, 184
producer threads, 184
production environment, 127–130
productivity, decreased by messy code, 4
professional programmer, 25
professional review, of code, 268
programmers

as authors, 13–14
conundrum faced by, 6
responsibility for messes, 5–6
unprofessional, 5–6

programming
defined, 2
structured, 48–49

programs, getting them to work, 201
pronounceable names, 21–22
protected variables, avoiding, 80
proxies, drawbacks of, 163
public APIs, javadocs in, 59
puns, avoiding, 26–27
PUTFIELD instruction, as atomic, 325

Q
queries, separating from commands, 45–46

R
random jiggling, tests running, 190
range, including end-point dates in, 276
readability

of clean tests, 124
of code, 76

Dave Thomas on, 9
improving using generics, 115

readability perspective, 8
readers

of code, 13–14
continuous, 184

readers-writers execution model, 184
reading

clean code, 8
code from top to bottom, 37
versus writing, 14

reboots, as a lock up solution, 331
recommendations, in this book, 13
redesign, demanded by the team, 5
redundancy, of noise words, 21
redundant comments, 60–62, 272, 275,

286–287
ReentrantLock class, 183
refactored programs, as longer, 146
refactoring

Args, 212
code incrementally, 172
as an iterative process, 265
putting things in to take out, 233
test code, 127

Refactoring (Fowler), 285
renaming, fear of, 30
repeatability, of concurrency bugs, 180
repeatable tests, 132
requirements, specifying, 2
resetId, byte-code generated for, 324–325
resources

bound, 183
processes competing for, 184
threads agreeing on a global ordering

of, 338
responsibilities

counting in classes, 136
definition of, 138
identifying, 139
misplaced, 295–296, 299
splitting a program into main, 146

return codes, using exceptions instead,
103–105

427Index

reuse, 174
risk of change, reducing, 147
robust clear code, writing, 112
rough drafts, writing, 200
runnable interface, 326
run-on expressions, 295
run-on journal entries, 63–64
runtime logic, separating startup from, 154

S
safety mechanisms, overridden, 289
scaling up, 157–161
scary noise, 66
schema, of a class, 194
schools of thought, about clean code,

12–13
scissors rule, in C++, 81
scope(s)

defined by exceptions, 105
dummy, 90
envying, 293
expanding and indenting, 89
hierarchy in a source file, 88
limiting for data, 181
names related to the length of,

22–23, 312
of shared variables, 333

searchable names, 22–23
Second Law, of TDD, 122
sections, within functions, 36
selector arguments, avoiding, 294–295
self validating tests, 132
Semaphore class, 183
semicolon, making visible, 90
“serial number”, SerialDate using, 271
SerialDate class

making it right, 270–284
naming of, 270–271
refactoring, 267–284

SerialDateTests class, 268
serialization, 272
server, threads created by, 319–321

server application, 317–318, 343–344
server code, responsibilities of, 319
server-based locking, 329

as preferred, 332–333
with synchronized methods, 185

“Servlet” model, of Web applications, 178
Servlets, synchronization problems, 182
set functions, moving into appropriate

derivatives, 232, 233–235
setArgument, changing, 232–233
setBoolean function, 217
setter methods, injecting dependencies,

157
setup strategy, 155
SetupTeardownIncluder.java listing,

50–52
shape classes, 95–96
shared data, limiting access, 181
shared variables

method updating, 328
reducing the scope of, 333

shotgun approach, hand-coded instrumen-
tation as, 189

shut-down code, 186
shutdowns, graceful, 186
side effects

having none, 44
names describing, 313

Simmons, Robert, 276
simple code, 10, 12
Simple Design, rules of, 171–176
simplicity, of code, 18, 19
single assert rule, 130–131
single concepts, in each test function,

131–132
Single Responsibility Principle (SRP), 15,

138–140
applying, 321
breaking, 155
as a concurrency defense principle,

181
recognizing violations of, 174
server violating, 320

428 Index

Single Responsibility Principle (SRP),
continued

Sql class violating, 147
supporting, 157
in test classes conforming to, 172
violating, 38

single value, ordered components of, 42
single-letter names, 22, 25
single-thread calculation, of throughput,

334
SINGLETON pattern, 274
small classes, 136
Smalltalk Best Practice Patterns, 296
smart programmer, 25
software project, maintenance of, 175
software systems. See also system(s)

compared to physical systems, 158
SOLID class design principle, 150
solution domain names, 27
source code control systems, 64, 68, 69
source files

compared to newspaper articles,
77–78

multiple languages in, 288
Sparkle program, 34
spawned threads, deadlocked, 186
special case objects, 110
SPECIAL CASE PATTERN, 109
specifications, purpose of, 2
spelling errors, correcting, 20
SpreadsheetDateFactory, 274–275
Spring AOP, proxies in, 163
Spring Framework, 157
Spring model, following EJB3, 165
Spring V2.5 configuration file, 163–164
spurious failures, 187
Sql class, changing, 147–149
square root, as the iteration limit, 74
SRP. See Single Responsibility Principle
standard conventions, 299–300
standard nomenclature, 175, 311–312
standards, using wisely, 168
startup process, separating from runtime

logic, 154

starvation, 183, 184, 338
static function, 279
static import, 308
static methods, inappropriate, 296
The Step-down Rule, 37
stories, implementing only today’s, 158
STRATEGY pattern, 290
string arguments, 194, 208–212, 214–225
string comparison errors, 252
StringBuffers, 129
Stroustrup, Bjarne, 7–8
structure(s). See also data structures

hiding, 99
hybrid, 99
making massive changes to, 212
over convention, 301

structured programming, 48–49
SuperDashboard class, 136–137
swapping, as permutations, 323
switch statements

burying, 37, 38
considering polymorphism

before, 299
reasons to tolerate, 38–39

switch/case chain, 290
synchronization problems, avoiding with

Servlets, 182
synchronized block, 334
synchronized keyword, 185

adding, 323
always acquiring a lock, 328
introducing a lock via, 331
protecting a critical section

in code, 181
synchronized methods, 185
synchronizing, avoiding, 182
synthesis functions, 265
system(s). See also software systems

file sizes of significant, 77
keeping running during development,

213
needing domain-specific, 168

system architecture, test driving,
166–167

429Index

system failures, not ignoring
one-offs, 187

system level, staying clean at, 154
system-wide information, in a local

comment, 69–70

T
tables, moving, 275
target deployment platforms, running tests

on, 341
task swapping, encouraging, 188
TDD (Test Driven Development), 213

building logic, 106
as fundamental discipline, 9
laws of, 122–123

team rules, 90
teams

coding standard for every, 299–300
slowed by messy code, 4

technical names, choosing, 27
technical notes, reserving comments

for, 286
TEMPLATE METHOD pattern

addressing duplication, 290
removing higher-level duplication,

174–175
using, 130

temporal coupling. See also coupling
exposing, 259–260
hidden, 302–303
side effect creating, 44

temporary variables, explaining, 279–281
test cases

adding to check arguments, 237
in ComparisonCompactor, 252–254
patterns of failure, 269, 314
turning off, 58

test code, 124, 127
TEST DOUBLE, assigning, 155
Test Driven Development. See TDD
test driving, architecture, 166–167
test environment, 127–130

test functions, single concepts in, 131–132
test implementation, of an interface, 150
test suite

automated, 213
of unit tests, 124, 268
verifying precise behavior, 146

testable systems, 172
test-driven development. See TDD
testing

arguments making harder, 40
construction logic mixed with

runtime, 155
testing language, domain-specific, 127
testNG project, 76, 77
tests

clean, 124–127
cleanliness tied to, 9
commented out for SerialDate,

268–270
dirty, 123
enabling the -ilities, 124
fast, 132
fast versus slow, 314
heuristics on, 313–314
ignored, 313
independent, 132
insufficient, 313
keeping clean, 123–124
minimizing assert statements in,

130–131
not stopping trivial, 313
refactoring, 126–127
repeatable, 132
requiring more than one step, 287
running, 341
self validating, 132
simple design running all, 172
suite of automated, 213
timely, 133
writing for multithreaded code,

339–342
writing for threaded code, 186–190
writing good, 122–123

430 Index

Third Law, of TDD, 122
third-party code

integrating, 116
learning, 116
using, 114–115
writing tests for, 116

this variable, 324
Thomas, Dave, 8, 9, 289
thread(s)

adding to a method, 322
interfering with each other, 330
making as independent as

possible, 182
stepping on each other, 180, 326
taking resources from other

threads, 338
thread management strategy, 320
thread pools, 326
thread-based code, testing, 342
threaded code

making pluggable, 187
making tunable, 187–188
symptoms of bugs in, 187
testing, 186–190
writing in Java 5, 182–183

threading
adding to a client/server application,

319, 346–347
problems in complex systems, 342

thread-safe collections, 182–183, 329
throughput

causing starvation, 184
improving, 319
increasing, 333–335
validating, 318

throws clause, 106
tiger team, 5
tight coupling, 172
time, taking to go fast, 6
Time and Money project, 76

file sizes, 77
timely tests, 133

timer program, testing, 121–122
“TO” keyword, 36
TO paragraphs, 37
TODO comments, 58–59
tokens, used as magic numbers, 300
Tomcat project, 76, 77
tools

ConTest tool, 190, 342
coverage, 313
handling proxy boilerplate, 163
testing thread-based code, 342

train wrecks, 98–99
transformations, as return values, 41
transitive navigation, avoiding, 306–307
triadic argument, 40
triads, 42
try blocks, 105
try/catch blocks, 46–47, 65–66
try-catch-finally statement, 105–106
tunable threaded-based code, 187–188
type encoding, 24

U
ubiquitous language, 311–312
unambiguous names, 312
unchecked exceptions, 106–107
unencapsulated conditional, encapsulating,

257
unit testing, isolated as difficult, 160
unit tests, 124, 175, 268
unprofessional programming, 5–6
uppercase C, in variable names, 20
usability, of newspapers, 78
use, of a system, 154
users, handling concurrently, 179

V
validation, of throughput, 318
variable names, single-letter, 25

431Index

variables
1 based versus zero based, 261
declaring, 80, 81, 292
explaining temporary, 279–281
explanatory, 296–297
keeping private, 93
local, 292, 324
moving to a different class, 273
in place of comments, 67
promoting to instance variables of

classes, 141
with unclear context, 28

venting, in comments, 65
verbs, keywords and, 43
Version class, 139
versions, not deserializing across, 272
vertical density, in code, 79–80
vertical distance, in code, 80–84
vertical formatting, 76–85
vertical openness, between concepts,

78–79
vertical ordering, in code, 84–85
vertical separation, 292

W
wading, through bad code, 3
Web containers, decoupling provided

by, 178
what, decoupling from when, 178
white space, use of horizontal, 86
wildcards, 307
Working Effectively with Legacy

Code, 10
“working” programs, 201
workmanship, 176
wrappers, 108
wrapping, 108
writers, starvation of, 184
“Writing Shy Code”, 306

X
XML

deployment descriptors, 160
“policy” specified configuration

files, 164

Register the Addison-Wesley, Exam
Cram, Que, and Sams products you
own to unlock great benefi ts.

To begin the registration process,
simply go to informit.com/register

to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam
Cram IBM Press | Que | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Professional, Que, and

Sams. Here you will gain access to quality and trusted content and resources from the

authors, creators, innovators, and leaders of technology. Whether you’re looking for a book

on a new technology, a helpful article, timely newsletters, or access to the Safari Books

Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

	Contents
	Foreword
	Introduction
	On the Cover
	Chapter 1: Clean Code
	There Will Be Code
	Bad Code
	The Total Cost of Owning a Mess
	The Grand Redesign in the Sky
	Attitude
	The Primal Conundrum
	The Art of Clean Code?
	What Is Clean Code?

	Schools of Thought
	We Are Authors
	The Boy Scout Rule
	Prequel and Principles
	Conclusion
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

