
Creating Scripted
Sequences

In many games, you find that the player character is not the only ele-

ment involved with the environment. Often the game drives many

actions and events to enhance the overall experience. For example,

you might be playing a game in which you’re moving through a sci-

ence laboratory and see scientists going about their duties, assistants

moving equipment, secretaries carrying important items, and so

forth. Within Unreal, these elements must be added into a level as

scripted sequences. This chapter covers how you can use the

ScriptedSequence Actor to create a variety of custom events within

your Unreal levels.

Adding interactive or reactive game elements, making non-player

characters (NPCs) perform actions, and other such events add an

incredible amount of gameplay value to your levels. For example,

say your character is behind a closed door, and you want a scientist

NPC on the other side to open the door for you. With scripted

sequences, you can tell a bot, or NPC, to move to the button that

opens the door, start a door-pressing animation, and then open the

door.

Chapter 14

17 6922 ch14 10/12/04 11:12 AM Page 1

To create these scripted sequences, you have the ScriptedSequence Actor, located under Keypoint

> AIScript in the Actor Class browser. This Actor contains all the main functions for controlling

NPCs, or xPawns, and controlling how events are processed. Subsets of this Actor are the

ScriptedTrigger and UnrealScriptedSequence Actors. The ScriptedTrigger should be used when

handling events, as when you used it in CHAPTER 9, “Interactive Elements,” to create an

advanced elevator. UnrealScriptedSequence Actors are used when you want to control the behav-

ior of bots, as you did in CHAPTER 12, “Advanced Bot/AI Navigation.”

This chapter starts with a general discussion of how to create Actions, the backbone of scripted

sequences. From there, you learn how to control the timing of events and see that certain Actions

are latent, meaning they must be finished before moving on, and some are not. Then you learn

how to use logical conditions to control whether certain Actions should occur.

Using an Actions List
Scripted sequences have an Actions property located under their AIScript category. This prop-

erty can hold a series of Actions that are performed from the top to the bottom of the list. This

series of Actions is known as the Actions list. An Action can perform a variety of tasks: trigger an

event, play a sound, spawn an Actor, control artifical intelligence (AI), and much more. When a

level starts, the first Action is performed, followed by the second, and continuing until reaching

the final Action in the list. Unless there’s an Action that alters the sequence, such as an

Action_GOTOACTION, the ScriptedSequence carries out the last Action and then stops.

Using Latent and Non-latent Actions

Actions are categorized into two main types, depending on how they are performed: latent and

non-latent. Latent actions cause Actions in the list to pause until the current Action is finished

before they’re carried out. Non-latent actions cause some effect or event and then immediately

proceed to the next Action without waiting until the first Action is completed. For example, if you

use an Action_PLAYANIM to play an animation of a character waving, and then immediately fol-

low it with an Action_PLAYSOUND, both Actions would seem to happen simultaneously.

TABLES 14.1 and 14.2 describe the available non-latent and latent actions.

TABLE 14.1 Non-latent Actions

Action Description Notes

ACTION_ASSetPlayerSpawnArea Enables or disables Used in Assault game-
PlayerSpawnManagers. type

ACTION_ASTeleportToSpawnArea Causes players to spawn at Used in Assault game-
points controlled by the type
specified Player
SpawnManager.

Chapter 14 Creating Scripted Sequences2

14

17 6922 ch14 10/12/04 11:12 AM Page 2

Using an Actions List 3

TABLE 14.1 Continued

Action Description Notes

ACTION_ChangeLevel Loads another map. Useful for
creating Matinee sequences
that span multiple maps.

Action_ChangeObjectiveTeam Updates the specified objec-
tive so that it belongs to the
specified team.

ACTION_ChangeScript Leaves the current script and AI control only
starts running the specified
script.

ACTION_ChangeWeapon Causes the controlled pawn AI control only
to switch to the specified
weapon. The pawn must
already have the weapon in
its inventory.

Action_ConsoleCommand Performs a console command.

Action_CROUCH Causes the controlled pawn to AI control only
crouch until an ACTION_Run or
ACTION_Walk is used.

ACTION_DamageActor Causes all Actors with the
specified Tag to receive
damage of a certain type and
amount.

ACTION_DamageInstigator Damages the player or NPC
that caused the current script
to run.

ACTION_DestroyActor Removes all Actors of the
specified Tag from the level.

ACTION_DestroyPawn Removes the controlled pawn AI control only
from the level.

ACTION_DisableObjective Allows an objective to be Used in Assault game-
bypassed and counted as type
complete.

ACTION_DisableThisScript When performed, causes the
in-game (bot) AI to ignore this
script. Applies only to
UnrealScriptedSequence Actors.

ACTION_DisplayMessage Displays or broadcasts a
message to one or all players
in the game.

17 6922 ch14 10/12/04 11:12 AM Page 3

TABLE 14.1 Continued

Action Description Notes

ACTION_EndSection Used to mark the end of a
group of Actions controlled by
an Action_IFCONDITION or
Action_IFRANDOMPCT.

ACTION_FireWeapon Causes the controlled pawn AI control only
to start or stop firing its
current weapon.

ACTION_FireWeaponAt Causes the controlled pawn AI control only
to shoot at an Actor, desig-
nated by a Tag.

Action_FORCEMOVETOPOINT Snaps the controlled pawn AI control only
to the specified point.

ACTION_FreezeOnAnimEnd Freezes the controlled pawn’s AI control only
animation and physical move-
ment after its current anima-
tion finishes.

Action_GOTOACTION Jumps the script to the speci-
fied Action. Useful for making
scripted sequences repeatable.

ACTION_GotoMenu Displays the game’s main
menu. A custom menu class
can be specified with the
MenuName property.

Action_IFCONDITION If the associated
TriggeredCondition’s
bEnabled property is False,
it causes the script to skip to
the Action after the next
Action_ENDSECTION.

Action_IFRANDOMPCT Based on the given probability,
the script may or may not j
ump to the Action after the
next Action_ENDSECTION.

ACTION_Jump Causes the controlled pawn AI control only
to jump. The type of jump can
be controlled with the
JumpAction property.

Action_KILLINSTIGATOR Kills the player that caused
the script to run. Should be
used only with ScriptedTriggers.

Chapter 14 Creating Scripted Sequences4

14

17 6922 ch14 10/12/04 11:12 AM Page 4

Using an Actions List 5

TABLE 14.1 Continued

Action Description Notes

Action_LEAVESEQUENCE Exits the current script and
ignores any further Actions.

ACTION_LocalizedMessage Broadcasts a localized message.

Action_PLAYAMBIENTSOUND Causes the ScriptedSequence’s
AmbientSound properties to
be set according to this action.

Action_PLAYANIM Causes the controlled pawn to AI control only
play an animation.

Action_PLAYANNOUNCEMENT Plays an announcement sound
in the game’s currently selected
announcer voice. The specified
sound must be a valid announcer
sound.

ACTION_PlayerViewShake Causes the instigator’s view to
shake as though hit by a weapon.
Occurs only when the instigator
is within a specified radius from
the ScriptedSequence Actor.

Action_PLAYLOCALSOUND Causes all players to hear a
sound. This sound is not location
based.

Action_PLAYMUSIC Sets the current music to the
specified song. This Action can
set the music for just the
instigator or for all players in
the level. The song must be a
file from the Music directory
under the folder where you
installed Unreal, without the
.ogg extension. For example,
if you want to play KR-DM1.ogg,
you would set the Song property
to KR-DM1.

Action_PLAYSOUND Plays a sound that originates from
the ScriptedSequence Actor.

Action_RUN Causes the controlled pawn to AI control only
run when moving. (Disables the
effect of Action_CROUCH and
Action_WALK.)

17 6922 ch14 10/12/04 11:12 AM Page 5

TABLE 14.1 Continued

Action Description Notes

Action_SETALERTNESS Sets the alertness of the AI control only
controlled pawn.

ACTION_SetHidden Hides all Actors with the
specified Tag.

ACTION_SetObjectiveActiveStatus Determines whether the Used in Assault
specified objective is active. gametype

ACTION_SetPhysics Sets the instigator’s current
physics type.

Action_SETVIEWTARGET Sets the location that the AI control only
controlled pawn tries to look
toward. Because this Action
is non-latent, you need more
time to pass after this Action
to see the effect.

ACTION_ShootTarget Causes the controlled pawn to AI control only
shoot at its current target.

ACTION_SpawnActor Spawns an Actor of the speci-
fied class. The Actor can be
spawned from the location of
the ScriptedSequence Actor
or from a controlled pawn’s
location. Additional location
and rotation offset can also
be set.

Action_STOPANIMATION Causes the controlled pawn AI control only
to stop playing its current
animation.

ACTION_StopShooting Aborts the effect of AI control only
ACTION_ShootTarget.

ACTION_SubTitles Causes the heads-up display’s Used in assault
(HUD’s) current subtitles
to advance.

ACTION_ThrowWeapon Causes the controlled pawn AI control only
to throw its current weapon in
the direction specified by the
WeaponVelocity property.

Chapter 14 Creating Scripted Sequences6

14

17 6922 ch14 10/12/04 11:12 AM Page 6

Using an Actions List 7

TABLE 14.1 Continued

Action Description Notes

Action_TRIGGEREVENT Causes the specified event to
be broadcast.

Action_USE Causes the controlled pawn to
use the player.

Action_WALK Causes the controlled pawn to AI control only
walk when moving.

TABLE 14.2 Latent Actions

Action Description Notes

Action_DrawHUDMaterial Renders the specified material as an
overlay onto the HUD. You can specify
the width, height, and size the material
is displayed at. Also, you can set the
amount of time the material is displayed.

ACTION_FinishRotation Waits until the instigator or
controlled pawn is facing its
goal.

ACTION_Freeze Freezes the controlled pawn’s AI control only
animation and physical
movement.

Action_MOVETOPLAYER Causes the controlled pawn to navigate AI control only
to the instigating player. Script running
continues when the pawn reaches the
player.

Action_MOVETOPOINT Causes the controlled pawn to navigate AI control only
to the specified point. Script running
continues when the pawn reaches that
point.

ACTION_PlayExplosionSound Plays a random explosion sound. With
the SoundEmitterActorTag property,
you can specify a location for the sound
to be emitted from. (Default location is
the scripted sequence itself.)

Action_TELEPORTTOPOINT Teleports the instigator to the specified
point. The audiovisual teleportation
effect can be enabled or disabled.

17 6922 ch14 10/12/04 11:12 AM Page 7

TABLE 14.2 Continued

Action Description Notes

Action_TURNTOWARDPLAYER Causes the controlled pawn to face the AI control only
player.

Action_WAITFORANIMEND Causes script running to pause until the AI control only
controlled pawn’s current animation
finishes.

Action_WAITFOREVENT Causes script running to pause until the
specified event is broadcast.

Action_WAITFORPLAYER Causes script running to pause until the AI control only
player is within the specified distance of
the controlled pawn.

Action_WAITFORTIMER Causes script running to pause for the
time specified. Note that the time is in
seconds.

TUTORIAL 14.1 shows how to create a simple ScriptedTrigger that uses both latent and non-

latent Actions to open a door in a complex manner.

TUTORIAL 14.1: Using a ScriptedTrigger

1. Open Tutorial14_01_Start.ut2.
In this map, you’ll create a
UseTrigger that plays a sound,
opens a door, and turns on a “cau-
tion” light.

2. In the Actor Class browser, navigate
to Triggers, and click UseTrigger.

3. Add the UseTrigger in front of the
door (see FIGURE 14.1). To make
the UseTrigger visible in-game, open
the Properties window for the
UseTrigger, go to the Advanced cate-
gory, and set the bHidden property
to False.

4. Because you have three separate Actions to perform, this is a great place for a
ScriptedTrigger. Open the Actor Class browser, expand Keypoint > AIScript >
ScriptedSequence, and click ScriptedTrigger.

Chapter 14 Creating Scripted Sequences8

14

FIGURE 14.1 The UseTrigger placed in front of the
door.

17 6922 ch14 10/12/04 11:12 AM Page 8

Using an Actions List 9

5. Place the ScriptedTrigger next to the
UseTrigger (see FIGURE 14.2).
Although the location of a
ScriptedTrigger is irrelevant, place it
near the UseTrigger because the two
triggers will be working with one
another.

6. Open the Properties window for the
UseTrigger. Under the Events cate-
gory, type MultiTrigger as the set-
ting for the Event property. This
event will be the one that triggers
the chain of events.

7. Open the Properties window for the
ScriptedTrigger. Under the AIScript
category, select the Actions prop-
erty, and click the Add button. By
default, the Actions in the Actions list
begin evaluating as soon as the level
starts. In this case, however, you
don’t want anything to happen until
you activate the UseTrigger. This
means you need to wait for the
MultiTrigger event to be triggered
before any Actions take place. To do
this, select Action_WAITFOREVENT
and click the New button. Set the
ExternalEvent property to
MultiTrigger (see FIGURE 14.3).
Until this event is triggered, the next
Action is not performed.

8. Now you need to add three Actions
to the list: one to play the sound, one
to open the door, and one to turn on
the light. Select the Actions property
and click the Add button three times.
For index [1], select
Action_PLAYSOUND and click New.
Open the Sound browser. If you’re using Unreal Tournament 2004, open the
IndoorAmbience package and select door10. If you’re using the Unreal Runtime Engine,
open the EM_Runtime_A package and select door12. Back in the Properties window for
Action_PLAYSOUND, select the Sound property, and click the Use button.

FIGURE 14.2 The ScriptedTrigger placed next to
the UseTrigger.

NOTE
You need to manually enter MultiTrigger for the
Event property.

FIGURE 14.3 One Action created for the
ScriptedTrigger.

17 6922 ch14 10/12/04 11:12 AM Page 9

9. For index [2], select Action_TRIGGEREVENT and click New. Because the Tag property for
the door is BlastDoor, set the Event property of the Action_TRIGGEREVENT to
BlastDoor.

10. For index [3], select Action_TRIGGEREVENT and click New. The Tag property for the light is
CautionLight, so set the Event property of the Action_TRIGGEREVENT to CautionLight.
This setting activates a dynamic light that’s already in the scene.

11. Save the map, and give it a test spin. Note that the door opens, the sounds plays, and the
light switches on after you hit the trigger. Also, notice that although the Actions are taking
place in a specific order, they all appear to be happening at the same time.

END TUTORIAL 14.1

Controlling xPawns

Now that you have an idea of how to control events, you’re ready to take it one step further and

control actual non-player characters (NPCs). This brings another property of ScriptedSequences

into the spotlight: ControllerClass. By default, it’s set to None. For controlling an xPawn, you

must set it to ScriptedController. Basically, this setting overrides the ControllerClass for the

xPawn, allowing the ScriptedSequence Actor to take control of the xPawn and alter its behavior.

If you didn’t use this setting, it would default to a bot-style AI, which would, in effect, spawn an

additional player into the game.

To associate the xPawn with the ScriptedSequence Actor, set the xPawn’s AIScriptTag property,

found under the AI category, to the Tag property of the ScriptedSequence. TUTORIAL 14.2

demonstrates how to set up a simple scenario in which a ScriptedSequence controls an xPawn.

TUTORIAL 14.2: Controlling a Pawn

1. Open Tutorial14_02_Start.ut2. In this tutorial, you’re going to create an NPC that runs
to the player, beckons for the player to follow, and then opens the door. You already have a
series of PathNodes set up for the NPC to follow; you just need to give the NPC the proper
commands. For more information on creating bot paths, please refer to CHAPTER 12,
“Advanced Bot/AI Navigation.”

2. First, you need to create the NPC. Open the Actor Class browser, navigate to Pawn >
UnrealPawn, and click xPawn. In the Top view, move the xPawn to the lower right of the
level, near the PathNode. Rotate the xPawn to point toward the PathNode (see
FIGURE 14.4).

3. Open the Actor Class browser, navigate to Keypoint > AIScript, and click ScriptedSequence
Actor. Place this Actor next to the xPawn.

4. In the Properties window for the ScriptedSequence Actor, go to the Events category and
change the Tag property to PawnController. Also, under the AIScript Category, set the
ControllerClass property to ScriptedController.

Chapter 14 Creating Scripted Sequences10

14

17 6922 ch14 10/12/04 11:12 AM Page 10

Using an Actions List 11

5. Now open the Properties window for
the xPawn and go to the AI category.
Set the AIScriptTag to
PawnController, which forces the
xPawn to listen for behavior com-
mands from the ScriptedSequence
Actor. After doing this, you’ll see a
line connecting the
ScriptedSequence icon to the xPawn
(see FIGURE 14.5).

6. Now that everything is set up prop-
erly, you can create the Actions for
the xPawn to follow. Open the
Properties window for the
ScriptedSequence. First, you need
to wait for the player to hit the
UseTrigger, which sends the
CallNPC event, so add an
Action_WAITFOREVENT and set the
ExternalEvent to CallNPC.

7. Second, the xPawn needs to move
to the player. To do this, add an
Action_MOVETOPOINT and set the
DestinationTag to CallPoint,
which is the Tag property of the
PathNode next to the UseTrigger.
Because you have PathNodes lead-
ing to the DestinationTag, the
xPawn moves correctly from
PathNode to PathNode until reaching
the destination.

8. At this point, you need the xPawn to look at the player. To do this, add an Action_TURNTO-
WARDPLAYER.

9. With the xPawn now facing the character, you must make sure the xPawn is stationary and
not playing any animations. For this, add an Action_WAITFORTIMER and set the
PauseTime to 0.5. Now add an Action_PLAYANIM and set the BaseAnim to
gesture_beckon. Because Action_PLAYANIM is non-latent, you need to make sure the
animation ends before moving to the next Action; therefore, add an Action_WAITFORANI-
MEND and leave Channel set to 0.

10. To make the xPawn turn toward the console as he moves toward it, add an
Action_SETVIEWTARGET and change the ViewTargetTag property to ConsoleTag. As
before, add an Action_MOVETOPOINT and set the DestinationTag to ConsolePoint,
which is the Tag property of the PathNode in front of the console.

FIGURE 14.4 xPawn ready for action.

FIGURE 14.5 ScriptedSequence connected to the
xPawn.

17 6922 ch14 10/12/04 11:12 AM Page 11

11. As before, you need to ensure that the xPawn is stationary and isn’t playing any other ani-
mations. So add an Action_WAITFORTIMER and set the PauseTime to 0.2, which is lower
than before because the previous Action_SETVIEWTARGET should already have the xPawn
facing in the right direction. Now add an Action_PLAYANIM and set the BaseAnim to ges-
ture_halt. To ensure that the animation ends, add an Action_WAITFORANIMEND.

12. Finally, you need the door to open. Add an Action_TRIGGEREVENT and set Event to
BlastDoor, the Tag property of the door Mover.

13. Save the map and run it. When you’re in-game, go over to the UseTrigger and press the
Use key (the E key, by default). If it doesn’t work correctly, use TABLE 14.3 as a refer-
ence for the Actions in this tutorial.

TABLE 14.3 Actions for the ScriptedSequence

Index Action Properties to Set

[0] Action_WAITFOREVENT ExternalEvent = CallNPC

[1] Action_MOVETOPOINT DestinationTag = CallPoint

[2] Action_TURNTOWARDPLAYER N/A

[3] Action_WAITFORTIMER PauseTime = 0.5

[4] Action_PLAYANIM BaseAnim = gesture_beckon

[5] Action_WAITFORANIMEND N/A

[6] Action_SETVIEWTARGET ViewTargetTag = ConsoleTarget

[7] Action_MOVETOPOINT DestinationTag = ConsolePoint

[8] Action_WAITFORTIMER PauseTime = 0.2

[9] Action_PLAYANIM BaseAnim = gesture_halt

[10] Action_WAITFORANIMEND N/A

[11] Action_TRIGGEREVENT Event = BlastDoor

END TUTORIAL 14.2

You can also use ScriptedSequences when you’re creating intro movies with Matinee and custom

animations. TUTORIAL 14.3 shows you how to use a custom character with custom animation

to create a movie sequence. For more information on using Matinee, see CHAPTER 13,

“Matinee: Creating Custom Cinematics.”

Chapter 14 Creating Scripted Sequences12

14

17 6922 ch14 10/12/04 11:12 AM Page 12

Using an Actions List 13

TUTORIAL 14.3: Using Matinee with ScriptedSequences

1. Open Tutorial14_03_Start.ut2.
In this level, you have a Matinee
sequence where the camera flies
around the level and circles around
the inside of a room. Inside this
room, you’re going to place a cus-
tom character and cause it to play
some of the custom animation
included with it.

2. To start off, place an xPawn in the
center of the room, which is located
in the center of the level (see
FIGURE 14.6). Change
ControllerClass to
ScriptedController. Also, under
the UnrealPawn category, set the
bNoDefaultInventory property to
True so that the character isn’t
holding a gun.

3. Because you want to use your own
custom character, not the default,
open the Animation browser so that
you can load the correct character.
Open the Chapter14_Anim.ukx pack-
age. With this character visible in the
browser, open the Properties window
for the xPawn. Under the Display cat-
egory, select the Mesh property and
click Use. Also, select the Skins
property and click Empty. Rotate the xPawn so that it points between the two interpolation
points. Also, move the xPawn so that it rests on the floor (see FIGURE 14.7). Because
you need to control this pawn with a ScriptedSequence, go to the AI category and set the
AIScriptTag property to LFController.

4. Next, create a ScriptedSequence near the xPawn. Under the Events category, change the
Tag property to LFController. If you ran the level now, you would notice that the xPawn is
in the wrong pose. Playing an animation at this point would cause the character to snap
from this pose to the first frame of the animation you want. To correct this, you have a sin-
gle-frame animation (KickStart) that leaves the character at the correct pose for starting
the animation. From there, you need to start the Matinee sequence, which can be trig-
gered with the StartMovie event. TABLE 14.4 shows the Actions needed for the
ScriptedSequence Actor.

FIGURE 14.6 xPawn placed in the level.

FIGURE 14.7 Custom character rotated and
moved into position.

17 6922 ch14 10/12/04 11:12 AM Page 13

TABLE 14.4 Actions for the ScriptedSequence

Index Action Properties to Set

[0] Action_PLAYANIM BaseAnim = KickStart

[1] Action_TRIGGEREVENT Event = StartMovie

5. Because you want the animation to start when the camera enters the room, you need to
have the Matinee sequence trigger an event. To do this, open the Matinee dialog box.
Select the StartMovie scene and switch to the Actions tab. Then select the second Action
from the bottom. Now switch to the Sub Actions tab, and select the third Sub Action from
the top. Add a SubActionTrigger. Under the Trigger category, set the EventName property to
StartAction.

6. With that set up, reopen the ScriptedSequence property and add the final Actions that
will wait for the event, as shown in TABLE 14.5, and then play the animation. At the very
end, quit to the main menu.

TABLE 14.5 Actions for the ScriptedSequence

Index Action Properties to Set

[2] Action_WAITFOREVENT ExternalEvent = StartAction

[3] Action_PLAYANIM BaseAnim = Kick

[4] Action_WAITFORANIMEND N/A

[5] Action_GotoMenu N/A

7. That’s it! Save and run the map. The
character’s animation won’t begin
until the Matinee sequence tells it
to. FIGURE 14.8 shows a screen-
shot of the custom animation.

Chapter 14 Creating Scripted Sequences14

14

FIGURE 14.8 The character playing the custom
animation.END TUTORIAL 14.3

17 6922 ch14 10/12/04 11:13 AM Page 14

Logical Conditions 15

Logical Conditions
Although the simple Actions you’ve seen so far can handle most situations you run into, at times

you want the result or running of a script to differ depending on external conditions. To this end,

you have the following three Actions (described previously in TABLE 14.1): Action_IFCONDI-

TION, Action_ENDSECTION, and Action_IFRANDOMPCT. To use the Action_IFCONDITION, you

must also have a TriggeredCondition Actor, which is located under the Triggers section of the

Actor Class browser. When this Actor is triggered, an internal value toggles between True and

False. To use it, you create a section of Actions that are blocked off by an Action_IFCONDITION

and Action_ENDSECTION. If the internal value is True, the Actions within the block are carried

out, and those outside it are disregarded.

TUTORIAL 14.4: Using If Conditions

1. Open Tutorial14_04_Start.ut2. In this tutorial, you create a system in which a pawn
must activate a control unit before the player can open the door.

2. First, you’ll set up the ScriptedSequence to make the pawn run over to a PathNode and
send the IC_DoorControl event to the TriggeredCondition. Add a ScriptedSequence
Actor next to the existing Trigger. In the Properties window for the ScriptedSequence, first
set the ControllerClass to ScriptedController. Next, the xPawn must be associated
with the ScriptedSequence. The xPawn’s AIScriptTag is currently set to NPCScript, so
set the ScriptedSequence’s Tag property to NPCScript. Now add the Actions shown in
TABLE 14.6 to the ScriptedSequence.

TABLE 14.6 Actions for the ScriptedSequence

Index Action Properties to Set

[0] Action_WAITFOREVENT ExternalEvent = CallBot

[1] Action_WALK N/A

[2] Action_SETVIEWTARGET ViewTargetTag=BotPanel

[3] Action_MOVETOPOINT DestinationTag= SwitchPoint

[4] Action_WAITFORTIMER PauseTime=0.2

[5] Action_PLAYANIM BaseAnim=gesture_halt

[6] Action_WAITFORANIMEND N/A

[7] Action_TRIGGEREVENT Event=IC_DoorControl

3. Now you need to actually create the TriggeredCondition. In the Actor Class browser, go the
Triggers section and click TriggeredCondition. Place this Actor next to the trigger.

17 6922 ch14 10/12/04 11:13 AM Page 15

4. In the Properties window for the TriggeredCondition, go to the TriggeredCondition category,
and set bTriggerControlled to True so that the TriggeredCondition can be externally con-
trolled by a trigger. Also, set the Tag property under the Events category to
IC_DoorControl.

5. The UseTrigger in front of the second PathNode sends the TestConsole event. Therefore,
open the ScriptedTrigger Properties window and create the set of Actions shown in
TABLE 14.7.

TABLE 14.7 Actions for the ScriptedTrigger

Index Action Properties to Set

[0] Action_WAITFOREVENT ExternalEvent = TestConsole

[1] Action_IFCONDITION TriggeredConditionTag = IC_DoorControl

[2] Action_PLAYSOUND Sound = MenuSounds.J_MouseOver

[3] Action_TRIGGEREVENT Event= OpenDoor

[4] Action_ENDSECTION N/A

[5] Action_GOTOACTION ActionNumber= 0

As you can see, what’s between Action_IFCONDITION and Action_ENDSECTION isn’t per-
formed unless the TriggeredCondition is toggled to True by the ScriptedSequence.

6. Save the map and test the level. Run over to the trigger and watch the xPawn run to the
first PathNode. Now you should be able to open the door.

END TUTORIAL 14.4

Action_IFRANDOMPCT is used when you want some group of Actions to happen randomly. As

with Action_IFCONDITION, you must also have an Action_ENDSECTION to signify the end of the

block. The one property available in this Action is Probability. Setting this property to 1 causes

the Actions inside the block to always be performed. A value of 0, however, means the Actions are

never carried out. Finally, setting it to 0.5 means there’s a 50% chance of the Actions being per-

formed.

TUTORIAL 14.5 shows how to create a flickering dynamic light by using Action_IFRANDOMPCT.

This method gives you more control over how the light flickers and is an excellent demonstration

of how useful this Action can be.

Chapter 14 Creating Scripted Sequences16

14

17 6922 ch14 10/12/04 11:13 AM Page 16

Logical Conditions 17

TUTORIAL 14.5: Using Random Conditions

1. Open Tutorial14_05_Start.ut2.
This level is nothing but a simple
cube with a light fixture where you’ll
be placing the flickering light.

2. In the Actor Class browser, select
Light > TriggerLight. Place this light
next to the static mesh (see
FIGURE 4.9). In the Properties win-
dow for the TriggerLight, go to the
LightColor category and set
LightBrightness to 200, LightHue
to 150, and LightSaturation to
150. Also, under the Lighting cate-
gory, set LightRadius to 10. Under
the Events category, change the Tag property to FlickerLight. Finally, under the Object
category, set InitialState to TriggerToggle so that the light responds to external
events.

3. Now add a ScriptedTrigger near the TriggerLight, and then add the Actions shown in
TABLE 14.8.

TABLE 14.8 Actions for the ScriptedTrigger

Index Action Properties to Set

[0] Action_WAITFORTIMER PauseTime = 0.10

[1] Action_IFRANDOMPCT Probability = 0.50

[2] Action_TRIGGEREVENT Event = FlickerLight

[3] Action_ENDSECTION N/A

[4] Action_GOTOACTION ActionNumber= 0

When the level starts, you wait for 0.1 seconds, and then a random condition says that
there’s a 50% chance you switch the light on or off. After that, you just jump back to the
top, wait another 0.1 seconds, and so on.

4. Save the map and test the level. You should now have a flickering light.

END TUTORIAL 14.5

FIGURE 14.9 TriggerLight placed next to the static
mesh.

17 6922 ch14 10/12/04 11:13 AM Page 17

Summary
In this chapter, you’ve learned everything you need to create more interactive levels and intro

movies. You started with a look at how to use scripted sequences, and then learned how to use

Actions to control what takes place in your sequences, along with a list of the primary Actions

available and the differences between latent and non-latent Actions. Finally, you learned how to

use logical conditions with your scripted sequences to create conditional actions. With these sim-

ple foundations, you should be able to create a massive variety of scripted sequences to enhance

the look and feel of your levels.

Chapter 14 Creating Scripted Sequences18

14

17 6922 ch14 10/12/04 11:13 AM Page 18

