
Programming in Objective-C

Copyright © 2003 by Que Publishing

International Standard Book Number: 0672325861

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in
this book or from the use of the CD or programs accompanying it.

When reviewing corrections, always check the print number of your book. Corrections are made to printed books with each
subsequent printing. To determine the print number of your book, view the copyright page. The print number is the right-
most number on the line below the “First Printing” line. For example, the following indicates that this is the 1st

printing of this title.

First Printing: November 2003

06 05 04 03 4 3 2 1

First Printing Corrections

Pg Error Correction

iv First Printing: November 2003

06 05 04 03 4 3 2 1

First Printing: November 2003

06 05 04 4 3 2

26 Instances and Methods, p1, line 8:

...but as each car is by is respective owner... ...but as each car is used by is respective
owner...

40 halfway down the page:

{
 denominator = d;
}

@end

(delete blank line before @end)

{
 denominator = d;
}

@end

42 after first two lines of code:

And here are the definitions:

(should be mono)

And here are the definitions:

45 Exercises, 1., table

Int playNextSong 6_05

_calloc Xx alphaBeta
Routine

clearScreen_1312 z

ReInitialize_ A$

Reformat columns:

Int playNextSong 6_05

_calloc Xx alphaBetaR
outine

clearScreen _1312 z

ReInitialize _ A$

92 Exercises, 3., line of code

5! = 5 x 4 x 3 x 2 x 1 = 1

Exercises, 3., line of code

5! = 5 x 4 x 3 x 2 x 1 = 120

120 Program c.10 Output

3 5 7 11 13 17 19 23 31 37 41 43 47

Program c.10 Output

2 3 5 7 11 13 17 19 23 31 37 41 43 47

141 Program 7.5 Output

1/4 + 1/2 = 3/4

3/4

1/4 + 1/2 = 1/8 = 7/8

(delete third line of code)

1/4 + 1/2 = 3/4

3/4

145 Exercises, 6., final line of code

...(Complex*) complexNum);

Exercises, 6., final line of code

...(Complex * complexNum);

149 Figure 8.3

Add arrows to figure

152 paragraph 1, line 4

In fact, let's go back to exercise 9 from Chapter
4...

In fact, let's go back to exercise 7 from Chapter
4...

middle of page. single line of code:

-(void) setWidth: (int) w and Height: (int) h; -(void) setWidth: (int) w andHeight: (int) h;

second to last line of code:

middle of page. single line of code:

-(void) setWidth: (int) w and Height: (int) h -(void) setWidth: (int) w andHeight: (int) h

154 Paragraph 3, last sentence:

The interface and implementation files for your
new Square class are shown in Programs 8.3 and
8.4.

The interface and implementation files for your new
Square class are shown in Program 8.3.

Program 8.4 Square.m Implementation File Program 8.3 Square.m Implementation File

155 Paragraph 3, last line:

8.5 shows the test program and output... 8.3, "Test Program" shows the test program and
output...

Program 8.5 Test Program test2.m Program 8.3 Test Program test2.m

Program 8.5 Output Program 8.3 Output

158 Program 8.6 Point.m Implementation File Program 8.4 Point.m Implementation File

Program 8.4, first line of code

#include "Point.h" #import "Point.h"

159 Program 8.6 Continued Program 8.4 Continued

Program 8.7 shows the new... Program 8.4, "Added Methods," shows the new...

Program 8.7 Rectangle.m Added Methods Program 8.4 Rectangle.m Added Methods

Program 8.7 Test Program Program 8.4 Test Program

160 Program 8.7 Continued Program 8.4 Continued

Program 8.7 Output Program 8.4 Output

161 Top of page:

Can you explain the output from Program 8.8? Can you explain the output from Program 8.5?

Program 8.8 Program 8.5

Program 8.8 Output Program 8.5 Output

163 Last paragraph:

With your modified method, recompiling and
rerunning Program 8.7 produces the following
warning messages shown as Program 8.9.

With your modified method, recompiling and
rerunning Program 8.5 produces the following
warning messages shown as Program 8.5A.

164 Program 8.9 Compiler Warning Messages Program 8.5A Compiler Warning Messages

Program 8.9 Output Program 8.5B Output

165 First full paragraph:

Program 8.10 shows a simple example to illustrate
this concept.

Program 8.6 shows a simple example to illustrate
this concept.

Program 8.10 Program 8.6

166 Program 8.10 Continued Program 8.6 Continued

Program 8.10 Output Program 8.6 Output

Program 8.11 Program 8.7

167 Program 8.11 Continued Program 8.7 Continued

168 Halfway down the page:

Now, let's try compiling and running this program
again (see Program 8.12).

Now, let's try compiling and running this program
again.

Program 8.12 Output Program 8.7

169 Paragraph 2, final sentence:

The approach used in Program 8.9 was to have main
release that memory with a statement such as
follows:

The approach used in Program 8.6 was to have main
release that memory with a statement such as
follows:

170 Paragraph 2, final sentence:

The two free messages shown in Program 8.8... The two free messages shown in Program 8.5...

171 Sentence before program listing:

Let's put this together in a simple example to
illustrate this concept (see Program 8.13).

Let's put this together in a simple example to
illustrate this concept (see Program 8.8).

Program 8.13 Program 8.8

172 Program 8.13 Continued Program 8.8 Continued

Program 8.13 Output Program 8.8 Output

180 near end of Program 9.2

[c1 free];
[f1 free];
[dataValue free];

[c1 free];
[f1 free];

183 Final paragraph on page, last sentence[remove
mono]

If frac1 and...
If frac1 and...

198 Code listing, first indented set of lines:

extern int gCounter;
++counter;

extern int gCounter;
++ggCounter;

202 Program 10.3, second to last line of code on this
page: [change UC to lc]

enum month aMonth; enum month ammonth;

205 Second to last line of code on this page: [change
UC to lc]

If (userName compare: savedName] ... iif (userName compare: savedName] ...

212 Last block of code before paragraph two:

-(Fraction *) add: (Fraction *); -(Fraction *) add: (Fraction *) f;

225 Three line block of code in exercise 3:

-(void) sin: (double) angle;
-(void) cos: (double) angle;
-(void) tan: (double) angle;

-(double) ssin;
-(double) ccos;
-(double) ttan;

Block of code in exercise 5:

{
 Rectangle *rect;
}
-(int) initWithSide: (int) s;
-(int) setSide: (int) s;

{
 Rectangle *rect;
}
-(ssquare *) initWithSide: (int) s;
-(vvoid) setSide: (int) s;

229 Last C1 line on the page:

return TWO_PI * r ; return TWO_PI * raadius ;

233 Second C1 line on the page:

#define MakeFract (x,y) ([Fraction alloc] initWith: x
over: y]]

#define MakeFract (x,y) ([[[Fraction alloc] initWith: x over:
y]]

Paragraph six, sentence two:

Without the parenetheses in the macro... Without the parentheses in the macro...

237 Program 12.1, line two: [bold text]

Enter the number of liters: 55.75 Enter the number of liters: 555.75

248 Third row after Program 13.1:

Fibonacci numbers Fi-2 and F1-1 Fibonacci numbers Fi-2 and Fi-1

278 Fourth to last line of code in Program 13.10:

printf ("Today's date is %i/%i/.2%i: \n", printf ("Today's date is %i/%i/%%.2i: \n",

293 Second paragraph, last three sentences:

Finally, a union variable can be initialized as
follows. If it's a global, static, or automatic
union variable, the first member of the union can
be initialized toa constant expression. In such
a case, the constant expression is listed inside
a pair of braces, like so:

Finally, a union variable can be initialized like
so:

Next paragraph:

This sets the first member of x, which is c, to
the character #.

This sets the first member of x, which is c, to the
character #. A particular member can also be
initialized by name, like this:

union mixed x={.f=123.4;};

302 Exercise 3, sentence four:

Have the program find all prime numbers up to
150.

Have the program find all prime numbers up to
n=150.

Exercise 3, step 5: [insert "is not equal to"
sign where equals sign is indicated]

...such that ixj<n, set Pixj to 1. ...such that ixj<=n, set Pixj to 1.

308 Paragraph 2, second to last sentence:

...(at
/Development/Documentation/Cocoa/CocoaTopics.html
).

...(at
/Development/Documentation/Cocoa/CocoaTopics.html
or /Developer/Documentation/Cocoa/Cocoa.html under
Panther).

339 Program 15.8 Output:

3 5 7 11 13 17 19 23 29 31 37 41 43 47 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

342 Program 15.9 Test Program, 4th line of code:

NSAutoreleasePool *pool = [[NSAutorreleasepool alloc]
init];

NSAutoreleasePool *pool = [[NSAutorreleasePPool alloc] init];

345 Program 15.10 Test Program: [insert as first
line]

#import<Foundations/NSAutoreleasePool.h>

existing third line:

NSAutoreleasePool *pool = [[NSAutorreleasepool alloc]
init];

NSAutoreleasePool *pool = [[NSAutorreleasePPool alloc] init];

347 Program 15.11, before 7th to last line Continued:
[add]

}

[blank line}

}

-(void) dealloc

354 Middle of page, first line of block of code:

(BOOL) isEqual (AddressCard *) theCard --(BOOL) isEqual (AddressCard *) theCard

355 Final line in third block of code:

AddressCard *myCard = (AddressBook alloc); AddressCard *myCard

356 Program 15.14 Continued, final two lines of code:

 [pool release]; return 0;
} [pool release];

 return 0;
}

370 Exercise currently listed as 7 remove page number

Exercise currently listed as 8 Renumber as 7.

371 Exercise currently listed as 9 Renumber as 8.

Exercise currently listed as 10 Renumber as 9.

Exercise currently listed as 11 Renumber as 10.

377 Program 16.1 Continued, line 9:

return 4; return 33;

Program 16.1 Continued, line 15:

return 5; return 44;

Program 16.1 Continued, line 21:

return 6; return 55;

Program 16.1 Continued, line 28:

return 7; return 66;

383 Program 16.4, line 4:

#import <Foundation/NSAutoreleasePool.h #import <Foundation/NSAutoreleasePool.h>>

390 Program 16.6, line 14

NSArray *args = NSProcessInfo arguments]; NSArray *args = pproc arguments];

last three lines:

[NSFm file ExistsAtPath: dest isDirectory: &is Dir];

if (isDir == YES)

 dest = [dest stringByAppendingPathComponent:

fileExists = [NSFm file ExistsAtPath: dest isDirectory: &is
Dir];

if (ffileExists == YES && isDir == YES)

 dest = [dest stringByAppendingPathComponent:

397 Running head:

Basic File Operations: NSFileHandlep Basic File Operations: NSFileHandle

402 Third block of code at the top of the page:

[myInt release];

[printf ("after release = %x

[myInt release];

[printf ("after release = %x

410 Program 17.5 Continued,line 11 of code:

printf ("Foo dealloc\n"); printf ("ClassA dealloc\n");

Program 17.5 Output, last line

Foo dealloc ClassA dealloc

411 Paragraph 3, final sentence:

We did this just to verify that the Foo object is
deallocated properly when the autorelease pool is
released.

We did this just to verify that the ClassA object
is deallocated properly when the autorelease pool
is released.

445 Program 19.10, line 17:

// Insert code from Program 19.4 to create and Address
Book

// Insert code from Program 19.66 to create and Address Book

448 Program 19.12, add as line 5: #import <Foundation/NSArrqy.h>

484 Last paragraph:

Because the sizeof operator is evaluated at
compile time, it can be used in constant
expressions (refer to the section "Constant
Expressions").

If a is a variable length array, then the
expression is evaluated at runtime; otherwise, it
is evaluated at compile time and can be used in
constant expressions (refer to the section
"Constant Expressions").

498 First block of code. Add italic:

@interface className (categoryName)
<protocol,...>

 methodDeclaration

@interface className (categoryName) <protocol,...>

 methodDeclaration

 methodDeclaration

 ...

@end

 methodDeclaration

 ...

@end

next paragraph: [add italic]

This defines the category categoryName for the
class specified by className with the associated
listed methods.

This defines the category categoryName for the class
specified by className with the associated listed
methods.

next paragraph: [add italic]

The compiler must know about className through a
previous interface section declaration for the
class.

The compiler must know about className through a
previous interface section declaration for the
class.

Paragraph 7: [add italic]

Categories are uniquely defined by
className/cateoryName pairs.

Categories are uniquely defined by
className/cateoryName pairs.

499 Protocol Definition, block of code: [add italic]

@protocol protocolName <protocol, ...>

 methodDeclaration

 methodDeclaration

...

@end

@protocol protocolName <protocol, ...>

 methodDeclaration

 methodDeclaration

...

@end

Next paragraph: [add italic]

The protocal called protocolName is defined with
associated methods. If other protocols are
listed, protocolName also adopts the listed
protocols.

The protocal called protocolName is defined with
associated methods. If other protocols are listed,
protocolName also adopts the listed protocols.

Last paragraph: [add italic]

A class conforms to the protocolName protocol... A class conforms to the protocolName protocol...

503 The do Statement: [add italic]

do

 programStatement

while { expression };

do

 programStatement

while { expression };

507 Last paragraph, last sentence:

As an example, the following defines a macro
called myPrintf to take a leading format string
followed by a variable number of arguments.

As an example, the following defines a macro called
myPrintf to take a variable number of arguments.

535 First two lines of text on the page:

...there, as well as an HTML version (open
thefile FoundationTOC.html in that folder).

...there, as well as an HTML version (open thefile
FoundationTOC.html or index.html under Panther, in
that folder).

