
So far in this book, you have learned how to write C# programs. As an
enterprise programmer, you should know that writing application code is
only one of the responsibilities of a programmer. The other responsibilities
include assembling, deploying, configuring, and monitoring applications.
This chapter introduces packaging and managing applications in C#. We
look at assemblies, versioning, and application configuration and manage-
ment—that is, process management.

In the Java world, applications are packaged not as EXE files but rather
as class files that are loaded by the runtime .java executable. Many Java
applications bundle class files in a .java archive file (or a .jar file). The
.jar file is the preferred unit of deployment for applications and libraries
in Java. Java products are usually shipped as nothing more than a group of
.jar files. Several variations of the .java archive file (.jar) file are now
used as units of deployment for the new breed of J2EE applications. J2EE
Web applications are deployed as a Web application archive (.war) file.
Similarly, EJB components are bundled in yet another variation of .jar
files called enterprise application archive (.ear) files.

Java also provides an API for exploring these archive files and deployed
units. The Java environment, however, does not come with a robust set of
application monitoring and management tools. These tools tend to be
closely tied to the operating system on which applications run, and Java’s
OS-neutral nature prohibits it from leveraging any OS-specific features in
providing tight integration with any one platform. The JDK therefore ships
with a minimal set of executables that can help you debug the performance
and memory consumption of an application. Also, the API that helps in

C H A P T E R 2 3

Assemblies, Application
Configuration, and Process
Management

623

624 Chapter 23 Assemblies, Application Configuration, and Process Management

monitoring memory allocation and garbage collection is not part of the core
Java API. Nor does Java have built-in support for versioning of archive files.

The .NET Framework is a different story. It provides tools and APIs to
ease the task of assembling, deploying, and versioning an application. In
addition, it has APIs to interact with the Windows platform directly and to
control the application’s state through OS process management.

23.1 The .NET Assembly

An assembly is a reusable, self-describing, versionable deployment unit for
types and resources. Because it is self-describing, it allows the .NET run-
time to fully understand the application and enforce dependency and ver-
sioning rules. Unlike Java—in which both a stand-alone application and a
component library are deployed as a .jar file—assemblies come in four
types or formats:

1. exe. A console executable. The application must contain one entry
point defined in the Main method.

2. Library. A library (DLL) that can be used by other assemblies.
3. Module. A nonexecutable collection of compiled code for use in

other assemblies.
4. winexe. A graphical Windows executable. The assembly must con-

tain one entry point.

An assembly consists of the following components:

� A manifest that contains the assembly metadata
� One or more modules
� Resource files, such as icons for Windows applications

Let’s explore each of these in detail.

23.1.1 The Assembly Manifest

The assembly manifest consists of metadata describing the assembly and
the types inside the assembly. The manifest is automatically created when
the compiler creates an assembly.

A manifest consists of the following components:

Creating an Assembly 625

� Information about the name, version, culture, and strong name, as
well as general descriptive information (company name, product
name, description, and copyright). The culture information indicates
the language supported by the assembly. The version information
consists of the major, minor, build, and revision numbers that the
runtime uses to enforce versioning policy. The strong name is a
globally unique name tag given to an assembly so that it can be iden-
tified in a shared context. The general descriptive information
regarding copyright, product, and company name can easily be
changed by the end user (shown later).

� A list of compiled code files that make up the assembly.
� Information about the types exported by the assembly and refer-

ences to any other assemblies that are required to support the types
of this assembly.

Microsoft Intermediate Language (MSIL) code in a portable exe-
cutable (PE) file will not be executed if it does not have an associated
assembly manifest.

23.1.2 Modules

Often, a complex application can consist of components written in different
languages. Modules are designed to hold disparate components so that they
can be developed in parallel in totally different languages and later inte-
grated into one assembly. Modules contain one or more .NET types. Mod-
ules can contain types from more than one namespace, and modules can be
compiled from one or more source files.

23.1.3 Resources

Resources let you separate text and images (static content for those work-
ing with Web applications) from the application logic, thereby simplifying
the maintenance of the application.

23.2 Creating an Assembly

In its simplest form, an assembly is a single file with an .exe, .dll, or
.module file extension. This file contains a single module and a manifest.

626 Chapter 23 Assemblies, Application Configuration, and Process Management

Let’s create an assembly of type exe. You will need two source files:
HelloWorld.cs and HelloWorldDriver.cs. The contents of the source files
are shown in Listings 23.1 and 23.2.

Listing 23.1 HelloWorld.cs (C#)

public class HelloWorld {

public override string ToString() {

return “Hello World”;

}

}

Listing 23.2 HelloWorldDriver.cs (C#)

using System;

public class HelloWorldDriver {

public static void Main(string[] args) {

HelloWorld hw = new HelloWorld();

Console.WriteLine(hw.ToString());

}

}

Next, we use the following command to create an EXE assembly:

csc /target:exe /out:MyApp.exe *.cs

We specify the type of assembly using the /target option. The /out option
allows us to name the EXE file.

Note that for the EXE file to be created, the compiled classes should
have an entry point defined in a Main() method (Listing 23.2). After the
EXE assembly is created, you can view its properties by right-clicking on
the file name. Some of the properties displayed are the general information
section of the manifest discussed earlier. Note that this information can be
customized so that when you right-click on the EXE file you can view prod-
uct, version, and copyright information that is customized to suit your
needs.

To customize this information, we edit a special file called Assembly
Info.cs and compile it with the rest of our source files. Here is a sample
AssemblyInfo.cs:

Creating an Assembly 627

using System.Reflection;

using System.Runtime.CompilerServices;

[assembly: AssemblyTitle(“”)]

[assembly: AssemblyDescription(“This is test”)]

[assembly: AssemblyCompany(“Acme Inc”)]

[assembly: AssemblyProduct(“Acme Product”)]

[assembly: AssemblyCopyright(“Buyer beware”)]

[assembly: AssemblyTrademark(“”)]

[assembly: AssemblyCulture(“”)]

[assembly: AssemblyVersion(“1.0.0.1”)]

Next, we run the command again:

csc /target:exe /out:MyApp.exe *.cs

Upon running MyApp.exe we get the following output:

Hello World

The MyApp.exe file that is created now contains the extra information
that was specified in the AssemblyInfo.cs file. You can view this informa-
tion by clicking on the Version tab of the MyApp.exe properties box.

As mentioned earlier, assemblies do not have to be of type .exe. You
can create a .dll or a .module module by using the appropriate /target
command line option:

csc /target:library /out:MyApp.dll *.cs

csc /target:module /out:MyApp.module *.cs

In both cases, the metadata information specified in AssemblyInfo.cs is
retained in the end product (MyApp.dll or MyApp.module).

Assemblies can consist of one or more modules. This is typical in com-
plex applications in which the modules may be developed by different
teams, perhaps in different languages. To illustrate this, we will need
two more source files. Listings 23.3 and 23.4 show the GoodByeWorld and
GoodByeWorldDriver classes.

Listing 23.3 GoodByeWorld.cs (C#)

public class GoodByeWorld {

public override string ToString() {

628 Chapter 23 Assemblies, Application Configuration, and Process Management

return “Good Bye World”;

}

}

Listing 23.4 GoodByeWorldDriver.cs (C#)

using System;

public class GoodByeWorldDriver {

public static void Main(string[] args) {

GoodByeWorld hw = new GoodByeWorld ();

Console.WriteLine(hw.ToString());

}

}

Next, we compile the Hello*.cs files into a Hello.module and compile
the GoodBye*.cs files into a GoodBye.module:

csc /target:module /out:GoodBye.module Good*.cs

csc /target:module /out:Hello.module Hello*.cs

Then we combine the two modules into a Greeting.exe assembly:

al /target:exe /out:Greeting.exe /main:HelloWorldDriver.Main

Hello.module GoodBye.module

The assembly linker EXE file (al.exe) is used to link the two modules
into a Greeting.exe. This concept of linking binary code to create an exe-
cutable is similar to linking .obj files to create .exe files in traditional
C/C++ environments.

Note that both the modules have an entry point defined, and so when
we construct the Greeting.exe assembly we specify which Main() method
we want to use as the entry point for that EXE. Running the Greeting.exe
program now results in the following output:

Hello World

Now we run the command again, this time changing the value of the
/main option:

Programmatic Access to Assemblies 629

al /target:exe /out:Greeting.exe /main:GoodByeWorldDriver.Main

Hello.module GoodBye.module

Running the Greeting.exe program now results in the following output:

Good Bye World

Assemblies can therefore be single file assemblies or multiple file assem-
blies (consisting of modules linked to each other).

The Greeting.exe assembly is now made up of two modules:
GoodBye.module and Hello.module. Each module has an entry point
defined, and the Greeting.exe assembly can adopt the entry point of any
one of the modules. Depending on the entry point specified at the time the
Greeting.exe assembly is created, the output of Greeting.exe can be
either Good Bye World or Hello World.

23.3 Programmatic Access to Assemblies

Fortunately, .NET assemblies are not just black boxes. A .NET assembly is
represented by the Assembly class of the System.Reflection namespace.
You can use this class to gain programmatic access to the components of an
assembly. Listing 23.5 shows how to load the assemblies created earlier and
explore them.

Listing 23.5 Loading and Browsing an Assembly in C#

using System;

using System.Reflection;

public class AssemblyExplore {

public static void Main(string[] args) {

Assembly asm = Assembly.LoadFrom(“C:\\BOOK\\

code\\Chapter 23\\Greeting.exe”);

//Prints the properties of the assembly

PrintProperties(asm);

630 Chapter 23 Assemblies, Application Configuration, and Process Management

//Browse the modules of the assembly

BrowseModules(asm);

}

private static void PrintProperties(Assembly asm) {

Console.WriteLine(“CodeBase ”+asm.CodeBase);

Console.WriteLine(“Location ”+asm.Location);

Console.WriteLine(“Global Assembly Cache

”+asm.GlobalAssemblyCache);

Console.WriteLine(“EntryPoint ”+asm.EntryPoint.ToString());

Console.WriteLine(“FullName ”+asm.FullName);

}

private static void BrowseModules(Assembly asm) {

foreach (Module m in asm.GetModules()) {

BrowseModule (m);

}

}

private static void BrowseModule(Module m) {

Console.WriteLine(“Module ” .Name);

foreach (Type t in m.GetTypes()) {

Console.WriteLine(“\tType ”+t.FullName);

foreach (MethodInfo method in t.GetMethods()) {

Console.WriteLine(“\t\tMethod signature

”+method.ToString());

}

}

}

}

The output of Listing 23.5 is as follows:

CodeBase file:///C:/BOOK/code/Chapter 23/Greeting.exe

Location c:\book\code\chapter 23\greeting.exe

Global Assembly Cache False

EntryPoint Void __EntryPoint(System.String[])

FullName Greeting, Version=0.0.0.0, Culture=neutral,

PublicKeyToken=null

Module greeting.exe

Programmatic Access to Assemblies 631

Module hello.module

Type HelloWorld

Method signature Int32 GetHashCode()

Method signature Boolean Equals(System.Object)

Method signature System.String ToString()

Method signature System.Type GetType()

Type HelloWorldDriver

Method signature Int32 GetHashCode()

Method signature Boolean Equals(System.Object)

Method signature System.String ToString()

Method signature Void Main(System.String[])

Method signature System.Type GetType()

Module goodbye.module

Type GoodByeWorld

Method signature Int32 GetHashCode()

Method signature Boolean Equals(System.Object)

Method signature System.String ToString()

Method signature System.Type GetType()

Type GoodByeWorldDriver

Method signature Int32 GetHashCode()

Method signature Boolean Equals(System.Object)

Method signature System.String ToString()

Method signature Void Main(System.String[])

Method signature System.Type GetType()

The output of Listing 23.5 should be self-explanatory based on what we
did earlier while constructing the assembly. There are two modules that
contain types. The hello.module file contains the HelloWorld and the
HelloWorldDriver classes. The goodbye.module file contains the Good
ByeWorld and GoodByeWorldDriver classes. The method signatures of
the methods of these two classes are listed in the output generated by List-
ing 23.5.

Notice that HelloWorld, HelloWorldDriver, GoodByeWorld, and
GoodByeWorldDriver are simple classes; so where did all these methods
come from? Remember that all classes extend System.Object. What you
see in the output are the System.Object methods inherited by these
classes.

The Assembly class provides methods to retrieve information about the
assembly. There are no methods provided to modify the assembly. Chapter

632 Chapter 23 Assemblies, Application Configuration, and Process Management

22 discusses the reflection emit mechanism, which can be used to create
dynamic assemblies (see Listing 22.9).

So far, the assemblies we’ve created have been private assemblies—that
is, specific to the application in question. Many times, applications depend
on a shared assembly to function. The notion of sharing an assembly
becomes more apparent when the assembly is a type library (a DLL file).
Think of multiple EXE files using the same DLL (sound familiar?). A .NET
shared assembly is more than just a static DLL that is referenced by the
applications.

Consider a Java Web application deployed in a J2EE-compliant Web
container. The container has library files that are infrastructure .jar files
used by all applications deployed in that container. It makes little sense to
deploy this common set of .jar files every time a new Web application is
deployed. What is needed is a mechanism by which the container automat-
ically knows to use the shared .jar file when an application makes a refer-
ence to it. Java handles this mechanism using a class-loader hierarchy.
Because the application references the shared .jar file at runtime, it only
makes sense that for the application to compile, it would need to reference
that .jar file at compile time. The .jar file required at compile time need
not be in the same location as the one required at runtime.

In .NET, a shared assembly is in many ways similar to that J2EE infra-
structure .jar file. But .NET does not have the concept of class loaders or
class paths, so how does the CLR know where to look when an application
references a DLL it cannot find in its assembly? The Global Assembly
Cache (GAC) is a directory (usually C:\Windows\assembly or
C:\WINNT\assembly) where the CLR can locate such shared assemblies.
Although it is not necessary to put the shared assembly in the GAC, it
makes for easier deployment if shared assemblies are kept there. The .NET
Framework provides a tool called the GAC tool (gacutil.exe) to install
shared assemblies in the GAC.

Sharing an assembly means that the assembly should have a name that
is globally unique. Such a name is called the strong name of the assembly.
It consists of the name, version information, culture information, and a
public key for cryptography. The AssemblyInfo.cs file can be used to
modify the strong name components of an assembly. To create a public key,
the .NET Framework provides a strong name tool called sn.exe, which
creates a key file that can be referenced in the AssemblyInfo.cs. The fol-
lowing command creates a Hello.snk key file containing the cryptographic
public key:

Programmatic Access to Assemblies 633

sn–k Hello.snk

Next, we create the AssemblyInfo.cs file with all the strong name
components specified, as shown in boldface in Listing 23.6.

Listing 23.6 AssemblyInfo with Strong Name Components (C#)

using System.Reflection;

using System.Runtime.CompilerServices;

[assembly: AssemblyTitle(“MyApp”)]

[assembly: AssemblyDescription(“A simple app”)]

[assembly: AssemblyCompany(“MyCompany.com”)]

[assembly: AssemblyProduct(“MyApp”)]

[assembly: AssemblyCopyright(“This is the property of

MyCompany.com”)]

[assembly: AssemblyTrademark(“”)]

[assembly: AssemblyCulture(“”)]

[assembly: AssemblyVersion(“1.0.0.0”)]

[assembly: AssemblyKeyFile(“Hello.snk”)]

If you run the following command, the Hello.dll is created with a
strong name:

csc /target:library /out:Hello.dll HelloWorld.cs AssemblyInfo.cs

Now store it in the GAC using this command:

gacutil /i Hello.dll

When the DLL is installed in the GAC, an application is free to use it
at runtime. But first, the application must use the DLL at compile time to
compile itself. To do this, we copy the DLL from the GAC into the direc-
tory where you would compile your application. Let’s compile HelloWorld
Driver using this new DLL:

csc /target:exe /out:MyApp.exe HelloWorldDriver.cs

/reference:Hello.dll

634 Chapter 23 Assemblies, Application Configuration, and Process Management

Now remove Hello.dll from the local directory. When we run MyApp
it should print the following as output:

Hello World

We have just created an EXE (MyApp.exe) that references a shared
assembly (Hello.dll).

23.4 Versioning

In Section 23.3 you learned how to create an application that references a
GAC assembly.

Sharing libraries among applications brings home the age-old problem
regarding which version of the common library is being used by which
application. Can applications that use two different versions of the same
DLL coexist? How do you upgrade an application to use the new version of
the DLL? Fortunately, .NET answers all these questions.

To illustrate versioning, we will create a new Hello.dll consisting of an
AssemblyInfo.cs (Listing 23.7) with a different strong name and a differ-
ent HelloWorld.cs (Listing 23.8).

Listing 23.7 Modified AssemblyInfo with Strong Name Components (C#)

using System.Reflection;

using System.Runtime.CompilerServices;

[assembly: AssemblyTitle(“MyApp”)]

[assembly: AssemblyDescription(“A simple app”)]

[assembly: AssemblyCompany(“MyCompany.com”)]

[assembly: AssemblyProduct(“MyApp”)]

[assembly: AssemblyCopyright(“This is the property of

MyCompany.com”)]

[assembly: AssemblyTrademark(“”)]

[assembly: AssemblyCulture(“”)]

[assembly: AssemblyVersion(“2.0.0.0”)]

[assembly: AssemblyKeyFile(“Hello.snk”)]

Versioning 635

Note that in Listing 23.7 we need only change the version number in
order to change the strong name of an assembly. Next, we create a slightly
different HelloWorld class.

Listing 23.8 A Slightly Different HelloWorld Class (C#)

public class HelloWorld {

public override string ToString() {

return “A slightly different Hello World”;

}

}

Next, we quickly create Hello.dll, register it in the GAC, and compile
the HelloWorldDriver class using this new DLL.

csc /target:library /out:Hello.dll HelloWorld.cs AssemblyInfo.cs

gacutil /i Hello.dll

csc /target:exe /out:MyApp.exe HelloWorldDriver.cs

/reference:Hello.dll

Now type MyApp, and you should see the following output:

A slightly different Hello World

To list the contents of the GAC, you type gacutil /l. This will output
all the shared assemblies in your environment. You will see the two versions
of Hello.dll in the output:

Hello, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=cc6fce1c7117f564om=null

Hello, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=cc6fce1c7117f564om=null

Note that the version information is different for the two assemblies.
Now that we have two assemblies in the GAC, how do we force an

application to use the desired version of the assembly? The .NET Frame-
work supports assembly policy files, which are XML files that indicate

636 Chapter 23 Assemblies, Application Configuration, and Process Management

how the assembly is to be upgraded. A sample policy file is shown in List-
ing 23.9.

Listing 23.9 A Sample .NET Policy File (C#)

<configuration>

<runtime>

<assemblyBinding>

<dependentAssembly>

<assemblyIdentity name=“Hello”

publicKeyToken=“cc6fce1c7117f564”

culture=“”/>

<bindingRedirect oldVersion=“1.0.0.0”

newVersion=“2.0.0.0”/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

The new policy-based Hello.dll is then created using the following
command:

al /link:policy.xml /keyfile:Hello.snk /out:policy.1.0.Hello.dll

Note that the name format of the new Hello.dll includes the word
policy with a number indicating clearly that the assembly enforces a pol-
icy. The next step is to register this policy-based DLL in the GAC:

gacutil /i policy.1.0.Hello.dll

23.5 Application Configuration

Many applications rely on external static settings that they read before they
do something useful. Such settings are never hardcoded in the application
itself, because doing so forces a recompilation of the application whenever
a simple static setting changes.

Application Configuration 637

A traditional approach is to store these static settings in a static config-
uration file. Java programmers are probably thinking about .properties
files. A Java property file is a file containing name/value pairs that can be
used at runtime by the application. JDK 1.4 introduced a more structured
way of storing these settings in a class called java.util.Preferences.

The .NET Framework comes with its own arsenal of classes that allow
configuration of the application. Because everything is XML-based in the
.NET Framework, there is no special syntax to be learned. The framework
provides a rich API for reading these configuration files.

A .NET configuration file ends with the .config file extension. For the
application MyApp.exe the configuration file would be MyApp.exe.config.
For multiple-file assemblies, the configuration file is named after the file
that contains the manifest. The CLR ensures that the configuration files are
loaded automatically, and therefore no special effort is needed by the pro-
grammer. The configuration files must contain the root XML node <config
uration>.

In its simplest form, custom application settings are defined in the
<appSettings> section of the configuration file. The settings are defined as
key-value pairs.

<configuration>

<appSettings>

<add key=“Key1” value=“Value1”/>

<add key=“Key2” value=“Value2”/>

<add key=“Key3” value=“Value3”/>

</appSettings>

You can also specify sections in the configuration file. Sections are used
to define complex settings. There are three types of sections depending on
the handler that is specified for each section: a single-tag section, a
name/value section, and a dictionary section.

23.5.1 Single-Tag Section

A single-tag section allows you to define the key-value pairs as an attri-
bute of a single XML tag:

<configuration>

<configSections>

638 Chapter 23 Assemblies, Application Configuration, and Process Management

<section name=“Single”

type=“System.Configuration.SingleTagSectionHandler”/>

</configSections>

<Single Key1 = “Value1”

Key2 = “Value2”

Key3 = “Value3”></Single>

</configuration>

23.5.2 Name/Value Section

A name/value section allows you to define the key-value pairs in the same
way as the simple settings are defined:

<configuration>

<configSections>

<section name=“NameValue”

type=“System.Configuration.NameValueSectionHandler” />

</configSections>

<NameValue>

<add key=“Key1” value=“Value1”/>

<add key=“Key2” value=“Value2”/>

<add key=“Key3” value=“Value3”/>

</NameValue>

</configuration>

23.5.3 Dictionary Section

A dictionary section is similar to a name/value section except that a dic-
tionary section uses a different section handler:

<configuration>

<configSections>

<section name=“ Dictionary”

type=“System.Configuration.DictionarySectionHandler” />

</ configSections >

<Dictionary>

<add key=“Key1” value=“Value1”/>

<add key=“Key2” value=“Value2”/>

<add key=“Key3” value=“Value3”/>

</Dictionary>

</configuration>

Application Configuration 639

You can even signal the configuration file parser to ignore sections by
making the section handler an IgnoreSectionHandler.

<configuration>

<configSections>

<section name=“Advanced”

type=“System.Configuration.IgnoreSectionHandler” />

</configSections>

<Advanced>

<add key=“Key1” value=“Value1”/>

<add key=“Key2” value=“Value2”/>

<add key=“Key3” value=“Value3”/>

</Advanced>

</configuration>

23.5.4 A Sample Config File

Listings 23.10 and 23.11 show how to handle the simple application settings
along with the section settings we’ve discussed. Listing 23.10 shows the
complete MyApp.config file.

Listing 23.10 A Sample .NET Config File (C#)

<configuration>

<configSections>

<section name=“Single”

type=“System.Configuration.SingleTagSectionHandler” />

<section name=“NameValue”

type=“System.Configuration.NameValueSectionHandler” />

<section name=“Dictionary”

type=“System.Configuration.DictionarySectionHandler” />

</configSections>

<appSettings>

<add key=“SimpleKey1” value=“SimpleValue1”/>

<add key=“SimpleKey2” value=“SimpleValue2”/>

<add key=“SimpleKey3” value=“SimpleValue3”/>

</appSettings>

640 Chapter 23 Assemblies, Application Configuration, and Process Management

<Single SingleKey1 = “SingleValue1”

SingleKey2 = “SingleValue2”

SingleKey3 = “SingleValue3” />

<NameValue>

<add key=“NameValueKey1” value=“NameValueValue1”/>

<add key=“NameValueKey2” value=“NameValueValue2”/>

<add key=“NameValueKey3” value=“NameValueValue3”/>

</NameValue>

<Dictionary>

<add key=“DictionaryKey1” value=“DictionaryValue1”/>

<add key=“DictionaryKey2” value=“DictionaryValue2”/>

<add key=“DictionaryKey3” value=“DictionaryValue3”/>

</Dictionary>

</configuration>

Note that there can be only one <configSections> element of the
<configuration> root, and it must be the first child of the root node. List-
ing 23.11 shows how the different settings of the config file are read.

Listing 23.11 A Simple C# Class to Read the Application Settings

using System;

using System.Collections;

using System.Collections.Specialized;

using System.Configuration;

public class MyApp {

public static void Main(string[] args) {

//Read simple settings

ReadSimpleSettings();

//Read single-tag settings

ReadSingleTagSettings();

//Read single-tag settings

ReadNameValueSettings();

//Read single-tag settings

ReadDictionarySettings();

}

Application Configuration 641

private static void ReadSimpleSettings() {

Console.WriteLine(

ConfigurationSettings.AppSettings[“SimpleKey1”]);

}

private static void ReadSingleTagSettings() {

IDictionary dict = (IDictionary)

ConfigurationSettings.GetConfig(“Single”);

Console.WriteLine(dict[“SingleKey2”]);

}

private static void ReadNameValueSettings() {

NameValueCollection dict = (NameValueCollection)

ConfigurationSettings.GetConfig(“NameValue”);

Console.WriteLine(dict[“NameValueKey3”]);

}

private static void ReadDictionarySettings() {

Hashtable dict = (Hashtable)

ConfigurationSettings.GetConfig(“Dictionary”);

Console.WriteLine(dict[“DictionaryKey1”]);

}

}

The output of Listing 23.11 is as follows:

SimpleValue1

SingleValue2

NameValueValue3

DictionaryValue1

The code in Listing 23.11 is self-explanatory. The Configuration
Settings class of the System.Configuration namespace contains all
the methods needed to parse a config file. Note that the object returned by
the GetConfig method is cast to the appropriate collection depending on the
section being read.

Note also that the collections returned by the ConfigurationSettings
class are read-only. You cannot use this class to modify the config file. You
should do this manually.

642 Chapter 23 Assemblies, Application Configuration, and Process Management

23.6 Process Management

Traditionally, the unit of isolation for applications has been at the process
level. A dedicated operating system user process is allocated to every
instance of the running application, and stopping the application means
killing the OS process. The .NET Framework introduces the concept of
application domains, which are new, lighter units of isolation. The CLR
allows a process to consist of many application domains, each independent
of the others. Application domains thus create a boundary for applications
to coexist within the same OS process. Hence, an interapplication method
call is made within the same OS process, and that is lighter than making an
interprocess method call. Applications can be stopped independently of
each other, and a fault in one application does not affect the other applica-
tions in the same OS process.

The .NET application domain concept is reminiscent of Web-
application isolation provided by Java-based application servers. The J2EE
specification mandates that Web applications be independent of each other
even though they are created in the same JVM instance. Classes loaded in
one Web application are not available to another Web application. This iso-
lation is achieved by having different class loaders for each Web application.

Associated with each application is an application domain. When you
start, say, a .NET shell executable from the command line, a piece of soft-
ware creates the default application domain and your application-specific
domain. This piece of software is the CLR host. The CLR host is respon-
sible for loading the CLR into the OS process, creating a logical partition
within the OS process so that your application can reside in that partition.
Running a .NET shell executable automatically invokes the CLR host asso-
ciated with shell executables. In .NET an application domain is modeled
using the System.AppDomain class.

23.6.1 Querying the Current Application Domain

Listing 23.12 shows how a shell executable can query its current application
domain and get at its properties.

Listing 23.12 Current Application Domain Properties (C#)

using System;

using System.Threading;

Process Management 643

public class Test {

public static void Main(string[] args) {

AppDomain domain = Thread.GetDomain();

Console.WriteLine(“Friendly name ”+domain.FriendlyName);

Console.WriteLine(“Base directory ”+domain.BaseDirectory);

AppDomainSetup setup = domain.SetupInformation;

Console.WriteLine(“ApplicationBase ”+setup.

ApplicationBase);

Console.WriteLine(“ApplicationName ”+setup.

ApplicationName);

Console.WriteLine(“Config file ”+setup.ConfigurationFile);

}

}

The output of Listing 23.12 is as follows:

Friendly name Deployment.exe

Base directory C:\BOOK\code\Chapter 23\Deployment\bin\Debug\

ApplicationBase C:\BOOK\code\Chapter 23\Deployment\bin\Debug\

ApplicationName

Config file C:\BOOK\code\Chapter

23\Deployment\bin\Debug\Deployment.exe.config

You can obtain the application domain of the application by calling the
GetDomain method of the current thread. The AppDomain class defines sev-
eral properties of interest.

23.6.2 Executing an Application in a Remote Application
Domain

To execute an application in another application domain, you must first cre-
ate that application domain. Listing 23.13 shows how.

Listing 23.13 Executing an Assembly inside a Custom Application Domain
(C#)

using System;

public class Test {

644 Chapter 23 Assemblies, Application Configuration, and Process Management

public static void Main(string[] args) {

AppDomainSetup info = new AppDomainSetup();

info.ApplicationBase = System.Environment.CurrentDirectory;

AppDomain dom = AppDomain.CreateDomain(

“RemoteDomain”, null,info);

dom.ExecuteAssembly(“c:\\book\\code\\Chapter 23\\MyApp.exe”);

AppDomain.Unload(dom);

}

}

The output of Listing 23.13 is as follows:

A slightly different Hello World

Listing 23.13 creates a custom application domain called RemoteDomain
and executes and runs a previously developed assembly (MyApp.exe). Note
that in this case the application that is run is trivial, but in practice the
application can be complex, and it is important to unload the assembly.
There is no API for unloading an assembly directly, but you can do so by
unloading the application domain in which it runs:

AppDomain.Unload(dom);

23.6.3 Invoking a Method in a Remote Application Domain

As mentioned earlier, in the absence of application domains, invoking
methods of other applications typically means making an interprocess
call, which is slower than making an intraprocess call. To demonstrate
how to call a method of a class loaded in another application domain, we
first create a simple class and create a library type assembly (DLL) out of
it. Listing 23.14 shows the RemoteHello class that we will use to create
the DLL.

Listing 23.14 RemoteHello.cs (C#)

using System;

public class RemoteHello : MarshalByRefObject {

Process Management 645

string greeting;

public RemoteHello(string greeting) {

this.greeting = greeting;

}

public void Greet() {

Console.WriteLine(“Hello ”+greeting);

}

}

MarshalByRefObject is an abstract class that enables access to objects
across application domain boundaries.

Next, we compile RemoteHello.cs into RemoteHello.dll:

csc /target:library /out:RemoteHello.dll RemoteHello.cs

Now that we have the DLL, Listing 23.15 shows how to call the
Greet() method by loading the DLL in a custom application domain.

Listing 23.15 RemoteHelloDriver.cs (C#)

using System;

using System.Reflection;

using System.Runtime.Remoting;

public class Test {

public static void Main(string[] args) {

//Set up information regarding the application domain

AppDomainSetup info = new AppDomainSetup();

info.ApplicationBase = System.Environment.CurrentDirectory;

// Create an application domain with null evidence

AppDomain dom = AppDomain.CreateDomain(

“RemoteDomain”, null,info);

BindingFlags flags = (BindingFlags.Public |

BindingFlags.Instance | BindingFlags.CreateInstance);

ObjectHandle objh = dom.CreateInstance(“RemoteHello”,

“RemoteHello”, false, flags, null, new String[]{“Hello

World!”}, null, null, null);

646 Chapter 23 Assemblies, Application Configuration, and Process Management

Object obj = objh.Unwrap();

// Cast to the actual type

RemoteHello h = (RemoteHello)obj;

// Invoke the method

h.Greet();

// Clean up by unloading the application domain

AppDomain.Unload(dom);

}

}

Because Listing 23.15 references the RemoteHello class, we must com-
pile it using the following command line:

csc /r:RemoteHello.dll RemoteHelloDriver.cs

If we now run the RemoteHelloDrive.exe we will see the following
output:

Hello Hello World!

Being able to execute other applications or even call methods on types
defined in other applications without slowing execution is a huge positive of
the .NET Framework. It allows enterprise developers to develop and
deploy common enterprise components in one assembly and reuse those
components in other applications.

We mentioned earlier that multiple applications can be run in a sin-
gle OS process using the application domain as the unit of isolation and
that you can stop one application without affecting the other. To illustrate
this, we create Application1.cs (Listing 23.16) and Application2.cs
(Listing 23.17) and then create the assemblies Application1.exe and
Application2.exe, respectively, from the two listings.

Listing 23.16 Application1.cs (C#)

using System;

using System.Threading;

public class Test {

Process Management 647

static void Main(string[] args) {

Thread t = new Thread(new ThreadStart(new Test().Run));

t.Start();

}

public void Run() {

while (true) {

Thread.Sleep(400);

Console.WriteLine(“Running App 1”);

}

}

}

Run the following command to create the Application1.exe assembly:

csc Application1.cs

Next, we create Application2.cs (Listing 23.17).

Listing 23.17 Application2.cs (C#)

using System;

using System.Threading;

public class Test{

static void Main(string[] args) {

Thread t = new Thread(new ThreadStart(new Test().Run));

t.Start();

}

public void Run() {

while (true) {

Thread.Sleep(500);

Console.WriteLine(“Running App 2”);

}

}

}

Run the following command to create the Application2.exe assembly:

648 Chapter 23 Assemblies, Application Configuration, and Process Management

csc Application2.cs

Now we create the source file that we will use to create two application
domains and run Application1.exe and Application2.exe in these two
domains. We will call this class Monitor.cs (Listing 23.18).

Listing 23.18 Monitor.cs (C#)

using System;

using System.Threading;

using System.Reflection;

public class Test {

AppDomain dom1, dom2;

public Test() {

AppDomainSetup info = new AppDomainSetup();

info.ApplicationBase = System.Environment.CurrentDirectory;

dom1 = AppDomain.CreateDomain(“RemoteDomain1”, null, info);

dom2 = AppDomain.CreateDomain(“RemoteDomain2”, null, info);

dom1.ExecuteAssembly(“c:\\book\\code\\Chapter23

\\Deployment\\Application1.exe”);

dom2.ExecuteAssembly(“c:\\book\\code\\Chapter23

\\Deployment\\Application2.exe”);

public static void Main(string[] args) {

Thread t = new Thread(new ThreadStart(new Test().Run));

t.Start();

}

public void Run() {

Thread.Sleep(1000);

Console.WriteLine(“Unloading dom1”);

AppDomain.Unload(dom1);

Thread.Sleep(1000);

Console.WriteLine(“Unloading dom2”);

AppDomain.Unload(dom2);

}

}

Process Management 649

When we run Monitor.exe we get the following output:

Running App 1

Running App 2

Running App 1

Unloading dom1

Running App 2

Running App 2

Running App 2

Unloading dom2

The contents of Listing 23.18 are self-explanatory. The class instantiates
a thread, and in its constructor it creates two application domains and exe-
cutes Application1.exe and Application2.exe in those domains. Next,
the instantiated thread sleeps for 1,000 ms and then unloads the application
domain running Application1.exe. Note that after this statement, Appli-
cation2.exe is the only assembly running and printing. The main thread
then sleeps some more and then unloads the second application domain,
thereby stopping all the applications.

System.Diagnostics

The System.Diagnostics namespace contains many useful classes that
help your application code deal with the operating system. Although there
are several fun Windows-specific operations that you can do using the
classes in this namespace, one of the more important things, perhaps more
familiar to Java programmers, is monitoring the operating system process.
In Java, this is modeled using the java.lang.Process class. This class pro-
vides only read-only methods. You cannot create a process in Java using the
methods of this class. In .NET the Process class of this namespace can be
used to query existing process details as well as create new processes.

23.6.4 Querying Processes

Listing 23.19 shows how to query an existing process. The application
repeatedly prints the details of the current process in which it runs.
Because the application creates a thread, it keeps the process running, and
hence you will get an unending stream of output until you kill the process.

Listing 23.19 Getting the Current .NET Process Details (C#)

using System;

using System.Threading;

650 Chapter 23 Assemblies, Application Configuration, and Process Management

using System.Diagnostics;

public class OSProcessApp {

Process p;

public OSProcessApp() { p = Process.GetCurrentProcess(); }

static void Main(string[] args) {

Thread t = new Thread(new ThreadStart(new

OSProcessApp().Run));

t.Start();

}

public void Run() {

while (true) {

Thread.Sleep(400);

Console.WriteLine(p.BasePriority);

Console.WriteLine(p.Id);

Console.WriteLine(p.TotalProcessorTime);

Console.WriteLine(p.UserProcessorTime);

Console.WriteLine(p.VirtualMemorySize);

Console.WriteLine(p.MachineName);

}

}

}

The output of Listing 23.19 will depend on your machine, but here is a
sample excerpt:

Priority 8

Id 1380

Total processor time 00:00:00.5007200

User processor time 00:00:00.2303312

Virtual memory size 90882048

Machine name .

Priority 8

Id 1380

Total processor time 00:00:00.5007200

Process Management 651

User processor time 00:00:00.2303312

Virtual memory size 90882048

23.6.5 Creating and Killing Processes

Listing 23.20 shows how to create a new process and then kill it. We create
and kill the process required to run Application1.exe, created earlier in
this chapter.

Listing 23.20 Creating and Killing Processes (C#)

using System;

using System.Threading;

using System.Diagnostics;

public class Test {

static void Main(string[] args) {

try {

Process p = Process.Start(“C:\\BOOK\\code\\Chapter

23\\Deployment\\Application1.exe”);

Thread.Sleep(5000);

p.Kill();

} catch (Exception e) {

Console.WriteLine(e.StackTrace);

}

}

}

When you run Listing 23.20 from the command line, a second console win-
dow pops up and prints the following:

Running App 1

Running App 1

Running App 1

Running App 1

Running App 1

Running App 1

652 Chapter 23 Assemblies, Application Configuration, and Process Management

After about 5 seconds the second pop-up console window automatically
closes itself.

Listing 23.20 uses the static method of the Process class to create
a process. You can use the constructor instead and specify the Pro
cessStartInfo parameters corresponding to this process.

23.6.6 Redirecting Process Output

Sometimes it is necessary to redirect the output generated by a particular
process. Java programmers attempting to get the process ID (PID) of a
UNIX process are perhaps familiar with this approach of running a UNIX
command and then parsing the output from the command. Listing 23.21
shows how to achieve that in C#.

Listing 23.21 Redirecting Output of a Process (C#)

using System;

using System.Diagnostics;

public class Test {

public static void Main() {

Process p = new Process();

p.StartInfo.FileName = “cmd.exe”;

p.StartInfo.Arguments = “/c dir *.exe”;

p.StartInfo.UseShellExecute = false;

p.StartInfo.RedirectStandardOutput = true;

p.Start();

string output = p.StandardOutput.ReadToEnd();

Console.WriteLine(“Output of command ”+output);

}

}

The output of Listing 23.21 is as follows:

Output of command Volume in drive C is Local Disk

Volume Serial Number is 50DD-3A83

Directory of C:\BOOK\code\Chapter 23\Deployment\bin\Debug

01/05/2003 10:13p 5,632 Deployment.exe

Process Management 653

1 File(s)5,632 bytes

0 Dir(s) 14,532,866,048 bytes free

23.6.7 Detecting Process Completion

Earlier we created a process and then killed it without caring whether the
process was finished executing. In practice, however, you want to know
whether the process has completed. The .NET Framework provides an
event handler hook that lets you know when the process has exited. Listing
23.22 takes the example in Listing 23.21 and adds event handling.

Listing 23.22 Detecting Process Completion (C#)

using System;

using System.Diagnostics;

public class Test {

public static void Main() {

Process p = new Process();

p.StartInfo.FileName = “cmd.exe”;

p.StartInfo.Arguments = “/c dir *.exe”;

p.StartInfo.UseShellExecute = false;

p.StartInfo.RedirectStandardOutput = true;

p.EnableRaisingEvents = true;

p.Exited += new EventHandler(ProcessDone);

p.Start();

string output = p.StandardOutput.ReadToEnd();

Console.WriteLine(“Output of command ”+output);

p.WaitForExit();

}

private static void ProcessDone(object sender, EventArgs e) {

Console.WriteLine(“Process Exited”);

}

}

654 Chapter 23 Assemblies, Application Configuration, and Process Management

The output of Listing 23.22 is as follows:

Volume Serial Number is 50DD-3A83

Directory of C:\BOOK\code\Chapter 23\Deployment\bin\Debug

01/05/2003 10:13p 5,632 Deployment.exe

1 File(s)5,632 bytes

0 Dir(s) 14,532,866,048 bytes free

23.6.8 Exiting a Process

Note that in Listing 23.22 we provide two ways of detecting process com-
pletion. One is by registering the ProcessDone event handler, and the other
is the WaitForExit method, which returns when the process is finished.

The Process class provides several interesting methods and is richer in
its API compared with its Java counterpart. For example, if you have been
Web surfing a lot lately and want to quickly kill all your IE browser
instances with one click, you can simply create an EXE assembly contain-
ing the code displayed in Listing 23.23.

Listing 23.23 Getting Rid of All IE Instances (C#)

using System;

using System.Diagnostics;

public class Test {

public static void Main() {

Process[] processes = Process.GetProcessesByName

(“IEXPLORE”);

foreach (Process p in processes) {

p.Kill();

}

}

}

C# also provides an API for querying services and operating system
(Windows) log files. Classes for reporting at the level of the operating sys-
tem are in the System.Diagnostics namespace.

Summary 655

23.7 Summary

Both C# and Java provide tools and APIs to package and manage applica-
tions.

� Applications in Java are class files or their packaged archive (.jar)
files. Depending on the application type, Java provides different fla-
vors of the .jar file (.war and .ear files). These archive files are
merely a collection of disk files. The unit of deployment in .NET is
an assembly. An assembly can be of the type EXE, module, or library
(DLL). An assembly can comprise a single file or multiple modules
(perhaps written in different languages). Assemblies are represented
by the System.Reflection.Assembly class. You can use this class to
explore assemblies, or you can use reflection to dynamically create
assemblies. Assemblies have globally unique strong names. Unlike
.jar, .war, or .ear files, assemblies can be versioned. An assembly
can have an associated version policy file that can dictate the upgrade
path of the assembly. It is possible for two similar assemblies of
different versions to coexist.

� Application configuration is built into .NET. Unlike Java property
files, the .NET configuration files are XML-based. Configuration
files are automatically recognized by the CLR. Configuration files
can contain sections of name/value pairs that can be accessed by the
System.Collections classes.

� In .NET, the unit of application isolation is an application domain. In
Java, depending on the application, the unit of application isolation
is the JVM instance; or, in the case of modern J2EE-compliant appli-
cation servers, it can be the Web application–specific class loader,
which allows for similar classes to coexist between two Web applica-
tions. In .NET, a single operating system process can contain several
application domains, each mapped to an application. These applica-
tions behave independently of each other. You can stop applications
without affecting sibling applications running in the same process. A
fault in one application does not affect other applications. Applica-
tion domains have built-in support for loading and executing remote
assemblies. You can call methods on types defined in remote appli-
cations without incurring any performance penalty because the
method call is intraprocess instead of interprocess.

656 Chapter 23 Assemblies, Application Configuration, and Process Management

� The .NET System.Diagnostics namespace provides several classes
for interacting with the operating system. One such class is the
Process class, which is similar to the java.lang.Process class.
However, unlike the Java counterpart, a .NET Process class lets you
do a lot. You can query, create, and kill processes.

