INDEX

Numerics annoyances, 253 802.1p/Q, 152 application integration, 128 application management, 204 applications, transaction-oriented, 77 assembling VoIP deployment test plan, 116-118 access management, 260 assessing access points, security reliability, 67-69 vulnerabilities, 247 of hardware, 70-71 ACELP, 15 of IT processes, 75-76 accounting, CDRs, 212-213 of link and carrier, 72 adding new features to VoIP of network design, 73-75 deployment, 40 of software, 71 advanced call routing, 39 VoIP readiness, 124 Algebraic Code Excited Linear ATM (asynchronous transfer mode), Predictive (ACELP), 15 QoS, 153-154 analog telephones, 11 attacks analyzing ROI, 43-44 annoyances, 253 benefits of VoIP, 32 call hijacking, 252 convergence, 41-42 detecting, 243 cost savings, 32-35, 37 DoS, 252 hard benefits, 32 preventing, 241-242 new features, 39-40 reacting to, 244-245 productivity savings, 37–38 signatures, 263 soft benefits, 32 authentication, 259 obstacles to VoIP deployment, 42-43 authorization, 259

Andress, Mandy, 228

AV (antivirus) detection tools, 242	C
availability. See also reliability	CAC (call admission control), 24
downtime costs, 183–184	calculating
fault management, 197-200	downtime costs, 183–184
five nines, 181	long-distance savings in VoIP
high availability, maintaining,	deployment, 34
200–201	ROI, 48–53
application management, 204	investments, 50–53
monitoring servers, 201–204	returns, 53–55
SLA metric, 217–218	call admission control, 106
	call hijacking, 252
	call quality
D	maintaining, 205–207
D	performance factors,
bandwidth	207–208
codec performance, 22	QoS, 209–211
improving, 105–106	SLAs, 208–209
modeling, 99–102	measuring, 79–85
best practices	SLA metric, 220–221
fault management, 199	call routing tables, maintaining, 192
QoS, 174–176	call setup, VoIP calls, 13
security, securing central facilities,	performance, SLA metric,
254–258, 260	218–220
BHCA, 65	protocols, 20
BHCC, 65	response time, 219
billing, 212–213	call-quality assessment, performing,
building pilot VoIP deployment,	97–99
109–110	cancelling SLA contracts, 234
evaluating systems, 111–113	CBR, 154
solving echo problems, 113–114	CBWFQ (Class-Based Weighted Fair
transcoding, 115	Queuing), 163
bursts, 91	CDRs (call detail records), 251
busy hour, 65	accounting, 212–213
busy hour calls attempted, 65 busy hour calls completed, 65	centralized call processing
busy nour cans completed, 05	architectures, 37
	Centrex solutions, 9

change management, 253	switches, 26
chargeback, 212-213	TCP/IP protocol stack, 15–18
checksum field (IP packet header), 18	voice streaming protocols,
CIR, 155	21–23
circuit-switched connections, 3	VoIP gateways, 25
Class 5 switches, 7	compression, lossy, 14
classifying traffic, 145-149	confidentiality, 248
closed-box systems, 23	CDRs, 251
clustering IP telephony servers, 24	overheard conversations, 249–250
codecs, 14–15	configuration assessment,
bandwidth consumption, 22	performing, 93, 95
compression techniques, 15	configuration files, maintaining,
selecting, 85–87	191–192
transcoding, 25	configuration management, 186
comma-seperated value (CSV), 65	maintaining critical files, 191
committed information rate (CIR), 155	call routing tables, 192
compiling current telephony usage	configuration files, 191–192
information, 64	program files, 193–194
call flow analysis, 66	network inventory, 187–188
call volume statistics, 66	network topology, mapping,
CDRs, 65	189–190
components	configuration proxy, 264
of PSTN, 5	configuring QoS, 171-172
PBXs, 8	congestion, determining need for
signaling, 10	QoS, 146
switches, 7	constant bit rate (CBR), 154
telephones, 11	convergence, 12
voice encoding, 6–7	measuring in VoIP deployment,
of VoIP	41–42
call setup protocols, 20	COPS (Common Open Policy
codecs, 14–15	Service), 265
<i>IP phones</i> , 26–27	correlation between delay and data
IP telephony servers, 23–25	rate, 23
PBXs, 23–25	cost savings, measuring in VoIP
routers, 25	deployment, 32
softphones, 26–27	expense savings, 33

long-distance savings, 34–35	delay variation. See jitter
network infrastructure	denial of Service (DoS) attacks, 252
savings, 35–37	deploying VoIP
productivity savings, 37–38	as major IT project, 44
criteria	ensuring reliability, 47–48
for integrator selection,	up-front planning, 45–46
132–135	assembling test plan, 116-118
for MSP selection, 130–132	building pilot deployment,
cRTP see RTP (Real-time Transport	109–110
Protocol)	evaluating system, 111–113
CSV, 65	solving echo problems,
	113–114
	transcoding, 115
	ensuring profitability, 56-57
D	estimating ROI, 48-53
data networks, security	investments, 50–53
vulnerabilities, 261–264	returns, 53–55
data rates, correlation to delay, 23	outsourcing, 122-123
datagrams, 16	application integration, 128
data-networking standards, 12	developing partnerships,
defining	136–137
roles for SLA implementation, 223	integrator selection criteria,
selecting relevant metrics,	132–135
224–226	maintaining partnerships,
SLA negotiations, 226–230	137
security policies, 270	MSP selection criteria,
exploiting vendor resources,	130–132
272–274	MSPs, 129
identifying security team,	network tuning, 128
270–271	PBXs, 127
performing postmortems,	performing network
271–272	upgrades, 124–125
delay, 87, 221	pilot deployments, 125–126
correlation to data rates, 23	toll bypass, 126
effect on MOS score, 88–89	troubleshooting, 129
one-way, 88	VoIP-readiness assessment,
	124

planning phase, 62–63	E
assessing reliability, 67–76	Early Adopters phase, 31
codec selection, 85–87	Early Majority phase, 31
compiling current telephony	echo, troubleshooting in pilot
usage information, 64–66	deployment, 113–114
delay, 87–89	EFS (Encrypting File System), 258
evaluating call quality, 76–85	eliminating equipment gaps, 108
jitter, 90	E-model
lost data, 91–93	calculating R-value, 83–85
performing readiness	call-quality assessment, 81
assessment, 93–102	measuring call quality, 82–85
Destination Address field (IP packet	employee training, outsourcing, 130
header), 18	encryption, 269–270
detecting security breaches, 242–243	end-to-end delay, 87
devices	effect on MOS score, 88–89
codecs, 14–15	enforcing SLAs, 233–234
bandwidth consumption, 22	ensuring profitable ROI, 56–57
compression techniques, 15	ensuring reliability of VoIP
transcoding, 25	deployment, 47–48
eliminating equipment gaps, 108	Enterprise Management
IP phones, security vulnerabilities,	Associates, 129
248, 266–269	erlang, 66
softphones, security	estimating
vulnerabilities, 248	cost of VoIP
DHCP, 10, 38, 75	deployment, 103
dial tone response time, 219	ROI, 48–53
DiffServ, 158	investments, 50–53
digital signal processor (DSP), 81	returns, 53–55
digital telephones, 11	training costs, 37
DoS attacks, 252	evaluating call quality, 76–79
downtime costs, 183–184	E-model, 82–85
DSP, 81	MOS, 80
Dynamic Host Control Protocol	event management, 194–197
(DHCP), 10, 38, 75	ensuring reliability of VoIP
	deployment, 47
	events, 240

expense savings in VoIP	hard benefits, 32
deployment, 33	hardware, purchasing, 102
external SLAs, 217	estimated costs, 103
	header fields of RTP packets, 21–22
	header format of IP packets, 18
F	HIDS (host-based intrusion detection
Г	system), 243
fault management, 197–200	high availability, maintaining,
fault tolerance, ensuring reliability of	200–201
VoIP deployment, 47	application management, 204
fields of RTP header, 21–22	monitoring servers, 201–204
firewalls, 242, 262	hijacking, 252
five nines, 3, 181	Huizenga, Jared, 233
forensics, 244	
Frame Relay, QoS, 155	
Freeman, David, 242	
full service MSPs, 129	I
	identifying security team, 270–271
	IDS (intrusion detection system), 243
	IEEE 802.1p/Q, 152
G	IETF, 12
G.107, 81	implementing VoIP
G.114, 88	as major IT project, 44
G.711 standard, 6	ensuring reliability, 47–48
G.729, 22	up-front planning, 45–46
gatekeepers, 24	estimating ROI, 48, 50, 52–53
growth management, 184-185,	ensuring profitability, 56–57
211–212	investments, 50–53
GUIs, policy console, 264	returns, 53–55
	SLAs, 223
	defining responsibilities, 223
	enforcement procedures,
Н	233–234
H.323 protocols, 20	measurement tools, 230, 233
hackers	negotiations, 226–230
advantages over physical intruders,	selecting relevant metrics,
238–240	224–226
script kiddies, 240	improving bandwidth, 105-106

incident tracking, 222	ITU (International
incremental cost of network	Telecommunications Union), 3
ownership, 36	G.107 recommendation, 81
instant-messaging applications, 40	ITU-T (Telecommunications
integrating new features into business	Standardization Sector), 4
applications, 40	IXC (interexchange carrier), 8
interexchange carrier (IXC), 8	
internal SLAs, 216	
intrusion detection, 242	
reacting to intrusions, 244-245	J-K
inventories, essential features of,	jitter, 90, 221
187–188	
investing in VoIP, 30	Kaufman, David, 234
estimating cost of VoIP	key systems, 9
deployment, 50-53	KISS (keep it simple, stupid), 35
planning stage, 30	Kovar, Matthew, 241
ROI	
analyzing, 43–44	
calculating, 48–55	
IP (Internet Protocol), 12, 16	L
packet header format, 18	latency, 87–89
QoS techniques, 157	LDAP (Lightweight Directory Access
DiffServ, 158	Protocol), 266
IP Precedence, 157	LECs (local exchange carriers), 7
MPLS, 161	LFI (Link Fragmentation and
RSVP, 159, 161	Interleaving), 156
TOS, 157	LFN (log file monitor), 243
IP Centrex, 9–10	link-layer QoS techniques, 152
IP phones, 11, 26–27	ATM QoS, 153–154
security vulnerabilities, 266-269	Frame Relay QoS, 155
IP Precedence, 157	IEEE 802.1p/Q, 152
IP telephony servers, 23–25	LFI, 156
IPSec, 269	RTP header compression, 155–156
IPv4, 16	load balancing, 70
IPv6, 16	local switches, 7
IT project lifecycle, 45	

long-distance savings in VoIP	MSP selection criteria,
deployment, 34–35	130–132
lossy compres sion, 14	MSPs, 129
lost data, 91–93	network tuning, 128
lost packets, 221	PBXs, 127
	performing network
	upgrades, 124–125
	pilot deployments, 125–126
M	toll bypass, 126
maintaining	troubleshooting, 129
call quality, 205–207	VoIP-readiness
performance factors,	assessment, 124
207–208	measuring
SLAs, 208–209	benefits of VoIP, 31-32
SLQoSAs, 209–211	convergence, 41–42
critical files	cost savings, 32–37
call routing tables, 192	hard benefits, 32
configuration files, 191–192	new features, 39–40
program files, 193–194	productivity savings, 37–38
high availability, 200–201	soft benefits, 32
application management, 204	call quality, 79–85
monitoring servers, 201–204	data loss, 91
managing VoIP	obstacles to VoIP, 42
availability, 200–201	business risks, 43
application management, 204	cost investment, 42
monitoring servers, 201–204	SLAs, 230–233
configuration management, 186	Megaco (Media Gateway Control), 20
maintaining critical files,	Metcalfe, Bob, 144
191–194	metrics
network inventory, 187–188	incident tracking, 222
network topology, mapping,	QoS, selecting, 145–147
189–190	SLAs, selecting, 216-217
event management, 194–197	availability, 217–218
fault management, 197–200	call quality, 220–221
outsourcing, 122–123	call setup performance,
application integration, 128	218–220
integrator selection criteria,	modulation, PCM, 6
132–135	

monitoring	0
servers, 201–204	objective call quality
SLAs, 230, 233	measurements, 80
Moore, Geoffrey A., 30	one-way delay, 88
MOS (mean opinion score), 220	operating systems, Windows security
measuring call quality, 80	features, 258
MPLS (Multiprotocol Label	operations management
Switching), 161	configuration management, 186
MSPs (managed service	call routing tables, 192
providers), 129	maintaining critical files,
MTBF (mean time between failures),	191–192
222	network inventory, 187–188
MTTR (mean time to repair), 222	network topology, 189–190
multiplexing, 7	program files, 193–194
	event management, 194–197
	fault management, 197–200
	out-of-band signals, 10
J	outsourcing VoIP project, 122–123
necessity of VoIP management,	application integration, 128
181–183	developing partnership, 136–137
availability, 183–184	integrator selection criteria,
scalability, 184–185	132–135
network access points, security	maintaining partnership, 137
vulnerabilities, 247	MSP selection criteria, 130–132
network infrastructure savings in	MSPs, 129
VoIP deployment, 35–37	network tuning, 128
network tuning, 128	PBXs, 127
new features	performing network upgrades,
adding to VoIP deployment, 40	124–125
increasing ROI, 39	pilot deployments, 125–126
NIDS (network intrusion detection	toll bypass, 126
system), 243	training, 130
shunning, 263	troubleshooting, 129
non-repudiation, 259	VoIP-readiness assessment, 124
number portability, 38	overheard conversations, 249–250
	overprovisioning, 143
	oversubscribing, 143–144

	incident tracking, 222
packets, 16	managing, 208–209
IP, header format, 18	measurement tools, 230,
security vulnerabilities, 269–270	233–234
packet-switched connections, 13	selecting metrics, 216–217
packetization delay, 87	TCP/IP, tuning, 166–167
PAMS (Perceptual Analysis	tuning, 128, 167–170
Measurement System), 81	voice quality, MOS, 220
partnership with VoIP integrator	VoIP tuning, 167–170
developing, 136–137	performing
maintaining, 137	data network upgrades, 104–105,
PBXs, (private branch exchanges), 8,	124–125
23–25, 127	changing network design, 107
PCM (pulse code modulation), 6, 85	eliminating equipment gaps,
performance	108
QoS	obtaining more bandwidth,
best practices, 174–176	105–106
identifying need for, 146	postmortems, 271–272
IP mechanisms, 157–161	QoS tuning, 108
link-layer mechanisms,	replacing equipment, 106
152–156	VoIP readiness assessment, 93
managing, 209–211	bandwidth modeling, 99–102
overprovisioning, 143	call-quality assessment,
oversubscribing, 143–144	97–99
queuing, 162–164	configuration assessment,
selecting metrics, 145–147	93–95
testing, 171–172	utilization assessment, 95–97
traffic classification, 145–149	PESQ (Perceptual Evaluation of
traffic shapers, 165	Speech Quality), 80
requirements for voice	phone tag, 39
applications, 144	physical security, 254–256
SLAs	pilot deployments, 125–126
availability metric, 217–218	building, 109–110
call quality metric, 220–221	evaluating systems, 111–113
call setup performance	solving echo problems,
metric, 218–220	113–114
implementing 223-230	transcoding, 115

planning for volP deployment	iaentifying security team,
30, 62–63	270–271
as major IT project, 45-46	performing postmortems,
assessing reliability, 67-69	271–272
of hardware, 70–71	managing, 263–264
of IT processes, 75–76	repositories, 265
of link and carrier, 72	policy console, 264
of network design, 73–75	policy-based network
of software, 71	management, 209
compiling current telephony usage	postmortems, performing, 271–272
information, 64	POTS (plain old telephone service), 3
call flow analysis, 66	preventing security breaches,
call volume statistics, 66	241–242
CDRs, 65	prioritizing classified traffic, 149
ensuring reliability, 47-48	proactive management activities,
evaluating call quality, 76–79	ensuring reliability of VoIP
codec selection, 85–87	deployment, 47–48
delay, 87–89	productivity
E-model, 82–85	downtime costs, 183–184
jitter, 90	measuring potential savings in
lost data, 91–93	VoIP deployment, 37–38
MOS, 80	profitability, ensuring in VoIP
growth management, 211-212	project, 56–57
readiness assessment, performing	program files, maintaining, 193–194
bandwidth modeling, 99–102	protocols, 12
call-quality assessment,	PSQM (Perceptual Speech Quality
97–99	Measure), 80
configuration assessment,	PSTN (Public Switched Telephone
93–95	Network), 3
utilization assessment, 95–97	Centrex solutions, 9
PLC (packet loss concealment), 15, 87	circuit-switched connections, 3
policies	components, 5
defining, 270	PBXs, 8
exploiting vendor resources,	signaling, 10
272–274	switches, 7
	telephones, 11
	voice encoding, 6–7

five nines reliability, 3	traffic shapers, 165
IXCs, 8	voice applications, performance
stages of typical telephone call, 4	requirements, 144
purchasing VoIP equipment, 102	queuing techniques, 162
estimated cocsts, 103	CBWFQ, 163
	WFQ, 162–163
	WRED, 164
Ω	
QoS (quality of service), 142	
configuring, 171–172	R
identifying need for, 146	reacting to intrusions, 244–245
IP, 157	readiness assessment of VoIP
DiffServ, 158	implementation, performing, 124
IP Precedence, 157	real-time monitoring, 203
MPLS, 161	recommendations (ITU-T), 4
RSVP, 159–161	recommended practices
TOS, 157	QoS-related, 174, 176
link-layer, 152	security, securing central facilities
ATM, 153–154	254–260
Frame Relay, 155	redundancy, 70
IEEE 802.1p/Q, 152	reliability
LFI, 156	assessing, 67–69
RTP header compression,	of hardware, 70–71
155–156	of IT processes, 75–76
managing, 209, 211	of link and carrier, 72
overprovisioning, 143	of network design, 73–75
oversubscribing, 143-144	of software, 71
queuing, 162	ensuring, 47–48
CBWFQ, 163	five nines, 3
WFQ, 162–163	remote access points, security
WRED, 164	vulnerabilities, 247
recommended practices, 174-176	replacing equipment, 106
selecting metrics, 145–147	resources
testing, 172	overprovisioning, 143
traffic classification, 145-149	oversubscribing, 143–144
prioritization, 149	sharing, 142

response time, 78	planning for future growth,
returns, estimating in VoIP	211–212
deployment, 53, 55	Schneier, Bruce, 238
RFCs (Request For Comments), 12	SCP (Session Control Point), 10
ROI (return on investment), xvii	script kiddies, 240
analyzing, 43–44	security, 238
calculating, 48–55	detecting breaches, 243
ensuring profitability, 56-57	events, 240
evaluating, 30	forensics, 244
investments, estimating, 50-53	hackers versus physical intruders.
measuring benefits of VoIP, 31-32	238–240
business risks, 43	intrusion detection, 242
convergence, 41–42	intrusions, 240
cost investment, 42	prevention, 241–242
cost savings, 32–37	reacting to intrusions, 244–245
hard benefits, 32	recommended practices, securing
new features, 39–40	central facilities, 254–258, 260
productivity savings, 37–38	vulnerabilities of VoIP
soft benefits, 32	annoyances, 253
routers, 25	call hijacking, 252
RSVP (Resource Reservation	confidentiality, 248–251
Protocol), 159-161	data network, 261–264
RTP (Real-time Transport	DoS attacks, 252
Protocol), 78	IP phones, 266–269
header compression, 105, 155-156	packets, 269–270
header fields, 21–22	toll fraud, 246–248
lost data, 91–93	undefined processes,
multiplexing, 106	270–274
R-value, calculating, 82–85	selecting
	codecs, 85–87
	integrators, criteria, 132–135
0	metrics for SLAs, 216–217
5	availability, 217–218
scalability	call quality, 220–221
cost savings of VoIP network	call setup performance,
expansion, 36	218–220
growth management, 184-185	MSPs, criteria, 130–132

self service MSPs, 129	selecting metrics, 216–217
self-healing networks, 74	availability, 217–218
Sequence Number field (RTP	call quality, 220–221
header), 21	call setup performance,
servers	218–220
gatekeepers, 24	soft benefits, 32
hardening, 256–258	softphones, 26–27
security vulnerabilities, 247-248	security vulnerabilities, 248
sharing drives, 259	Source Address field (IP packet
sharing network resources, 142	header), 18
overprovisioning, 143	Source ID field (RTP header), 22
oversubscribing, 143-144	SS7 (Signaling System 7), 10
performance requirements, 144	stages of telephone call, 2
shunning, 263	standards, 3
signaling, 10	data-networking, 12
signatures, 263	G.711,6
silence suppression, 105	stateful inspection, 262
single network infrastructure savings	STP (Signal Transfer Point), 10
in VoIP deployment, 35-37	subjective call quality
SIP (Session Initiation Protocol), 20	measurements, 80
SIV (system integrity verifier), 243	switches, 7, 26
SLAs (service-level agreements), 216	Class 5–7
cancelling contracts, 234	tandem, 8
ensuring reliability of VoIP	
deployment, 48	
implementing, 223	_
defining responsibilities, 223	
enforcement procedures,	T1 (trunk level 1), 6
233–234	tandem switches, 8
measurement tools, 230, 233	TCP (Transmission Control
negotiations, 226–230	Protocol), 16
selecting relevant metrics,	TCP/IP protocol stack, 15, 18
224–226	TCP, 16
incident tracking, 222	performance tuning, 166–167
managing, 208–209	UDP, 17
	technology adoption process, 31

telephone calls, stages of, 41	U
telephony standards, 3	UDP (User Datagram Protocol), 17
G.711,6	undefined processes as security
terminating SLA contracts, 234	vulnerability, 270–274
test plan for VoIP deployment,	unified messaging, 24, 39, 250
assembling, 116–118	upgrading data network components,
testing QoS, 171–172	104–105
tie lines, 9	achieving higher banwidth,
Time Stamp field (RTP header), 22	105–106
toll bypass, 34, 126	changing network design, 107
toll fraud, 246, 248	QoS tuning, 108
topologies, mapping, 189–190	upgrading network before VoIP
TOS (Type of Service) field, 157	deployment, 124–125
IP packet header, 18	utilization assessment, performing,
traffic classification, 145-149	95, 97
congestion, 146	33, 31
prioritization, 149	
traffic shapers, 165	
training costs	V
estimating, 37	VAs (vulnerability assessments), 241
outsourcing, 130	vendor resources, exploiting, 272, 274
transaction-oriented applications, 77	voice encoding, 6–7
transcoding, 25, 115	PCM, 6
troubleshooting network problems,	voice quality
outsourcing, 129	maintaining, 205–208
trunk lines, 7	QoS, 209–211
TTL (Time to Live) field (IP packet	SLAs, 208–209
header), 18	MOS, 220
tuning network performance, 128	voice streaming protocols, 21–23
TCP/IP performance, 166–167	VoIP components
VoIP performance, 167–170	call setup protocols, 20
	gateways, 25
	IP phones, 26–27
	IP telephony servers, 23, 25
	PBXs, 23, 25
	replacing, 106
	, , , , , , , , , , , , , , , , , , , ,

routers, 25 softphones, 26–27 switches, 26 TCP/IP protocol stack, 15, 18 TCP, 16-17 voice streaming protocols, 21–23 VPNs (virtual private networks), 269 vulnerabilities of VoIP security annoyances, 253 call hijacking, 252 confidentiality, 248 CDRs, 251 overheard conversations, 249-250 data networks, 261–264 DoS attacks, 252 IP phones, 266-269 packets, 269-270 toll fraud, 246-248 undefined processes, 270-274

W

Wetzel, Kevin, 273
WFQ (weighted fair queuing),
162–163
why this book was written, xvi
Windows operating system, security
features, 258
wireless access points, security
vulnerabilities, 247
wiring costs, measuring in VoIP
deployment, 36
WRED (weighted random-early
detection), 164