C Primer Plus, Fourth Edition Errata (1st Printing)

Chapter 2

Page 45. The last line should read

What is the program state after line7? line 8? line 9?

Chapter 3

Page 59. The first line of output from Listing 3.3 should read as follows:

dec = 100; octal = 144; hex = 64

Page 64, Line 13 (not counting blank lines)

Change

Reference Section X, "ASCII Table."

to

the table on the inside front cover.

Page 66. 8th line from bottom (not counting blank lines): Change to read as follows:

char nerf = '\n';

Page 76, program output.

Change the comment following the first line of output from

gcc, Linux

to

older gcc, Linux

Page 82, next to last paragraph. Reword the beginning as follows:

None of the compilers we tried raised any objections to this code. Nor were there any complaints when we ran the program. It is true that some compilers might catch this sort of error, but the C standard doesn't require them to. Thus, the computer may not catch this kind of error, and because the program may otherwise run correctly, you might notice the errors, either. [the rest of the paragraph is unchanged]

Chapter 4

Page 97, Figure 4.5

For consistency with the text, in the upper block of code (the one labeled "what you type"), replace taxrate with TAXRATE both times taxrate appears.

Chapter 6

Page 217, about 2/3rds down. Reword point 4 as follows:

Chapter 7

Page 258, 3rd line up from bottom (in PE 12)

Replace

Finally, use a loop

with

Finally, use loops

Chapter 8

Page 278, The last three lines on this page.

Delete this paragraph; it refers to a feature that I removed from the program this edition.

Chapter 9

Page 310, Text in Figure 9.3.

The text to the right of the first block of code should read as follows:

actual argument is 25, a value passed by main() to space() and assigned to the variable number
The text to the left of the second block of code should read as follows:

formal parameter is number, a variable declared in the function heading

Page 318, line 5 (not counting blank lines)

number number should be number

Page 325, line 6 (not counting blank lines)

1, 1, 2, 3, 5, 8, 11

should be

1, 1, 2, 3, 5, 8, 13

Chapter 10

Page 369, first line of code in the Dereferencing an Unintialized Pointer sidebar:

int pt; // an uninitialized pointer

should be

int * pt; // an uninitialized pointer

Page 373, line 11 from bottom, not counting blank lines:

const double * pc = rates; // pc points to beginning of the array

should be (note: pc changed to pd twice)

const double * pd = rates; // pd points to beginning of the array

Chapter 11

Page 447, PE 1. Complete the second line as follows:

blanks, tabs, and newlines, storing the results in an array whose address is passed as an argument.

Page 447, PE 3. modify the end of the first line thusly

first word from a line of input into an array and discards

Chapter 12

Page 492, PE 8. add the following line of code just under #include <stdio.h>
#include <stdlib.h>

Chapter 13

Page 523, PE 3, last line

Change test mode to text mode

Chapter 17

Page 681, Listing 17.3: most of the listing got omitted. It should read as follows:

Listing 17.3. The list.h Interface Header File

/* list.h -- header file for a simple list type */

#ifndef LIST_H_

#define LIST_H_

#pragma c9x on // for CW 6

#include <stdbool.h>

/* program-specific declarations */

#define TSIZE 45 /* size of array to hold title */

struct film

{

 char title[TSIZE];

 int rating;

};

/* general type definitions */

typedef struct film Item;

typedef struct node

{

 Item item;

 struct node * next;

} Node;

typedef Node * List;

/* function prototypes */

/* operation: initialize a list */

/* preconditions: plist points to a list */

/* postconditions: the list is initialized to empty */

void InitializeList(List * plist);

/* operation: determine if list is empty */

/* preconditions: l is an initialized list */

/* postconditions: function returns True if list is empty */

/* and returns False otherwise */

bool ListIsEmpty(List l);

/* operation: determine if list is full */

/* preconditions: l is an initialized list */

/* postconditions: function returns True if list is full */

/* and returns False otherwise */

bool ListIsFull(List l);

/* operation: determine number of items in list */

/* preconditions: l is an initialized list */

/* postconditions: function returns number of items in list */

unsigned int ListItemCount(List l);

/* operation: add item to end of list */

/* preconditions: item is an item to be added to list */

/* plist points to an initialized list */

/* postconditions: if possible, function adds item to end */

/* of list and returns True; otherwise the */

/* function returns False */

bool AddItem(Item item, List * plist);

/* operation: apply a function to each item in list */

/* preconditions: l is an initialized list */

/* pfun points to a function that takes an */

/* Item argument and has no return value */

/* postcondition: the function pointed to by pfun is */

/* executed once for each item in the list */

void Traverse (List l, void (* pfun)(Item item));

/* operation: free allocated memory, if any */

/* preconditions: l is an initialized list */

/* postconditions: any memory allocated for the list is freed */

/* and the list is set to empty */

void EmptyTheList(List * plist);

#endif

Appendix A

Page 745, RQ, 10, the line labeled Line 7:

replace not %f with not %c
sp 5/06/02
–4–

