
A P P E N D I X  D

NUMBER SYSTEMS

Introduction
Chapter 1, “Computers and Computer Programming: Basic Concepts.” introduced you to the
nature of computer hardware and its close connection to the binary number system. It also
hinted at the usefulness of other number systems to help programmers overcome the awk-
wardness of the binary number system. This appendix gives a thorough introduction to each
of the number systems and will show you how to utilize the octal and hexadecimal number
systems to cut through the cumbersome binary number system.

Binary Number System
The binary number system, also referred to as base 2, makes use of only two digits—1 and 0.
“Bi” in binary is analogous to bi in bicycle (two wheels). Each digit of the binary system is
called a bit originating from binary digit.

If we count from zero to eleven in the decimal system, as shown in Table D.1, we can observe
how the binary number system compares with the decimal number system.

You will learn about the following in this appendix:

• The four important number sys-
tems in computing—binary, octal,
decimal, and hexadecimal.

• Converting a number from one
number system to another.

• How to abbreviate binary num-
bers using the octal and hexadeci-
mal number systems, and why this
is useful.

• A number system converter pro-
gram written in C# and based on
recursion.

• The concepts two’s complement
and one’s complement to repre-
sent negative values by the binary
number system.

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 945



946 C# PRIMER PLUS

TABLE D.1 Counting with the Binary and Decimal Number Systems

Binary Decimal

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

1000 8

1001 9

1010 10

1011 11

When we reach 1 in the binary system, we run out of digits and are forced to increase the next
number to 10. Similarly, the number after 11 is 100. So 10 is greater than 1, 100 is greater
than 11, and 1000 is greater than 111. 1 in the third place from the right in 100 is worth more
than the two 1s in 11.

In the decimal system, we run out of digits at 9 and, accordingly, the next number is 10.
Similarly, the number after 99 is 100, and 1000 comes after 999. Again, 1 in the fourth posi-
tion from the right in 1000 is worth more than 999.

Here we are using positional notation in which digits written in different positions of the num-
ber have a different positional value. As we move to the left, the positional value increases. Most
conventional number systems apply the positional notation, the systems discussed in this
appendix in particular.

Then what exactly is the value ascribed to each position of a number in the binary system? To
answer this question, it is useful first to have a look at the positional values of the decimal sys-
tem displayed in Table D.2.

TABLE D.2 Positional Values in the Binary and Decimal Systems

Position 8 7 6 5 4 3 2 1

Binary
Positional 128 64 32 16 8 4 2 1
Value

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 946



Decimal
Positional 10000000 1000000 100000 10000 1000 100 10 1
Value

Position in Table D.2 refers to the position of each digit in an arbitrary number. The rightmost
digit is in position 1, and, as we move to the left, we increase the position by one for each new
digit we meet. For example, in the decimal number 768594, we have the following positions:

Digit 7 6 8 5 9 4

Position 6 5 4 3 2 1

We can establish a pattern for the positional value of a decimal number by looking at Table
D.2. In general, the value of each position in the decimal system can be viewed as

Positional value of position x in decimal system  = 10x-1

Consequently the positional value of position 3 is 103-1 = 100 as shown in Table D.2.

We can now understand exactly what we mean when we write an arbitrary decimal number,
such as 7684:

7684 = 7x103 + 6x102 + 8x101 + 4x100

The decimal system is built around powers of 10. This explains its name; decimal is derived
from the Latin word decimalis meaning of tithes—a 10% tax.

Each position has a positional name and is derived from the corresponding positional value. In
the last decimal number, we can say that 4 is written in the ones position (100 = 1), 8 is written
in the tens position (101 = 10), 6 is written in the hundreds position (102 = 100), and 7 is written
in the thousands position (103 = 1000).

Of course, this way of looking at decimal numbers is merely our unconscious thoughts made
explicit. We have been reasoning like this since we were small kids. However, this emphasis on
the obvious paves the way to understanding how values are calculated using the base 2, base
8, and base 16 number systems.

We can now utilize the logic applied to the positional values of the decimal number system to
work out the positional values of the binary number system. By looking at the values in Table
D.2, we discover the following pattern for determining base 2 positional values:

Positional value of position x in binary number system: 2x-1

Converting from the binary to the decimal number system can then be performed as illus-
trated by converting the binary number 100110 to base 10.

1x25 + 0x24 + 0x23 + 1x22 + 1x21 + 0x20 = 38

947Appendix D • NUMBER SYSTEMS

TABLE D.2 continued

Position 8 7 6 5 4 3 2 1

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 947



Like the decimal number system, each position in the binary number system has a name,
shown in Table D.3. The names are found simply by applying the 2x-1 rule and writing the
result with text. For example 26-1 = 32 makes thirty twos.

TABLE D.3 Positional Names for Digits in 100110

Digit 1 0 0 1 1 0

Position Name Thirty-twos Sixteens Eights Fours Twos Ones

Bits and Bytes
The byte concept is often used as a unit for memory size. One byte refers to a unit of usually
eight adjacently positioned bits in computer memory. A kilobyte is equal to 1,024 bytes, and a
megabyte is equal to 1,024 kilobytes.

Octal Number System
Table D.4 gives an overview of the digits used in the four number systems discussed in this
appendix. Octal numbers use the digits 0–7. Table D.5 compares the first 15 decimal numbers
to their octal counterparts.

TABLE D.4 Digits of the Four Number Systems

Binary Octal Decimal Hexadecimal
Digits Digits Digits Digits

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

948 C# PRIMER PLUS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 948



A

B

C

D

E

F

TABLE D.5 Counting with the Octal and Decimal Number Systems

Octal Decimal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

10 8

11 9

12 10

13 11

14 12

15 13

16 14

17 15

949Appendix D • NUMBER SYSTEMS

TABLE D.4 continued

Binary Octal Decimal Hexadecimal
Digits Digits Digits Digits

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 949



The octal numbers are based on powers of 8, just as the binary system is based on powers of 2.
Table D.6 shows the relationship between the positional values of base 8 and base 10 systems.

It is easy to confuse an octal number with a decimal number. For example, nothing in 126
hints as to whether this number should be interpreted as belonging to base 10 or base 8.
Consequently, we will use a common notation form to indicate an octal number—a 0 (zero)
prefix. Thus, 06542 is an octal number.

Note

It is not possible to specify a literal in C# to be a base 8 value by using the 0 prefix or any other 
notation.

When converting a number of base 8 to a number of base 10, we apply the same logic as with
the previous binary and decimal numbers. This is illustrated with 06542 as follows:

06542 = 6x83 + 5x82 + 4x81 + 2x80 = 6x512 + 5x64 + 4x8 + 2x1 = 3426

TABLE D.6 Positional Values in the Octal and Decimal Systems

Octal Decimal
Positional Positional

Position Value Value

8 2097152 10000000

7 262144 1000000

6 32765 100000

5 4096 10000

4 512 1000

3 64 100

2 8 10

1 1 1

Hexadecimal Number System
Hexadecimal numbers use the digits 0–9 and the letters A–F (you can also use lowercase a–f),
as shown in Table D.4. The first six letters of the alphabet were arbitrarily chosen but are pre-
ferred because they are easy to remember and easy to find on a keyboard.

To avoid confusion, hexadecimal numbers have a 0x or 0X prefix, for the same reason that we
use the prefix 0 with octal numbers. Thus, 0x4B2 is a base 16 number.

950 C# PRIMER PLUS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 950



Note

You can specify a number to be hexadecimal in C# by using the 0x (or 0X) prefix, as shown in the
following:

int distance;
distance = 0x15;
Console.WriteLine(“The distance is: “ + distance);

This prints out

The distance is: 21

to the console, because 0×15 is equal to 21 in the decimal system. 

Following the logic of bases 2, 8, and 10, we don’t experience any surprises when looking at
the positional values of base 16 numbers in Table D.8. Using 0x4B2 as an example, we say that
2 is written in the ones position, B is written in the sixteens position, and 4 is written in the
twohundredandfiftysixths position.

Hexadecimal numbers are based on powers of 16, shown in Table D.8, which then provides us
with enough information to calculate the base 10 value of 0x4B2.

0x4B2 = 4 x 162 + 11 x 161 + 2 x 160 = 1202      

Notice how 11 is substituted for B in the formula. In Table D.7, you can find the values for the
other letters A–F.

TABLE D.7 Counting with the Hexadecimal and Decimal Number Systems

Hexadecimal Decimal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

951Appendix D • NUMBER SYSTEMS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 951



B 11

C 12

D 13

E 14

F 15

10 16

11 17

12 18

TABLE D.8 Positional Values in the Hexadecimal and Decimal Systems

Position 8 7 6 5 4 3 2 1

Hexadecimal
Positional 268435456 16777216 1048576 65635 4096 256 16 1
Value

Decimal
Positional 10000000 1000000 100000 10000 1000 100 10 1
Value

The Practical Use of Octal Numbers and
Hexadecimal Numbers

Octal and hexadecimal numbers make it more convenient to work with the long cumbersome
binary numbers. In fact, we are able to abbreviate binary numbers by utilizing base 8 and base
16 numbers, as you will see shortly.

To understand how, we need to look at equivalent values of bases 2, 8, and 16 as shown in
Table D.9. One of the first things to notice is that each lengthy binary number can be
expressed concisely in either the octal or the hexadecimal number systems. For example 1111
is equivalent to 17 in base 8 and simply F in base 16. Even though each base 2 number also
has a shorter equivalent in base 10, this latter number system is not suitable for abbreviating
binary numbers.

952 C# PRIMER PLUS

TABLE D.7 continued

Hexadecimal Decimal

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 952



TABLE D.9 Base 2, Base 8, Base 16, and Base 10 Equivalents

Binary Octal Hexadecimal Decimal
Number Number Number Number
System System System System

0 0 0 0

1 1 1 1

10 2 2 2

11 3 3 3

100 4 4 4

101 5 5 5

110 6 6 6

111 7 7 7

1000 10 8 8

1001 11 9 9

1010 12 A 10

1011 13 B 11

1100 14 C 12

1101 15 D 13

1110 16 E 14

1111 17 F 15

10000 20 10 16

The underlying reason why base 8 and base 16 can be used to abbreviate base 2 numbers can
be found in the fact that 8 (being the base of base 8 numbers) and 16 (being the base of base
16 numbers) are powers of the base of the binary system (being 2). This is illustrated in 
Figure D.1.

953Appendix D • NUMBER SYSTEMS

23 = 8 and

Base of
Base 2

24 = 16

Base of
Base 8

Base of
Base 2

Base of
Base 8

FIGURE D.1
Relationships between
bases 2, 8, and 16.

This same relationship does not hold for base 10, which renders it useless for abbreviating
binary numbers.

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 953



954 C# PRIMER PLUS

Consider the binary number 100110010100; its equivalent base 16 number is 0x994.

To see how we can easily convert 100110010100 to 0x994, we need to separate the binary
number into three parts with each containing four consecutive digits. Underneath each part
we write the corresponding base 16 number, which can be found in Table D.9.

Base 2 1001 1001 0100
Base 16 9 9 4

This works because the base of base 16 is a power of the base of the binary system, as was
shown previously, enabling us to write:

Applying the same logic, we can use the octal number system to abbreviate our binary number
100110010100 from the previous example. This time, we need to break the binary number
into four parts each with three consecutive digits:

Base 2 100 110 010 100
Base 8 4 6 2 4

Thus, 100110010100 converts to 04624

Note

“Old” computers often use 3 bits to store a number; this makes the octal abbreviation method,
which uses 3 bits for each octal digit, very useful. However, because older computers are becoming a
rarity, the octal number system is not used as often today.

The hexadecimal system is the preferred number system today. Accordingly, only hexadecimal values
can be defined in C#, not values of base 8.

It is now a simple matter to reverse the process and convert base 8 and base 16 numbers to
base 2 numbers. For example, the octal number 04624 is converted to base 2 by writing the 4
as its binary equivalent 100, 6 converts to 110, 2 to 010, and 4 to 100. Combining them gives
us 100110010100. Exactly the same procedure is used when converting from base 16 num-
bers to base 2 numbers.

Converting from Base 10 to Bases 2, 8, and 16
We have already seen how we can convert from bases 2, 8, and 16 to base 10. Those conver-
sions followed naturally from the positional values. Albeit not as straightforward, the process
of converting from base 10 to bases 2, 8 and 16 is based on the same positional values. The
easiest way to understand the process is by looking at an example. Following are the steps you
need to take when converting 91 of base 10 to base 2.

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 954



1. Starting at the right side of the paper and moving to the left, write the positional values
of the base 2 number system beginning at position 1. Stop when we reach a position
with a value greater than the base 10 number 91. In this case, we stop at 128.

2. Remove the column with the value greater than our base 10 number. This leaves us

Take the number in the leftmost column and divide it into the base 10 number. Here, we
divide 64 into 91. The result is 1 with 27 as a remainder. We then write 1 under the 64
column (see Table D.10).

3. Find the rightmost column that is greater than 27; this is 32. Discard 32 and write a 0
under 32 (see Table D.10). Use the number on the right side of 32 to divide into our
remainder 27. 27/16 yields 1 with a remainder of 11. Now write 1 under 16. We repeat
the same process over and over to obtain the binary number 1011011.

TABLE D.10 Converting from Base 2 to Base 10 Using Positional Values

Positional values 64 32 16 8 4 2 1

Binary digits 1 0 1 1 0 1 1

Converting from base 10 to base 8 and base 16 follows the same pattern. Just exchange the
positional values of base 2 used in Table D.10 to the positional values corresponding to either
base 8 or base 16.

A Recursive C# Number System Converter
Program

Even though the process of converting numbers of base 10 to bases 2, 8 and 16 is straightfor-
ward, it is somewhat slow and cumbersome. To speed up the process, I have provided a C#
program, displayed in Listing D.1, that uses recursion as the fundamental mechanism to per-
form the conversions. If you haven’t yet read the chapter on recursion, don’t despair. You can
just copy in the program and use it as is without trying to understand it.

955Appendix D • NUMBER SYSTEMS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 955



Notice that the program further utilizes exception handling discussed in Chapter 19 to manage
invalid user input.

Pause for a moment and look at lines 49–57 of Listing D.1. These are, in fact, the few essential
lines of source code needed to perform our conversions. One can then only marvel at the ele-
gance and power of recursion.

The program is straightforward to use. It allows you to convert numbers of any base 2–16 to
numbers of base 10, but it cannot handle negative numbers.

LISTING D.1 Source Code of NumberSystemConverter.cs

01: using System;
02: 
03:  // Class enabling conversions from base 10 to any number system
04:  // with base between 2 and 16.
05: public class NumberSystemConverter
06: {
07:     const string digits = “0123456789abcdef”;
08: 
09:     public static void Main()
10:     {
11:         int decimalNumber;
12:         int baseNumber;
13:         string answer = “Y”;
14: 
15:         do
16:         {
17:             try
18:             {
19:                 Console.Write(“Enter decimal number: “);
20:                 decimalNumber = Convert.ToInt32(Console.ReadLine());
21:                 Console.Write(“Enter base: “);
22:                 baseNumber = Convert.ToInt32(Console.ReadLine());
23:                 if (baseNumber < 2 || baseNumber > 16)
24:                 {
25:                  throw (new InvalidBaseNumberException(“Invalid base number”));
26:                 }
27:                 Console.Write(“Result: “);
28:                 printBase(decimalNumber, baseNumber);
29:                 Console.WriteLine();
30:                 Console.Write(“Another conversion? y(es) n(o) “);
31:                 answer = Console.ReadLine().ToUpper();
32:                 Console.WriteLine();
33:             }
34: 
35:             catch (InvalidBaseNumberException ex)
36:             {
37:                 Console.WriteLine(“InvalidBaseNumberException: {0}”, ex);
38:             }
39: 
40:             catch (Exception ex)

956 C# PRIMER PLUS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 956



41:             {
42:                 Console.WriteLine(“Exception: {0}”, ex);
43:             }
44: 
45:         } while (answer == “Y”);
46:         Console.WriteLine(“Have a good day. Bye Bye!”);
47:     }
48: 
49:     public static void printBase(int n, int nBase)
50:     {
51:          // Recursive method to print n in any base
52:          // Assumes 2 <= nBase <= 16
53:         if (n >= nBase)
54:              // Method is calling itself, making it a recursive method.
55:             printBase(n / nBase, nBase);
56:         Console.Write(digits[n % nBase]);
57:     }
58: }
59: 
60: 
61: public class InvalidBaseNumberException : Exception
62: {
63:     public InvalidBaseNumberException()
64:     {
65:     }
66: 
67:     public InvalidBaseNumberException(string message) : base(message)
68:     {
69:     }
70: 
71:     public override string ToString()
72:     {
73:         return “Base is restricted to: 2 <= base <= 16”;
74:     }
75: }

The following is sample output from Listing D.1.

Enter decimal number: 20<enter>
Enter base: 2<enter>
Result: 10100
Another conversion? y(es) n(o) y<enter>

Enter decimal number: 420<enter>
Enter base: 8<enter>
Result: 644
Another conversion? y(es) n(o) y<enter>

Enter decimal number: 1202<enter>
Enter base: 16<enter>
Result: 4b2
Another conversion? y(es) n(o) n<enter>

957Appendix D • NUMBER SYSTEMS

LISTING D.1 continued

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 957



The Main method is defined in lines 9–47. It interacts with the user and makes sure, in line
23, that a correct base between 2 and 16 is entered.

If a correct base is entered, the conversion process is initiated by calling printBase in line 28.
printBase is the essential recursive method performing the actual conversion.

Proper exception handling using try and catch is employed to handle incorrect user input in
lines 17 and 35–43. For more information about exception handling, see Chapter 19.

A user-defined exception class is defined in lines 61–75 and thrown in line 25 in the case of
invalid user input.

Lines 49–57 are the essential lines of the program, performing the actual conversions through
the use of recursion. You can attempt to understand these lines without having read Chapter
23, “Recursion Fundamentals,” but reading this chapter certainly makes for a gentler introduc-
tion to the subject.

The path to an understanding of the printBase() method begins with a problem of displaying
numbers on the console.

Consider the task of printing out a non-negative number n on the console. In this scenario, we
assume that we do not have a number output method available (such as WriteLine()), but
that we can only print out one digit at a time on the console. A first hunch for designing an
algorithm to perform under these conditions might be to first isolate the leftmost digit and
print it, followed by the second leftmost, and so on. For example, to print the number 6487,
the algorithm needs to somehow isolate 6 and print it followed by 4, and so on. The downside
to this procedure is its sloppiness. It requires a loop to isolate each digit to be printed next,
from left to right. For example, to isolate 6 in 6487, the algorithm needs to move left from the
rightmost digit (7) until the leftmost digit (6) is detected. It is much more efficient to acquire
the rightmost digit (7) first, which can be found by simply calculating n%10. Recursion comes
to the rescue here and allows us to find the last digit with n%10 without reversing the order of
the digits in the number. Using 6487 as an example, the process is as follows:

Each step involves exactly the same actions. The only difference is the value the actions are
applied to. This means just one method with different arguments when called can solve 3, 2,
and 1.

The results of lower steps are used to accomplish tasks at higher steps. For example, to accom-
plish 3, we must execute 2; to execute 2, we must execute 1.

Because just one method can execute all three steps, and because every step contains the 
result of computations performed on a lower step, it is possible to solve the problem at hand
recursively.

958 C# PRIMER PLUS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 958



Each step is now easily calculated. For example, in step 1, 7 can be isolated with 6487%10. To
isolate 648, we simply calculate 6487/10 (.7 is discarded). This process can be expressed
recursively in C# as shown in Listing D.2. Notice that the arrows above illustrate calls to the
printBaseTen() method (see line 4).

If n is smaller than 10, line 5 is executed by writing only one digit (n%10). If n is larger than or
equal to 10, the last digit of the number is discarded and passed on to printBaseTen with the
recursive call in line 4. Notice that 6487/10 = 648, when passed to a variable of type int, not
648.7.

Remember from Chapter 23, “Recursion Fundamentals” that the recursive calls must progress
toward the base case for the recursive method to be valid. The base case in the printBaseTen
method is an n with just one digit (0–9), which makes (n < 10) true and, hence, the condition
(n >= 10) in line 3 of printBaseTen false(see Listing D.2), preventing the recursive calls
of line 4 to go any deeper. Because every recursive call to printBaseTen removes one digit
from n, we are clearly progressing toward the base case.

LISTING D.2 Recursive Method to Print n as a Decimal Number

1: public static void printBaseTen(int n)
2: {
3:     if (n >= 10)
4:         printBaseTen(n / 10);
5:     Console.Write(n%10);
6: }

Armed with an understanding of Listing D.2, we are ready to tackle the problem of printing in
any base 2–16. The resulting code is found in line 7 and lines 49–57 of Listing D.1. Line 7
declares an array containing all the digits of the hexadecimal system. When a digit is required,
it is accessed and printed in line 56. Rather than merely passing n to printBase, we also pass
the base of the number to which we are converting. It is interesting to note that the same logic
utilized in Listing D.2 applies when 10, in lines 4 and 5, is substituted by nBase in lines 55
and 56 of Listing D.1.

Negative Binary Numbers
So far, we have only discussed positive numbers, but the computer also somehow needs to
represent and process negative numbers with its underlying binary system.

The computer uses a system whereby it allocates a specific bit, called a sign bit, to indicate
whether a number is positive or negative. When this bit is 0, the sign is interpreted to be posi-
tive; similarly, 1 indicates a negative sign. To avoid confusion as to where this particular bit is
located, the computer needs to know the exact length (the number of digits) of the number it
is processing. It then designates the leftmost binary digit as the sign bit. Some numbers can
contain 8 bits, others 16 bits, others 32 bits, and so on. This is fine, as long as the computer
knows the length in each particular case. However, this is not the whole story. An example
illustrates why.

959Appendix D • NUMBER SYSTEMS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 959



Adding –7 (in base 2) to 15 (in base 2) should give the answer +8. Let’s perform the calcula-
tions assuming the number length is 8 bits and the leftmost bit is the sign bit.

First, the value of –7 is found by changing the sign bit of 7, as illustrated next, resulting in the
value 1000 0111. 15 in base 2 is 0000 1111.

Adding 1000 0111 to 0000 1111 results in the following:

The answer 1001 0110 is equivalent to –22, obviously not the correct result. Even though
treating the sign just like another digit can seem somewhat shoddy, we are moving in the right
direction. We need to subtract +15 from +8 to realize how we can represent –7 correctly.

We apply the same method used in base-10 subtractions of borrowing. Then the claim is that
–7 in base 10 is equivalent to 1111 1001 in base 2. Hmm…, it doesn’t look like it, but let’s do
a small test. We know that 7+(–7) = 0, so 0000 0111+1111 1001 should be 0000 0000.

It’s looking very promising. The carry keeps moving left until it is discarded from the leftmost
bit, which gives the promising result of 0000 0000. Let’s perform our previous calculation
(–7)+15 to perform another check.

960 C# PRIMER PLUS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 960



Another correct result! In fact, 1111 1001 is the correct representation for –7. It even comes
with its own term—the two’s complement representation of negative binary numbers. Earlier,
we found the base 2 equivalent of –7 by calculating 8–15. Even though we got the correct
result, it was fairly awkward. Fortunately, there is a much easier way to find two’s complement.
The following are the steps using –7 as an example:

1. Write down the positive binary number of a given decimal number—0000 0111.

2. Form one’s complement by reversing each bit of the number. 0s become 1s and 1s become
0s. We then obtain 1111 1000.

3. Form two’s complement simply by adding 1 to one’s complement. The final result is the
familiar 1111 1001.

C# has a built-in bitwise complement operator—~. At the machine level, ~value is equivalent
to value with all its bits reversed. The complement operator is very handy for the computer
when performing subtractions such as the following:

a = b – value;

At the lower levels, this subtraction becomes

So, even though the computer performs a subtraction, it is done by adding the negative value
of value to b.

961Appendix D • NUMBER SYSTEMS

28 0-672-32152-1 APPD  01/03/2002  10:58 AM  Page 961


