
Introduction

It has been said before but it bears repeating: Writing defect-free software is
exceedingly diffi cult. Proof of correctness of real systems is still well beyond our
abilities, and specifi cation of behavior is equally challenging. Predicting future
needs is a hit or miss affair—we’d all be getting rich on the stock market instead
of building software systems if we were any good at it!

Automated verifi cation of software behavior is one of the biggest advances in
development methods in the last few decades. This very developer-friendly prac-
tice has huge benefi ts in terms of increasing productivity, improving quality, and
keeping software from becoming brittle. The very fact that so many developers
are now doing it of their own free will speaks for its effectiveness.

This chapter introduces the concept of test automation using a variety of
tools (including xUnit), describes why you would do it, and explains what
makes it diffi cult to do test automation well.

Feedback

Feedback is a very important element in many activities. Feedback tells us
whether our actions are having the right effect. The sooner we get feedback,
the more quickly we can react. A good example of this kind of feedback is the
rumble strips now being ground into many highways between the main driving
surface and the shoulders. Yes, driving off the shoulder gives us feedback that
we have left the road. But getting feedback earlier (when our wheels fi rst enter
the shoulder) gives us more time to correct our course and reduces the likeli-
hood that we will drive off the road at all.

Testing is all about getting feedback on software. For this reason, feedback is
one of the essential elements of “agile” or “lean” software development. Hav-
ing feedback loops in the development process is what gives us confi dence in
the software that we write. It lets us work more quickly and with less paranoia.
It lets us focus on the new functionality we are adding by having the tests tell us
whenever we break old functionality.

xxix

Testing

The traditional defi nition of “testing” comes from the world of quality assurance.
We test software because we are sure it has bugs in it! So we test and we test
and we test some more, until we cannot prove there are still bugs in the software.
Traditionally, this testing occurs after the software is complete. As a result, it is a
way of measuring quality—not a way of building quality into the product. In many
organizations, testing is done by someone other than the software developers.
The feedback provided by this kind of testing is very valuable, but it comes so
late in the development cycle that its value is greatly diminished. It also has the
nasty effect of extending the schedule as the problems found are sent back to
development for rework, to be followed by another round of testing. So what kind
of testing should software developers do to get feedback earlier?

Developer Testing

Rare is the software developer who believes he or she can write code that works
“fi rst time, every time.” In fact, most of us are pleasantly surprised when some-
thing does work the fi rst time. (I hope I am not shattering any illusions for the
nondeveloper readers out there!)

So developers do testing, too. We want to prove to ourselves that the soft-
ware works as we intended it to. Some developers might do their testing the
same way as testers do it: by testing the whole system as a single entity. Most
developers, however, prefer to test their software unit by unit. The “units” may
be larger-grained components or they may be individual classes, methods, or
functions. The key thing that distinguishes these tests from the ones that the
testers write is that the units being tested are a consequence of the design of the
software, rather than being a direct translation of the requirements.1

Automated Testing

Automated testing has been around for several decades. When I worked on
telephone switching systems at Nortel’s R&D subsidiary Bell-Northern
Research in the early 1980s, we did automated regression and load testing of

1 A small percentage of the unit tests may correspond directly to the business logic
described in the requirements and the customer tests, but a large majority tests the code
that surrounds the business logic.

Introductionxxx

the software/hardware that we were building. This testing was done primarily
in the context of the “System Test” organization using specialized hardware
and software that were programmed with test scripts. The test machines con-
nected to the switch being tested as though it were a bunch of telephones and
other telephone switches; it made telephone calls and exercised the myriad of
telephone features. Of course, this automated testing infrastructure was not
suitable for unit testing, nor was it generally available to the developers because
of the huge amounts of hardware involved.

In the last decade, more general-purpose test automation tools have become
available for testing applications through their user interfaces. Some of these
tools use scripting languages to defi ne the tests; the sexier tools rely on the
“robot user” or “record and playback” metaphor for test automation. Unfor-
tunately, many of the early experiences with these latter tools left the testers
and test managers less than satisfi ed. The cause was high test maintenance costs
caused by the “fragile test” problem.

The “Fragile Test” Problem

Test automation using commercial “record and playback” or “robot user” tools
has gained a bad reputation among early users of these tools. Tests automated
using this approach often fail for seemingly trivial reasons. It is important to
understand the limitations of this style of test automation to avoid falling vic-
tim to the pitfalls commonly associated with it—namely, behavior sensitivity,
interface sensitivity, data sensitivity, and context sensitivity.

Behavior Sensitivity

If the behavior of the system is changed (e.g., if the requirements are changed
and the system is modifi ed to meet the new requirements), any tests that exer-
cise the modifi ed functionality will most likely fail when replayed.2 This is a
basic reality of testing regardless of the test automation approach used. The real
problem is that we often need to use that functionality to maneuver the system
into the right state to start a test. As a consequence, behavioral changes have a
much larger impact on the testing process than one might expect.

2 A change in behavior could occur because the system is doing something different or
because it is doing the same thing with different timing or sequencing.

 Introduction xxxi

Interface Sensitivity

Testing the business logic inside the system under test (SUT) via the user inter-
face is a bad idea. Even minor changes to the interface can cause tests to fail,
even though a human user might say the test should still pass. Such unintended
interface sensitivity is partly what gave test automation tools such a bad name
in the past decade. Although the problem occurs regardless of which user inter-
face technology is being used, it seems to be worse with some types of interfaces
than with others. Graphical user interfaces (GUIs) are a particularly challeng-
ing way to interact with the business logic inside the system. The recent shift to
Web-based (HTML) user interfaces has made some aspects of test automation
easier but has introduced yet another problem because of the executable code
needed within the HTML to provide a rich user experience.

Data Sensitivity

All tests assume some starting point, called the test fi xture; this test context
is sometimes called the “pre-conditions” or “before picture” of the test. Most
commonly, this test fi xture is defi ned in terms of data that is already in the sys-
tem. If the data changes, the tests may fail unless great effort has been expended
to make them insensitive to the data being used.

Context Sensitivity

The behavior of the system may be affected by the state of things outside the
system. These external factors could include the states of devices (e.g., printers,
servers), other applications, or even the system clock (e.g., the time and/or date
of execution of the test). Any tests that are affected by this context will be dif-
fi cult to repeat deterministically without getting control over the context.

Overcoming the Four Sensitivities

The four sensitivities exist regardless of which technology we use to automate
the tests. Of course, some technologies give us ways to work around these sen-
sitivities, while others force us down a particular path. The xUnit family of test
automation frameworks gives us a large degree of control; we just have to learn
how to use it effectively.

xxxii Introduction

Uses of Automated Tests

Thus far, most of the discussion here has centered on regression testing of
applications. This is a very valuable form of feedback when modifying existing
applications because it helps us catch defects that we have introduced inadver-
tently.

Tests as Specifi cation

A completely different use of automated testing is seen in test-driven devel-
opment (TDD), which is one of the core practices of agile methods such as
eXtreme Programming. This use of automated testing is more about specifi cation
of the behavior of the software yet to be written than it is about regression
testing. The effectiveness of TDD comes from the way it lets us separate our
thinking about software into two separate phases: what it should do, and how it
should do it.

Hold on a minute! Don’t the proponents of agile software development
eschew waterfall-style development? Yes, indeed. Agilists prefer to design and
build a system feature by feature, with working software being available at
every step to prove that each feature works before they move on to develop the
next feature. That does not mean we do not do design; it simply means we do
“continuous design”! Taking this to the extreme results in “emergent design,”
where very little design is done upfront. But development does not have to be
done that way. We can combine high-level design (or architecture) upfront with
detailed design on a feature-by-feature basis. Either way, it can be useful to delay
thinking about how to achieve the behavior of a specifi c class or method for a
few minutes while we capture what that behavior should be in the form of an
executable specifi cation. After all, most of us have trouble concentrating on one
thing at a time, let alone several things simultaneously.

Once we have fi nished writing the tests and verifying that they fail as expected,
we can switch our perspective and focus on making them pass. The tests are now
acting as a progress measurement. If we implement the functionality incremen-
tally, we can see each test pass one by one as we write more code. As we work,
we keep running all of the previously written tests as regression tests to make
sure our changes have not had any unexpected side effects. This is where the true
value of automated unit testing lies: in its ability to “pin down” the functionality
of the SUT so that the functionality is not changed accidentally. That is what al-
lows us to sleep well at night!

 Introduction xxxiii

Test-Driven Development

Many books have been written recently on the topic of test-driven develop-
ment, so this one will not devote a lot of space to that topic. This book focuses
on what the code in the tests looks like, rather than when we wrote the tests.
The closest we will get to talking about how the tests come into being is when
we investigate refactoring of tests and learn how to refactor tests written using
one pattern into tests that use a pattern with different characteristics.

I am trying to stay “development process agnostic” in this book because au-
tomated testing can help any team regardless of whether its members are doing
TDD, test-fi rst development, or test-last development. Also, once people learn
how to automate tests in a “test last” environment, they are likely to be more
inclined to experiment with a “test fi rst” approach. Nevertheless, we do ex-
plore some parts of the development process because they affect how easily we
can do test automation. There are two key aspects of this investigation: (1) the
interplay between Fully Automated Tests (see page 26) and our development in-
tegration process and tools, and (2) the way in which the development process
affects the testability of our designs.

Patterns

In preparing to write this book, I read a lot of conference papers and books
on xUnit-based test automation. Not surprisingly, each author seems to have a
particular area of interest and favorite techniques. While I do not always agree
with their practices, I am always trying to understand why these authors do
things a particular way and when it would be more appropriate to use their
techniques than the ones I already use.

This level of understanding is one of the major differences between examples
and prose that merely explain the “how to” of a technique and a pattern. A pat-
tern helps readers understand the why behind the practice, allowing them to
make intelligent choices between the alternative patterns and thereby avoid any
unexpected nasty consequences in the future.

Software patterns have been around for a decade, so most readers should at
least be aware of the concept. A pattern is a “solution to a recurring problem.”
Some problems are bigger than others and, therefore, too big to solve with a
single pattern. That is where the pattern language comes into play; this collec-
tion (or grammar) of patterns leads the reader from an overall problem step by
step to a detailed solution. In a pattern language, some of the patterns will nec-
essarily be of higher levels of abstraction, while others will focus on lower-level
details. To be useful, there must be linkages between the patterns so that we

Introductionxxxiv

can work our way down from the higher-level “strategy” patterns to the more
detailed “design patterns” and the most detailed “coding idioms.”

Patterns versus Principles versus Smells

This book includes three kinds of patterns. The most traditional kind of pat-
tern is the “recurring solution to a common problem”; most of the patterns in
this book fall into this general category. I do distinguish between three different
levels:

• “Strategy”-level patterns have far-reaching consequences. The decision
to use a Shared Fixture (page 317) rather than a Fresh Fixture (page 311)
takes us down a very different path and leads to a different set of test
design patterns. Each of the strategy patterns has its own write-up in
the “Strategy Patterns” chapter in the reference section of the book.

• Test “design”-level patterns are used when developing tests for specifi c
functionality. They focus on how we organize our test logic. An exam-
ple that should be familiar to most readers is the Mock Object pattern
(page 544). Each test design pattern has its own write-up and the pat-
terns are grouped into chapters in the reference section of the book based
on topics such as Test Double patterns.

• Test “coding idioms” describe different ways to code a specifi c test.
Many of these are language specifi c; examples include using block
closures for Expected Exception Tests (see Test Method on page 348)
in Smalltalk and anonymous inner classes for Mock Objects in Java.
Some, such as Simple Success Test (see Test Method), are fairly generic
in that they have analogs in each language. These idioms are typically
listed as implementation variations or examples within the write-up of
a “test design pattern.”

Often, several alternative patterns could be used at each level. Of course, I
almost always have a preference for which patterns to use, but one person’s “anti-
pattern” may be another person’s “best practice pattern.” As a result, this book
includes patterns that I do not necessarily advocate. It describes the advantages
and disadvantages of each of those patterns, allowing readers to make informed
decisions about their use. I have tried to provide linkages to those alternatives in
each of the pattern descriptions as well as in the introductory narratives.

The nice thing about patterns is that they provide enough information to
make an intelligent decision between several alternatives. The pattern we choose
may be affected by the goals we have for test automation. The goals describe

 Introduction xxxv

desired outcomes of the test automation efforts. These goals are supported by a
number of principles that codify a belief system about what makes automated
tests “good.” In this book, the goals of test automation are described in Chapter 3,
Goals of Test Automation, and the principles are described in Chapter 5, Prin-
ciples of Test Automation.

The fi nal kind of pattern is more of an anti-pattern [AP]. These test smells
describe recurring problems that our patterns help us address in terms of the
symptoms we might observe and the root causes of those symptoms. Code
smells were fi rst popularized in Martin Fowler’s book [Ref] and applied to
xUnit-based testing as test smells in a paper presented at XP2001 [RTC].
The test smells are cross-referenced with the patterns that can be used to
banish them as well as the patterns3 that are more likely to lead to them.4 In
addition, the test smells are covered in depth in their own section: Part II,
The Test Smells.

Pattern Form

This book includes my descriptions of patterns. The patterns themselves existed
before I started cataloging them, by virtue of having been invented indepen-
dently by at least three different test automaters. I took it upon myself to write
them down as a way of making the knowledge more easily distributable. But to
do so, I had to choose a pattern description form.

Pattern descriptions come in many shapes and sizes. Some have a very rigid
structure defi ned by many headings that help the reader fi nd the various sec-
tions. Others read more like literature but may be more diffi cult to use as a ref-
erence. Nevertheless, all patterns have a common core of information, however
it is presented.

My Pattern Form

I have really enjoyed reading the works of Martin Fowler, and I attribute much
of that enjoyment to the pattern form that he uses. As the saying goes, “Imita-
tion is the sincerest form of fl attery”: I have copied his format shamelessly with
only a few minor modifi cations.

The template begins with the problem statement, the summary statement, and
a sketch. The italicized problem statement summarizes the core of the problem

3 Some might want to call these patterns “anti-patterns.” Just because a pattern often has
negative consequences, it does not imply that the pattern is always bad. For this reason,
I prefer not to call these anti-patterns; I just do not use them very often.
4 In a few cases, there are even a pattern and a smell with similar names.

xxxvi Introduction

that the pattern addresses. It is often stated as a question: “How do we . . . ?”
The boldface summary statement captures the essence of the pattern in one or
two sentences, while the sketch provides a visual representation of the pattern.
The untitled section of text immediately after the sketch summarizes why we
might want to use the pattern in just a few sentences. It elaborates on the problem
statement and includes both the “Problem” and “Context” sections from the tra-
ditional pattern template. A reader should be able to get a sense of whether he or
she wants to read any further by skimming this section.

The next three sections provide the meat of the pattern. The “How It Works”
section describes the essence of how the pattern is structured and what it is
about. It also includes information about the “resulting context” when there
are several ways to implement some important aspect of the pattern. This sec-
tion corresponds to the “Solution” or “Therefore” sections of more traditional
pattern forms. The “When to Use It” section describes the circumstances in
which you should consider using the pattern. This section corresponds to the
“Problem,” “Forces,” “Context,” and “Related Patterns” sections of traditional
pattern templates. It also includes information about the “Resulting Context,”
when this information might affect whether you would want to use this pattern.
I also include any “test smells” that might suggest that you should use this pat-
tern. The “Implementation Notes” section describes the nuts and bolts of how
to implement the pattern. Subheadings within this section indicate key compo-
nents of the pattern or variations in how the pattern can be implemented.

Most of the concrete patterns include three additional sections. The “Moti-
vating Example” section provides examples of what the test code might have
looked like before this pattern was applied. The section titled “Example: {Pat-
tern Name}” shows what the test would look like after the pattern was applied.
The “Refactoring Notes” section provides more detailed instructions on how to
get from the “Motivating Example” to the “Example: {Pattern Name}.”

If the pattern is written up elsewhere, the description may include a section
titled “Further Reading.” A “Known Uses” section appears when there is some-
thing particularly interesting about those applications. Most of these patterns
have been seen in many systems, of course, so picking three uses to substantiate
them would be arbitrary and meaningless.

Where a number of related techniques exist, they are often presented here
as a single pattern with several variations. If the variations are different ways
to implement the same fundamental pattern (namely, solving the same prob-
lem the same general way), the variations and the differences between them are
listed in the “Implementation Notes” section. If the variations are primarily a
different reason for using the pattern, the variations are listed in the “When to
Use It” section.

 Introduction xxxvii

Historical Patterns and Smells

I struggled mightily when trying to come up with a concise enough list of pat-
terns and smells while still keeping historical names whenever possible. I often
list the historical name as an alias for the pattern or smell. In some cases, it
made more sense to consider the historical version of the pattern as a specifi c
variation of a larger pattern. In such a case, I usually include the historical pat-
tern as a named variation in the “Implementation Notes” section.

Many of the historical smells did not pass the “sniff test”—that is, the smell
described a root cause rather than a symptom.5 Where an historical test smell
describes a cause and not a symptom, I have chosen to move it into the cor-
responding symptom-based smell as a special kind of variation titled “Cause.”
Mystery Guest (see Obscure Test on page 186) is a good example.

Referring to Patterns and Smells

I also struggled to come up with a good way to refer to patterns and smells, espe-
cially the historical ones. I wanted to be able to use both the historical names when
appropriate and the new aggregate names, whichever was more appropriate. I also
wanted the reader to be able to see which was which. In the online version of this
book, hyperlinks were used for this purpose. For the printed version, however, I
needed a way to represent this linkage as a page number annotation of the refer-
ence without cluttering up the entire text with references. The solution I landed
on after several tries includes the page number where the pattern or smell can be
found the fi rst time it is referenced in a chapter, pattern, or smell. If the reference
is to a pattern variation or the cause of a smell, I include the aggregate pattern or
smell name the fi rst time. Note how this second reference to the Mystery Guest
cause of Obscure Test shows up without the smell name, whereas references to
other causes of Obscure Test such as Irrelevant Information (see Obscure Test)
include the aggregate smell name but not the page number.

Refactoring

Refactoring is a relatively new concept in software development. While
people have always had a need to modify existing code, refactoring is a highly

5 The “sniff test” is based on the diaper story in [Ref] wherein Kent Beck asks Grandma
Beck, “How do I know that it is time to change the diaper?” “If it stinks, change it!” was
her response. Smells are named based on the “stink,” not the cause of the stink.

Introductionxxxviii

disciplined approach to changing the design without changing the behavior of
the code. It goes hand-in-hand with automated testing because it is very diffi cult
to do refactoring without having the safety net of automated tests to prove that
you have not broken anything during your redesign.

Many of the modern integrated development environments (IDEs) have built-in
support for refactoring. Most of them automate the refactoring steps of at least a
few of the refactorings described in Martin Fowler’s book [Ref]. Unfortunately,
the tools do not tell us when or why we should use refactoring. We will have to
get a copy of Martin’s book for that! Another piece of mandatory reading on this
topic is Joshua Kerievsky’s book [RtP].

Refactoring tests differs a bit from refactoring production code because we
do not have automated tests for our automated tests! If a test fails after a refac-
toring of the test, did the failure occur because we made a mistake during the
refactoring? Just because a test passes after a test refactoring, can we be sure it
will still fail when appropriate? To address this issue, many test refactorings are
very conservative, “safe refactorings” that minimize the chance of introducing a
change of behavior into the test. We also try to avoid having to do major refac-
torings of tests by adopting an appropriate test strategy, as described in Chapter
6, Test Automation Strategy.

This book focuses more on the target of the refactoring than on the mechanics
of this endeavor. A short summary of the refactorings does appear in Appendix A,
but the process of refactoring is not the primary focus of this book. The patterns
themselves are new enough that we have not yet had time to agree on their names,
content, or applicability, let alone reach consensus on the best way to refactor to
them. A further complication is that there are potentially many starting points for
each refactoring target (pattern), and attempting to provide detailed refactoring
instructions would make this already large book much larger.

Assumptions

In writing this book, I assumed that the reader is somewhat familiar with object
technology (also known as “object-oriented programming”); object technology
seemed to be a prerequisite for automated unit testing to become popular. That
does not mean we cannot perform testing in procedural or functional languages,
but use of these languages may make it more challenging (or at least different).

Different people have different learning styles. Some need to start with the
“big picture” abstractions and work down to “just enough” detail. Others can
understand only the details and have no need for the “big picture.” Some learn
best by hearing or reading words; others need pictures to help them visualize

 Introduction xxxix

a concept. Still others learn programming concepts best by reading code. I’ve
tried to accommodate all of these learning styles by providing a summary, a
detailed description, code samples, and a picture wherever possible. These items
should be Skippable Sections [PLOPD3] for those readers who won’t benefi t
from that style of learning.

Terminology

This book brings together terminology from two different domains: software
development and software testing. As a consequence, some terminology will
inevitably be unfamiliar to some readers. Readers should refer to the glossary
when they encounter any terms that they do not understand. I will, however,
point out one or two terms here, because becoming familiar with these terms is
essential to understanding most of the material in this book.

Testing Terminology

Software developers will probably fi nd the term “system under test” (abbrevi-
ated throughout this book as SUT) unfamiliar. It is short for “whatever thing
we are testing.” When we are writing unit tests, the SUT is whatever class or
method(s) we are testing; when we are writing customer tests, the SUT is prob-
ably the entire application (or at least a major subsystem of it).

Any part of the application or system we are building that is not included in
the SUT may still be required to run our test because it is called by the SUT or
because it sets up prerequisite data that the SUT will use as we exercise it. The
former type of element is called a depended-on component (DOC), and both
types are part of the test fi xture. This is illustrated in Figure I.1.

Language-Specifi c xUnit Terminology

Although this book includes examples in a variety of languages and xUnit fam-
ily members, JUnit fi gures prominently in this coverage. JUnit is the language
and xUnit framework that most people are at least somewhat familiar with.
Many of the translations of JUnit to other languages are relatively faithful
ports, with only minor changes in class and method names needed to accom-
modate the differences in the underlying language. Where this isn’t the case,
Appendix B, xUnit Terminology Cross-Reference, often includes the appropri-
ate mapping.

xl Introduction

Figure I.1. A range of tests each with its own SUT. An application, component,
or unit is only the SUT with respect to a specifi c set of tests. The “Unit1 SUT”
plays the role of DOC (part of the fi xture) to “Unit2 Test” and is part of the
“Comp1 SUT” and the “App1 SUT.”

Using Java as the main sample language also means that in some discussions
we will refer to the JUnit name of a method and will not list the corresponding
method names in each of the xUnit frameworks. For example, a discussion may
refer to JUnit’s assertTrue method without mentioning that the NUnit equiva-
lent is Assert.IsTrue, the SUnit equivalent is should:, and the VbUnit equivalent
is verify. Readers are expected to do the mental swap of method names to the
SUnit, VbUnit, Test::Unit, and other equivalents with which they may be most
familiar. The Intent-Revealing Names [SBPP] of the JUnit methods should be
clear enough for the purposes of our discussion.

Code Samples

Sample code is always a problem. Samples of code from real projects are typi-
cally much too large to include and are usually covered by nondisclosure agree-
ments that preclude their publication. “Toy programs” do not get much respect
because “they aren’t real.” A book such as this one has little choice except to
use “toy programs,” but I have tried to make them as representative as possible
of real projects.

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

Uses

Uses

App1
SUT

Comp1
SUT

Unit2
SUT

Comp1
Test

Exercise

Unit1
SUT

Unit1
Test

Exercise

Unit2
Test

Exercise

Comp2
SUT

Comp2
Test

Exercise

App1
Test Exercise

Uses

Uses

 Introduction xli

Almost all of the code samples presented here came from “real” compilable
and executable code, so they should not (knock on wood) contain any compile
errors unless they were introduced during the editing process. Most of the Ruby
examples come from the XML-based publishing system I used to prepare this
book, while many of the Java and C# samples came from courseware that we
use at ClearStream to teach these concepts to ClearStream’s clients.

I have tried to use a variety of languages to illustrate the nearly universal
application of the patterns across the members of the xUnit family. In some cases,
the specifi c pattern dictated the use of language because of specifi c features of
either the language or the xUnit family member. In other cases, the language
was dictated by the availability of third-party extensions for a specifi c member
of the xUnit family. Otherwise, the default language for examples is Java with
some C# because most people have at least reading-level familiarity with them.

Formatting code for a book is a particular challenge due to the recommended
line length of just 65 characters. I have taken some liberties in shortening vari-
able and class names simply to reduce the number of lines that wrap. I’ve also
invented some line-wrapping conventions to minimize the vertical size of these
samples. You can take solace in the fact that your test code should look a lot
“shorter” than mine because you have to wrap many fewer lines!

Diagramming Notation

“A picture is worth a thousand words.” Wherever possible, I have tried to include
a sketch of each pattern or smell. I’ve based the sketches loosely on the Unifi ed
Modeling Language (UML) but took a few liberties to make them more expres-
sive. For example, I use the aggregation symbol (diamond) and the inheritance
symbol (a triangle) of UML class diagrams, but I mix classes and objects on the
same diagram along with associations and object interactions. Most of the nota-
tion is introduced in the patterns in Chapter 19, xUnit Basics Patterns, so you may
fi nd it worthwhile to skim this chapter just to look at the pictures.

Although I have tried to make this notation “discoverable” simply through
comparing sketches, a few conventions are worth pointing out. Objects have
shadows; classes and methods do not. Classes have square corners, in keep-
ing with UML; methods have round corners. Large exclamation marks are as-
sertions (potential test failures), and a starburst is an error or exception being
raised. The fi xture is a cloud, refl ecting its nebulous nature, and any compo-
nents the SUT depends on are superimposed on the cloud. Whatever the sketch
is trying to illustrate is highlighted with heavier lines and darker shading. As
a result, you should be able to compare two sketches of related concepts and
quickly determine what is emphasized in each.

Introductionxlii

Limitations

As you use these patterns, please keep in mind that I could not have seen every
test automation problem and every solution to every problem; there may well
be other, possibly better, ways to solve some of these problems. These solutions
are just the ones that have worked for me and for the people I have been com-
municating with. Accept everyone’s advice with a grain of salt!

My hope is that these patterns will give you a starting point for writing good,
robust automated tests. With luck, you will avoid many of the mistakes we
made on our fi rst attempts and will go on to invent even better ways of auto-
mating tests. I’d love to hear about them!

 Introduction xliii

