
Data Replication Setup

MS SQL Server to Oracle 8.1.6

[Example: Implementation documentation]

Implementation date: 05/10/01

Creation Date:

03/12/2001

Last Updated:

09/26/2001

Version:

1.0

Table of Contents

3Replication Architecture

Replication Pre-Requisites
5
Configuring Replication
7
Configuring the Distributor
7
Configuring the Publisher.
9
Configuring a Heterogeneous Subscriber (Oracle)
10
Creating a New Publication
11
Push a New Subscription
12
Replication Monitoring
13
Troubleshooting Replication
14
Scenario 1: Faulty connection to Oracle
15
Scenario 2. Faulty Log reader
15
Scenario 3: Oracle database errors
16
Scenario 4: Invalid SQL Command
17
Mismatched row counts
18
Configuring replication system without GUI assistance
19
Undoing Replication using the GUI:
21

Introduction

Data replication is the process of electronically repeating all the transactions occurring on a source database onto a destination database. The source database in this context is called a publisher and the destination database is called a subscriber. When a subscriber is different from the SQL Server family of databases it is called a “heterogeneous” subscriber. In addition to the publisher and the subscriber, replication with SQL Server databases also involves a distributor (distribution server) acting as a liaison between the publisher and the subscriber. A distributor is called a remote distributor if it is not on the publishing database server itself (in other words, it is remote from the publishers point of view).

The current replication system configured for dbXYZ database involves a SQL Server database as the publisher hosted on SQLSRV01, a remote SQL Server distributor database called “distributor” hosted on SQLSRV02 and a heterogeneous subscriber, which is an Oracle 8.1.6 database hosted on OCLDEV1.
Replication Architecture

Components of replication defined:

PUBLISHER:

The Publisher is the source of all transactions to be replicated. In the existing scenario, all transactions (inserts, updates and deletes) originate from the client workstations on the production floor (testing XYZ components). These transactions are captured in the MS-SQL Server database called “dbXYZ” hosted on SQLSRV01. There are also separate XYZ reporting applications which query the data from this server. These reporting applications add a huge processing burden (load) to the current MS SQL Server implementation. To avoid this and to reduce the volume of data in the dbXYZ database, the data will be replicated over to an Oracle8.1.6 database. This separate database will then become the basis of all XYZ reporting needs. This is probably the most “classic” example of using data replication.

REMOTE DISTRIBUTOR:

The remote distributor is also an MS-SQL Server database called “distribution” hosted on SQLSRV02. The purpose of a distributor is to act as a liaison between the publisher and the subscriber. It is called a “remote distributor” because the distribution database is hosted on a server that is not the publishing server.

REPLICA OF dbXYZ:

Another copy of dbXYZ (an exact image of the dbXYZ on SQLSRV01) will also be kept on the SQLSRV02 by configuring it as an additional subscriber. This, mirror image, will then be available to be used in fail-over situations to minimize down-time on the production lines. This will help to greatly minimize any risks (production stoppages) in the future.

ORACLE ODBC:

Oracle’s ODBC driver is being used to maintain connectivity between the distributor and the heterogeneous subscriber (oracle in this case).

HETEROGENEOUS SUBSCRIBER:

This Subscriber is the destination (target) of the replicated transactions from dbXYZ (on SQLSRV01). It is an Oracle8.1.6 database. Since this subscriber is alien to SQL Server’s family of databases it is called a heterogeneous subscriber, accordingly this subscription is called a heterogeneous subscription.

DATA RESTORE PROCESS:

In certain situations, the testing applications must get to old data (older than what will be kept on the MS SQL Server dbXYZ on SQLSRV01). A data restore process has been written in MS-VC++ that will allow an individual device’s data to be restored from the dbXYZ database on Oracle OCLRPT) back to the dbXYZ database on SQL Server (SQLSRV01). This data restore process is an application that accesses both Oracle and SQL Server through ODBC drivers at the same time and will be used by a select group of users only.

DATA PURGE AND ARCHIVE PROCESS:

The data purge and archive process is used in order to limit the data volumes in dbXYZ on SQLSRV01 to 3 months of duration. This is an MS-VBS application, which can trim the data in dbXYZ to spanning not more than the latest 3 months and archive the trimmed data as MS-Access files. (this is an existing system already).

Replication Pre-Requisites

SQL Server publisher:

It is a mandatory requirement on all tables in publisher’s schema to have active primary keys before they can be made available for replication.
SQL Server distributor:

The configuration process of distribution database involves the creation of a new database on the distributing server. This database, which is automatically created by SQL Server on the distributing server houses all system tables tracking the progress of replication from publisher to subscriber and the transactions that are to be replicated. Adequate space allocation must be ensured for this database.

The distributor must also have a valid Oracle ODBC driver connecting to the subscriber successfully.
Oracle subscriber:

The Oracle database (the subscriber) should have a schema identical to the schema available on it’s publisher. Currently, the replication engine recognizes only those tables on Oracle’s sides that are created with their names and associated column names enclosed in double quotes. This is an ODBC standard. The table name and column names on Oracle must also maintain the same case sensitivity as in SQL Server. All appropriate column data types on the Oracle side have been selected to best represent the equivalent MS SQL Server column data types.

For instance, a table on SQL Server has the following structure:

CREATE TABLE [tbABCDEF] (

[sSerNo] [varchar] (30) NOT NULL,

[sName] [varchar] (30) NOT NULL,

[sLabel] [varchar] (30) NULL,

[sDatavalue] [varchar] (30) NULL

)

Under normal conditions the script to create this table on Oracle would read as:

CREATE TABLE tbABCDEF (

sSerNo varchar2(30) NOT NULL ,

sName varchar2(30) NOT NULL ,

sLabel varchar2(30) NULL ,

sDatavalue varchar2(30) NULL

)

However, when using MS SQL Server replication, the corresponding create table syntax on Oracle should read as:

CREATE TABLE “tbABCDEF” (

“sSerNo” varchar2(30) NOT NULL ,

“sName” varchar2(30) NOT NULL ,

“sLabel” varchar2(30) NULL ,

“sDatavalue” varchar2(30) NULL

)

This implies that all queries on Oracle’s schema must be made by appropriately enclosing the table names and column names in double quotes. Failure to do so would raise Oracle errors:

ORA-00942: table or view does not exist

ORA-00904: invalid column name

To facilitate replication and programming, VIEWS were created for each table to eliminate the requirement of framing queries with double quotes.

However, extra attention must now be taken for all new columns and tables added on SQL Server publisher’s schema. The appropriate maintenance must also be carried over to the Oracle subscriber tables and the Oracle subscriber views.
Enabling remote logins:

For replication it is mandatory that both publisher and distributor must mutually identify each other across the network. For this purpose both these servers must be mutually registered with each other. Registering servers can be done from the main menu Enterprise Manager utility by choosing the following options: Action(Register New Server.

All servers registered to support remote logins are listed under the Security(Remote Servers node in the console tree (Enterprise Manager utility of MS SQL Server) for the respective servers.

Setting license mode:

Some additional settings are necessary to the license configurations during installation of MSSQL Server to enable their participation in replication.

During installation of the MS SQL Server intended for Distribution, licensing mode should be set to “Per Seat” as opposed to “Per Server”.

Configuring Replication

Replication on SQL Server can be configured in two ways, either by using SQL Server Enterprise Manager/Console (GUI) or by manually executing batch scripts. We will be setting up batch scripts for every phase of replication in order to facilitate speed and recoverability of the replication configuration. Using the GUI is fine for small tweaks of the configuration and monitoring replication during a normal business day. We will show the GUI method first. A later section will describe the corresponding batch scripts.

In replication, certain things must be done (set up) in specific orders. The initial step of configuring replication is that of designating and configuring the Distributor (Distribution Server). Before you can start this, you must have all servers identified (registered) within in SQL Server Enterprise Manager (Console).

And, having completed all other pre-requisites for replication, you are now ready to configure the distributor.

Configuring the Distributor

We will use “XYZTESTDIST” as the distribution server and “XYZTESTDB” as the publisher.

There are two possible ways to get started with distributor configuration, either by choosing “Replicate Data” on the “Getting Started Taskpad” (that appears when the distributor server is highlighted in the SQL Server enterprise manager)

To continue with the configuration process through the task pad, highlight the distribution server (“XYZTESTDIST” in this case) and having chosen “replicate data”, continue to select “configure replication”.

Or, choosing the following options from the menu “Tools”(”Replication”(”Configure Publishing and Subscription”.

Choosing “configure replication” brings up the “Configure Publishing and Distribution Wizard” (you actually get to this point using either approach). You will notice that the wizard had detected your starting point (which server you highlighted) and gives you the options that it can configure for you. Choose NEXT to start this process.

 In the next step choose the server to be configured as the distributor. For our example configuration, we will choose “XYZTESTDIST” (which is suggested as the default option by the wizard). Continue with the wizard by clicking “Next” button. Note, the wizard is telling you that it will create a distribution database on log on this server.

The next step allows users to choose from two different options. For the convenience of this manual the two options will be named as ‘A’ and ‘B’. Option ‘A’ allows users to bypass these default settings and specify the settings specific to user’s environment. Option ‘B’ is most generic and is the default setting of the wizard. Choosing option ‘B’ brings up the last step in configuring a distributor. Click “Finish” to complete the distributor configuration.

Now, simply click “Next” to complete this portion of the Wizard.

If you had chosen Option ‘A’, the wizard would lead to a window where some of the distributor settings can be manually specified. The distribution database name is for the database that would host all the system tables to enable replication.

Now that you have specified the distribution database name (either using the default settings or the specify-your-own approach), you must pick the names of servers to be enabled as publishers using this server as the distributor.

 In this example, the publisher that needs to be enabled is “XYZTESTDB”. This step culminates the process of providing information to the wizard for processing the configuration. The entire configuration can be accomplished all at once through customized SQL scripts, which we will be discussing later.

Clicking “Next” leads to the replication progress screen.

During the configuration process, the intermediate messages should appear indicating that certain things have been done.

What actually is happening is that the SQL Server replication wizard automatically adds a distribution server and a “Replication Monitor” to the distribution server’s console tree.

The Replication Monitor also displays a list of enabled publishers, which are registered to use its server as a distributor.

This completes the configuration of the Distribution Server. Now you are ready to define the Publisher and Subscribers (in that order).

Configuring the Publisher.

Having configured the distributor, next logical step is to configure the publisher. For the purpose of this manual “XYZTESTDB” will be used as a publisher. This publishing server should have been registered with it’s corresponding distributor as a valid publisher. This also includes enabling bi-directional remote logins on distributor and publisher side. Enabling remote logins is discussed in “Replication Prerequisites” section of this manual.

Configuring a publisher begins with selecting the appropriate server which intended to be the publisher from the console tree in MS SQL Server Enterprise Manager utility and then choosing Replicate Data-> Configure Replication icon on the “Getting Started” task pad of this server.

Procedure of configuring a publisher can also be initiated from the master menu in the Enterprise Manager utility of MS SQL Server. Choose the following options to start with configuring a publisher using the master menu: Tools(Replication(Configure Publishing and Subscribers. Ensure that the proper server intended to the publisher is highlighted in the console tree of the Enterprise Manager utility.

Either of the above-discussed methods would invoke the “Configure Publishing and Distribution Wizard”. Click “Next” to continue with the configuration process.

Next step involves selecting a distributor. Only that server which has been configured as a valid distributor can be chosen here. The distributor should have been configured to accept this current server as a publisher.

As this replication setup involves remote distribution , “XYZTESTDB” may not be used as a distributor(however for replication set-ups not involving remote distribution, this is perfectly acceptable). Accordingly an appropriate server may be chosen to be a remote distributor to “XYZTESTDB”.

The following step involves registering valid subscribers to publications created on this publisher(XYZTESTDB). The wizard gives two options to register distributors. For the purpose of this manual these two options are characterized as option ‘A’ and option ‘B’.

Option ‘A’ allows the user to manually specify some configuration options optimal to the planned replication configuration.

Option ‘B’, which is the default one on this window is a generic configuration deduced by the replication engine.

To continue with the manual process of registering the appropriate subscriber choose option ‘B’ and click “Next”.

In the next step select an appropriate database which will be the publishing database in this replication setup. The wizard displays a list of non-system databases and the database intended for publishing must be selected . Click on “Next” to continue with the configuration process.

In the next step the wizard displays a list of available MS SQL Servers that are visible to XYZTESTDB server and anyone can be selected as a subscriber. However the planned replication set-up involves an Oracle database as a heterogeneous subscriber.

Since the subscriber is heterogeneous, it is not displayed in the list of available subscribers. The registration of a heterogeneous subscriber is more relevant to the process of creating a new publication, accordingly it is explained under “Creating a New Publication” section.

De-select any of the servers listed on this window and click on “Next” to proceed.

This step brings up the final point of configuring a publisher. The wizard summarizes the settings involved in configuring a publisher. Nothing is mentioned about subscriptions to this publisher as no subscriber is identified yet.

Choosing option ‘B’ brings the wizard directly to this point by bypassing all intermediate steps.

You now have a successful configuration of the publisher.

An icon is attached to the publishing database in the console tree of the Enterprise Manager utility.

Configuring a Heterogeneous Subscriber (Oracle)

[image: image1.wmf]Publisher

(MS SQL)

Distributor

(MS SQL)

Subscriber

(Oracle)

Subscriber

(MS SQL)

Before proceeding with configuring a heterogeneous subscriber (Oracle) for replication, you must ensure that a valid Oracle ODBC driver is installed on the distribution server (which is “XYZTESTDIST” in this case). To configure the Oracle ODBC driver, invoke “ODBC Data Source Administrator” from “Control Panel” on the distribution server.
Now, add a new Oracle ODBC “System DSN”.

Add an appropriate name to the driver. Select the Oracle database service name (SID) . For our example it would be “AWGTEST”. Also, enter the username with which the distribution database will be connecting to the Oracle instance with. Then, say OK.

Once the ODBC driver configuration is completed, we can get back to creating the heterogeneous subscriber and back in SQL Server Enterprise Manager/Console.

The new subscriber must be registered with the publication created on the publishing server. Let’s just go directly to the configuring subscribers option. Choose “Configure Publishing and Subscribers” from the Tools(Replication menu in Enterprise Manager.

This brings up a window displaying possible subscribers. Here you can choose a valid subscriber to configure or if the one you want isn’t in this list, choose the new subscriber option. In our example (for a new Oracle subscriber), it doesn’t exist yet, so we will choose New Subscriber.
The next screen displays the mode of connectivity to the new subscriber. In this case it would be ODBC data source. Click on “OK” to accept the selection.

A subsequent window will prompt you for the connection details required to access the subscriber. Fill in appropriate information (loginid & password) and then Click on “OK”. This completes the registration process for a new subscriber for a publisher.

Creating a New Publication

After identifying and configuring the publishing database it is time to create a publication. The publication will identify exactly what is to be published (which tables, etc..). Now, expand the Publication folder (node) on the publishing server to see if there are any publications defined yet. A ‘right mouse click’ displays available options. The one we are interested in is “New Publication”. Click on “New Publication” to create a new publication from “dbXYZ”. This will invoke the “Create New Publication” wizard.

Click on “Next” to proceed with the “Create Publication” wizard.

There are 3 different types of publications with SQL Server’s Replication - namely Snapshot Replication, Transactional Replication, Merge Replication. The desired type here is Transactional Replication. Transactional replication involves duplicating every Insert, Update, and Delete occurring on the publisher over to the subscriber in real time, which implies that there is hardly any time lag between transactions occurring on the publisher and transactions transferred over to the subscriber. Then click “Next”.

Now, choose the default Immediate-Updating option here (of “No,…”) because the alternate option requires a timestamp column to be added to all publishing tables, and altering the schema on the publishing database is not needed for what we are trying to achieve. Click on “Next” to proceed.

Since this replication configuration involves a heterogeneous subscription, option ‘B’ most appropriately meets the requirements.

You will now be presented with all the tables in the schema of the publishing database. Click on “Publish All” to add all tables to the publication.

You must now name the publication. In this case it will be named “dbXYZ”. An optional description can also be entered here for this publication. Then click “Next”.

You must now specify the default behavior of the publication. This screen shows default settings configured by the replication wizard.

Just choose the default settings (Option ‘B’) unless something specific needs to be changed here. Then click “Next”.

You should now see a successful creation of a new publication.

The new publication will also appear on the console tree of the publishing database.

Push a New Subscription

Subscriptions can be of two types: Pull and Push.

For pull subscriptions, the subscriber initiates all requests for transactions and for push subscriptions all transactions are ported over to the subscriber voluntarily as and when they occur. Push subscription is most suited to this replication system as it involves heterogeneous subscription.

Right mouse-click on the new publication created to display set of options one of which is “Push a New Subscription”. Choosing this option will invoke the “Push Subscription” wizard.

All subscribers that are registered with this publisher. Choose the appropriate one.

This system also requires continuous replication of transactions minimizing the latency between publishing end and subscribing end. Hence choose the default option.

To minimize overhead on the publisher, have better control on schema creations and eliminate the tediousness involved in generating schema in case of heterogeneous subscriptions selecting option ‘B’ best suits the requirements.

The final stage of configuring a push subscription. Click on “Finish” to allow the replication tool to complete the configurations.

This screen shows the progress of configuring a new push subscription

On successful configuration of a push subscription a subscription agent, which is added to the console tree of the publisher, can be noticed in the Enterprise Manager utility.

After successful configuration of push subscription, three agents are added to the console tree of the distributing server. These agents are Snapshot agent, Log Reader agent and the Distribution agent(Push Agent). These three agents are embedded in the console tree of the distributing machine and can be noticed in the enterprise manager utility.

The activities of three agents during normal replication process.

Replication Monitoring

The ongoing status of replication can be monitored with the “Replication Monitor” tool that is a part of the distribution server’s console. There are three primary agents, which control the entire behavior of the replication process. A brief description of these agents is as follows:

1. Snapshot agent. The snapshot agent allows for the initial (or repetitive) full snapshots of data and schema (table creates/indexes) from the publisher to be published to a (any) subscriber. For our heterogeneous subscription approach, this will not be required since we must manually change the target schema (on the oracle side) and also do the initial data population as well. So, this agent will not be monitored.

2. Log Reader agent. The Log reader agent is the most important agent in a replication configuration. The log reader agent polls the publisher for any data changes (via the transaction log). These transactions are then (almost instantaneously) communicated to the distributor where they are cached momentarily until the distribution agent notices them. If there are problems with this agent, the whole of data replication is affected.
3. Distribution agent/Push agent. The Distribution agent is the distributor of all these published transactions (from the distribution server to any subscription servers).
 A right-mouse click on any of the replication agents displays a pop-up menu. Again, the Log-reader agent and the Push agent are two key agents controlling the progress of replication. We have also set up email and paging alerts for each of these agents so that the responsible DBA will be notified when there are issues.

The “Stop Synchronizing” functionality of the Push agent deactivates this agent (and subsequently no more transactions are replicated to the subscriber).

Troubleshooting note: In some situations when the replication engine ceases to replicate transactions over to the subscriber, stopping and re-starting synchronization will usually shake it loose.

It’s important to note that stopping the synchronization of the Push agent does not stop normal functioning of the replication engine. The Log reader agent still continues to read and record transactions that are to be replicated. The Log reader also continues to record these transactions in the system tables of the “distribution” database (which was created as a part of configuring the distribution server).

Once the Push agent is re-started, these pending transactions (accumulated by the Log reader) are promptly replicated over to each subscriber.

Look for the status and last action condition of the push agent once it has been re-started (after re-starting the synchronization process - “running” status).

The session details of the Distribution agent (Push agent). These details can be retrieved by a double-click on the Push agent. This shows the complete information about the behavior of the Distribution agent. Including the number of transactions and the number of commands that were replicated since the Distribution agent was originally started. Additionally, the delivery rate is an estimation of rate at which commands got transferred to the subscriber.

One of the properties of the replication agents is the “Refresh Rate”. This is the frequency at which the agents refresh themselves automatically. In our case, we have set these to very short so as to get extremely current status information.

Troubleshooting Replication

There are a few typical failure situations (scenario’s) in a replication implementation that will halt normal functioning of the replication engine. Remember, when the agents and all that they require fail, replication of your data also fails. In our testing, we found that replication can move along pretty well with out errors for weeks and months at a time. Things to consider in normal operations will mostly be related to schema changes and making sure you have enough space for growth of tables and indexes.

When failures do occur, the affected Agent is marked with a red cross in the replication monitor. Also a red cross indicating that the replication engine has stopped its normal function. Ok, now a look at the most likely scenario’s.

Scenario 1: Faulty connection to Oracle

This may be the most common issue you will see. Frequently, network or system things occur that can break the connection that replication requires. From data replications’ point of view, the Distribution agent cannot connect to Oracle due to some reason.

Most common reasons will be:

1. Missing ODBC connectivity to the Oracle subscriber.

2. Oracle instance is not up (the subscriber).

3. Improper parameters passed to Oracle (such as bad username and password).

You might see the situation when the Distribution agent passed a command to Oracle subscriber in the absence of a valid connection to Oracle (#1 above). Because the Distribution agent the one that needs this connectivity, it is appropriately marked with a red cross in the replication monitor.

Available Solutions:

To solve this, you will usually have to redefine the ODBC connectivity and/or verify that the Oracle Instance can be connected to via the ODBC data source. Once this is done, you will need to re-synchronizing replication (a shown in the replication monitoring section).

Scenario 2. Faulty Log reader

Log reader agent errors are usually caused by errors within MS SQL Server environment itself (like published schema changes or loss of connectivity from a remote distributor to the publisher). A double-click on the Log Reader agent displays session details of the Log Reader. Sometimes, the error messages are kind of vague (like “cannot execute sp_repldone”). However, the real error is usually like that just described (schema changes or connectivity).

A double-click on the Log Reader agent displays the “Session Details” window which shows the first level of information for the agent. You can then choose the Error Details button for the details of that particular error message. Please note that the pertinent agent is given a system-generated name with which it is identified by the replication engine.

Clicking the “Error details” button displays further details of the error that interrupted the log reader’s normal functionality. This window is of substantial help in understanding the exact reason of the fault.

Available Solutions: A log reader failure can usually be resolved by stopping and re-starting the log reader agent. However, it is very likely that Log reader is failing because the replication configuration itself has changed. In this case, the solution will involve un-configuring and re-configuring replication itself (not a pretty solution). No data would have been lost, just time and energy.

Scenario 3: Oracle database errors

Another common error that will affect replication may be that of subscriber errors. In our case, this is a heterogeneous Oracle subscriber. A likely error might be something like passing syntactically incorrect commands over to the Oracle database (from MS SQL Server). Lot’s of things could be going on here such as dissimilar versions of schema between the publisher and subscriber or SQL statements executed on subscriber that do not conform to ODBC standards. Such errors always affect the functioning of the Distribution agent. The Log reader agent will not be affected and will continue to perform it’s duties.

One type of error that can occur (that of “ORA-00942 table or view does not exist “).

Do a right-click on push agent to see the “Error Details”. This should provide you with enough information to understand and resolve the failure reason.

Available Solutions:

In this particular error, the table (or view) does not even exist on the Oracle side and must be created for replication to work correctly.

Once the error is corrected, and Distribution agent is re-synchronized and the Distribution agent resumes it’s normal working condition.

Other typical Oracle errors. Resolving each of these can be done in a similar fashion to the one above.

Here we have a situation where a view is incorrect. Recreating the view and re-synchronizing the Distribution agent solves the error.

In the next one, an insert statement is invalid (too many values). The table/view on the subscriber side could be out of sync. Making the required modifications to the Oracle schema and re-synchronizing the Distribution agent solves the error.

Scenario 4: Invalid SQL Command

Under certain circumstances the replication engine can get blocked. Blocked, in the sense that a replication transaction cannot be replicated and blocks all subsequent replication transactions from being processed (much like how a dam blocks a river).

An invalid SQL command being processed by the replication engine can cause this to happen. In other words, a SQL command that was valid in MS SQL Server can get hung up in replication because it is not valid at the target (subscribing) DBMS side (Oracle in this case). In addition, it is likely that the SQL command cannot be corrected. It is sort of caught in the middle (success on one side, failure on the other).

Remember, when replication stops due to this type of failed transaction, all subsequent transactions queue up behind it in the distribution on the Distribution server.

The actual replication transaction (including the SQL Command) is written the tables called msrepl_transactions, msrepl_commands and msrepl_agents in the distribution database.

Transaction failure:
Available Solutions: It is imperative that this transaction be removed from the queue of transactions waiting to be replicated over to the subscriber (the river must become un-dammed). If the actual SQL command needs to be replicated, then an alternative way must be devised directly against the subscriber table affected (using sql plus or something). You will be able to see the exact SQL Statement and determine what is the invalid aspect outside of replication.

In the meantime, replication must be allowed to continue. As was already mentioned, all transactions crossing over to the subscriber from the publisher are written in the distribution database and are identified by a temporary system identification number called “xact_seqno”. It is always possible to narrow down to the system identification number of the faulty transaction through simple queries on msrepl_transactions, msrepl_commands, using a system stored procedure called sp_browsereplcmds and from information provided about the failed transaction in the Distribution agent error details window (discussed earlier).

Listed below are steps, which help in finding the system identification number (xact_seqno) of the faulty command and removing it from the transaction queue thereby freeing the blockage.

· The SQL command that failed during replication should be identified from the Distribution Agent Error Details window.

· Stored procedure Sp_browsereplcmds gives information on all xact_seqno and the associated SQL commands that are written in the distribution database. Run this stored procedure on the distribution database (and store the results in a text file).

· Then, use a simple text based search (like in word, notepad or something) to locate the xact_seqno from the information provided by sp_browsereplcmds. Search criteria can be a key word of the failed command or the entire command.

· Msrepl_commands is a system table on distribution database that maintains a queue of all the transactions waiting to be replicated over to the subscriber. The exact command can be identified using the appropriate xact_seqno. Once the appropriate xact_seqno of the faulty command is identified from the above step, query msrepl_commands table for the record using the xact_seqno as a condition in the SQL where clause. Note that xact_seqno is not a character string here so it not necessary to enclose this value when using it in the where clause of the query.

The query can be framed as shown below.

Select * from msrepl_commands

Where xact_seqno = 0x00000936000074ED008.

Notice that xact_seqno is stored in msrepl_commands as varbinary(16), and it’s value is usually in a format given in the query above.
· Having identified the actual record in msrepl_commands table, the best approach is to delete the faulty SQL command from this table. A successful delete of the appropriate record from msrepl_commands table removes the blockage caused due to this faulty record. Once all such blockages are removed from msrepl_commands , a re-synchronization of the Distribution agent is required to bring back the replication engine to it’s normal working condition.

The query can be frame as shown below.

Delete from msrepl_commands

Where xact_seqno = 0x00000936000074ED008.

Mismatched row counts

It is possible for the rows (tables) in the publisher to become out of sync with the rows (tables) of the subscribers. This should rarely, if ever happen. However, if such a situation occurs it is probably easier to just located the difference between the publisher and the subscriber rather than completely refresh the subscriber tables (from the publisher). Below is an example of how you might go about doing this (for a particular table that may be out of sync). It should also be noted that a daily or weekly job that does row counts on both the publisher tables and subscriber tables needs to exist to help identify this situation (if it should ever arise).

 Steps to follow to isolate the differences:

 To isolate the issue EXACTLY with the tbDataTrace1000 table as an example.

a. Create a small temporary set of tables on the MS SQL Serve TEST database server

 for all of this testing.

 b. Using DTS (or BCP), dump out into a file (or do direct inserts) to a temporary

 table (named "tbABCDEF_MSSQL") on our MS SQL Server TEST server

 the full unique keys of that table for the current 6 months worth of data. As we know,

 this will probably contain a few (like 64) more rows in it now. The full key is

 something like:

 "sSerNo" CHAR(30) NOT NULL,

 "sLabel" NUMBER(22) NOT NULL,

 "sType" NUMBER(22) NOT NULL

 c. Using SQL Loader or something on the Oracle side, dump out 100% of the same

 tbABCDEF table. Again, only the full unique key portion.

 "sSerNo" CHAR(30) NOT NULL,

 "sLabel" NUMBER(22) NOT NULL,

 "sType" NUMBER(22) NOT NULL

 Then, load these into our MS SQL Server TEST Database into a temporary

 table (named "tbABCDEF_Oracle).

 d. Now we can isolate the exact device numbers that are missing from the Oracle side by

 doing an OUTER JOIN where the tbDataTrace1000_MSSQL table is the outer table:

 SELECT a.sSerNo, a.sLabel, a.sType,

b.sSerNo, b.sLabel, b.sType

 FROM tbABCDEF_MSSQL a,

 tbABCDEF_Oracle b

 WHERE a.sSerNo *= b.sSerNo

 AND a.sLabel *= b.sLabel

 AND a.sType *= b.sType
Configuring replication system without GUI assistance

A complete replication system can also be configured and un-configured using specially generated scripts. These scripts are all sql commands and can be executed using isql or any other method that connects to the MS SQL Servers involved. [Always save these scripts in a convenient location]. These scripts were design to be executed in a particular order. Being able to do this from scripts is essential since it is very time consuming and error prone to set replication up using the the GUI, especially if you are recovering from failures and need to recover quickly. The correct order and purpose is described below:

1. To configure the Distribution Server: Run the script Repl_Setup_Dist.sql.

· This script configures a chosen server as a distributor. (so, you must do this from the distribution server itself).

· It also identifies valid servers that could be publishers to this distribution server. Make sure these are accessible via the network.

· As a part of configuring the distribution server a distribution database is created.

· A valid path must be provided to accommodate data file storage and log file storage of this new distribution database.

2. To configure the Publication Server: Run the script Repl_Setup_Publ.sql.

· This script should be run on the server that’s intended to be the publisher.

· This script also recognizes the distributing server and also identifies the appropriate database as the publishing database.

3. To create a new publication: Run the script Repl_Crt_publ.sql to create the new publication from the publishing database.

· This script identifies the nature of replication (in this case it is push transactional publication)

· It adds required tables for publication as articles of publication.

· The script also assigns a name to the publication.

· This script must only be run on the publishing server.

4. To add a new subscriber: Run the script Repl_add_subs.sql to add a new subscriber to the publication created above.
· This script identifies a new subscriber, nature of the subscriber in this case being a remote one.

· This script also carries the ODBC connectivity information including the Oracle user name of the schema that will be the subscribing schema.

· This script should be run on the distribution server only.

5. To push a new subscription: Run the script Repl_Push_Subs.sql

· This script adds a push subscription to the replication engine.

· This script should only be run on the publishing server.

Once all the scripts are executed successfully (and in the order given), the replication engine kicks in and starts replicating transactions over to the subscriber.

6. To delete a publication: Run the script Repl_Delete_Publ.sql.
· This script deletes a valid publication from the publishing database

· Run this script on the publishing server.

7. To undo distribution: Run the script Repl_Drop_Dist.sql
· This script identifies the distributor and deletes all configurations pertaining to distribution on that server. As a result 2 other changes are made automatically. (A) Replication monitor is deleted from distribution server’s console and (B) Distribution database is also deleted from the server’s console.

· This script must be run on the distribution server.

Undoing Replication using the GUI:

Undoing replication using the GUI is done in 3 stages.

· First stage involves removing publication related information from the distributor.

· Stage two involves completely rolling back all replication related information from the distributor.

· Stage three involves disabling the publishing server.

First stage:

Removing publication related information from the distributor. Currently, active publications are listed with the replication monitor from the distributor. Right click on the appropriate publication and choose the “Delete” option from the menu. Once the publication is successfully deleted from distributor it is no longer visible in the replication monitor.

Note: The publication is actually deleted from both the distributor and the publisher simultaneously.

At this point, though the publication is deleted from both distributor and publisher, these servers do not loose their state of being a publisher and distributor and they can still be used for new publications. However, in our case, we will continue to undo the configuration.

Stage two:

Undo all replication related information from the distributor. This can be done either through the master menu on the Enterprise Manager or through the Taskpad of the distributor server. Click on “Remove Replication” to begin the remove replication process of the distributor.

The “Remove Replication” option invokes the “Disable Distributor” wizard. This wizard takes you through the steps to completely erase all of the distribution related configuration completely. This also removes the replication monitor and deletes the “distribution” database (this is a system database, which is automatically installed during the process of configuring the distributor).

Stage three:

Disabling the publishing server. This can be done either through the Taskpad of the publishing server or through the master menu of the Enterprise Manager .

Replication is now completely un-configured.

MSSQL Server on SQLSRV01.

 PUBLISHER

“dbXYZ”

Up to 3 months of data

REMOTE DISTRIBUTOR

MSSQL Server on SQLSRV02.

“distribution”

HETEROGENEOUS

SUBSCRIBER

Oracle 8.1.6 on OCLRPT

“DBXYZ”

Up to 24 months of data

Data restore process

Oracle ODBC

Replica of

“dbXYZ”

Data purge and archive process

Item added after configuring a subscriber

Subscriber

(MS SQL)

Subscriber

(Oracle)

Distributor

(MS SQL)

Publisher

(MS SQL)

Publisher

(MS SQL)

Distributor

(MS SQL)

Subscriber

(Oracle)

Subscriber

(MS SQL)

Publisher

(MS SQL)

Distributor

(MS SQL)

Subscriber

(Oracle)

Subscriber

(MS SQL)

2
Data Replication

_1063000091.doc

Publisher

(MS SQL)

Distributor

(MS SQL)

Subscriber

(Oracle)

Subscriber

(MS SQL)

