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Preface
Recent human activities have profoundly influenced our global environ-
ment, often in ways we did not anticipate. An example is our use of anti-
biotics. Initially hailed as “magic bullets,” these chemical agents are now
used so often that success threatens their long-term utility. Unfortunately,
the natural mutability of microbes enables pathogens to develop bullet-
proof shields that make antibiotic treatments increasingly ineffective. Our
failure to adequately address resistance problems may ultimately push the
control of infectious disease back to the pre-penicillin era. Indeed, it is now
impractical to simply invent additional antibiotics to replace those lost to
resistance. However, ideas have emerged for slowing the development of
antibiotic resistance in individual patients and in the human population as
a whole. Antibiotic Resistance introduces these ideas.

Antibiotic Resistance was initially drafted to supplement studies of
infectious disease. The problem of resistance tends to be neglected,
which puts the well-being of our society at increasing peril. In the course
of completing this book, we realized that everyone makes decisions
about antibiotic use; therefore, everyone needs to understand how
human activities contribute to resistance. Individual patients, medical
providers, and agricultural specialists all have a role to play in providing a
safer environment. We now aim to make the principles of antibiotic use
and effectiveness available to a large audience: farmers, hospital admin-
istrators, government regulators, health department personnel, pharma-
ceutical executives, and especially individual users. (Individual patients
pressure their doctors for treatments, and in most cases, patients decide
whether to take medicines as prescribed; in countries where prescrip-
tions are not required to purchase antibiotics, patients are major decision
makers.) Such diversity in readership poses a challenge.

Fortunately, detailed descriptions of chemical structures, molecular
mechanisms, and epidemiological modeling are not required to understand
the principles of resistance. We focus on broad concepts supported by
examples and descriptions of key experiments. We expect that Antibiotic
Resistance will be a quick read for persons with knowledge of biology.
Those readers can then build on the principles with follow-up reading. Lay
readers may find that some terms need to be defined. For them, we have
provided a glossary and appendixes covering background concepts.

xv



Our goal with Antibiotic Resistance is to point out how human activi-
ties contribute to the problem of resistance. Our hope is that an under-
standing of the complex factors involved in resistance will lead to
changes that lengthen antibiotic life spans. An example of the complexity
is seen in the traditional practice of setting antibiotic doses only high
enough to cure disease. We argue that this practice encourages the
emergence of resistance, that more stringent antibiotic regimens are
needed to preempt the emergence of resistance. But from an individual
patient perspective, using higher doses seems excessive when milder
treatment usually cures disease. Why should the individual patient risk
toxic side effects to preserve antibiotics for the general population? 

Antibiotic waste disposal problems are also complex. In principle, envi-
ronmental contamination with antibiotics exerts selective pressure on
microbes. That pressure can lead to the evolution of resistance genes
that then spread from one organism to another and eventually reach
human pathogens. We do not know how often this scenario occurs,
whether it is reversible, or how much we need to improve agricultural and
hospital disposal programs to stop the process.

Fortunately, many resistance issues are not complex. For example,
wearing contaminated gloves can spread drug-resistant disease in hospi-
tals: More attention to hand hygiene is required. We are confident that an
improved understanding of antibiotic resistance can help preserve these
valuable agents.

Each year, thousands of scientific papers are published on antibiotic
resistance, making it difficult for even a pair of authors to get everything
right. To improve accuracy, we obtained help from David Alland, Vivian
Bellofatto, Arnold Bendich, Purnima Bhanot, John Bradley, Dorothy
Fallows, Alexander Firsov, Patrick Fitzgerald, Marila Gennaro, Tao Hong,
Dairmaid Hughes, Robert Kerns, Barry Kreiswirth, Shajo Kunnath, 
David Lukac, Simon Lynch, Muhammad Malik, Barun Mathema, Ellen
Murphy, Christina Ohnsman, Richard Pine, Lynn Ripley, Snezna Rogelj,
Bo Shopsin, llene Wagner, Heinz-Georg Wetstein, Xilin Zhao, and
Stephen Zinner. We sincerely thank them for their time and for sharing
their knowledge.
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Chapter 1

Introduction to the Resistance Problem

Summary: As a normal part of life, we are all exposed to pathogens, the tiny microbes and viruses
that cause infectious disease. Many pathogen varieties exist. Some are even harmless inhabitants
of our bodies most of the time. A common feature of pathogens is their microscopic size. Another is
the huge numbers their populations can reach during infection, often in the millions and billions.
Human bodies have natural defense systems, but those systems sometimes fail to control infection.
For such occasions, pharmaceutical companies have developed antibiotics, chemicals that interfere
with specific life processes of pathogens. As a natural response, antibiotic resistance emerges in
pathogen populations. Resistance is a condition in which the antibiotic fails to harm the pathogen
enough to cure disease. Emergence of resistance often begins with a large pathogen population in
which a tiny fraction is naturally resistant to the antibiotic, either through spontaneous changes or
through the acquisition of resistance genes from other microbes. Antibiotic treatment kills or halts
the growth of the major, susceptible portion of the microbial population. That favors growth of
resistant mutants. Prolonged, repeated use of a particular antibiotic leads to the bulk of the
pathogen population being composed of resistant cells. Subsequent treatment with that antibiotic
does little good. If the resistant organisms spread to other persons, the resulting infections are
resistant before treatment: Control of such infection requires a different antibiotic. The development
of resistance is accelerated by the mutagenic action of some antibiotics, by the movement of
resistance genes from one microbial species to another, and by our excessive, inappropriate use 
of antibiotics. In the past, a successful medical strategy was to develop new, more potent
antibiotics. However, the pharmaceutical pipeline to new antibiotics is no longer adequate.

In this chapter, we define terms and provide an overview of antibiotic resistance.
One of the key problems is that as a global community we have not considered
antibiotics as a resource to be actively protected.1 Consequently, we use
antibiotics in ways that directly lead to resistance. Changing those ways requires
an understanding of antibiotic principles. We begin with a brief description of
MRSA to illustrate a bacterial-based health problem. 

MRSA Is Putting Resistance in the News

MRSA is the acronym for methicillin-resistant Staphylococcus aureus.
(Acronyms are usually pronounced letter by letter, as in DNA; scientific names
are always italicized; after an initial spelling of the entire name, the first name is
often abbreviated by its first letter.) S. aureus is a small, sphere-shaped
bacterium (see Figure 1-1) that causes skin boils, life-threatening pneumonia,
and almost untreatable bone infections. It often spreads by skin-to-skin contact,
shared personal items, and shared surfaces, such as locker-room benches. When
the microbe encounters a break in the skin, it grows and releases toxins.

1



Sixty years ago, S. aureus was very susceptible to many antibiotics,
including penicillin. Susceptibility disappeared, and the pharmaceutical industry
produced increasingly potent antibiotic derivatives. Among these was
methicillin, which overcame resistance to penicillin. But in 1960, one year after
the introduction of methicillin, MRSA was recovered in the United States. As
the resistant bacterium spread through hospitals, surgical procedures and long-
term use of catheters became more dangerous. MRSA also caused pneumonia,
commonly following influenza, and recently skin infections caused by MRSA
captured public attention. In one newspaper account,2 pimples on a newborn
baby were found to contain MRSA. Antibiotics cleared the infection; however, a
month later, the father found boils on his own leg that contained MRSA.
Treatment cleared the boils, but they came back. The mother developed mastitis
during breast feeding that required a 2-inch incision into her breast to drain the
infection. About a year later, an older child developed an MRSA boil on his
back. The family is now constantly on alert for MRSA, trying to wash off the
bacteria before the microbes find a break in the skin. 

Community-associated MRSA has its own acronym (CA-MRSA) to
distinguish it from the hospital-associated form (HA-MRSA). Many
community-associated S. aureus strains are members of a group called USA300,
which now accounts for half of the CA-MRSA infections. The strain causes
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Figure 1-1 Staphylococcus aureus. Scanning electron micrograph of 
many MRSA cells at a magnification of 9,560 times.

Public Health Image Library # 7821; photo credit, Janice Haney Carr.



necrotizing (flesh-eating) skin infection, pneumonia, and muscle infection. In
2005, MRSA accounted for more than 7 million cases of skin and soft tissue
infection seen in outpatient departments of U.S. hospitals.3 As expected, CA-
MRSA strains are moving into hospitals. In a survey of U.S. hospitals taken
from 1999 through 2006, the fraction of S. aureus that was resistant to
methicillin increased 90%, almost entirely from an influx of CA-MRSA.4

Although many infections tend to occur in persons having weakened
immune systems, MRSA can infect anyone. For example, healthy young adults
tend to be susceptible to a lethal combination of influenza and MRSA
pneumonia. In Chapter 7, “Transmission of Resistant Disease,” we describe
occurrences of CA-MRSA infection among athletes. Fortunately, most of these
dangerous CA-MRSA strains are still susceptible to several antibiotics;
however, that susceptibility may soon disappear. 

HA-MRSA has been a problem in hospitals for years; in many countries, it
is getting worse. For example, in the United States, MRSA climbed from 22%
of the S. aureus infections in 1995 to 63% in 2007 (from 1999 through 2005, it
increased 14% per year).5 From 2000 to 2005, MRSA helped double the
number of antibiotic-resistant infections in U.S. hospitals, which reached almost
a million per year or 2.5% of hospitalizations.6 In the United States, more
persons now die each year from MRSA (17,000) than from AIDS. 

MRSA in hospitals is largely an infection-control problem, that is, control
requires keeping the organism from spreading from one patient to another, and
if possible, keeping it out of the hospital entirely. Neither is easy. For many
years, the Dutch have had an aggressive screening program for incoming
patients. They isolate persons who test positive for MRSA and treat them with
antibiotics that still work with S. aureus. Entire wards of hospitals are closed for
cleaning when an MRSA case is found, and colonized healthcare workers are
sent home on paid leave until they are cleared of the bacterium. The cost is
about half that required to treat MRSA blood-stream infections;7 consequently,
the effort is thought to be cost-effective.

Until recently, many U.S. hospitals took a different approach: MRSA
infections were considered part of the cost of doing business. Holland is a
small country that can implement specialized care—the United States has a
much higher incidence of MRSA. Nevertheless, in 2007, a Pittsburgh hospital
reported that it had adopted the Dutch method. The hospital saved almost $1
million per year by screening patients and by insisting on more intensive hand-
washing protocols for hospital staff.8 Other U.S. hospitals are reconsidering
their own stance.
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Individual consumers will begin to search for hospitals having low MRSA
incidence. That search will be easier when hospitals publish their drug-
resistant infection statistics. Some states now require reporting of MRSA to
health departments; consequently, the numbers are being collected. As an
added incentive for MRSA control, some insurance carriers refuse to cover
hospital costs when a patient contracts MRSA while there. Hospitals have
responded by setting up antibiotic oversight committees to help keep
resistance under control.

Humans Live with Many Pathogens 

MRSA is one type of pathogen, the collective word applied to microbes and
viruses that cause disease. (The term microbe includes bacteria, some types of
fungi, and protozoans.) Each type of microbe has a distinct lifestyle. Bacteria
are single-celled organisms that reproduce by binary fission; each cell grows
and then divides to form two new cells. Bacteria cause many of the diseases
that make headlines: tuberculosis, flesh-eating disease, and anthrax.
Pathogenic fungi include yeasts and molds. Yeasts are single-celled, whereas
molds tend to grow as thread-like structures composed of many cells. (Some
pathogenic fungi switch between the forms in response to the environment.)
Yeasts and molds cause pneumonia, and in immuno-suppressed persons yeasts
and molds can cause deadly systemic infections. Pathogenic protozoans, such
as the types that cause malaria, are single-celled microbes that are often
spread by insect bites. In tropical and subtropical regions, protozoan diseases
are among the major killers of humans. Protozoa and helminths (worms) are
usually called parasites rather than pathogens due to their larger size. In
Antibiotic Resistance, we do not distinguish between pathogens and parasites,
because antibiotics are used for maladies caused by parasites as well as by
pathogens.

Viruses differ qualitatively from the cellular organisms just mentioned.
Viruses cannot reproduce outside a host cell. They require the machinery of
a living cell to make new parts. Indeed, one could argue that viruses are not
alive even though they are composed of the same types of molecules found
in microbes, plants, and animals. Another feature of viruses is that they are
generally much smaller than microbes: An electron microscope is required
to see most virus particles, whereas a light microscope is adequate for
microbes.
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Many microbes and viruses are found in and on our bodies (see Box 1-1).
Some are beneficial; others are harmful. Some pathogens only occasionally
cause infectious symptoms. For example, Mycobacterium tuberculosis enters a
dormant state in most persons it infects, with a minority of infected persons
exhibiting symptoms. However, immune deficiency enables M. tuberculosis to
exit dormancy and cause disease. Other serious diseases arise from microbes,
such as the yeast Candida albicans, that ordinarily live harmlessly in or on
humans. This organism causes vaginitis with healthy women and more serious
disease with immune-compromised patients.
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Box 1-1: Pathogen Diversity

The scientific literature lists about 1,400 species of human pathogen:
538 bacteria, 317 fungi, 287 helminths, 208 viruses, and 57 protozoa.
Over the last 20 years, almost 180 species either increased their
incidence in humans or are expected to do so shortly. Only a small
number, probably fewer than 100, cause disease only in humans.
Almost 60% of human pathogens are zoonotic, that is, they move
between humans and other vertebrates. Most of the others are
commensals that usually live in or on humans without harm or are
environmental organisms, living in water or soil. As we change our
behavior and environment, new diseases emerge, largely through a
species-jump from animal to human. Because human societies
continue to evolve and change their interactions with animals, we are
continually faced with new infectious diseases. For example, changes
in food production led to the mad cow disease problem, the exotic pet
trade led to monkeypox outbreaks, and harvesting bush meat
(monkeys, and so on) probably led to infection with a virus that evolved
into human immunodeficiency virus (HIV).9,10

Pathogens that normally grow only inside humans often have effective
means of transmission. Mycobacterium tuberculosis and influenza virus are two
that spread through air; Vibrio cholerae, the cause of cholera, contaminates
drinking water; and many digestive tract pathogens move with contaminated
food. (Salmonella typhi, the bacterium that causes typhoid fever, is an example.)
Many other pathogens are spread by insects and ticks. Among these are the
protozoans responsible for sleeping sickness and malaria, the bacteria that cause
plague and typhus, and many types of viruses, such as the agent of yellow fever.
Avoiding contact with pathogens is exceedingly difficult. 



Antibiotics Block Growth and Kill Pathogens

Antibiotics are drugs, taken orally, intermuscularly, or intravenously, that
counter an infection. They include agents such as penicillin, tetracycline,
ciprofloxacin, and erythromycin. Common bacterial diseases treated with
antibiotics are tuberculosis and gonorrhea. Fungal and protozoan diseases are
also treatable, but with agents specific for these organisms. (The biochemistry
of fungi and protozoa differs substantially from that of bacterial cells.) Antiviral
agents constitute a third set of specialized compounds. In general, little cross-
reactivity exists among the categories, that is, agents used for fungi do not cure
infections caused by viruses, bacteria, or protozoa. However, the principles
underlying action and resistance are the same; consequently, in Antibiotic
Resistance we lump all these agents together as antibiotics. Combining all the
agents into a single category risks confusion, because the public has been told
repeatedly not to use antibiotics for viral diseases. In this instruction, antibiotics
are equated to antibacterials, and indeed antibacterials should not be used for
viral infections. But the world is changing. We now have many antiviral and
antifungal agents that are just as antibiotic as penicillin. The important issue is
to identify principles that enable experimental data obtained with one agent to
be used for making decisions with another. Such a cross-disciplinary effort is
facilitated by having a general term (antibiotic); we use specific terms, such as
antibacterial and antiviral, only when we need to distinguish the agents.

In molecular terms, antibiotics are small molecules that interfere with specific
life processes of pathogens. Antibiotics generally enter a pathogen, bind to a
specific component, and prevent the component from functioning. In cases of lethal
antibacterials, treatment leads to formation of toxic reactive oxygen species that
contribute to bacterial death. Not all antibiotics kill pathogens. Indeed, many of the
older drugs only stop pathogen growth. Nevertheless, they can be quite effective
because they give our natural defense systems time to remove the pathogens. 

Antibiotics have been called magic bullets and miracle drugs because they
quickly cure diseases that might otherwise cause death. When penicillin first
became available in the middle of World War II, it gave life to soldiers who were
otherwise doomed by infection of minor wounds. Penicillin was so valuable that
urine was collected from treated soldiers and processed to recover the drug. Now
antibiotics enable many complicated surgeries to be performed without fear of
infection. Developments in molecular biology have even enabled pharmaceutical
companies to design antibiotics that work against viruses. Among the more
striking examples are antibiotics that attack the human immunodeficiency virus
(HIV): They reduce the viral load and relieve many symptoms of HIV disease. 
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Broad-Spectrum Antibiotics Also Perturb 
Our Microbiomes

Our bodies contain trillions of bacteria that have evolved to live in humans.
More than 38,000 different species live in the human digestive tract, and
bacteria occupy at least 20 distinct niches on our skin. The microbes carried by
each host are collectively called a microbiome. Humans have evolved to take
advantage of the bacteria, and the bacteria gain advantage from us. Box 1-2
describes examples relating to obesity and pain. Some bacteria help humans
digest food, whereas others protect from particular pathogens. For example,
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Box 1-2: Microbiomes Contribute to Obesity and
Pain

Although human digestive tracts contain many different types of
bacteria, more than 90% of the total is composed of two general types:
the Bacteroidetes and the Fermicutes. These bacteria, along with
others, extract energy from foods that would otherwise be indigestible.
Obese persons have a higher percentage of Fermicutes in their guts
than thin persons, and when obese persons lose weight, the
percentage of Bacteroidetes increases. The increased fraction of
Bacteriodetes appears to be associated with lower harvest of energy
from food.11 A similar difference is observed with genetically obese
mice. The obese mice appear to be better able to extract energy from
their food, leaving considerably less energy in their feces. When
normal, germ-free mice received gut bacteria from obese mice, they
put on substantially more body fat than when given bacteria from
normal mice, even though food consumption was the same in the two
groups. Could gut bacteria contribute to human obesity? Could a shift
in microbiome explain why farmers get better growth from cattle fed
low levels of antibiotics as “growth promoters”?

Microbiomes may also contribute to sensing some types of pain, as
studies with mice indicate. One form derives from inflammation, a
complex immune response involving the balance of small molecules
called cytokines. Germ-free mice are deficient in the ability to
experience a type of inflammatory pain. Introducing bacteria from
normal mice into the guts of germ-free animals brought the sensation
of pain to normal levels after 3 weeks.12 Thus, gut bacteria do more
than just help mammals digest food.
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acid-producing bacteria in the vagina keep yeast populations in check. The
complex ecosystem of the digestive tract protects humans from Clostridium
difficile, the cause of a serious form of diarrhea and bowel inflammation. An
unwelcome consequence of antibiotic treatment is the death of much of our
microbiome, which can enable resistant pathogen populations to expand. 

Antibiotic Resistance Protects Pathogens

Antibiotic resistance is the capability of a particular pathogen population to
grow in the presence of a given antibiotic when the antibiotic is used according
to a specific regimen. Such a long, detailed definition is important for several
reasons. First, pathogens differ in their susceptibility to antibiotics; thus,
pathogen species are considered individually. Second, resistance to one
antibiotic may not affect susceptibility to another. This means that the
antibiotics must also be considered separately. Third, dose is determined as a
compromise between effectiveness and toxicity; dose can be changed to be
more or less effective and more or less dangerous. Consequently, the definition
of resistance must consider the treatment regimen. 

Control of infection caused by a resistant pathogen requires higher doses or a
different antibiotic. If neither requirement can be met, we have only our immune
system for protection from lingering disease or even death. Indeed, infectious
diseases were the leading cause of death in developed countries before the
discovery of antibiotics. (They still account for one-third of all deaths worldwide.)

Antibiotic resistance is a natural consequence of evolution. Microbes, as is
true for all living organisms, use DNA molecules to store genetic information.
(Some viruses use RNA rather than DNA; both acronyms are defined in
Appendix A, “Molecules of Life.”) Evolution occurs through changes in the
information stored in DNA. Those changes are called mutations, and an altered
organism is called a mutant. Therefore, an antibiotic-resistant mutant is a cell or
virus that has acquired a change in its genetic material that causes loss of
susceptibility to a given antibiotic or class of antibiotics. 

Antibiotic-resistant pathogens need not arise only from spontaneous
mutations—bacteria contain mechanisms for moving large pieces of DNA from
one cell to another, even from one species to another. This process, called
horizontal gene transfer (see Chapter 6, “Movement of Resistance Genes
Among Pathogens”), enables resistance to emerge in our normal bacterial flora
and move to pathogens. It is part of the reason that excessive antibiotic use and
environmental contamination are so dangerous.



A pathogen is considered to be clinically resistant when an approved 
antibiotic regimen is unlikely to cure disease. We quantify the level of pathogen
susceptibility through a laboratory measure called minimal inhibitory
concentration (MIC), which is the drug concentration that blocks growth of a
pathogen recovered from a patient. (Pathogen samples taken from patients are
called isolates.) A pathogen is deemed resistant if the MIC for the drug exceeds a
particular value set by a committee of experts. Clinicians call that MIC value an
interpretive breakpoint. Infections caused by pathogen isolates having an MIC
below the breakpoint for a particular antibiotic are considered treatable; those with
an MIC above the breakpoint are much less likely to respond to therapy. The MIC
for a given patient isolate, reported by a clinical microbiology laboratory, helps
the physician make decisions about which antibiotic to use. For example, if the
isolate is resistant to penicillin but susceptible to fluoroquinolones, the physician
may choose to prescribe a member of the latter class.

Resistant microbes can spread from one person to another. Consequently, an
antibiotic-resistant infection differs qualitatively from a heart attack or stroke
that fails to be cured by medicine: Antibiotic resistance moves beyond the
affected patient and gradually renders the drug useless, whereas disseminated
resistance does not occur with other drugs. Even resistance to anticancer drugs
stays with the patient that developed the resistance because cancer does not
spread from one person to another. This distinctive feature of antibiotics means
that dosing, suitable effectiveness, and acceptable side effects must be decided
by different rules than apply for treatment of noncommunicable diseases. The
key concept is that using doses that are just good enough to eliminate symptoms
may be fine for diseases such as arthritis, but it is an inadequate strategy for
infectious diseases. Nevertheless, that strategy has been the norm ever since
antibiotics were discovered.

Antibiotic Resistance Is Widespread

The seriousness of antibiotic resistance depends on perspective. For most
diseases, we still have at least one effective drug. If we instantly stopped all
resistance from increasing, our healthcare system could continue to perform
well. But clinical scientists see resistance increasing and call the situation
“dire.”13 For some pathogens, such as MRSA and Acinetobacter, physicians are
forced to turn to antibiotics abandoned decades ago due to their toxic side
effects. Our collective task is to develop attitudes and policies that enable all of
us to use antibiotics without causing resistance to increase.
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We estimate the extent of the resistance problem by surveillance studies. As
pointed out, physicians collect microbial samples from patients and send the
samples to clinical laboratories for testing (more than 2 billion per year in the
United States14). Pathogens are cultured, and their susceptibility to specific
antibiotics is determined (described in Chapter 2, “Working with Pathogens”).
Surveillance workers then collect the data and calculate the percentage of the
cultures that are resistant. (MIC breakpoints are used as the criterion for
resistance.) This percentage, called the prevalence of resistance, indicates
whether a particular antibiotic treatment is likely to fail due to pre-existing
resistance. Surveillance also reveals trends when samples are obtained over
several years from a similar patient population. Seeing the prevalence of
resistance increase gives health planners advance warning that a change in
treatment regimen is required.

Often, the prevalence of resistance is low for many years, and then it
increases rapidly (see Figure 1-2). The challenge is to identify resistance
problems while prevalence is still low. Then public health measures, such as
increasing dose or halting the spread of the pathogen, may stop the increase.
Many examples exist in which local outbreaks of resistance have been
controlled. However, on a global level no antibiotic has returned to heavy use
when resistance became widespread. Instead, the antibiotic is replaced with a
more potent derivative.
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Figure 1-2 Change in prevalence of
methicillin resistance in S. aureus
in Great Britain.

Data replotted from Johnson, A.P. “Antibiotic
Resistance Among Clinically Important
Gram-Positive Bacteria in the UK.” Journal
of Hospital Infection (1998) 40:17–26.
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A partial list of major resistance problems is shown in Box 1-3. This list should
be considered as a status report that needs to be continually updated, because
pathogens are acquiring resistance to more and more antibiotics. It is also important
to point out that resistance is generally a local or regional problem. For example, the
prevalence of multidrug resistant (MDR) tuberculosis is particularly high in portions
of Eastern Europe and South Africa, but in the United States it is rare. 

Box 1-3: Resistance Problems

Several pathogens are close to becoming difficult to treat with
antibiotics in some geographic regions. The pathogens and geographic
locations listed in Table 1-1 are examples; a comprehensive listing of
problem pathogens would require many pages.

Table 1-1 Examples of Pathogens That Have Become Extensively Resistant

Pathogen Disease Drugs Exhibiting Geographical
Species Resistance Locations
Acinetobacter Pneumonia; All common drugs Reported worldwide in 
baumannii wound and urinary available; polymyxin hospital ICUs15; 

infections is still useful in some pan-resistant in S. Korea, 
localities Thailand16,17

Klebsiella Pneumonia Carbapenen, Hospitals in many 
pneumoniae fluoroquinolones, countries, New York City, 

amino glycosides, South Florida18,19

cephalosporins

Mycobacterium Tuberculosis Rifampicin, isoniazid, Worldwide, particularly 
tuberculosis (XDR-TB) fluoroquinolone, Eastern Europe and 

second-line injectable South Africa20,21

(kanamycin, amikacin,
capreomycin)

Neisseria Gonorrhea Penicillins, Western Pacific, 
gonorrhoeae tetracyclines, Japan22,23,24

fluoroquinolones, 
macrolides, 
cephalosporins

Salmonella enterica Food-borne Ampicillin, Worldwide25,26

bacteremia chloramphenicol, 
tetracycline, 
sulfamethoxazole, 
trimethoprim, 
fluoroquinolones

Staphylococcus Many types of β-lactams, Worldwide; examples from 
aureus infection fluoroquinolones, European hospitals27,28

gentamycin
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Antibiotic Resistance Is Divided into Three Types 

Antibiotic resistance is categorized into several types that require different
solutions. One is called acquired resistance. As a natural part of life, mutant
cells arise either spontaneously (about one in a million cells per generation) or
from the transfer of resistance genes from other microbes (see Chapter 6). When
a mutant is less susceptible to a particular antibiotic than its parent, mutant
growth is favored during treatment. Eventually, the mutant becomes the
dominant member of the pathogen population. One way to slow this process is
to limit antibiotic use or use doses that block mutant growth. 

When the “acquired” mutant starts to spread from person to person, it causes
transmitted or disseminated resistance. In this second type of resistance, the
pathogen is already resistant before treatment starts. Disseminated resistance is
often highly visible and may elicit immediate action by the healthcare
community. Much of that action is aimed at halting transmission. 

A third type of resistance involves pathogen species unaffected by particular
antibiotics. They are said to be intrinsically resistant. Little can be done about this
type of resistance except to develop vaccines and use good infection control
practices that keep the pathogens away from us. Most viruses fall in this category.

The Development of New Antibiotics Is Slowing

For many years, pharmaceutical companies developed new antibiotics to replace
old ones whose effectiveness was seriously reduced by resistance. The new drugs
were often more potent versions of earlier compounds. Unfortunately, finding
completely new antibiotic classes becomes progressively more difficult as we
exhaust the available drug targets in pathogens. Early in the Twenty-First Century,
pharmaceutical companies placed considerable hope on genomic technology as a
way to find new bacterial drug targets and thereby new antibiotics. In this
approach, computer-based analyses examine the information in bacterial DNA and
gene expression profiles to identify potential targets for new antibiotics. So far,
that approach has not panned out. At the same time, pharmaceutical executives
realized that more money could be made from quality-of-life drugs and drugs for
managing chronic diseases. For example, heart disease requires life-long therapy
to lower cholesterol. In contrast, antibiotics are administered for only short times.
Antibiotics also have a large development cost, almost $1 billion per drug. As a
result, many major pharmaceutical companies shut down their microbiology
divisions. Small biotech companies are taking on the effort, but we can no longer
depend on new compounds to postpone the antibiotic resistance problem. 
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Vaccines Block Disease

Vaccines represent an alternative way to combat microbes and viruses. Vaccines
are preparations of attenuated pathogen or noninfectious parts of pathogens.
When eaten or injected, vaccines create a protective immune response against 
a particular pathogen. Some vaccines are so effective that they eliminate a
disease, as was the case with smallpox. The absence of disease means no
resistance problem. Unfortunately, we have been unable to make effective
vaccines for many pathogens, most notably HIV, tuberculosis, and malaria.
Moreover, pathogen diversity can generate resistance to a vaccine (see Box 1-4).

Box 1-4: Vaccine-Resistant Pathogens

Vaccines typically instruct the human immune system to recognize a
pathogen and destroy it. In some circumstances, the pathogen can alter
its surface properties to make it less responsive to the immune system.
For example, the malaria parasite frequently changes its surface;
consequently, the human immune system is always a step behind the
parasite. In other cases, the pathogen species exists in many varieties.
Shortly after the U.S. anthrax scare of 2001, considerable concern
arose because the bacterial strain used in the attacks, the Ames strain,
was relatively resistant to the available vaccines.

Vaccines for Streptococcus pneumoniae (also known as pneumococ-
cus) illustrate the principle of replacement.29 This organism, which
causes pneumonia, otitis media (middle ear infection), sinusitis, and
meningitis, colonizes the nasopharynx of 50% of children and about
2.5% of adults. Two types of vaccine are available, one prepared against
polysaccharides of 23 pneumococcal strains and the other against a
nontoxic diphtheria protein conjugated to polysaccharide from 7 strains
of S. pneumoniae. The former reduces the impact of disease, whereas
the latter also eliminates colonization by the pathogen. Because more
than 90 strains (serotypes) of S. pneumoniae have been identified,
neither vaccine was expected to provide full coverage. Nevertheless, the
7-strain vaccine reduced invasive pneumococcal disease by more than
70%. The fraction of antibiotic-resistant pneumococci also dropped.
However, elimination of vaccine strains as colonizers created an
ecological niche for nonvaccine strains. As a result, serotype 19A, which
was rare before the vaccine became available, replaced vaccine strains.
In some cases, capsular switching occurred between a vaccine strain
(serotype 4) and a nonvaccine strain (serotype 19A) due to genetic
recombination. The resulting strains have virulence properties of
serotype 4 with low sensitivity to the vaccine (serotype 19A).
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Another serious example concerns the pertussis vaccine. Before vaccination
began in the 1940s, pertussis (whooping cough) was a major cause of infant
death. In the 1990s, pertussis began a resurgence in countries where most of the
population had been vaccinated. Some of the resurgence was due to waning
vaccine-induced immunity among the elderly, who increasingly were stricken
with whooping cough. However, in Holland between 1989 and 2004, a new
strain of Bordetella pertussis, the causative agent, replaced the old one among
children, and the number of whooping cough cases increased. The new strain
appears to be more virulent and produces more toxin than the old one.30

Perspective

Pathogens have attacked humans throughout history. Before the middle of the
twentieth century, we relied on our immune systems to survive those attacks.
The unlucky and the weak died. Our immune systems were strengthened by
improvements in diet, and the frequency of some pathogen attacks was reduced
by sanitation and water purification. For other pathogens, vaccines were
developed that further decreased the overall burden of infectious disease.
Insecticides provided local protection from being bitten by mosquitoes and
other disease-carrying vectors. But our fear of pathogens was eliminated only
by antibiotics. By taking pills for a few days, we could quickly recover from
most bacterial diseases. Resistance is bringing back our fear of the “bugs.”

Many of our resistance problems derive from the cumulative effects of
several complex factors. One has been our cavalier attitude. For example, in
early 2009, American supermarket chains began to advertise free antibiotics to
attract customers. The underlying message was that antibiotics cannot be very
valuable and worth protecting. Another factor is lack of stewardship. Drug
resistance is discussed widely among health officials, but a coherent plan has
not emerged. Hospitals are beginning to oversee their own use, but agricultural
and community antibiotic use is largely uncontrolled after the drugs are
approved by governmental agencies. For years, medical scientists, notably
Fernando Baquero, Stuart Levy, Richard Novick, and Alexander Tomasz, wrote
and spoke passionately about the dangers posed by resistance. The medical
community now uses education as a strategy to limit antibiotic use. As a part of
this effort, the Centers for Disease Control (CDC) formulate and distribute plans
for restricting the emergence of resistance in particular environments. In one
survey, neonatal intensive care units failed to adhere to the guidelines about
25% of the time.31 Outside hospitals individual patients continue to insist on
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antibacterial treatments for viral infections, a behavior that stimulates the
emergence of resistant bacteria and upsets the balance of microbial ecosystems.
In the Latino immigrant community, the prescription process is commonly
bypassed.32,33 Thus, the educational effort needs to be intensified. A third factor
is the philosophy behind the choice of dosage. Doses are kept low enough to
cause few side effects but high enough to block susceptible cell growth or kill
susceptible cells. Conditions that block the growth of susceptible cells but not
that of mutants are precisely those used by microbiologists to enrich mutants.
Conventional dosing strategies lead directly to the emergence of resistance. 

Understanding the factors that drive the emergence and dissemination of
antibiotic resistance is central to controlling resistance. In the following
chapters, we describe how antibiotics are used, how pathogen populations
become resistant, and what we as individuals can do about resistance. We begin
by considering aspects of pathogen biology relevant to antibiotic treatment.
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