
Building and Installing
a Firewall

3

CHAPTER 2,“PACKET-FILTERING CONCEPTS,” COVERS the background ideas and
concepts behind a packet-filtering firewall. Each firewall rule chain has its own default
policy. Each rule applies not only to an individual input or output chain, but to a spe-
cific network interface, message protocol type (i.e.,TCP, UDP, ICMP), and service
port number. Individual acceptance, denial, and rejection rules are defined for the
input chain and the output chain, as well as for the forward chain, which you’ll learn
about at the end of this chapter and in Chapter 4,“LAN Issues, Multiple Firewalls, and
Perimeter Networks.”This chapter pulls those ideas together to demonstrate how to
build a simple, single-system, custom-designed firewall for your site.

The firewall you’ll build in this chapter is based on a deny-everything-by-default
policy.All network traffic is blocked by default. Services are individually enabled as
exceptions to the policy.

After the single-system firewall is built, the chapter closes by demonstrating how to
extend the standalone firewall to a formal bastion firewall.A bastion firewall has at least
two network interfaces. It insulates an internal LAN from direct communication with
the Internet. Only minor extensions are required to make the single-system firewall
function as a simple, dual-homed bastion firewall. It protects your internal LAN by
applying packet-filtering rules at the external interface, acting as a proxying gateway
between the LAN and the Internet.

05 900-9 CH03 08.23.00 11:22 Page 61

62 Chapter 3 Building and Installing a Firewall

The single-system and bastion firewalls are the least-secure forms of firewall archi-
tecture. If the firewall host were to be compromised, any local machines would be
open to attack.As a standalone firewall, it’s an all-or-nothing proposition. Because this
book is targeted at the home and small business user, the assumption is that the major-
ity of home users have a single computer connected to the Internet, or a single fire-
wall machine protecting a small, private LAN.“Least-secure,” however, does not imply
an insecure firewall.These firewalls are less flexible than more complicated architec-
tures involving multiple machines. Chapter 4 introduces more flexible configurations
that allow for additional internal security protecting more complicated LAN and
server configurations than a single-system firewall can.

ipchains:The Linux Firewall Administration
Program
This book is based on Red Hat Linux 6.0. Linux comes supplied with a firewall
mechanism called IPFW (IP firewall).The major Linux distributions either have or are
in the process of converting to ipchains, a rewrite of IPFW version 4.This new ver-
sion is usually referred to as ipchains, its administration program’s name. Previous
Linux distributions used an earlier IPFW implementation.Their firewall mechanism is
usually referred to as ipfwadm, the earlier version’s administration program’s name.

ipchains is used in the examples in this book. Because ipfwadm remains in wide-
spread use on older Linux systems, ipfwadm versions of the examples are presented in
Appendix B,“Firewall Examples and Support Scripts.”Although the syntax differs
between ipchains and ipfwadm, they are functionally the same. ipchains includes the
ipfwadm feature set, along with additional features found in the new IPFW implemen-
tation.The features new to ipchains won’t be used in this book. Only the features
common to both versions are used in the examples.

As a firewall administration program, ipchains creates the individual packet filter
rules for the input and output chains composing the firewall. One of the most impor-
tant aspects of defining firewall rules is that the order in which the rules are defined is
important.

Packet-filtering rules are stored in kernel tables, in an input, output, or forward
chain, in the order in which they are defined. Individual rules are inserted at the
beginning of the chain or appended to the end of the chain.All rules are appended in
the examples in this chapter (with one exception at the end of the chapter).The order
you define the rules in is the order they’ll be added to the kernel tables, and thereby
the order the rules will be compared against each packet.

As each externally originating packet arrives at a network interface, its header fields
are compared against each rule in the interface’s input chain until a match is found.
Conversely, as each internally originating packet is sent to a network interface, its
header fields are compared against each rule in the interface’s output chain until a
match is found. In either direction, when a match is found, the comparison stops and

05 900-9 CH03 08.23.00 11:22 Page 62

63ipchains: The Linux Firewall Administration Program

the rule’s packet disposition is applied: ACCEPT, REJECT, or DENY. If the packet doesn’t
match any rule on the chain, the default policy for that chain is applied.The bottom
line is that the first matching rule wins.

The numeric service port numbers, rather than their symbolic names, as listed in
/etc/services, are used in all the examples of rules in this chapter. ipchains supports
the symbolic service port names.The examples in this chapter use the numeric values
because the symbolic names are not consistent across Linux distributions, or even from
one release to the next.You could use the symbolic names for clarity in your own
rules, but remember that your firewall could break with the next system upgrade.

ipchains is a compiled C program. It must be invoked once for each individual
firewall rule you define.This is done from a shell script.The examples in this chapter
assume that the shell script is named /etc/rc.d/rc.firewall. In cases where shell
semantics differ, the examples are written in Bourne (sh), Korn (ksh), or Bourne Again
(bash) shell semantics.

The examples are not optimized.They are spelled out for clarity and to maintain
conceptual and feature-set compatibility between ipchains and ipfwadm.The two pro-
grams use different command-line arguments to reference similar features, and offer
slightly different shortcuts and optimization capabilities.The examples are presented
using the features common to both programs.

ipchains Options Used in the Firewall Script
ipchains options aren’t covered in full in this chapter. Only the features used in the
examples in this book, features common to ipfwadm, are covered.Table 3.1 lists the
ipchains command-line arguments used here:

ipchains -A|I [chain] [-i interface] [-p protocol] [[!] -y]
[-s address [port[:port]]]
[-d address [port[:port]]]
-j policy [-l]

For a description of the complete ipchains feature set, refer to the online man page, ipchains, and

to IPCHAINS-HOWTO.

05 900-9 CH03 08.23.00 11:22 Page 63

64 Chapter 3 Building and Installing a Firewall

Table 3.1 ipchains Options Used in the Firewall Script
Option Description

-A [chain] Append a rule to the end of a chain.The examples use the
built-in chains: input, output, and forward. If a chain isn’t
specified, the rule applies to all chains.

-I [chain] Insert a rule at the beginning of a chain.The examples use the
built-in chains: input, output, and forward. If a chain isn’t
specified, the rule applies to all chains.

-i <interface> Specify the network interface the rule applies to. If an interface
isn’t specified, the rule applies to all interfaces. Common inter-
face names are eth0, eth1, lo, and ppp0.

-p <protocol> Specify the IP protocol the rule applies to. If the -p option isn’t
used, the rule applies to all protocols. The supported protocol
names are tcp, udp, icmp, and all.Any of the protocol names
or numbers from /etc/protocols are also allowed.

-y The SYN flag must be set, and the ACK flag must be cleared in a
TCP message, indicating a connection establishment request.
If -y isn’t given as an argument, the TCP flag bits aren’t
checked.

! -y The ACK flag must be set in a TCP message, indicating an initial
response to a connection request or an ongoing, established
connection. If ! -y isn’t given as an argument, the TCP flag bits
aren’t checked.

-s <address> [<port>] Specify the packet’s source address. If a source address isn’t speci-
fied, all unicast source addresses are implied. If a port or range of
ports is given, the rule applies to only those ports.Without a
port specifier, the rule applies to all source ports.A range of
ports is defined by a beginning and ending port number, sepa-
rated by a colon (e.g., 1024:65535). If a port is given, an address
must be specified.

-d <address> [<port>] Specify the packet’s destination address. If a destination address
isn’t specified, all unicast destination addresses are implied. If a
port or range of ports is given, the rule applies to only those
ports.Without a port specifier, the rule applies to all destination
ports.A range of ports is defined by a beginning and ending
port number, separated by a colon (e.g., 1024:65535). If a port
is given, an address must be specified.

05 900-9 CH03 08.23.00 11:22 Page 64

65ipchains: The Linux Firewall Administration Program

Option Description

-j <policy> Specify the packet disposition policy for this rule: ACCEPT, DENY,
or REJECT.The forward chain can take the MASQ (masquerade)
policy, as well.

-l Write a kernel informational (KERN_INFO) message in the sys-
tem log, /var/log/messages by default, whenever a packet
matches this rule.

Source and Destination Addressing Options
Both a packet’s source and destination addresses can be specified in a firewall rule.
Only packets with that specific source or destination address match the rule.Addresses
may be a specific IP address, a fully qualified hostname, a network (domain) name, a
limited range of addresses, or all-inclusive.

An IP address is a 32-bit numeric value, divided into four individual 8-bit bytes,
ranging from 0 through 255. In dotted-decimal notation, each of the four bytes
making up the 32-bit value is represented as one of the quads in the IP address.
The private Class C IP address 192.168.10.30 is used as the local host address in the
figures throughout this book.

ipchains allows the address to be suffixed with a bit mask specifier.The mask’s
value can range from 0 through 32, indicating the number of bits to mask. Bits are
counted from the left, or most significant, quad.This mask specifier indicates how
many of the leading bits in the address must exactly match the IP address defined in
the rule.

A mask of 32, /32, means that all the bits must match.The address must exactly
match what you’ve defined in the rule. Specifying an address as 192.168.10.30 is the
same as specifying the address as 192.168.10.30/32.The /32 mask is implied by
default.You don’t need to specify it.

IP Addresses Expressed As Symbolic Names
Remote hosts and networks may be specified as fully qualified host or network names. Using a hostname

is especially convenient for firewall rules that apply to an individual remote host. This is particularily true

for hosts whose IP address can change, or that invisibly represent multiple IP addresses, such as ISP mail

servers sometimes do. In general, however, remote addresses are better expressed in dotted quad notation

because of the possibility of DNS hostname spoofing.

Symbolic hostnames can’t be resolved until DNS traffic is enabled in firewall rules. If hostnames are used

in the firewall rules, those rules must follow the rules enabling DNS traffic.

05 900-9 CH03 08.23.00 11:22 Page 65

66 Chapter 3 Building and Installing a Firewall

An example using masking would be to allow only a given connection type to be
made between you and your ISP’s server machines. Let’s say that your ISP uses
addresses in the range of 192.168.24.0 through 192.168.27.255 for its server address
space. In this case, the address/mask pair would be 192.168.24/22.As shown in
Figure 3.1, the first 22 bits of all addresses in this range are identical, so any address
matching on the first 22 bits will match. Effectively, you are saying that you will allow
connections to the service only when offered from machines in the address range
192.168.24.0 through 192.168.27.255.

A mask of 0, /0, means that no bits in the address are required to match. In other
words, because no bits need to match, using /0 is the same as not specifying an
address.Any unicast address matches. ipchains has a built-in alias for 0.0.0.0/0, any/0.

Decimal Binary

Bit 0 7

11000000.10101000.00011000.00000000192.168.24.0

192.168.24.255 11000000.10101000.00011011.11111111

15 21 31
23

Figure 3.1 The first matching 22 bits in the masked IP address range 192.168.24.0/22.

05 900-9 CH03 08.23.00 11:22 Page 66

67Initializing the Firewall

Initializing the Firewall
A firewall is implemented as a series of packet-filtering rules defined by options on
the ipchains command line. ipchains is executed once for each individual rule.
(Different firewalls can range from a dozen rules to hundreds.)

The ipchains invocations should be made from an executable shell script and not
directly from the command line.You should invoke the complete firewall shell script.
Do not attempt to invoke specific ipchains rules from the command line because
this could cause your firewall to accept or deny packets inappropriately.When the
chains are initialized and the default deny policy is enabled, all network services are
blocked until an acceptance filter is defined to allow the individual service.

Likewise, you should execute the shell script from the console. Do not execute the
shell script from either a remote machine or from an X Window xterm session. Not
only is remote network traffic blocked, but access to the local loopback interface used
by X Window is blocked until access to the interface is explicitly reenabled.

Furthermore, remember that firewall filters are applied in the order in which
you’ve defined them on the input or output chain.The rules are appended to the end
of their chain in the order you define them.The first matching rule wins. Because of
this, firewall rules must be defined in a hierarchical order from most specific to more
general rules.

Firewall initialization is used to cover a lot of ground, including defining global con-
stants used in the shell script, clearing out any existing rules in the firewall chains,
defining default policies for the input and output chains, reenabling the loopback
interface for normal system operation, denying access from any specific hosts or net-
works you’ve decided to block, and defining some basic rules to protect against bad
addresses and to protect certain services running on unprivileged ports.

Symbolic Constants Used in the Firewall Examples
A firewall shell script is easiest to read and maintain if symbolic constants are used for
recurring names and addresses.The following constants are either used throughout the
examples in this chapter, or else are universal constants defined in the networking
standards:

EXTERNAL_INTERFACE=”eth0” # Internet-connected interface
LOOPBACK_INTERFACE=”lo” # however your system names it

IPADDR=”my.ip.address” # your IP address
ANYWHERE=”any/0” # match any IP address
MY_ISP=”my.isp.address.range” # ISP server & NOC address range

LOOPBACK=”127.0.0.0/8” # reserved loopback address range
CLASS_A=”10.0.0.0/8” # class A private networks
CLASS_B=”172.16.0.0/12” # class B private networks
CLASS_C=”192.168.0.0/16” # class C private networks
CLASS_D_MULTICAST=”224.0.0.0/4” # class D multicast addresses
CLASS_E_RESERVED_NET=”240.0.0.0/5” # class E reserved addresses

05 900-9 CH03 08.23.00 11:22 Page 67

68 Chapter 3 Building and Installing a Firewall

BROADCAST_SRC=”0.0.0.0” # broadcast source address
BROADCAST_DEST=”255.255.255.255” # broadcast destination address
PRIVPORTS=”0:1023” # well-known, privileged port range
UNPRIVPORTS=”1024:65535” # unprivileged port range

Constants not listed here are defined within the context of the specific rules they
are used with.

Removing Any Preexisting Rules
The first thing to do when defining a set of filtering rules is to remove any existing
rules from their chain. Otherwise, any new rules you define would be added to the
end of existing rules. Packets could easily match a preexisting rule before reaching the
point in the chain you are defining from this point on.

Removal is called flushing the chain.Without a directional argument referring to a
specific chain, the following command flushes the rules of all three built-in chains—
input, output, and forward—at once:

Flush any existing rules from all chains
ipchains -F

The chains are empty.You’re starting from scratch.The system is in its default
accept-everything policy state.

Defining the Default Policy
A side effect of flushing all the rules is that the system is returned to its default state,
including the default accept-everything policy for each chain. Until new default poli-
cies are defined, the system allows everything through the network interfaces. No fil-
tering is done.

By default, you want the firewall to deny everything coming in and reject every-
thing going out. Unless a rule is defined to explicitly allow a matching packet
through, incoming packets are silently denied without notification to the remote
sender, and outgoing packets are rejected and an ICMP error message is returned to
the local sender.The difference for the end user is that, for example, if someone at a
remote site attempts to connect to your Web server, that person’s browser hangs until
his or her system returns a TCP timeout condition. He or she has no indication
whether your site or your Web server exist. If you, on the other hand, attempt to con-
nect to a remote Web server, your browser receives an immediate error condition indi-
cating that the operation isn’t allowed:

Set the default policy to deny
ipchains -P input DENY
ipchains -P output REJECT
ipchains -P forward REJECT

At this point, all network traffic is blocked.

05 900-9 CH03 08.23.00 11:22 Page 68

69Initializing the Firewall

Enabling the Loopback Interface
You need to enable unrestricted loopback traffic.This allows you to run any local net-
work services you choose—or that the system depends on—without having to worry
about getting all the firewall rules specified.

Loopback is enabled immediately in the firewall script. It’s not an externally avail-
able interface. Local network-based services, such as the X Window system, will hang
until loopback traffic is allowed through.

The rules are simple when everything is allowed.You simply need to undo the
effect of the default deny policies for the loopback interface by accepting everything
on that interface:

Unlimited traffic on the loopback interface
ipchains -A input -i $LOOPBACK_INTERFACE -j ACCEPT
ipchains -A output -i $LOOPBACK_INTERFACE -j ACCEPT

System logging, X Window, and other local, UNIX-domain, socket-based services
are available again.

Source Address Spoofing and Other Bad Addresses
This section establishes some input chain filters based on source and destination
addresses.These addresses will never be seen in a legitimate incoming packet from the
Internet.

The Linux kernel offers some support against incoming spoofed packets in addition
to what can be done at the firewall level.Also, in case TCP SYN Cookie protection is
not enabled, the following lines enable both kernel support modules:

echo 1 >/proc/sys/net/ipv4/tcp_syncookies

Setting up IP spoofing protection
turn on Source Address Verification
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do

echo 1 > $f
done

Default Policy Rules and the First Matching Rule Wins
The default policies appear to be exceptions to the first-matching-rule-wins scenario. The default policy

commands are not position-dependent. They aren’t rules, per se. A chain’s default policy is applied after a

packet has been compared to each rule on the chain without a match.

The default policies are defined first in the script to define the default packet disposition before any rules

to the contrary are defined. If the policy commands were executed at the end of the script, and the fire-

wall script contained a syntax error causing it to exit prematurely, the default accept-everything policy

would be in effect. If a packet didn’t match a rule, (and rules are usually accept rules in a deny-every-

thing-by-default firewall) the packet would fall off the end of the chain and be accepted by default. The

firewall rules would not be accomplishing anything useful.

05 900-9 CH03 08.23.00 11:22 Page 69

70 Chapter 3 Building and Installing a Firewall

At the packet-filtering level, one of the few cases of source address spoofing you
can identify with certainty as a forgery is your own IP address.This rule denies
incoming packets claiming to be from you:

Refuse spoofed packets pretending to be from
the external interface’s IP address
ipchains -A input -i $EXTERNAL_INTERFACE -s $IPADDR -j DENY -l

There is no need to block outgoing packets destined to yourself.They won’t
return, claiming to be from you and appearing to be spoofed. Remember, if you send
packets to your own external interface, those packets arrive on the loopback interface’s
input queue, not on the external interface’s input queue. Packets containing your
address as the source address never arrive on the external interface, even if you send
packets to the external interface.

As explained in Chapter 2, spare private IP addresses are set aside in each of the
Class A, B, and C address ranges for use in private LANs.They are not intended for
use on the Internet. Routers are not supposed to route packets with private source
addresses. Routers cannot route packets with private destination addresses.
Nevertheless, many routers do allow packets through with private source addresses.

Additionally, if someone on your ISP’s subnet (i.e., on your side of the router you
share) is leaking packets with private destination IP addresses, you’ll see them even if
the router doesn’t forward them. Machines on your own LAN could also leak private
source addresses if your IP masquerading or proxy configuration is set up incorrectly.

The next three sets of rules disallow incoming and outgoing packets with any of
the Class A, B, or C private network addresses as their source or destination addresses.

Firewall Logging
The -l option enables logging for packets matching the rule. When a packet matches the rule, the event

is logged in /var/log/messages. Firewall logging is available by default in Red Hat 6.0. Releases

prior to version 6.0 required you to recompile the kernel with the kernel logging module included in

order to use the ipchains/ipfwadm logging option.

05 900-9 CH03 08.23.00 11:22 Page 70

71Initializing the Firewall

None of these packets should be seen outside a private LAN:

Refuse packets claiming to be to or from a Class A private network
ipchains -A input -i $EXTERNAL_INTERFACE -s $CLASS_A -j DENY
ipchains -A input -i $EXTERNAL_INTERFACE -d $CLASS_A -j DENY
ipchains -A output -i $EXTERNAL_INTERFACE -s $CLASS_A -j DENY -l
ipchains -A output -i $EXTERNAL_INTERFACE -d $CLASS_A -j DENY -l

Refuse packets claiming to be to or from a Class B private network
ipchains -A input -i $EXTERNAL_INTERFACE -s $CLASS_B -j DENY
ipchains -A input -i $EXTERNAL_INTERFACE -d $CLASS_B -j DENY
ipchains -A output -i $EXTERNAL_INTERFACE -s $CLASS_B -j DENY -l
ipchains -A output -i $EXTERNAL_INTERFACE -d $CLASS_B -j DENY -l

Refuse packets claiming to be to or from a Class C private network
ipchains -A input -i $EXTERNAL_INTERFACE -s $CLASS_C -j DENY
ipchains -A input -i $EXTERNAL_INTERFACE -d $CLASS_C -j DENY
ipchains -A output -i $EXTERNAL_INTERFACE -s $CLASS_C -j DENY -l
ipchains -A output -i $EXTERNAL_INTERFACE -d $CLASS_C -j DENY -l

Your external network interface won’t recognize a destination address other than its
own if your routing table is configured correctly. But if you configured automatic
routing and had a LAN using these addresses and someone on your ISP’s subnet was
leaking packets, your firewall could conceivably forward the packets to your LAN.

The next two rules disallow packets with a source address reserved for the loopback
interface:

Refuse packets claiming to be from the loopback interface
ipchains -A input -i $EXTERNAL_INTERFACE -s $LOOPBACK -j DENY-
ipchains -A output -i $EXTERNAL_INTERFACE -s $LOOPBACK -j DENY -l

Because loopback addresses are assigned to a local software interface, which system
software handles internally, any packet claiming to be from such an address is inten-
tionally forged. Notice that I’ve chosen to log the event if a local user attempts to
spoof the address.

As with addresses set aside for use in private LANs, routers are not supposed to for-
ward packets originating from the loopback address range.A router cannot forward a
packet with a loopback destination address.

The next two rules block broadcast packets containing illegal source or destination
broadcast addresses.The firewall’s default policy is to deny everything.As such, broad-
cast destination addresses are denied by default and must be explicitly enabled in the
cases where they are wanted:

Refuse malformed broadcast packets
ipchains -A input -i $EXTERNAL_INTERFACE -s $BROADCAST_DEST -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -d $BROADCAST_SRC -j DENY -l

05 900-9 CH03 08.23.00 11:22 Page 71

72 Chapter 3 Building and Installing a Firewall

The first of these rules logs and denies any packet claiming to come from
255.255.255.255, the address reserved as the broadcast destination address.A packet
will never legitimately originate from address 255.255.255.255.

The second of these rules logs and denies any packet directed to destination address
0.0.0.0, the address reserved as a broadcast source address. Such a packet is not a mis-
take; it is a specific probe intended to identify a UNIX machine running network
software derived from BSD. Because most UNIX operating system network code
is derived from BSD, this probe is effectively intended to identify machines
running UNIX.

Multicast addresses are legal only as destination addresses.The next rule pair denies
and logs spoofed multicast network packets:

Refuse Class D multicast addresses
illegal only as a source address
Multicast uses UDP
ipchains -A input -i $EXTERNAL_INTERFACE \

-s $CLASS_D_MULTICAST -j DENY -l
ipchains -A output -i $EXTERNAL_INTERFACE \

-s $CLASS_D_MULTICAST -j REJECT -l

Legitimate multicast packets are always UDP packets.As such, multicast messages
are sent point-to-point, just as any other UDP message is.The difference between uni-
cast and multicast packets is the class of destination address used.The next rule denies
outgoing multicast packets from your machine:

ipchains -A output -i $EXTERNAL_INTERFACE \

-d $CLASS_D_MULTICAST -j REJECT -l

Multicast functionality is a configurable option when you compile the kernel, and
your network interface card can be initialized to recognize multicast addresses.The
functionality is enabled by default in Red Hat 6.0, but not in earlier releases.You
might want to enable these addresses if you subscribe to a network conferencing ser-
vice that provides multicast audio and video broadcasts.

You won’t see legitimate multicast destination addresses unless you’ve registered
yourself as a recipient. Multicast packets are sent to multiple, but specific, targets by
prior arrangement. I have seen multicast packets sent out from machines on my ISP’s
local subnet, however.You can block multicast addresses altogether if you don’t sub-
scribe to multicast services.The next rule denies incoming multicast packets:

ipchains -A input -i $EXTERNAL_INTERFACE -d $CLASS_D_MULTICAST -j REJECT -l

Clarification on the Meaning of IP Address 0.0.0.0
Address 0.0.0.0 is reserved for use as a broadcast source address. The IPFW convention of specifying a

match on any address, any/0, 0.0.0.0/0, or 0.0.0.0/0.0.0.0, doesn’t match the broadcast

source address. The reason is that a broadcast packet has a bit set in the packet header indicating that

it’s a broadcast packet destined for all interfaces on the network, rather than a point-to-point, unicast

packet destined for a particular destination. Broadcast packets are handled differently from nonbroadcast

packets. There is no legitimate nonbroadcast IP address 0.0.0.0.

05 900-9 CH03 08.23.00 11:22 Page 72

73Initializing the Firewall

Multicast registration and routing is a complicated process managed by its own IP
layer control protocol, the Internet Group Management Protocol (IGMP, protocol 2).
For more information on multicast communication, refer to an excellent white paper,
“How IP Multicast Works,” by Vicki Johnson and Marjory Johnson.The paper is avail-
able at http://www.ipmulticast.com/community/whitepapers/howipmcworks.html.

Class D IP addresses range from 224.0.0.0 to 239.255.255.255.The CLASS_D_
MULTICAST constant, 224.0.0.0/4, is defined to match on the first four bits of the
address.As shown in Figure 3.2, in binary, the decimal values 224 (11100000B) to 239
(11101111B) are identical through the first four bits (1110B).

The next rule in this section denies and logs packets claiming to be from a Class E
reserved network:

Refuse Class E reserved IP addresses
ipchains -A input -i $EXTERNAL_INTERFACE \

-s $CLASS_E_RESERVED_NET -j DENY -l

Class E IP addresses range from 240.0.0.0 to 247.255.255.255.The
CLASS_E_RESERVED_NET constant, 240.0.0.0/5, is defined to match on the first five bits
of the address.As shown in Figure 3.3, in binary, the decimal values 240 (11110000B)
to 247 (11110111B) are identical through the first five bits (1111 0B).

Decimal Binary

Bit 0 7

11100000.00000000.00000000.00000000224.0.0.0

239.255.255.255 11101111.11111111.11111111.11111111

153 3123

Figure 3.2 The first matching four bits in the masked Class D multicast address range
224.0.0.0/4.

Decimal Binary

Bit 0 7

11110000.00000000.00000000.00000000240.0.0.0

247.255.255.255 11110111.11111111.11111111.11111111

154 3123

Figure 3.3 The first matching five bits in the masked Class E reserved address range
240.0.0.0/5.

05 900-9 CH03 08.23.00 11:22 Page 73

74 Chapter 3 Building and Installing a Firewall

The IANA ultimately manages the allocation and registration of the world’s IP
address space. For more information on IP address assignments, see
http://www.isi.edu/in-notes/iana/assignments/ipv4-address-space. Some blocks
of addresses are defined as reserved by the IANA.These addresses should not appear
on the public Internet.The final set of rules deny this class of potentially spoofed
packets:

refuse addresses defined as reserved by the IANA
0.*.*.*, 1.*.*.*, 2.*.*.*, 5.*.*.*, 7.*.*.*, 23.*.*.*, 27.*.*.*
31.*.*.*, 37.*.*.*, 39.*.*.*, 41.*.*.*, 42.*.*.*, 58-60.*.*.*

ipchains -A input -i $EXTERNAL_INTERFACE -s 1.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 2.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 5.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 7.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 23.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 27.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 31.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 37.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 39.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 41.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 42.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 58.0.0.0/7 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 60.0.0.0/8 -j DENY -l

65: 01000001 - /3 includes 64 - need 65-79 spelled out
ipchains -A input -i $EXTERNAL_INTERFACE -s 65.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 66.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 67.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 68.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 69.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 70.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 71.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 72.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 73.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 74.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 75.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 76.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 77.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 78.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 79.0.0.0/8 -j DENY -l

80: 01010000 - /4 masks 80-95
ipchains -A input -i $EXTERNAL_INTERFACE -s 80.0.0.0/4 -j DENY -l

96: 01100000 - /4 masks 96-111
ipchains -A input -i $EXTERNAL_INTERFACE -s 96.0.0.0/4 -j DENY -l

05 900-9 CH03 08.23.00 11:22 Page 74

75Filtering ICMP Control and Status Messages

126: 01111110 - /3 includes 127 - need 112-126 spelled out
ipchains -A input -i $EXTERNAL_INTERFACE -s 112.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 113.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 114.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 115.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 116.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 117.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 118.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 119.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 120.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 121.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 122.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 123.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 124.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 125.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 126.0.0.0/8 -j DENY -l

217: 11011001 - /5 includes 216 - need 217-219 spelled out
ipchains -A input -i $EXTERNAL_INTERFACE -s 217.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 218.0.0.0/8 -j DENY -l
ipchains -A input -i $EXTERNAL_INTERFACE -s 219.0.0.0/8 -j DENY -l

223: 11011111 - /6 masks 220-223
ipchains -A input -i $EXTERNAL_INTERFACE -s 220.0.0.0/6 -j DENY -l

Filtering ICMP Control and Status Messages
ICMP control messages are generated in response to a number of error conditions,
and they are produced by network analysis programs, such as ping and traceroute.
Table 3.2 lists the common ICMP message types of most interest to a small site.

Table 3.2 Common ICMP Message Types

Type Code Symbolic Name Description
0 echo-reply A ping response.

3 destination-unreachable A general error status message; a router
along the path to the destination is unable
to deliver the packet to its next destina-
tion; used by traceroute.

4 source-quench IP network layer flow control between
two routers, or between a router and
a host.

continues

05 900-9 CH03 08.23.00 11:22 Page 75

76 Chapter 3 Building and Installing a Firewall

Table 3.2 Continued

Type Code Symbolic Name Description
5 redirect A routing message returned to the sender

when a router determines that a shorter
path exists.

8 echo-request A ping request.

11 time-exceeded A routing message returned when a
packet’s maximum hop count (TTL) is
exceeded; used by traceroute.

12 parameter-problem Unexpected values that are found in the
IP packet header.

Error Status and Control Messages
Four ICMP control and status messages need to pass through the firewall: Source
Quench, Parameter Problem, incoming Destination Unreachable, and outgoing
Destination Unreachable, subtype Fragmentation Needed. Four other ICMP message
types are optional: Echo Request, Echo Reply, other outgoing Destination
Unreachable subtypes, and Time Exceeded. Other message types can be ignored, to be
filtered out by the default policy.

Of the message types that can—or should—be ignored, only Redirect is listed in
Table 3.2 because of its role in denial-of-service attacks as a Redirect bomb. (See
Chapter 2 for more information on Redirect bombs.) As with Redirect, the remaining
ICMP message types are specialized control and status messages intended for use
between routers.

ICMP Code Differences Between ipchains and ipfwadm
ipchains in Red Hat 6.0 supports the use of either the ICMP numeric message type or the alphabetic

symbolic name. Earlier releases using ipfwadm supported only the numeric message type.

ipchains also supports use of the message subtypes, or codes. This is especially useful for finer filter-

ing control over type 3 destination-unreachable messages. For example, you could specifically

disallow outgoing port-unreachable messages to disable an incoming traceroute, or specifically

allow only outgoing Fragmentation Needed status messages. ipfwadm does not support the mes-

sage subtype codes.

To see a list of all supported ICMP symbolic names in ipchains, run ipchains -h icmp. To see the

official RFC assignments, go to http://www.isi.edu/in-notes/iana/assignments/

icmp-parameters.

05 900-9 CH03 08.23.00 11:22 Page 76

77Filtering ICMP Control and Status Messages

The following sections describe the message types important to an endpoint host
machine, as opposed to an intermediate router, in more detail.

Source Quench Control (Type 4) Messages

ICMP message type 4, Source Quench, is sent when a connection source, usually a
router, is sending data faster than the next destination router can handle it. Source
Quench is used as a primitive form of flow control at the IP network layer, usually
between two adjacent, point-to-point machines:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 4 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 4 -d $ANYWHERE -j ACCEPT

The router’s next hop or destination machine sends a Source Quench command.
The originating router responds by sending packets at a slower rate, gradually increas-
ing the rate until it receives another Source Quench message.

Parameter Problem Status (Type 12) Messages

ICMP message type 12, Parameter Problem, is sent when a packet is received
containing illegal or unexpected data in the header, or when the header checksum
doesn’t match the checksum generated by the receiving machine:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 12 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 12 -d $ANYWHERE -j ACCEPT

Destination Unreachable Error (Type 3) Messages

ICMP message type 3, Destination Unreachable, is a general error status message:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 3 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 3 -d $ANYWHERE -j ACCEPT

The ICMP packet header for type 3, Destination Unreachable, messages contains
an error code field identifying the particular kind of error. Ideally, you’d want to drop
outgoing type 3 messages.This message type is what is sent in response to a hacker’s
attempt to map your service ports or address space.An attacker can create a denial-of-
service condition by forcing your system to generate large numbers of these messages
by bombarding your unused UDP ports.Worse, an attacker can spoof the source
address, forcing your system to send them to the spoofed hosts. Unfortunately, the
Destination Unreachable message creates a Catch-22 situation. One of the message
subtypes, Fragmentation Needed, is used to negotiate packet fragment size.Your
network performance can be seriously degraded without this negotiation.

05 900-9 CH03 08.23.00 11:22 Page 77

78 Chapter 3 Building and Installing a Firewall

If you want to respond to incoming traceroute requests, you must allow outgoing
ICMP Destination Unreachable messages, subtype code Port Unreachable.

Time Exceeded Status (Type 11) Messages

ICMP message type 11,Time Exceeded, indicates a timeout condition, or more accu-
rately, that a packet’s maximum hop count has been exceeded. On networks today,
incoming Time Exceeded is mostly seen as the ICMP response to an outgoing UDP
traceroute request:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 11 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 11 -d $MY_ISP -j ACCEPT

If you want to respond to incoming traceroute requests, you must allow outgoing
ICMP Time Exceeded messages. In the previous rules, only traceroutes from your
ISP’s machines are allowed. If you want to use traceroute yourself, you must allow
incoming ICMP Time Exceeded messages. Because your machine is not an intermedi-
ate router, you have no other use for Time Exceeded messages.

ping Echo Request (Type 8) and Echo Reply (Type 0)
Control Messages
ping uses two ICMP message types.The request message, Echo Request, is message
type 8.The reply message, Echo Reply, is message type 0. ping is a simple network
analysis tool dating back to the original DARPANET.The name ping was taken from
the idea of the audible ping played back by sonar systems. (DARPA is the Defense
Advanced Research Projects Agency, after all.) Similar to sonar, an Echo Request mes-
sage broadcast to all machines in a network address space generates Echo Reply mes-
sages, in return, from all hosts responding on the network.

ipchains Only: Using the ICMP Message Subtype Codes
For ipchains users only: The general, ipfwadm-compatible ruleset mentioned previously could be

replaced with more specific rules allowing any outgoing type 3 messages to your ISP, and Fragmentation

Needed messages to any address:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 3 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 3 -d $MY_ISP -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR fragmentation-needed -d $ANYWHERE -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 78

79Filtering ICMP Control and Status Messages

Outgoing ping to Remote Hosts

The following rule pair allows you to ping any host on the Internet:

allow outgoing pings to anywhere
ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \

-s $IPADDR 8 -d $ANYWHERE -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 0 -d $IPADDR -j ACCEPT

Incoming ping from Remote Hosts

The approach shown here allows only selected external hosts to ping you:

allow incoming pings from trusted hosts
ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \

-s $MY_ISP 8 -d $IPADDR -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-s $IPADDR 0 -d $MY_ISP -j ACCEPT

For the purposes of example, external hosts allowed to ping your machine are
machines belonging to your ISP. Chances are good that your network operations cen-
ter or customer support will want to ping your external interface. Other than from
your local network neighbors, other incoming Echo Requests are denied. ping is used
in several different types of denial-of-service attacks.

Blocking Incoming and Outgoing smurf Attacks

smurf attacks have used ping packets historically, continually broadcasting Echo
Request messages to intermediate hosts with the source address spoofed to be the
intended victim’s IP address.As a result, every machine in the intermediary’s network
continually bombards the victim machine with Echo Reply messages, choking off all
available bandwidth.

The following rule logs smurf attacks. Because the broadcast ICMP packets are not
explicitly allowed, the firewall’s deny-everything-by-default policy drops these packets
anyway. Notice that all ICMP message types are denied, rather than just Echo Request
messages. ping packets are typically used in smurf attacks, but other ICMP message
types can be used as well.You can never be too careful in a firewall rule set:

smurf attack
ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \

-d $BROADCAST_DEST -j DENY -l

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp \
-d $BROADCAST_DEST -j REJECT -l

smurf attack - network mask
ipchains -A input -i $EXTERNAL_INTERFACE -p icmp\

-d $NETMASK -j DENY -l

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp\
-d $NETMASK -j REJECT -l

05 900-9 CH03 08.23.00 11:22 Page 79

80 Chapter 3 Building and Installing a Firewall

#smurf attack - network address
ipchains -A input -i $EXTERNAL_INTERFACE -p icmp\

-d $NETWORK -j DENY -l

ipchains -A output -i $EXTERNAL_INTERFACE -p icmp\
-d $NETWORK -j REJECT -l

Protecting Services on Assigned
Unprivileged Ports
LAN services, in particular, often run on unprivileged ports. For TCP-based services, a
connection attempt to one of these services can be distinguished from an ongoing
connection with a client using one of these unprivileged ports through the state of the
SYN and ACK bits.You should block incoming connection attempts to these ports for
your own security protection.You want to block outgoing connection attempts to
protect yourself and others from mistakes on your end, and to log potential internal
security problems.

What kinds of mistakes might you need protection from? The worst mistake is
offering dangerous services to the world, whether inadvertently or intentionally, and is
discussed in Chapter 2.A common mistake is running local network services that leak
out to the Internet and bother other people.Another is allowing questionable outgo-
ing traffic, such as port scans, whether this traffic is generated by accident or intention-
ally sent out by someone on your machine.A deny-everything-by-default firewall
policy protects you from most mistakes of these types.

A deny-everything-by-default firewall policy allows you to run many private ser-
vices behind the firewall without undo risk.These services must explicitly be allowed
through the firewall to be accessible to remote clients.This generalization is only an
approximation of reality, however.Although TCP services on privileged ports are rea-
sonably safe from all but a skilled and determined hacker, UDP services are inherently
less secure, and some services are assigned to run on unprivileged ports. RPC services,
usually run over UDP, are even more problematic. RPC-based services are bound to
some port, often an unprivileged port.The portmap daemon maps between the RPC
service number and the actual port number.A port scan can show where these
RPC-based services are bound without going through the portmap daemon.

Official Service Port Number Assignments
Port numbers are assigned and registered by the IANA. The information was originally maintained as RFC

1700, “Assigned Numbers.” That RFC is now obsolete. The official information is dynamically maintained

by the IANA at http://www.isi.edu/in-notes/iana/assignments/port-numbers.

Smurf Attacks
Don’t broadcast anything out unto the Internet. The ping broadcast mentioned previously is the basis of

the smurf IP denial-of-service attack. See CERT Advisory CA-98.01.smurf at www.cert.org for

more information on smurf attacks.

05 900-9 CH03 08.23.00 11:22 Page 80

81Protecting Services on Assigned Unprivileged Ports

Common Local TCP Services Assigned to Unprivileged Ports
Some services, usually LAN services, are offered through an officially registered, well-
known unprivileged port.Additionally, some services, such as FTP and IRC, use com-
plicated communication protocols that don’t lend themselves well to packet filtering.
The rules described in the following sections disallow local or remote client programs
from initiating a connection to one of these ports.

FTP is a good example of how the deny-by-default policy isn’t always enough to
cover all the possible cases.The FTP protocol is covered later in this chapter. For now,
the important idea is that FTP allows connections between two unprivileged ports.
Because some services listen on registered unprivileged ports, and the incoming con-
nection request to these services are originating from an unprivileged client port, the
rules allowing FTP inadvertantly allow incoming connections to these other, local, ser-
vices, as well.This situation is also an example of how firewall rules are logically hier-
archial and order-dependent.The rules explicitly protecting a LAN service running on
an unprivileged port must precede the FTP rules allowing access to the entire unpriv-
ileged port range.

As a result, some of these rules appear to be redundant, and will be redundant for
some people. For other people running other services, the following rules are neces-
sary to protect private services running on local unprivileged ports.

Disallowing Open Window Connections (TCP Port 2000)

Outgoing client connections to a remote Open Window manager should not be
allowed. By specifying the -y flag, indicating the SYN bit, only a connection establish-
ment attempt made from your machine is rejected. Other in-progress connections
with remote client programs that are using the unprivileged port 2000 are not affected
by the rule, because remote unprivileged ports are the endpoint of a connection initi-
ated by a remote client to a server on your machine.

The following rule blocks local clients from initiating a connection request to a
remote Open Window manager:

OPENWINDOWS_PORT=”2000” # (TCP) OpenWindows

Open Windows: establishing a connection
ipchains -A output -i $EXTERNAL_INTERFACE -p tcp -y \

-s $IPADDR \
-d $ANYWHERE $OPENWINDOWS_PORT -j REJECT

Incoming connections to port 2000 don’t need to be explicitly blocked. Linux is
not distributed with the Open Window manager.

The Problem with Port Scans
Port scans are not harmful in themselves. They’re generated by network analysis tools. The problem with

port scans today is that they are usually generated by people with less-than-honorable intentions. They

are “analyzing” your network, not their own. Unfortunately, this leaves the merely curious looking guilty

as well.

05 900-9 CH03 08.23.00 11:22 Page 81

82 Chapter 3 Building and Installing a Firewall

Disallowing X Window Connections (TCP Ports 6000:6063)

Connections to remote X Window servers should be made over SSH, which automat-
ically supports X Window connections. By specifying the -y flag, indicating the SYN
bit, only connection establishment to the remote server port is being rejected. Other
connections initiated using the port as a client port are not affected.

X Window port assignment begins at port 6000 with the first running server. If
additional servers are run, each is assigned to the next incremental port.As a small site,
you’ll probably run a single X server, so your server will only listen on port 6000. Port
6063 is the highest assigned port, allowing 64 separate X Window managers running
on a single machine:

XWINDOW_PORTS=”6000:6063” # (TCP) X Window

The first rule ensures that no outgoing connection attempts to remote X Window
managers are made from your machine:

X Window: establishing a remote connection
ipchains -A output -i $EXTERNAL_INTERFACE -p tcp -y \

-s $IPADDR \
-d $ANYWHERE $XWINDOW_PORTS -j REJECT

The next rule logs and blocks incoming connection attempts to your X Window
manager. Local connections are not affected because local connections are made over
the loopback interface:

X Window: incoming connection attempt
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp -y \

-d $IPADDR $XWINDOW_PORTS -j DENY -l

Disallowing SOCKS Server Connections (TCP Port 1080)

SOCKS is a local proxy server freely available from http://www.socks.nec.com/.Your
SOCKS-aware client programs connect to the server instead of directly connecting to
remote servers.The SOCKS server connects to remote servers, as a client, on your
behalf.

Attempts to connect to remote SOCKS servers are fairly common and often
involve intrusion exploits.The following rules allow port 1080 as a local or remote
client port, but disallow port 1080 as a local or remote server port:

SOCKS_PORT=”1080” # (TCP) socks

The first rule ensures that no outgoing connection attempts to remote SOCKS
servers are made from your machine:

SOCKS: establishing a connection
ipchains -A output -i $EXTERNAL_INTERFACE -p tcp -y \

-s $IPADDR \
-d $ANYWHERE $SOCKS_PORT -j REJECT -l

The next rule blocks incoming connection attempts to your SOCKS server:

SOCKS: incoming connection
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp -y \

-d $IPADDR SOCKS_PORT -j DENY -l

05 900-9 CH03 08.23.00 11:22 Page 82

83Protecting Services on Assigned Unprivileged Ports

Common Local UDP Services Assigned to Unprivileged Ports
TCP protocol rules can be handled more precisely than UDP protocol rules, due to
TCP’s connection establishment protocol.As a datagram service, UDP doesn’t have a
connection state associated with it.Access to UDP services should simply be blocked.
Explicit exceptions are made to accommodate DNS and any of the few other UDP-
based Internet services you might use. Fortunately, the common UDP Internet ser-
vices are often the type that are used between a client and a specific server.The
filtering rules can often allow exchanges with one specific remote host.

NFS is the main UDP service to be concerned with. NFS runs on unprivileged
port 2049. Unlike the previous TCP-based services, NFS is primarily a UDP-based
service. It can be configured to run as a TCP-based service, but usually isn’t.

Disallowing NFS (UDP/TCP Port 2049) Connections

The first rule blocks NFS UDP port 2049 from any incoming access.The rule is
unnecessary if you aren’t running NFS.You shouldn’t be running NFS on a firewall
machine, but if you are, external access is denied:

NFS_PORT=”2049” # (TCP/UDP) NFS

NFS: UDP connections
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR $NFS_PORT -j DENY -l

The next two TCP rules cover the little-used NFS TCP connection mode. Both
incoming and outgoing connection establishment attempts are blocked, just as in the
previous TCP sections:

NFS: TCP connections
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp -y \

-d $IPADDR $NFS_PORT -j DENY -l

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp -y \
-d $ANYWHERE $NFS_PORT -j DENY -l

The TCP and UDP Service Protocol Tables
The remainder of this chapter is devoted to defining rules to allow access to specific services.

Client/server communication, both for TCP- and UDP-based services, involves some kind of two-way com-

munication using a protocol specific to the service. As such, access rules are always represented as an I/O

pair. The client program makes a query, and the server sends a response. Rules for a given service are cat-

egorized as client rules or server rules. The client category represents the communication required for

your local clients to access remote servers. The server category represents the communication required

for remote clients to access the services hosted from your machines.

The application messages are encapsulated in either TCP or UDP transport protocol messages. Because

each service uses an application protocol specific to itself, the particular characteristics of the TCP or

UDP exchange is, to some extent, unique to the given service.

05 900-9 CH03 08.23.00 11:22 Page 83

84 Chapter 3 Building and Installing a Firewall

The exchange between client and server is explicitly described by the firewall rules. Part of the firewall

rules’ purpose is to ensure protocol integrity at the packet level. Firewall rules, expressed in ipchains

syntax, are not overly human-readable, however. In each of the following sections, the service protocol at

the packet-filtering level is presented as a table of state information, followed by the ipchains rules

expressing those states.

Each row in the table lists a packet type involved in the service exchange. A firewall rule is defined for

each individual packet type. The table is divided into columns:

n Description contains a brief description of whether the packet is originating from the client or

the server, and the packet’s purpose.

n Protocol is the transport protocol in use, TCP or UDP, or the IP protocol’s control messages, ICMP.

n Remote Address is the legal address, or range of addresses, the packet can contain in the remote

address field.

n Remote Port is the legal port, or range of ports, the packet can contain in the remote port field.

n In/Out describes the packet’s direction, that is, whether it is coming into the system from a remote

location or whether it is going out from the system to a remote location.

n Local Address is the legal address, or range of addresses, the packet can contain in the local

address field.

n Local Port is the legal port, or range of ports, the packet can contain in the local port field.

n TCP protocol packets contain a final column, TCP Flag, defining the legal SYN-ACK states the packet

may have.

The table describes packets as either incoming or outgoing. Addresses and ports are described as either

remote or local, relative to your machine’s network interface. Notice that for incoming packets, remote

address and port refer to the source fields in the IP packet header. Local address and port refer to the

destination fields in the IP packet header. For outgoing packets, remote address and port refer to the des-

tination fields in the IP packet header. Local address and port refer to the source fields in the IP packet

header.

Finally, in the few instances where the service protocol involves ICMP messages, notice that the IP net-

work layer ICMP packets are not associated with the concept of a source or destination port, as is the

case for transport layer TCP or UDP packets. Instead, ICMP packets use the concept of a control or status

message type. ICMP messages are not sent to programs bound to particular service ports. Instead, ICMP

messages are sent from one computer to another. Consequently, the few ICMP packet entries presented

in the tables use the source port column to contain the message type. For incoming ICMP packets, the

source port column is the Remote Port column. For outgoing ICMP packets, the source port column is the

Local Port column.

05 900-9 CH03 08.23.00 11:22 Page 84

85Enabling Basic, Required Internet Services

Enabling Basic, Required Internet Services
Only two services are truly required: the Domain Name Service (DNS) and the IDENT
user identification service. DNS translates between hostnames and their associated IP
addresses.You can’t locate a remote host without DNS. identd provides the username
or ID associated with a connection.This is commonly requested by a remote mail
server when you send email.You don’t need to offer identd service, but you must
account for incoming connection requests in some way to avoid lengthy timeouts.

Allowing DNS (UDP/TCP Port 53)
DNS uses a communication protocol that relies on both UDP and TCP. Connection
modes include regular client-to-server connections, peer-to-peer traffic between for-
warding servers and full servers, and primary and secondary name server connections.

Query lookup requests are normally done over UDP, both for client-to-server
lookups and peer-to-peer server lookups.The UDP communication can fail for a
client-to-server lookup if the information being returned is too large to fit in a single
UDP DNS packet.The server sets a flag bit in the DNS message header indicating
that the data is truncated. In this case, the protocol allows for a retry over TCP.
Figure 3.4 shows the relationship between UDP and TCP during a DNS lookup. In
practice,TCP isn’t normally needed for queries.TCP is conventionally used for
administrative zone transfers between primary and secondary name servers.

Zone transfers are the transfer of a name server’s complete information about a net-
work, or the piece (zone) of a network, the server is authoritative for (i.e., the official
server).The authoritative name server is referred to as the primary name server.
Secondary, or backup, name servers periodically request zone transfers from their
primary to keep their DNS caches up-to-date.

For example, one of your ISP’s name servers is the primary, authoritative server for
the ISP’s LAN address space. ISPs often have multiple DNS servers to balance the
load, as well as for backup redundancy.The other name servers are secondary name
servers, refreshing their information from the master copy on the primary server.

Zone transfers are beyond the scope of this book.A small system isn’t likely to be
an authoritative name server for a public domain’s name space, nor is it likely to be a
public backup server for that information.

05 900-9 CH03 08.23.00 11:22 Page 85

86 Chapter 3 Building and Installing a Firewall

DNS client
Port 14000

UDP lookup request

UDP server response

TCP server response

UDP lookup request

TCP lookup request

UDP truncated server response

DNS Server
Port 53

Time

Figure 3.4 DNS client-to-server lookup.

05 900-9 CH03 08.23.00 11:22 Page 86

87Enabling Basic, Required Internet Services

Table 3.3 lists the complete DNS protocol for which the firewall rules account.

Table 3.3 DNS Protocol

Local client
query

 UDP OutNAMESERVER IPADDR 1024:65535 53

Remote server
response

 UDP InNAMESERVER IPADDR 1024:65535 53

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Local client
query

 TCP AnyOutNAMESERVER IPADDR 1024:65535 53

Remote server
response

 TCP Ack InNAMESERVER IPADDR 1024:65535 53

Local server
query

 UDP OutNAMESERVER IPADDR 53 53

Remote server
response

 UDP InNAMESERVER IPADDR 53 53

Local zone
transfer request

 TCP AnyOutPrimary IPADDR 1024:65535 53

Remote zone
transfer request

 TCP ACK InPrimary IPADDR 1024:65535 53

Remote client
query

 UDP InDNS client IPADDR 531024:65535

Local server
response

 UDP OutDNS client IPADDR 531024:65535

Remote client
query

 TCP Any InDNS client IPADDR 531024:65535

Local server
response

 TCP ACKOut DNS client IPADDR 531024:65535

Remote client
query

 UDP InDNS client IPADDR 53 53

Local server
response

 UDP OutDNS client IPADDR 53 53

Remote zone
transfer request

 TCP Any InSecondary IPADDR 53

 53

1024:65535

Local zone
transfer response

 TCP ACKOutSecondary IPADDR1024:65535

05 900-9 CH03 08.23.00 11:22 Page 87

88 Chapter 3 Building and Installing a Firewall

Allowing DNS Lookups as a Client

The DNS resolver client isn’t a specific program.The client is incorporated into the
network library code compiled into network programs.When a hostname requires a
lookup, the resolver requests the lookup from a named server. Many small systems are
configured only as a DNS client.The server runs on a remote machine. For a home
user, the name server is usually a machine owned by your ISP.

DNS sends a lookup request as a UDP datagram:

NAMESERVER =”my.name.server” # (TCP/UDP) DNS

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR $UNPRIVPORTS \
-d $NAMESERVER 53 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $NAMESERVER 53 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

If an error occurs because the returned data is too large to fit in a UDP datagram,
DNS retries using a TCP connection.

The next two rules are included for the rare occasion when the lookup response
won’t fit in a DNS UDP datagram.They won’t be used in normal, day-to-day opera-
tions.You could run your system without problem for months on end without the
TCP rules. Unfortunately, every so often—perhaps once or twice a year—your DNS
lookups hang without these rules due to a poorly configured remote DNS server.
More typically, these rules are used by a secondary name server requesting a zone
transfer from its primary name server:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d <my.dns.primary> 53 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s <my.dns.primary> 53 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Allowing Your DNS Lookups as a Peer-to-Peer, Forwarding Server

Peer-to-peer transactions are exchanges between two servers. In the case of DNS,
when your local name server doesn’t have the information a client requested stored
locally, it contacts a remote server and forwards the request to it.

Configuring a local forwarding name server can be a big performance gain.As
shown in Figure 3.5, when named is configured as a caching and forwarding name
server, it functions both as a local server and as a client to a remote DNS server.The
difference between a direct client-to-server exchange and a forwarded local
server–to–remote server exchange (peer-to-peer) is in the source and destination ports
used. Instead of initiating an exchange from an unprivileged port, named initiates the
exchange from its own DNS port 53.A second difference is that peer-to-peer server
lookups of this type are always done over UDP.

05 900-9 CH03 08.23.00 11:22 Page 88

89Enabling Basic, Required Internet Services

Figure 3.5 A DNS forwarding server and peer-to-peer lookup.

Local client requests are sent to the local DNS server.The first time, named won’t
have the lookup information, so it forwards the request to a remote name server. named
caches the returned information and passes it on to the client.The next time the same
information is requested, named finds it in its local cache and doesn’t make a remote
request:

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR 53 \
-d $NAMESERVER 53 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $NAMESERVER 53 \
-d $IPADDR 53 -j ACCEPT

Allowing Remote DNS Lookups to Your Server

The average home-based site has little reason to provide DNS service to remote
machines. Unless your site is an ISP, your clients will be machines local to your LAN,
your subnet, your router, your network address space, or whatever terms are in use for
the size of network and organization you’re looking at.

UDP lookup request

UDP server response

DNS client
Port 14000

Remote DNS Server
Port 53

Local forwarding DNS server
Port 53

UDP lookup request

Cache miss
UDP lookup request

UDP server response
Cache the response

Cache hit
UDP server response

Time

05 900-9 CH03 08.23.00 11:22 Page 89

90 Chapter 3 Building and Installing a Firewall

Assuming you are a home or small business offering DNS to the outside world, you
would limit the clients to a select group.You would not allow connections from just
anywhere:

client-to-server DNS transaction
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-s <my.dns.clients> $UNPRIVPORTS \
-d $IPADDR 53 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR 53 \
-d <my.dns.clients> $UNPRIVPORTS -j ACCEPT

peer-to-peer server DNS transaction
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-s <my.dns.clients> 53 \
-d $IPADDR 53 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR 53 \
-d <my.dns.clients> 53 -j ACCEPT

The next two rules apply to client request retries when the data is too large to fit
in a UDP DNS packet.They also apply to a secondary name server requesting zone
transfers from a primary name server.TCP is used almost exclusively for zone trans-
fers, and zone transfers represent a number of potential security holes. If used, it’s
important to limit the client source addresses:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s <my.dns.secondaries> $UNPRIVPORTS \
-d $IPADDR 53 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 53 \
-d <my.dns.secondaries> $UNPRIVPORTS -j ACCEPT

Filtering the AUTH User Identification Service (TCP Port 113)

The AUTH, or IDENTD, user identification service is most often used when sending mail
or posting a Usenet article. Some FTP sites are also configured to require a resolvable
AUTH lookup. For logging purposes, the server initiates an AUTH request back to your
machine to get the account name of the user who initiated the mail or news connec-
tion.Table 3.4 lists the complete client/server connection protocol for the AUTH service.

DNS Zone Transfers over TCP
Large-scale network services, such as DNS zone transfers, should not be allowed by small sites.

Undoubtedly, someone somewhere is an exception. For the exceptions, and for those individuals who are

“going to do it anyway,” limit the list of secondaries you accept connections from. Share your DNS tables

with only trusted remote sites.

05 900-9 CH03 08.23.00 11:22 Page 90

91Enabling Basic, Required Internet Services

Table 3.4 identd Protocol

Local client
query

TCP AnyOutANYWHERE IPADDR 1024:65535113

Remote server
response

TCP AckInANYWHERE IPADDR 1024:65535113

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
query

TCP AnyInANYWHERE IPADDR 1131024:65535

Local server
response

TCP AckOutANYWHERE IPADDR 1131024:65535

Allowing Your Outgoing AUTH Requests as a Client

Your machine would act as an AUTH client if you ran a mail or FTP server.There is no
reason not to allow your system to be an AUTH client:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 113 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 113 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Filtering Incoming AUTH Requests to Your Server

Offering AUTH services is the subject of ongoing debate.There appear to be no over-
whelming arguments to make the case for either side, other than that a few FTP sites
require it, and AUTH provides user account information.Whether you decide to offer
the service or not, you will receive incoming requests for the service every time you
send mail.

If you run the identd server out of /etc/inetd.conf, the following rules enable
incoming identd connection requests:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 113 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 113 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

If you decide not to offer the service, you can’t just deny the incoming requests.
The result would be a long wait each time you tried to send mail or post a Usenet

05 900-9 CH03 08.23.00 11:22 Page 91

92 Chapter 3 Building and Installing a Firewall

article.Your mail client won’t be notified that the mail or article was received for
delivery until the identd request timed out. Instead, you need to reject the connection
request to avoid waiting for the TCP connection timeout.This is the only case where
an incoming packet is rejected rather than denied in these examples:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE \
-d $IPADDR 113 -j REJECT

Enabling Common TCP Services
Possibly no one will want to enable all the services listed in this section, but everyone
will want to enable some subset of them.These are the services most often used over
the Internet today.As such, this section is more of a reference section than anything
else.This section provides rules for the following:

n Email

n Usenet

n telnet

n ssh

n ftp

n Web services

n finger

n whois

n gopher Information Service

n Wide Area Information Service (WAIS)

Many other services are available that aren’t covered here. Some of them are used
on specialized servers, some by large businesses and organizations, and some are
designed for use in local, private networks.

Email (TCP SMTP Port 25, POP Port 110, IMAP Port 143)
Email is a service almost everyone wants. How mail is set up depends on your ISP,
your connection type, and your own choices. Email is sent across the network using
the SMTP protocol assigned to TCP service port 25. Email is commonly received
locally through one of three different protocols—SMTP, POP, or IMAP—depending
on the services your ISP provides and on your local configuration.

SMTP is the general mail protocol. Mail is delivered to the destination host
machine.The endpoint mail server determines whether the mail is deliverable
(addressed to a valid user account on the machine) and delivers it to the user’s local
mailbox.

05 900-9 CH03 08.23.00 11:22 Page 92

93Enabling Common TCP Services

POP and IMAP are mail retrieval services. POP runs on TCP port 110. IMAP runs
on TCP port 143. ISPs commonly make incoming mail available to their customers
using one of these two services. Both services are authenticated.They are associated
with the ISP customer’s user account and password.As far as mail retrieval is con-
cerned, the difference between SMTP and POP or IMAP is that SMTP receives
incoming mail and queues it in the user’s local mailbox. POP and IMAP retrieve mail
into the user’s local mail program from the user’s ISP, where the mail had been queued
remotely in the user’s SMTP mailbox at the ISP.Table 3.5 lists the complete
client/server connection protocols for SMTP, POP, and IMAP.

Table 3.5 SMTP, POP, and IMAP Mail Protocols

Send outgoing
mail

TCP AnyOutANYWHERE IPADDR 1024:6553525

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553525

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Receive
incoming mail

TCP AnyInANYWHERE IPADDR 251024:65535

Local server
response

TCP AckOutANYWHERE IPADDR 251024:65536

Local client
query

TCP AnyOutPOP SERVER IPADDR 1024:65535110

Remote server
response

TCP AckInPOP SERVER IPADDR 1024:65535110

Remote client
query

TCP AnyInPOP client IPADDR 1101024:65535

Local server
response

TCP ACKOutPOP client IPADDR 1101024:65535

Local client
query

TCP AnyOutIMAP SERVER IPADDR 1024:65535143

Remote server
response

TCP ACKInIMAP SERVER IPADDR 1024:65535143

Remote client
query

TCP AnyInIMAP client IPADDR 1431024:65535

Local server
response

TCP ACKOutIMAP client IPADDR 1431024:65535

05 900-9 CH03 08.23.00 11:22 Page 93

94 Chapter 3 Building and Installing a Firewall

Sending Mail Over SMTP (TCP Port 25)

Mail is sent over SMTP. But whose SMTP server do you use to collect your mail and
send it onward? ISPs offer SMTP mail service to their customers.The ISP’s mail server
acts as the mail gateway. It knows how to collect your mail, find the recipient host, and
relay the mail.With UNIX, you can host your own local mail server if you want.Your
server will be responsible for routing the mail to its destination.

Relaying Outgoing Mail Through an External (ISP) Gateway SMTP Server

When you relay outgoing mail through an external gateway SMTP server, your client
mail program sends all outgoing mail to your ISP’s mail server.Your ISP acts as your
mail gateway to the rest of the world.Your system doesn’t need to know how to locate
your mail destinations or the routes to them.The ISP mail gateway serves as your
relay.

The following two rules allow you to relay mail through your ISP’s SMTP
gateway:

SMTP_GATEWAY=”my.isp.server” # external mail server or relay

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $SMTP_GATEWAY 25 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $SMTP_GATEWAY 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Sending Mail to Any External Mail Server

Alternatively, you can bypass your ISP’s mail server and host your own.Your local
server is responsible for collecting your outgoing mail, doing the DNS lookup on the
destination hostname, and relaying the mail to its destination.Your client mail program
points to your local SMTP server rather than to the ISP’s server.

The following two rules allow you to send mail directly to the remote destinations:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 25 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Proxy Servers As Both Client and Server
The current SMTP mail server is sendmail, which is a proxy server. It acts as a server to the client mail

program sending the mail. It acts as a client to the remote server it’s sending the mail to. The terms

client and server can be confusing in this context. sendmail acts as both, depending on which program

it’s talking to.

05 900-9 CH03 08.23.00 11:22 Page 94

95Enabling Common TCP Services

Receiving Mail

How you receive mail depends on your situation. If you run your own local mail
server, you can collect incoming mail directly on your Linux machine. If you retrieve
your mail from your ISP account, you may or may not retrieve mail as a POP or
IMAP client, depending on how you’ve configured your ISP email account, and
depending on the mail delivery services the ISP offers.

Receiving Mail as a Local SMTP Server (TCP Port 25)

If you want to receive mail sent directly to your local machines from anywhere in the
world, you need to run sendmail and use these server rules:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 25 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 25 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Alternatively, if you’d rather keep your local email account relatively private and use
your work or ISP email account as your public address, you could configure your
work and ISP mail accounts to forward mail to your local server. In this case, you
could replace the previous single rule pair, accepting connections from anywhere, with
separate, specific rules for each mail forwarder.

Retrieving Mail as a POP Client (TCP Port 110)

Connecting to a POP server is a very common means of retrieving mail from a
remote ISP or work account. If your ISP uses a POP server for customer mail
retrieval, you need to allow outgoing client-to-server connections.

The server’s address will be a specific hostname or address, rather than the global
ANYWHERE specifier. POP accounts are user accounts associated with a specific user and
password:

POP_SERVER=”my.isp.pop.server” # external pop server, if any

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $POP_SERVER 110 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $POP_SERVER 110 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Receiving Mail as an IMAP Client (TCP Port 143)

Connecting to an IMAP server is another common means of retrieving mail from a
remote ISP or work account. If your ISP uses an IMAP server for customer mail
retrieval, you need to allow outgoing client-to-server connections.

05 900-9 CH03 08.23.00 11:22 Page 95

96 Chapter 3 Building and Installing a Firewall

The server’s address will be a specific hostname or address, rather than the global
ANYWHERE specifier. IMAP accounts are user accounts associated with a specific user
and password:

IMAP_SERVER=”my.isp.imap.server” # external imap server, if any

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $IMAP_SERVER 143 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IMAP_SERVER 143 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Examples of Real-World Client and Server Email Combinations

Four common approaches to client and server email combinations are described in
this section:

n Sending mail as an SMTP client and receiving mail as a POP client

n Sending mail as an SMTP client and receiving mail as an IMAP client

n Sending mail as an SMTP client and receiving mail as an SMTP server

n Sending mail as an SMTP server and receiving mail as an SMTP server

The first two are useful if you rely completely on your ISP’s SMTP and POP or
IMAP email services.The third example is a mixed approach, relaying outgoing mail
through your ISP’s SMTP mail server, but receiving mail directly through your local
SMTP server.The fourth approach supports running your own complete, independent
mail server for both outgoing and incoming mail.

Sending Mail as an SMTP Client and Receiving Mail as a POP Client

If you are sending mail as an SMTP client and receiving mail as a POP client, you are
relying completely on a remote site for your mail services.The remote site hosts both
an SMTP server for relaying your outgoing mail, and a POP server for local mail
retrieval:

SMTP_GATEWAY=”my.isp.server” # external mail server or relay

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $SMTP_GATEWAY 25 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $SMTP_GATEWAY 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

POP_SERVER=”my.isp.pop.server” # external pop server, if any

05 900-9 CH03 08.23.00 11:22 Page 96

97Enabling Common TCP Services

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $POP_SERVER 110 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $POP_SERVER 110 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Sending Mail as an SMTP Client and Receiving Mail as an IMAP Client

If you are sending mail as an SMTP client and receiving mail as an IMAP client, you
are relying completely on a remote site for your mail services.The remote site hosts
both an SMTP server for relaying outgoing mail and an IMAP server for local mail
retrieval:

SMTP_GATEWAY=”my.isp.server” # external mail server or relay

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $SMTP_GATEWAY 25 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $SMTP_GATEWAY 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

IMAP_SERVER=”my.isp.imap.server” # external imap server, if any

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $IMAP_SERVER 143 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IMAP_SERVER 143 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Sending Mail as an SMTP Client and Receiving Mail as an SMTP Server

If you are sending mail as an SMTP client and receiving mail as an SMTP server, you
are relying on a remote site to offer SMTP service to relay your outgoing mail to
remote destinations.You run sendmail locally as a local SMTP server allowing remote
hosts to send mail to your machine directly. Outgoing mail is relayed through your
ISP, but the local sendmail daemon knows how to deliver incoming mail to local user
accounts:

SMTP_GATEWAY=”my.isp.server” # external mail server or relay

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $SMTP_GATEWAY 25 -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 97

98 Chapter 3 Building and Installing a Firewall

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $SMTP_GATEWAY 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 25 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 25 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Sending Mail as an SMTP Server and Receiving Mail as an SMTP Server

If you are sending mail as an SMTP server and receiving mail as an SMTP server, you
provide all your own mail services.Your local sendmail daemon is configured to relay
outgoing mail to the destination hosts itself, as well as collect and deliver incoming
mail:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 25 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 25 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 25 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 25 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Hosting a Mail Server for Remote Clients

Hosting public POP or IMAP services is unusual for a small system.You might do this
if you offered remote mail services to a few friends, for example, or if their ISP mail
service was temporarily unavailable. In any case, it’s important to limit the clients your
system will accept connections from, both on the packet-filtering level and on the
server configuration level.You should also consider using an encrypted authentication
method, or allow mail retrieval only over an SSH connection.

Hosting a POP Server for Remote Clients

POP servers are one of the three most common and successful points of entry for
hacking exploits.

If you use a local system as a central mail server and run a local popd server to pro-
vide mail access to local machines on a LAN, you don’t need the server rules in this
example. Incoming connections from the Internet should be denied. If you do need to

05 900-9 CH03 08.23.00 11:22 Page 98

99Enabling Common TCP Services

host POP service for a limited number of remote individuals, the next two rules allow
incoming connections to your POP server. Connections are limited to your specific
clients’ IP addresses:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s <my.pop.clients> $UNPRIVPORTS \
-d $IPADDR 110 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 110 \
-d <my.pop.clients> $UNPRIVPORTS -j ACCEPT

Hosting an IMAP Server for Remote Clients

IMAP servers are one of the three most common and successful points of entry for
hacking exploits.

If you use a local system as a central mail server and run a local imapd server to
provide mail access to local machines on a LAN, you don’t need a server rule.
Incoming connections from the Internet should be denied. If you do need to host
IMAP service for a limited number of remote individuals, the next two rules allow
incoming connections to your IMAP server. Connections are limited to your specific
clients’ IP addresses:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s <my.imap.clients> $UNPRIVPORTS \
-d $IPADDR 143 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 143 \
-d <my.imap.clients> $UNPRIVPORTS -j ACCEPT

Accessing Usenet News Services (TCP NNTP Port 119)
Usenet news is accessed over NNTP running on top of TCP through service port
119. Reading news and posting articles are handled by your local news client. Few
systems require the server rules.Table 3.6 lists the complete client/server connection
protocol for the NNTP Usenet news service.

05 900-9 CH03 08.23.00 11:22 Page 99

100 Chapter 3 Building and Installing a Firewall

Reading and Posting News as a Usenet Client

The client rules allow connections to your ISP’s news server. Both reading news and
posting articles are handled by these rules:

NEWS_SERVER=”my.news.server” # external news server, if any

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $NEWS_SERVER 119 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $NEWS_SERVER 119 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Hosting a Usenet News Server for Remote Clients

A small site is very unlikely to host a news server for the outside world. Even hosting
a local news server is unlikely. For the rare exception, the server rules should be con-
figured to allow incoming connections only from a select set of clients:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s <my.news.clients> $UNPRIVPORTS \
-d $IPADDR 119 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 119 \
-d <my.news.clients> $UNPRIVPORTS -j ACCEPT

Local client
query

TCP AnyOutNEWS SERVER IPADDR 1024:65535119

Remote server
response

TCP AckInNEWS SERVER IPADDR 1024:65535119

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
query

TCP AnyInNNTP clients IPADDR 1191024:65535

Local server
response

TCP AckOutNNTP clients IPADDR 1191024:65535

Local server
query

TCP AnyOutNews feed IPADDR 1024:65535119

Remote server
response

TCP AckInNews feed IPADDR 1024:65535119

Table 3.6 NNTP Protocol

05 900-9 CH03 08.23.00 11:22 Page 100

101Enabling Common TCP Services

Allowing Peer News Feeds for a Local Usenet Server

A small, home-based site is unlikely to have a peer-to-peer news feed server relation-
ship with an ISP.Although news servers used to be fairly accessible to the general
Internet, few open news servers are available anymore due to SPAM and server load
issues.

If your site is large enough or rich enough to host a general Usenet server, you
have to get your news feed from somewhere.The next two rules allow your local
news server to receive its news feed from a remote server.The local server contacts the
remote server as a client.The only difference between the peer-to-peer news feed
rules and the regular client rules is the name or address of the remote host:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d <my.news.feed> 119 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s <my.news.feed> 119 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

telnet (TCP Port 23)
telnet has been the de facto standard means of remote login over the Internet for
many years.As the nature of the Internet community has changed, telnet has come to
be viewed more and more as an insecure service, because it communicates in ASCII
clear text. Nevertheless, telnet may be the only tool available to you for remote con-
nections, depending on the connection options available at the other end. If you have
the option, you should always use an encrypted service, such as ssh, rather than
telnet.

The client and server rules here allow access to and from anywhere. If you use
telnet, you can probably limit the external addresses to a select subset at the packet-
filtering level.Table 3.7 lists the complete client/server connection protocol for the
TELNET service.

Table 3.7 TELNET Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553523

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553523

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
request

TCP AnyIntelnet
clients

IPADDR 231024:65535

Local server
response

TCP AckOuttelnet
clients

IPADDR 231024:65535

05 900-9 CH03 08.23.00 11:22 Page 101

102 Chapter 3 Building and Installing a Firewall

Allowing Outgoing Client Access to Remote Sites

If you need to use telnet to access your accounts on remote systems, the next two
rules allow outgoing connections to remote sites. If your site has multiple users, you
might limit outgoing connections to the specific sites your users have accounts on,
rather than allowing outgoing connections to anywhere:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 23 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 23 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Allowing Incoming Access to Your Local Server

Even if you need client access to remote servers, you may not need to allow incoming
connections to your TELNET server. If you do, the next two rules allow incoming
connections to your server:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 23 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 23 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Rather than allow connections from anywhere, it is preferable to define server rules
for each specific host or network an incoming connection can legitimately originate
from.

ssh (TCP Port 22)
SSH, secure shell, isn’t included in Linux distributions due to export limitations on
cryptographic technology, but it is freely available from software sites on the Internet.
SSH is considered far preferable to using telnet for remote login access, because both
ends of the connection use authentication keys for both hosts and users, and data is
encrypted.Additionally, SSH is more than a remote login service. It can automatically
direct X Window connections between remote sites, and FTP and other TCP-based
connections can be directed over the more secure SSH connection. Provided that the
other end of the connection allows SSH connections, it’s possible to route all TCP
connections through the firewall using SSH.As such, SSH is something of a poor
man’s virtual private network (VPN).

The ports used by SSH are highly configurable.The rules in this example apply to
the default SSH port usage. By default, connections are initiated between a client’s
unprivileged port and the server’s assigned service port 22.The server forks off a copy
of itself for the connection, and the client end of the connection is then reassigned to

05 900-9 CH03 08.23.00 11:22 Page 102

103Enabling Common TCP Services

a privileged port in the descending range from 1023 to 513 in order to support
.rhosts and hosts.equiv authentication.The first available port is used.The SSH
client will optionally use the unprivileged ports exclusively.The SSH server will accept
connections from either the privileged or unprivileged ports.

The client and server rules here allow access to and from anywhere. In practice, you
would limit the external addresses to a select subset, particularly because both ends of
the connection must be configured to recognize each individual user account for
authentication.Table 3.8 lists the complete client/server connection protocol for the
SSH service.

Table 3.8 SSH Protocol

SSH, tcp_wrappers, and rhost Authentication
SSH cannot be started under tcp_wrappers directly, but it can be compiled to honor the access list

information in /etc/hosts.allow and /etc/hosts.deny.

.rhosts and hosts.equiv authentication should simply not be available on a firewall machine.

System security analysis tools discussed in Chapter 8, “Intrusion Detection and Incident Reporting” warn

you if these files exist on the system.

For more information on SSH, refer to http://www.ssh.fi/.

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553522

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553522

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Local client
request

TCP AnyOutANYWHERE IPADDR 513:102322

Remote server
response

TCP AckInANYWHERE IPADDR 513:102322

Remote client
request

TCP AnyInSSH clients IPADDR 221024:65535

Local server
response

TCP AckOutSSH clients IPADDR 221024:65535

Remote client
request

TCP AnyInSSH clients IPADDR 22513:1023

Local server
response

TCP AckOutSSH clients IPADDR 22513:1023

05 900-9 CH03 08.23.00 11:22 Page 103

104 Chapter 3 Building and Installing a Firewall

When selecting a privileged server port for the ongoing connection, the first free
port between 1023 to 513 is used.The range of ports you allow equates to the num-
ber of simultaneous incoming SSH connections you allow:

SSH_PORTS=”1020:1023” # (TCP) 4 simultaneous connections

Allowing Client Access to Remote SSH Servers

These rules allow you to connect to remote sites using ssh:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 22 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 22 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $SSH_PORTS \
-d $ANYWHERE 22 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 22 \
-d $IPADDR $SSH_PORTS -j ACCEPT

Allowing Remote Client Access to Your Local SSH Server

These rules allow incoming connections to your sshd server:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 22 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 22 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $SSH_PORTS \
-d $IPADDR 22 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 22 \
-d $ANYWHERE $SSH_PORTS -j ACCEPT

ftp (TCP Ports 21, 20)
FTP remains one of the most common means of transferring files between two net-
worked machines.Web-based interfaces to FTP have become common, as well.

FTP uses two privileged ports, one for sending commands and one for sending
data. Port 21 is used to establish the initial connection to the server and pass user

05 900-9 CH03 08.23.00 11:22 Page 104

105Enabling Common TCP Services

commands. Port 20 is used to establish a data channel over which files and directory
listings are sent as data.

FTP has two modes for exchanging data between a client and server, normal data
channel port mode and passive data channel mode. Normal port mode is the original,
default mechanism when using the ftp client program and connecting to a remote
FTP site. Passive mode is a newer mechanism, and is the default when connecting
through a Web browser. Occasionally, you might encounter an FTP site that supports
only one mode or the other.Table 3.9 lists the complete client/server connection pro-
tocol for the FTP service.

Table 3.9 FTP Protocol

Local client
query

TCP AnyOutANYWHERE IPADDR 1024:6553521

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553521

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote server
port data
channel request

TCP AnyInANYWHERE IPADDR 1024:6553520

Local client
port data
channel response

TCP AckOutANYWHERE IPADDR 1024:6553520

Local client
passive data
channel request

TCP AnyOutANYWHERE IPADDR 1024:655351024:65535

Remote server
passive data
channel response

TCP AckInANYWHERE IPADDR 1024:655351024:65535

Remote client
request

TCP AnyInANYWHERE IPADDR 211024:65535

Local server
response

TCP ACKOutANYWHERE IPADDR 211024:65535

Remote client
port data
channel response

TCP ACKInANYWHERE IPADDR 201024:65535

Local server
port data
channel request

TCP AnyOutANYWHERE IPADDR 201024:65535

Remote client
passive data
channel request

TCP AnyInANYWHERE IPADDR 1024:655351024:65535

Local server
passive data
channel response

TCP ACKOut ANYWHERE IPADDR 1024:655351024:65535

05 900-9 CH03 08.23.00 11:22 Page 105

106 Chapter 3 Building and Installing a Firewall

Allowing Outgoing Client Access to Remote FTP Servers

It’s almost a given that most sites will want FTP client access to remote file repositories.
Most people will want to enable outgoing client connections to a remote server.

Outgoing FTP Requests

The next two rules allow an outgoing connection to a remote FTP server:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 21 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 21 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Normal Port Mode FTP Data Channels

The next two rules allow the standard data channel connection, where the remote
server calls back to establish the data connection:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE 20 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 20 -j ACCEPT

This unusual callback behavior, where the remote server establishes the secondary
connection with your client, is part of what makes FTP difficult to secure at the
packet-filtering level.There is no mechanism to assure that the incoming connection
is truly originating from the remote FTP server you’ve contacted. Unless you’ve
explicitly blocked incoming connections to local services running on unprivileged
ports, such as an X Window or SOCKS server, remote access to these services is
allowed by the FTP client rules for port mode data channels.

Passive Mode FTP Data Channels

The next two rules allow the newer passive data channel mode used by Web browsers:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR $UNPIRVPORTS -j ACCEPT

Passive mode is considered more secure than port mode because the ftp client ini-
tiates both the control and data connections, even though the connection is made
between two unprivileged ports.

05 900-9 CH03 08.23.00 11:22 Page 106

107Enabling Common TCP Services

Allowing Incoming Access to Your Local FTP Server

Whether to offer FTP services to the world is a difficult decision.Although FTP sites
abound on the Internet, FTP server configuration requires great care. Numerous FTP
security exploits are possible.

If your goal is to offer general read-only access to some set of files on your
machine, you might consider making these files available through a Web server. If your
goal is to allow file uploads to your machine from the outside, FTP server access
should be severely limited on the firewall level, on the tcp_wrapper level, and on the
FTP configuration level.

In any case, if you decide to offer FTP services, and if you decide to allow incom-
ing file transfers, write access should not be allowed via Anonymous FTP. Remote
write access to your file systems should be allowed only from specific, authenticated
FTP user accounts, from specific remote sites, and to carefully controlled and limited
FTP areas reserved in your file system. Chapter 7,“Issues At the UNIX System
Administration Level,” discusses these FTP issues.

Incoming FTP Requests

The next two rules allow incoming connections to your FTP server:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 21 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 21 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Normal Port Mode FTP Data Channel Responses

The next two rules allow the FTP server to call back the remote client and establish
the secondary data channel connection:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR 20 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 20 -j ACCEPT

Passive Mode FTP Data Channel Responses

The next two rules allow the remote FTP client to establish the secondary data chan-
nel connection with the local server:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 107

108 Chapter 3 Building and Installing a Firewall

Web Services
Web services are based on Hypertext Transfer Protocol (HTTP). Client and server
connections use the standard TCP conventions. Several higher-level, special-purpose
communication protocols are available, in addition to the standard general HTTP
access, including secure access over SSL, and access via an ISP-provided Web server
proxy.These different access protocols use different service ports.

Standard HTTP Access (TCP Port 80)

In normal use,Web services are available over http service port 80.Table 3.10 lists the
complete client/server connection protocol for the HTTP Web service.

Table 3.10 HTTP Protocol

Caution: Don’t Use tftp on the Internet
tftp offers a simplified, unauthenticated, UDP version of the FTP service. It is intended for loading

boot software into routers and diskless workstations over a local network from trusted hosts. Some

people confuse tftp as an alternative to ftp. Don’t use it over the Internet, period.

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553580

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553580

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
request

TCP AnyInANYWHERE IPADDR 801024:65535

Local server
response

TCP AckOutANYWHERE IPADDR 801024:65535

Accessing Remote Web Sites as a Client

It’s almost inconceivable in today’s world that a home-based site would not want to
access the World Wide Web from a Web browser.The next two rules allow access to
remote Web servers:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 80 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 80 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 108

109Enabling Common TCP Services

Allowing Remote Access to a Local Web Server

If you decide to run a Web server of your own and host a Web site for the Internet,
the general server rules allow all typical incoming access to your site.This is all most
people need to host a Web site:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp\
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 80 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 80 \
-d $ANYWHERE $UNPRIVPORTS -j ACCEPT

Secure Web Access (SSL) (TCP Port 443)

Secure Socket Layer (SSL) is used for secure, encrypted Web access.The SSL protocol
uses TCP port 443.You will most often encounter this if you go to a commercial Web
site to purchase something, use online banking services, or enter a protected Web area
where you’ll be prompted for personal information.Table 3.11 lists the complete
client/server connection protocol for the SSL service.

Table 3.11 SSL Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:65535443

Remote server
response

TCP AckInANYWHERE IPADDR 1024:65535443

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
request

TCP AnyInANYWHERE IPADDR 4431024:65535

Local server
response

TCP AckOutANYWHERE IPADDR 4431024:65535

Accessing Remote Web Sites Over SSL as a Client

Most people will want client access to secure Web sites at some point or another:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 443 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 443 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 109

110 Chapter 3 Building and Installing a Firewall

Allowing Remote Access to a Local SSL Web Server

If you conduct some form of e-commerce, you’ll mostly likely want to allow incom-
ing connections to SSL-protected areas of your Web site. Otherwise, you won’t need
local server rules.

The basic Apache Web server distribution comes with SSL support, but the more
secure SSL modules are not included due to Federal encryption regulations. Both
free and commercial SSL support packages are available for the Apache Web server,
however. See www.apache.org for more information.

The next two rules allow incoming access to your Web server using the SSL
protocol:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s $ANYWHERE $UNPRIVPORTS \
-d $IPADDR 443 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 443 \
-d $ANYWHERE $UNPRIVPORTS-j ACCEPT

Web Proxy Access (TCP Ports 8008, 8080)

Publicly accessible Web server proxies are most common at ISPs.As a customer, you
configure your browser to use a remote proxy service.Web proxies are often accessed
through one of two unprivileged ports assigned for this purpose, port 8008 or 8080, as
defined by the ISP. In return, you get faster Web page access when the pages are
already cached locally at your ISP’s server, and the anonymity of proxied access to
remote sites.Your connections are not direct, but instead are initiated on your behalf
by your ISP’s proxy. Table 3.12 lists the local client to remote server connection
protocol for the Web proxy service.

Table 3.12 Web Proxy Protocol

Local client
request

TCP AnyOutWEB PROXY
SERVER

IPADDR 1024:65535WEB PROXY
PORT

Remote server
response

TCP AckInWEB PROXY
SERVER

IPADDR 1024:65535WEB PROXY
PORT

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

05 900-9 CH03 08.23.00 11:22 Page 110

111Enabling Common TCP Services

If you use a Web proxy service offered by your ISP, the specific server address and
port number will be defined by your ISP.The client rules are:

WEB_PROXY_SERVER=”my.www.proxy” # ISP Web proxy server, if any
WEB_PROXY_PORT=”www.proxy.port” # ISP Web proxy port, if any

typically 8008 or 8080

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $WEB_PROXY_SERVER $WEB_PROXY_PORT -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $WEB_PROXY_SERVER $WEB_PROXY_PORT \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

finger (TCP Port 79)
From a connection point of view, the finger service is harmless. Due to the changing
nature of privacy issues in relation to a growing and changing Internet community,
offering finger service is generally discouraged today. finger provides user account
information, including such things as user login name, real name, currently active
logins, pending mail, and mail forwarding locations. Often, finger provides user-
furnished (in a .plan file) personal information as well, including phone numbers,
home addresses, tasks and plans, vacation status, and so forth.Table 3.13 lists the
complete client/server connection protocol for the finger service.

Table 3.13 finger Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553579

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553579

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

Remote client
request

TCP AnyInfinger
clients

IPADDR 791024:65535

Local server
response

TCP AckOutfinger
clients

IPADDR 791024:65535

05 900-9 CH03 08.23.00 11:22 Page 111

112 Chapter 3 Building and Installing a Firewall

Accessing Remote finger Servers as a Client

There’s no harm in enabling outgoing access to remote finger servers, and these are
the rules to do so:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 79 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 79 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Allowing Remote Client Access to a Local finger Server

If you choose to allow outside access to your finger service, it’s recommended that you
limit access to specific client sites. finger access can be limited both at the firewall level
and at the tcp_wrapper level.

The next rules allow incoming connections to your finger server, but only selected
remote hosts are allowed to initiate the connection:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-s <my.finger.clients> $UNPRIVPORTS \
-d $IPADDR 79 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $IPADDR 79 \
-d <my.finger.clients> $UNPRIVPORTS -j ACCEPT

whois (TCP Port 43)
The whois program accesses the InterNIC Registration Services database. It allows IP
address and host and domain name lookups in human-readable form.Table 3.14 lists
the local client to remote server connection protocol for the whois service.

Table 3.14 whois Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553543

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553543

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

05 900-9 CH03 08.23.00 11:22 Page 112

113Enabling Common TCP Services

The next two rules allow you to query an official remote server:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 43 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 43 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

gopher (TCP Port 70)
The GOPHER information service is still available for low-overhead ASCII terminals,
but its use has largely been replaced by Web-based search engines and hypertext links.
It is unlikely that a Linux system would offer local GOPHER service instead of a Web
site. Server rules are not included.Table 3.15 lists the local client to remote server
connection protocol for the GOPHER service.

Table 3.15 gopher Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:6553570

Remote server
response

TCP AckInANYWHERE IPADDR 1024:6553570

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

The following are the client rules that allow you to connect to a remote server:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 70 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 70 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

WAIS (TCP Port 210)
Wide Area Information Servers (WAIS) are now known as search engines.Web
browsers typically provide a graphical front-end to WAIS. Netscape contains the WAIS
client code necessary to connect to WAIS.Table 3.16 lists the local client to remote
server connection protocol for the WAIS service.

05 900-9 CH03 08.23.00 11:22 Page 113

114 Chapter 3 Building and Installing a Firewall

Table 3.16 WAIS Protocol

Local client
request

TCP AnyOutANYWHERE IPADDR 1024:65535210

Remote server
response

TCP AckInANYWHERE IPADDR 1024:65535210

Description Protocol
TCP
Flag

In/
Out

Remote
Address

Local
Address Local PortRemote Port

The following two rules allow client access to remote WAIS services:

ipchains -A output -i $EXTERNAL_INTERFACE -p tcp \
-s $IPADDR $UNPRIVPORTS \
-d $ANYWHERE 210 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp ! -y \
-s $ANYWHERE 210 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Enabling Common UDP Services
The stateless UDP protocol is inherently less secure than the connection-based TCP
protocol. Because of this, many security-conscious sites completely disable, or else limit
as much as possible, all access to UDP services. Obviously, UDP-based DNS exchanges
are necessary, but the remote name servers can be explicitly specified in the firewall
rules.As such, this section provides rules for only three services:

n traceroute

n Dynamic Host Configuration Protocol (DHCP)

n Network Time Protocol (NTP)

traceroute (UDP Port 33434)
traceroute is a UDP service that causes intermediate systems to generate ICMP Time
Exceeded messages to gather hop count information, and the target system to return a
Destination Unreachable (port not found) message, indicating the endpoint of the
route to the host. By default, the firewall being developed in this chapter blocks
incoming UDP traceroute packets destined to the port range traceroute generally
uses. As a result, outgoing ICMP responses to incoming traceroute requests won’t
be sent.Table 3.17 lists the complete client/server exchange protocol for the
traceroute service.

05 900-9 CH03 08.23.00 11:22 Page 114

115Enabling Common UDP Services

Table 3.17 traceroute Protocol

Outgoing
traceroute
probe

UDP OutANYWHERE IPADDR 32769:6553533434:33523

Time Exceeded
(intermediate
hop)

ICMP InANYWHERE IPADDR11

Description Protocol
In/
Out

Remote
Address

Local
Address

Local Port/
ICMP Typ

Remote Port/
ICMP Type

Port not found
(termination)

ICMP InANYWHERE IPADDR3

Incoming
traceroute
probe

UDP InISP IPADDR 33434:3352332769:65535

Time Exceeded
(intermediate
hop)

ICMP OutISP IPADDR 11

Port not found
(termination)

ICMP OutISP IPADDR 3

traceroute can be configured to use any port or port range.As such, it’s difficult
to block all incoming traceroute packets by listing specific ports. However, it often
uses source ports in the range from 32769 to 65535 and destination ports in the range
from 33434 to 33523. Symbolic constants are defined for traceroute’s default source
and destination ports:

TRACEROUTE_SRC_PORTS=”32769:65535”
TRACEROUTE_DEST_PORTS=”33434:33523”

Enabling Outgoing traceroute Requests

If you intend to use traceroute yourself, you must enable the UDP client ports. Note
that you must allow incoming ICMP Time Exceeded and Destination Unreachable
messages from anywhere for outgoing traceroute to work:

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR $TRACEROUTE_SRC_PORTS \
-d $ANYWHERE $TRACEROUTE_DEST_PORTS -j ACCEPT

Allowing Incoming traceroute Requests

Because traceroute is a less secure UDP service and can be used to attack other
UDP services, the following example opens incoming traceroute from only your ISP
and its associated Network Operations Center:

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $MY_ISP $TRACEROUTE_SRC_PORTS \
-d $IPADDR $TRACEROUTE_DEST_PORTS -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 115

116 Chapter 3 Building and Installing a Firewall

Note that you must allow outgoing ICMP Time Exceeded and Destination
Unreachable messages to be targeted to your ISP for incoming traceroute to work.

Accessing Your ISP’s DHCP Server (UDP Ports 67, 68)
DHCP exchanges, if any, between your site and your ISP’s server will necessarily be
local client to remote server exchanges. DHCP clients receive temporary, dynamically
allocated IP addresses from a central server that manages the ISP’s customer IP address
space.

If you have a dynamically allocated IP address from your ISP, you need to run the
DHCP client daemon (either dhcpd or pump) on your machine. It’s not uncommon for
bogus DHCP server messages to fly around your ISP’s local subnet if someone runs
the server by accident. For this reason, it’s especially important to filter DHCP
messages to limit traffic between your client and your specific ISP DHCP server
as much as possible.

Table 3.18 lists the DHCP message type descriptions as quoted from RFC 2131,
“Dynamic Host Configuration Protocol.”

Table 3.18 DHCP Message Types

DHCP Message Description

DHCPDISCOVER Client broadcast to locate available servers.

DHCPOFFER Server to client in response to DHCPDISCOVER with offer of
configuration parameters.

DHCPREQUEST Client message to servers either (a) requesting offered parameters
from one server and implicitly declining offers from all others; (b)
confirming correctness of previously allocated address after, e.g.,
system reboot; or (c) extending the lease on a particular network
address.

DHCPACK Server to client with configuration parameters, including committed
network address.

DHCPNAK Server to client indicating client’s notion of network address is
incorrect (e.g., client has moved to new subnet) or client’s lease
has expired.

DHCPDECLINE Client to server indicating network address is already in use.

DHCPRELEASE Client to server relinquishing network address and canceling
remaining lease.

DHCPINFORM Client to server, asking only for local configuration parameters;
client already has externally configured address. (Not supported in
Red Hat 6.0.)

05 900-9 CH03 08.23.00 11:22 Page 116

117Enabling Common UDP Services

In essence, when the DHCP client initializes, it broadcasts a DHCPDISCOVER query to
discover whether any DHCP servers are available.Any servers receiving the query may
respond with a DHCPOFFER message indicating their willingness to function as server to
this client, and include the configuration parameters they have to offer.The client
broadcasts a DHCPREQUEST message to both accept one of the servers and inform any
remaining servers that it has chosen to decline their offers.The chosen server responds
with a DHCPACK message, indicating confirmation of the parameters it originally
offered.Address assignment is complete at this point. Periodically, the client will send a
DHCPREQUEST message requesting a renewal on the IP address lease. If the lease is
renewed, the server responds with a DHCPACK message. Otherwise, the client falls back
to the initialization process.Table 3.19 lists the local client to remote server exchange
protocol for the DHCP service.

The DHCP protocol is far more complicated than this brief summary, but the
summary describes the essentials of the typical client and server exchange.

Table 3.19 DHCP Protocol

DHCPDISCOVER;
DHCPREQUEST

UDP Out255.255.255.255 0.0.0.0 6867

DHCPOFFER UDP In0.0.0.0 255.255.255.255 6867

Description Protocol
In/
OutRemote Address Local Address

Local
Port

Remote
Port

DHCPOFFER UDP InDHCP SERVER 255.255.255.255 6867

DHCPREQUEST;
DHCPDECLINE

UDP OutDHCP SERVER 0.0.0.0 6867

DHCPACK;
DHCPNAK

UDP InDHCP SERVER ISP/netmask 6867

DHCPACK UDP InDHCP SERVER IPADDR 6867

DHCPREQUEST;
DHCPRELEASE

UDP OutDHCP SERVER IPADDR 6867

The following firewall rules allow communication between your DHCP client and
a remote server:

DHCP_SERVER=”my.dhcp.server” # if you use one

INIT or REBINDING: No lease or Lease time expired.

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $BROADCAST_0 68 \
-d $BROADCAST_1 67 -j ACCEPT

05 900-9 CH03 08.23.00 11:22 Page 117

118 Chapter 3 Building and Installing a Firewall

Getting renumbered

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $BROADCAST_0 67 \
-d $BROADCAST_1 68 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $DHCP_SERVER 67 \
-d $BROADCAST_1 68 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $BROADCAST_0 68 \
-d $DHCP_SERVER 67 -j ACCEPT

As a result of the above, we’re supposed to change our IP
address with this message, which is addressed to our new
address before the dhcp client has received the update.

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $DHCP_SERVER 67 \
-d $MY_ISP 68 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s $DHCP_SERVER 67 \
-d $IPADDR 68 -j ACCEPT

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR 68 \
-d $DHCP_SERVER 67 -j ACCEPT

Notice that DHCP traffic cannot be completely limited to your DHCP server.
During initialization sequences, when your client doesn’t yet have an assigned IP
address or even the server’s IP address, packets are broadcast rather than sent point-to-
point.

Accessing Remote Network Time Servers (UDP 123)
Network time services such as NTP allow access to one or more public Internet time
providers.This is useful to maintain an accurate system clock, particularly if your inter-
nal clock tends to drift, and to establish the correct time and date at bootup or after a
power loss.A small system user should use the service only as a client. Few, if any, small
sites have a satellite link to Greenwich, England, a radio link to the United States
atomic clock, or an atomic clock of their own lying around.

xntpd is the server daemon. In addition to providing time service to clients, xntpd
also uses a peer-to-peer relationship among servers. Few small sites require the extra
precision xntpd provides. ntpdate is the client program, and can use either client-to-
server or peer-to-peer communication.The client program is all a small site will need.
Table 3.20 lists only the client/server exchange protocol for the NTP service.

05 900-9 CH03 08.23.00 11:22 Page 118

119Logging Denied Incoming Packets

Table 3.20 NTP Protocol

Local client
query

UDP Outtimeserver IPADDR 1024:65535123

Remote server
response

UDP Intimeserver IPADDR 1024:65535123

Description Protocol
In/
OutRemote Address Local Address Local Port

Remote
Port

As a client, you can use ntpdate to periodically query a series of public time
service providers from a cron job.These hosts would be individually specified in a
series of firewall rules:

ipchains -A output -i $EXTERNAL_INTERFACE -p udp \
-s $IPADDR $UNPRIVPORTS \
-d <my.time.provider> 123 -j ACCEPT

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-s <my.time.provider> 123 \
-d $IPADDR $UNPRIVPORTS -j ACCEPT

Logging Denied Incoming Packets
Any packet matching a rule can be logged by adding the -l option to its ipchains
rule. Some of the rules presented previously had logging enabled.The IP address
spoofing rules are examples.

Rules can be defined for the explicit purpose of logging certain kinds of packets.
Most typically, packets of interest are suspicious packets indicating some sort of probe
or scan. Because all packets are denied by default, if logging is desired for certain
packet types, explicit rules must be defined before the packet falls off the end of the
chain and the default policy takes effect. Essentially, out of all the denied packets, you
might be interested in logging some of them.

Which packets are logged is an individual matter. Some people want to log all
denied packets. For other people, logging all denied packets could soon overflow their
system logs. Some people, secure in the knowledge that the packets are denied, don’t
care about them and don’t want to know about them. Other people are interested in
the obvious port scans or some particular packet type.

Because of the first-matching-rule-wins behavior, you could log all denied incom-
ing packets with a single rule:

ipchains -A input -i $EXTERNAL_INTERFACE -j DENY -l

05 900-9 CH03 08.23.00 11:22 Page 119

120 Chapter 3 Building and Installing a Firewall

For some people, this will produce too many log entries—or too many uninterest-
ing log entries. For example, you might want to log all denied incoming ICMP traffic
with the exception of ping, because it is a common service, regardless of whether your
site responds to ping requests:

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 1:7 -d $IPADDR -j DENY -l

ipchains -A input -i $EXTERNAL_INTERFACE -p icmp \
-s $ANYWHERE 9:18 -d $IPADDR -j DENY -l

You might want to log denied incoming TCP traffic to all ports, and denied
incoming UDP traffic to your privileged ports:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-d $IPADDR -j DENY -l

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-d $IPADDR $PRIVPORTS -j DENY -l

Then again, you might want to log all denied privileged port access, with the
exception of commonly probed ports you don’t offer service on anyway:

ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \
-d $IPADDR 0:19 -j DENY -l

skip ftp, telnet, ssh
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 24 -j DENY -l

skip smtp
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 26:78 -j DENY -l

skip finger, www
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 81:109 -j DENY -l

skip pop-3, sunrpc
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 112:136 -j DENY -l

skip NetBIOS
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 140:142 -j DENY -l

skip imap
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 144:442 -j DENY -l

skip secure_web/SSL
ipchains -A input -i $EXTERNAL_INTERFACE -p tcp \

-d $IPADDR 444:65535 -j DENY -l

05 900-9 CH03 08.23.00 11:22 Page 120

121Denying Access to Problem Sites Up Front

#UDP rules

ipchains -A input -i $EXTERNAL_INTERFACE -p udp \
-d $IPADDR 0:110 -j DENY -l

skip sunrpc
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 112:160 -j DENY -l

skip snmp
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 163:634 -j DENY -l

skip NFS mountd
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 636:5631 -j DENY -l

skip pcAnywhere
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 5633:31336 -j DENY -l

skip BackOrifice
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 31338:33433 -j DENY -l

skip traceroute
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-s $ANYWHERE 32679:65535 \
-d $IPADDR 33434:33523 -j DENY -l

skip the rest
ipchains -A input -i $EXTERNAL_INTERFACE -p udp \

-d $IPADDR 33434:65535 -j DENY -l

Denying Access to Problem Sites Up Front
If some site is making a habit of scanning your machine or otherwise being a nui-
sance, you might decide to deny it access to everything, at least until the problem
behavior is corrected.

One way to do this without editing the rc.firewall script each time is to include a
separate file of specific denial rules. By inserting the rules into the input chain rather
than appending them, the site will be blocked even if subsequent rules would other-
wise allow them access to some service.The file is named /etc/rc.d/
rc.firewall.blocked.To avoid a possible runtime error, you check for the file’s exis-
tence before trying to include it:

Refuse packets claiming to be from the banned list
if [-f /etc/rc.d/rc.firewall.blocked]; then

. /etc/rc.d/rc.firewall.blocked
fi

05 900-9 CH03 08.23.00 11:22 Page 121

122 Chapter 3 Building and Installing a Firewall

An example of a global denial rule in the rc.firewall.blocked file could be:
ipchains -I input -i $EXTERNAL_INTERFACE -s <address/mask> -j DENY

Any packet from this source address range is denied, regardless of message protocol
type or source or destination port.

At this point, the firewall rules are defined.When the firewall rules are installed in
the kernel as a functional firewall, you can connect your Linux machine to the
Internet with a good measure of confidence that your system is secure against most
outside attacks.

Enabling LAN Access
If the firewall machine sits between the Internet and a LAN, machines on the LAN
have access neither to the firewall machine’s internal network interface nor to the
Internet. Chapter 4 covers LAN firewall issues in depth.A small site, particularily a
home site, won’t need or have the resources to implement the firewall architecture
presented in Chapter 4. For the average home site, and for many small business sites as
well, the single-machine firewall developed in this chapter is sufficient.

To support a LAN behind the firewall, a few more rules are needed to enable
access to the firewall machine’s internal network interface and to pass internal traffic
through to the Internet.When the firewall machine serves in this capacity, with two or
more network interfaces, it’s called a bastion firewall, or a screened-subnet firewall.

Enabling LAN Access to the Firewall’s Internal Network
Interface
For a home or small business setup, there is probably little reason to limit direct access
to the firewall machine from the internal LAN.This rule pair allows open communi-
cation between the firewall machine and the LAN:

LAN_INTERFACE_1=”eth1” # internal LAN interface

LAN_1=”192.168.1.0/24” # your (private) LAN address range
LAN__IPADDR_1=”192.168.1.1” # your internal interface address

ipchains -A input -i $LAN_INTERFACE_1 \
-s $LAN_1 -j ACCEPT

ipchains -A output -i $LAN_INTERFACE_1 \
-d $LAN_1 -j ACCEPT

Notice that this rule pair allows LAN access to the firewall machine.The LAN
does not yet have Internet access through the firewall. Because a firewall machine, by
definition, does not route traffic dynamically, or automatically using static routes
(unless the machine is misconfigured), additional firewall rules are necessary to route
local traffic onward.

05 900-9 CH03 08.23.00 11:22 Page 122

123Enabling LAN Access

Enabling LAN Access to the Internet: IP Forwarding and
Masquerading
At this point, selected ports are open for either client or server communication, or
both, between remote machines and the firewall machine’s external network interface.
Local communication between the LAN and firewall machine is completely open
through the firewall’s internal network interface. Internal machines on the LAN do
not yet have access to the Internet, however.Allowing Internet access is a two-step
process. Communication between the LAN and the Internet must be both forwarded
and masqueraded.

IP forwarding is a kernel service allowing the Linux machine to act as a router
between two networks, forwarding traffic from one network to the other.With a
LAN, IP forwarding must be enabled in the routing section of the network configura-
tion.With a deny-everything-by-default firewall policy in force, however, forwarded
packets can’t cross between the two interfaces until specific rules allow it.

Few home-based systems should or will want to forward internal traffic directly. IP
addresses taken from the Class A, B, or C private address ranges require IP masquerad-
ing (another kernel service), or application-level proxying to substitute the private
LAN IP address with the public IP address of the firewall machine’s external interface.
Packets with private source addresses should not cross beyond the firewall machine out
to the Internet, and if they do, they might not be routed to their destination indefi-
nitely. Even if your site has registered, static IP addresses, IP masquerading and applica-
tion-level proxy servers are two of the best ways to secure and transparently isolate
your internal machines from the Internet.

On the ipchains administration level, forwarding and masquerading appear to be
different aspects of the same service. (In fact, they are separate mechanisms. But the
user interfaces to the two services are combined in the firewall administration pro-
gram.) Forwarding routes LAN traffic from the firewall’s internal interface out through
the external interface to the Internet. Before the packets are placed on the firewall
machine’s external interface output queue, the masquerading service replaces the
packet’s source address with that of the firewall machine’s external interface’s public IP
address. Forwarding and masquerading together let the firewall machine act as a
filtering, proxying router.

The following rule demonstrates how to forward and masquerade all internal traffic
out through the external interface.The ACCEPT and DENY rules for the external inter-
face’s output chain are applied after the forwarding rules are applied, so even though
everything is allowed to be forwarded and masqueraded between the two network
interfaces, only those packets allowed out by the firewall rules for the external inter-
face will actually pass through:

ipchains -A forward -i $EXTERNAL_INTERFACE -s $LAN_1 -j MASQ

05 900-9 CH03 08.23.00 11:22 Page 123

124 Chapter 3 Building and Installing a Firewall

Masquerading rules can take source and destination address and port arguments, just
as the other rules do.The network interface argument is the name of the forwarding
(external) interface, not the packets’ local network interface.Although the rules in the
example allow everything, you could just as easily define specific rules to masquerade
and forward only specific services, only TCP traffic, and so forth.

Installing the Firewall
As a shell script, installation is simple.The script should be owned by root:

chown root.root /etc/rc.d/rc.firewall

The script should be writable and executable by root alone. Ideally, the general
user should not have read access:

chmod ug=rwx /etc/rc.d/rc.firewall

To initialize or reinitialize the firewall at any time, execute the script from the com-
mand line.There is no need to reboot:

sh /etc/rc.d/rc.firewall

How the script is executed at boot time varies based on whether you have a regis-
tered, static IP address or a dynamic, DHCP-assigned IP address.

Installing a Firewall with a Static IP Address
If you have a static IP address, the simplest way to initialize the firewall is to edit
/etc/rc.d/rc.local and add the following line to the end of the file:

sh /etc/rc.d/rc.firewall

If hostnames are used in the firewall rules, the important thing to remember is that
DNS traffic must be enabled before the hostnames are encountered in the script. If a
local name server is configured, the system automatically starts named before running
rc.local at boot time or later if changing runlevels.

Installing a Firewall with a Dynamic IP Address
If you have a dynamic IP address, you will discover that firewall installation support
was (annoyingly) discontinued as of Red Hat 6.0.With luck, enough irate DHCP
clients will complain to get firewall support reinstated. In the meantime, you have to
reconfigure your system’s default installation setup for DHCP.The following steps
work for earlier versions of /sbin/dhcpcd prior to Red Hat 6.0. If you’ve upgraded
from an earlier release, these steps reinstate your prior environment:

1. Red Hat 6.0 replaced the DHCP client, dhcpcd, with a new client, pump. pump
doesn’t provide a mechanism for executing a script when your IP address is
assigned or reassigned. Consequently, without editing one of the network startup

05 900-9 CH03 08.23.00 11:22 Page 124

125Installing the Firewall

scripts, /sbin/ifup, you have no means of storing the dynamic information the
DHCP server has provided, nor do you have a way of automatically restarting
the firewall script if your IP address is reassigned after a lease revocation.You
have to edit the executable script, /sbin/ifup, to use the older /sbin/dhcpcd
instead of /sbin/pump.

Refer to the section “dhcpcd Support in /sbin/ifup” in Appendix B for exam-
ples of code.

2. Create a new executable shell script, /etc/sysconfig/network-scripts/
ifdhcpc-done.This file was provided as part of the Red Hat distribution until
release 6.0. It was run by dhcpcd after IP address assignment or reassignment.
pump doesn’t support running a script.

ifdhcpc-done’s original, primary purpose was to provide a mechanism to inform
/sbin/ifup as to whether dhcpcd succeeded in getting its dynamic information
from the DHCP server or not. Depending on the particular Red Hat release, the
file also performed a few other file updates.

ifdhcpc-done is the perfect place to execute /etc/rc.d/rc.firewall from
because ifdhcpc-done is executed each time the IP address is assigned or
changed. It’s also a useful place from which to perform several other functions.
Among them are setting the system’s domain name, updating /etc/hosts with
the current IP address, updating /etc/resolv.conf if you run your own name
server, updating /etc/named.conf if you run your own name server and forward
queries to your ISP’s name servers, and providing a mechanism for relaying the
current IP address and name server addresses to the firewall script.

Refer to the section “Updating Dynamic Addresses and Installing the Firewall
from /etc/sysconfig/network-scripts/ifdhcpc-done” in Appendix B for exam-
ples of code.

3. Create dhcpcd’s configuration directory, /etc/dhcpc:
mkdir /etc/dhcpc

pump doesn’t use this directory. dhcpcd expects the directory to exist.

4. The firewall script itself needs to include IPADDR and the NAMESERVERs from
/etc/dhcpc/dhcpd-eth0.info.These addresses are provided by the DHCP
server. Name server addresses are quite stable.Your IP address can change rela-
tively frequently, depending on your ISP’s DHCP server configuration.

05 900-9 CH03 08.23.00 11:22 Page 125

126 Chapter 3 Building and Installing a Firewall

Summary
This chapter leads you through the processes involved in developing a standalone fire-
wall using ipchains.The deny-by-default policy was established. Initial potential prob-
lems were addressed, such as source address spoofing and protecting services running
on unprivileged ports. ICMP messages, the control and status messages used by the
underlying IP network layer, were handled. DNS name service, which underlies all
network services, and AUTH user identification service, which supports several common
network services, were handled. Examples of rules for popular network services were
shown. Examples of controlling the level of logging produced were demonstrated.
Finally, the issues involved in firewall installation were described, both for sites with a
static IP address and sites with a dynamically assigned IP address.

At the end, the firewall script was very slightly extended to add support to serve as
a bastion firewall for a small LAN. Complete script examples for both ipchains and
ipfwadm are included in Appendix B.

Chapter 4 uses the bastion firewall as the basis for building a more complicated
firewall architecture.A screened subnet architecture using two firewalls separating a
DMZ perimeter network is described in Chapter 4.A small business could easily have
the need and the resources for this more elaborate configuration.

05 900-9 CH03 08.23.00 11:22 Page 126

