
CHAPTER

19
Testing and Debugging

IN THIS CHAPTER
• Common Program Bugs 317

• Using the Integrated Debugger 321

• Summary 332

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 315



Some programmers in the industry believe that the knowledge and application of good pro-
gramming practice make the need for debugging expertise unnecessary. In reality, however, the
two complement each other, and whoever masters both will reap the greatest benefits. This is
especially true when multiple programmers are working on different parts of the same pro-
gram. It’s simply impossible to completely remove the possibility of human error.

A surprising number of people say, “My code compiles all right, so I don’t have any bugs,
right?” Wrong. There’s no correlation between whether a program compiles and whether it has
bugs; there’s a big difference between code that’s syntactically correct and code that’s logically
correct and bug-free. Also, don’t assume that because a particular piece of code worked yester-
day or on another system that it’s bug-free. When it comes to hunting software bugs, every-
thing should be presumed guilty until proven innocent.

During the development of any application, you should allow the compiler to help you as much
as possible. You can do this in Delphi by enabling all the runtime error-checking options in
Project, Options, Compiler, as shown in Figure 19.1, or by enabling the necessary directives in
your code. Additionally, you should have the Show Hints and Show Warnings options enabled
in that same dialog box in order to receive more information on your code. It’s common for a
developer to spend needless hours trying to track down “that impossible bug,” when he or she
could have found the error immediately by simply employing these effective compiler-aided
tools. (Of course, the authors would never be guilty of failing to remember to use these aids.
You believe us, right?)

Table 19.1 describes the different runtime error options available through Delphi.

Advanced Techniques

PART II
316

FIGURE 19.1
The Compiler page of the Project Options dialog box.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 316



TABLE 19.1 Delphi Runtime Errors

Runtime Error Directive Function

Range Checking {$R+} Checks to ensure that you don’t index an array or string
beyond its bounds and that assignments don’t assign a
value to a scalar variable that’s outside its range.

I/O Checking {$I+} Checks for an input/output error after every I/O call
(ReadLn() and WriteLn(), for example). This almost
always should be enabled.

Overflow Checking {$Q+} Checks to ensure that calculation results are not larger
than the register size.

Testing and Debugging

CHAPTER 19
317

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

Common Program Bugs
This section shows some commonly made mistakes that cause programs to fail or crash. If you
know what to look for when you’re debugging code, you can lessen the time needed to find
errors.

Using a Class Variable Before It’s Created
One of the most common bugs that creeps up when you develop in Delphi occurs because
you’ve used a class variable before it has been created. For example, take a look at the follow-
ing code:

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList.Assign(ListBox1.Items);

end;

The TStringList class MyStringList has been declared; however, it’s used before it’s instanti-
ated. This is a sure way to cause an access violation. You must be sure to instantiate any class

TIP

Keep in mind that each of these runtime errors exacts a performance penalty on your
application. Therefore, once you’re out of the debugging phase of development and
are ready to ship a final product, you can improve performance by disabling some of
the runtime error checks. It’s common practice for developers to disable all of them
except I/O Checking for the final product.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 317



variables before you try to use them. The following code shows the correct way to instantiate
and use a class variable. However, it also introduces another bug. Can you see it?

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;
MyStringList.Assign(ListBox1.Items);

end;

If your answer was, “You didn’t free your TStringList class,” you’re correct. This won’t
cause your program to fail or crash, but it will eat up memory because, every time you call this
method, another TStringList is created and thrown away, thereby leaking memory. Although
the Win32 API will free all memory allocated by your process at the time it terminates, leaking
memory while running an application can cause serious problems. For example, a leaky applica-
tion will continue to eat more and more of the system’s memory resources as it runs, causing the
OS to have to perform more disk swapping, which ultimately slows down the entire system.

The corrected version of the preceding code listing is shown in the following code (minus a
necessary enhancement discussed in the next topic):

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;               // Create it!
MyStringList.Assign(ListBox1.Items);              // Use it!
{ Do your stuff with your TStringList instance }
MyStringList.Free;                                // Free it!

end;

Ensuring That Class Instances Are Freed
Suppose that in the previous code example, an exception occurs just after TStringList is cre-
ated. The exception would cause the flow of execution to immediately exit the procedure, and
none of the procedure’s remaining code would be executed, which would cause a memory loss.
Make sure your class instances are freed, even if an exception occurs, by using a
try..finally construct, as shown here:

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;                 // Create it!
try
MyStringList.Assign(ListBox1.Items);              // Use it!

Advanced Techniques

PART II
318

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 318



{ Do your stuff with your TStringList instance }
finally
MyStringList.Free;                                // Free it!

end;
end;

After you read the section “Breakpoints” later in the chapter, try an experiment and place the
following line right after the line where you assign the ListBox1 items to the TStringList:

raise Exception.Create(‘Test Exception’);

Then place a breakpoint at the beginning of the method’s code and step through the code.
You’ll see that TStringList still gets freed, even after the exception is raised.

Taming the Wild Pointer
The wild pointer bug is a common error that clobbers some part of memory when you use the
pointer to write to memory. The wild pointer genus has two common species: the uninitialized
pointer and the stale pointer.

An uninitialized pointer is a pointer variable that’s used before memory has been allocated for
it. When such a pointer is used, you end up writing to whatever address happens to live at the
location of the pointer variable. The following code example illustrates an uninitialized pointer:

var
P: ^Integer;

begin
P^ := 1971;  // Eeek! P is uninitialized!

A stale pointer is a pointer that references an area of memory that was once properly allocated
but has been freed. The following code shows a stale pointer:

var
P: ^Integer;

begin
New(P);
P^ := 1971;
Dispose(P);
P^ := 4;  // Eeek! P is stale!

If you’re lucky, you’ll receive an access violation when you attempt to write to a wild pointer.
If you’re not so lucky, you’ll end up writing over data used by some other part of your applica-
tion. This type of error is absolutely no fun to debug. On one machine, the pointer may appear
to run just fine until you transfer it to another machine (and maybe make a few code changes
in the process), where it begins to malfunction. This may lead you to believe that the recent
changes you made are faulty or that the second machine has a hardware problem. Once you’ve
fallen into this trap, all the good programming practice in the world won’t save you. You may
start adding instances of ShowMessage() to portions of your code in an attempt to find the

Testing and Debugging

CHAPTER 19
319

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 319



problem, but this serves only to modify the code’s location in memory and might cause the bug
to move around—or worse, disappear! Your best defense against wild pointer bugs is to avoid
them in the first place. Whenever you need to work with pointers and manual memory alloca-
tion, make sure you check and double-check your algorithms to avoid the silly mistake that
may introduce a bug.

Using Uninitialized PChar-Type Variables
You’ll often see wild pointer errors when you use PChar-type variables. Because a PChar is just
a pointer to a string, you have to remember to allocate memory for the PChar by using the
StrAlloc(), GetMem(), StrNew(), GlobalAlloc(), or VirtualAlloc() function, as well as
using the FreeMem(), StrDispose(), GlobalFree(), or VirtualFree() function to free it.

Advanced Techniques

PART II
320

TIP

You can avoid potential bugs in your program by using string-type variables where
possible, instead of PChars. You can typecast a string to a PChar, so the code
involved is simple, and because strings are automatically allocated and freed, you
don’t have to concern yourself with memory allocation.

This holds true especially for Delphi 1.0 applications that you’re porting to 32-bit
Delphi. In Delphi 1.0, PChars are a necessary evil. In 32-bit Delphi, they’re necessary
only on rare occasions. Take the time to move to strings as you port your applica-
tions to 32-bit Delphi.

Dereferencing a nil Pointer
In addition to the wild pointer, another common mistake is dereferencing a nil (zero-value)
pointer. Dereferencing a nil pointer always causes the operating system to issue an access vio-
lation error. Although this isn’t an error that you want to have in your application, it’s generally
not fatal. Because it doesn’t actually corrupt memory, it’s safe to use exception handling to
take care of the exception and move along. The sample procedure in the following code listing
illustrates this point:

procedure I_AV;
var
P: PByte;

begin
P := Nil;
try
P^ := 1;

except

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 320



on EAccessViolation do
MessageDlg(‘You can’’t do that!!’, mtError, [mbOk], 0);

end;
end;

If you put this procedure in a program, you’ll see that the message dialog box appears to
inform you of the problem, but your program continues to run.

Using the Integrated Debugger
Delphi provides a feature-rich debugger built right into the IDE. Most of the facilities of the
integrated debugger can be found on the Run menu. These facilities include all the features you
would expect of a professional debugger, including the ability to specify command-line para-
meters for your application, set breakpoints, perform trace and step, add and view watches,
evaluate and modify data, and view call stack information.

Using Command-Line Parameters
If your program is designed to use command-line parameters, you can specify them in the Run
Parameters dialog box. In this dialog box, simply type the parameters as you would on the
command line or in the Windows Start menu’s Run dialog box.

Breakpoints
Breakpoints enable you to suspend the execution of your program whenever a certain condition
is met. The most common type of breakpoint is a source breakpoint, which occurs when a par-
ticular line of code is about to be executed. You can set a source breakpoint by clicking to the
far left of a line of code in the Code Editor, by using the local menu, or by selecting Run, Add
Breakpoint. Whenever you want to see how your program is behaving inside a particular pro-
cedure or function, just set a breakpoint on the first line of code in that routine. Figure 19.2
shows a source breakpoint set on a line of program code.

Conditional Breakpoints
You can add additional information to a source breakpoint to suspend the execution of your pro-
gram when some condition occurs in addition to when a line of code is reached. A typical example
is when you want to examine the code inside a loop construct. You probably don’t want to suspend
and resume execution every time your code passes through the loop, especially if the loop occurs
hundreds, or perhaps thousands, of times. Instead of continually pressing the F9 key to run, just set
a breakpoint to occur whenever a variable reaches a certain value. For example, in a new project,
place a TButton on the main form and add the following code to the button’s event handler:

procedure TForm1.Button1Click(Sender: TObject);
var

Testing and Debugging

CHAPTER 19
321

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 321



I: Integer;
begin
for I := 1 to 100 do
begin
Caption := IntToStr(I);         // update form
Button1.Caption := IntToStr(I); // update button
Application.ProcessMessages;    // let updates happen

end;
end;

Advanced Techniques

PART II
322

FIGURE 19.2
A source breakpoint set in the Code Editor.

Now set a breakpoint on the following line:

Caption := IntToStr(I);         // update form

After you’ve set a breakpoint, select View, Debug Windows, Breakpoints, which will bring up
a Breakpoint List dialog box. Your breakpoint should show up in this list. Right-click your
breakpoint and select Properties from the local menu. This will invoke the Edit Breakpoint dia-
log box, as shown in Figure 19.3. In the Condition input line, enter I = 50 and select OK.
This will cause the breakpoint that you previously set to suspend program execution only when
the variable I contains the value 50.

TIP

Figure 19.3 provides a glimpse into the breakpoint actions feature, which is new to
Delphi 5. Breakpoint actions enable you to specify the exact behavior of the debug-
ger when a breakpoint is encountered. These actions are controlled using the three 

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 322



FIGURE 19.3
The Edit Breakpoint dialog box.

Data Breakpoints
Data breakpoints are breakpoints you can set to occur when memory at a particular address is
modified. This is useful for low-level debugging, when you need to track down bugs that per-
haps occur when a variable gets assigned. You can set data breakpoints by selecting Run, Add
Breakpoint, Data Breakpoint from the main menu or by using the local menu on the
Breakpoint List dialog box. This invokes the Add Data Breakpoint dialog box, as shown in
Figure 19.4. In this dialog box, you can enter the start address of the area of memory you want
to monitor and the length (number of bytes) to monitor after that address. By specifying the

Testing and Debugging

CHAPTER 19
323

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

checkboxes shown in the figure. Break, as you might imagine, instructs the debugger
to break when the breakpoint is encountered. Ignore Subsequent Exceptions causes
the debugger to refrain from breaking when exceptions are encountered from the
breakpoint forward. Handle Subsequent Exceptions causes the debugger to resume
the default behavior of breaking when exceptions are encountered from the break-
point forward.

The latter two options are designed to be used in tandem. If you have a particular bit
of code that is causing you problems by raising exceptions in the debugger and you
don’t want to be notified about it, you can use these breakpoint options to instruct
the debugger to ignore exceptions before entering the code block and begin han-
dling exceptions once again after leaving the block.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 323



number of bytes, you can watch anything from a Char (one byte) to an Integer (four bytes) to
an array or record (any number of bytes). In a manner similar to source breakpoints, the Add
Data Breakpoint dialog box also allows you to enter an expression that will be evaluated when
the memory region is written to so that you can find those bugs that occur on the nth time a
memory region is set. If you want the debugger to break when a specific variable is modified,
just enter the name of the variable in the address field.

Advanced Techniques

PART II
324

FIGURE 19.4
The Add Data Breakpoint dialog box.

Address Breakpoints
An address breakpoint is a breakpoint you can set to occur when code residing at a particular
address is executed. These types of breakpoints are normally set from the local menu in the
CPU view when you can’t set a source breakpoint because you don’t have the source code for
a particular module. As with other types of breakpoints, you can also specify a condition for
address breakpoints in order to fine-tune your breakpoints.

Module Load Breakpoints
As you can probably surmise from the name, module load breakpoints enable you to set break-
points that occur when a specified module is loaded in the debugged application’s process.
This allows you to be notified immediately when a DLL or package is loaded by an applica-
tion. The most common place to set module load breakpoints is the local menu in the Modules
window, but they can also be set by using the Run, Add Breakpoint item on the main menu.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 324



Breakpoint Groups
Breakpoint groups are one of the most powerful and time-saving features the integrated debug-
ger offers. Using groups, any breakpoint can be set up to enable or disable any other break-
point so that a very complex algorithm of breakpoints can be created to find very specific bugs.
Suppose you suspect that a bug shows up in your Paint() method only after you choose a par-
ticular menu option. You could add a breakpoint to the Paint() method, run the program, and
constantly tell the debugger to continue when you get barraged with hundreds of calls to your
Paint() method. Alternatively, you could keep that breakpoint on your Paint() method, dis-
able it so that it doesn’t fire, and then add another breakpoint to your menu-select event han-
dler to enable the Paint() method breakpoint. Now you can run full speed in the debugger and
not break in your Paint() handler until after you select the menu choice.

Executing Code Line by Line
You can execute code line by line by using either the Step Over or Trace Into option (F8 and
F7 keys, respectively, in the Default and IDE classic keymapping). Trace Into steps into your
procedures and functions as they’re called; Step Over executes the procedure or function
immediately without stepping into it. Typically, you use these options after stopping some-
where in your code with a breakpoint. Get to know the F7 and F8 keys; they are your friends.

You can also tell Delphi to run your program up to the line that the cursor currently inhabits by
using the Run To Cursor (F4) option. This is particularly useful when you want to bypass a
loop that’s iterated many times, in which case using F7 or F8 becomes tedious. Keep in mind
that you can set breakpoints at any time in the Code Editor—even as your program executes;
you don’t have to set all the breakpoints up front.

Testing and Debugging

CHAPTER 19
325

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

TIP

If you accidentally step into a function that will be very difficult or time-consuming
to step out of, choose Run, Run Until Return from the main menu to cause the
debugger to break after the current procedure or function returns.

You can breakpoint your code dynamically by using the Program Pause option. This option
often helps you determine whether your program is in an infinite loop. Keep in mind that VCL
code is being run most of your program’s life, so you often won’t stop on a line of your pro-
gram’s code with this option.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 325



Using the Watch Window
You can use the Watch window to track the values of your program’s variables as your code
executes. Keep in mind that you must be in a code view of your program (a breakpoint should
be executed) for the contents of the Watch window to be accurate. You can enter an Object
Pascal expression or register name into the Watch window. This is shown in Figure 19.5.

Advanced Techniques

PART II
326

TIP

When you debug your application, you’ve probably noticed the blue dots shown in
the “gutter” on the left side of the Code Editor window. One of these blue dots is
shown next to each line of code for which machine code is generated. You can’t set a
breakpoint on or step to a particular line of code if it doesn’t have a blue dot next to
it because no machine code is associated with the line.

FIGURE 19.5
Using the Watch List window.

Debug Inspectors
A debug inspector is a kind of data inspector that’s perhaps easier to use and more powerful in
some ways than the Watch window. To use this feature, select Run, Inspect while debugging an
application. This will invoke a simple dialog box into which you can enter an expression. Click
OK, and you’ll be presented with a Debug Inspector window for the expression you entered.
For example, Figure 19.6 shows a Debug Inspector for the main form of a do-nothing Delphi
application.

The Debug Inspector window provides a means for conveniently viewing data that consists of
many individual elements, such as classes and records. Click the ellipses on the right of the
value column in the Inspector to modify the value of a field. You can even drill down into
record or class data members by double-clicking a field of this type in the list.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 326



FIGURE 19.6
Inspecting a form using a Debug Inspector.

Using the Evaluate and Modify Options
The Evaluate and Modify options enable you to inspect and change the contents of variables,
including arrays and records, on the fly as your application executes in the integrated debugger.
Keep in mind that this feature doesn’t enable you to access functions or variables that are out
of scope.

Testing and Debugging

CHAPTER 19
327

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

CAUTION

Evaluating and modifying variables is perhaps one of the more powerful features of
the integrated debugger, but with that power comes the responsibility of having
direct access to memory. You must be careful when changing the values of variables,
because changes can affect the behavior of your program later.

Accessing the Call Stack
You can access the call stack by choosing View, Debug Windows, Call Stack. This enables you
to view function and procedure calls along with the parameters passed to them. The call stack
is useful for seeing a road map of functions that were called up to the current point in your
source code. Figure 19.7 shows a typical view of the Call Stack window.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 327



FIGURE 19.7
The Call Stack window.

Advanced Techniques

PART II
328

TIP

To view any procedure or function listed in the Call Stack window, simply right-click
inside the window. This is a good trick for getting back to a function when you acci-
dentally trace in too far.

Viewing Threads
If your application makes use of multiple threads, the integrated debugger allows you to obtain
information on the various threads in your application through the Thread Status window.
Select View, Debug Windows, Threads from the main menu to invoke this window. When your
application is paused (has hit a breakpoint), you can use the local menu provided by this win-
dow to make another thread current or to view the source associated with a particular thread.
Remember that whenever you modify the current thread, the next run or step command you
issue is relative to that thread. Figure 19.8 shows the Thread Status window.

FIGURE 19.8
The Thread Status window.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 328



Event Log
The Event Log provides a place into which the debugger will log a record for the occurrence of
various events. The Event Log, shown in Figure 19.9, is accessible from the View, Debug
menu. You can configure the Event Log by using its local menu or the Debugger page of the
Tools, Environment Options dialog box.

Testing and Debugging

CHAPTER 19
329

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

FIGURE 19.9
The Event Log.

The types of events you can log include process information such as process start, process
stop, and module load debugger breakpoints, as well as Windows messages sent to the applica-
tion and application output using OutputDebugString().

TIP

The OutputDebugString() API function provides a handy means to help you debug
applications. The single parameter to OutputDebugString() is a PChar. The string
passed in this parameter will be passed on to the debugger, and in the case of
Delphi, the string will be added to the Event Log. This allows you to keep track of
variable values or similar debug information without having to use watches or dis-
playing intrusive debug dialog boxes.

Modules View
The Modules view enables you to obtain information on all the modules (EXE, DLL, BPL, and so
on) loaded into the debugged application’s process. Shown in Figure 19.10, this window pro-
vides you with a list of who’s who in your application’s process, permits you to set module
load breakpoints, and provides you with various types of information on each module.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 329



FIGURE 19.10
The Modules view.

DLL Debugging
The Delphi integrated debugger provides you with the ability to debug your DLL projects
using any arbitrary application as the host. If fact, it’s quite easy. Open your DLL project and
select Run, Parameters from the main menu. Then specify a host application in the Run
Parameters dialog box, as shown in Figure 19.11.

Advanced Techniques

PART II
330

FIGURE 19.11
Specifying a host application.

The host application is an executable file that loads and uses the DLL you’re currently debug-
ging. After specifying a proper host application, you can use the integrated debugger much as
you would for debugging a normal executable; you can set breakpoints, step, trace, and so on.

This feature is most useful for debugging ActiveX controls and in-process COM servers that
are executed from within the context of another process. For example, you can use this feature
to debug your ActiveX control from within Visual Basic.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 330



The CPU View
The CPU view, found by selecting View, Debug Windows, CPU from the main menu, provides
a developer’s-eye view of what’s going on inside the machine’s CPU. The CPU view consists
of five panes of information: the CPU pane, the Memory Dump pane, the Register pane, the
Flags pane, and the Stack pane (see Figure 19.12). Each of these panes enables the user to
view important aspects of the processor as an aid to debugging.

Testing and Debugging

CHAPTER 19
331

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

FIGURE 19.12
The CPU view.

The CPU pane shows the opcodes and mnemonics of the disassembled assembly code that’s
being executed. You can position the CPU pane at any address in your process to view instruc-
tions, or you can set the current instruction pointer to any new location, from which execution
then continues. It’s helpful to be able to understand the assembly code that the CPU pane dis-
plays, and experienced developers will attest to the fact that many bugs have been found and
exterminated by examining the assembly code generated for a routine and realizing that it was-
n’t performing the desired operation. Someone who doesn’t understand assembly language
obviously wouldn’t be able to find such a bug as quickly.

The local menu of the CPU view allows you to change the way items are displayed, look at a
different address, go back to the current instruction pointer (EIP), search, go back to the source
code, and so on. You can also pick the thread context in which to view the CPU information.

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 331



The Memory Dump pane enables you to view the contents of any range of memory. There are
many ways in which it can be viewed—as Byte, Word, DWORD, QWORD, Single, Double, or
Extended. You can search memory for a sequence of bytes as well as modify the data or follow
it as code or data pointers.

The Register and Flags panes are pretty straightforward. All the CPU registers and flags are
displayed here and can be modified.

The Stack pane gives you a stack-based view of the memory that’s used for your program
stack. In this pane, you can change values of data on the stack  and follow addresses.

Summary
This chapter gives you some insight into the debugging process. It shows you the common
problems you might run into while developing applications, and discusses the useful features
of both the integrated and standalone debuggers. It’s important to remember that debugging is
as much a part of programming as is writing code. Your debugger can be one of your most
powerful allies in writing clean code, so take the time to know it well.

In the next part of the book, you’ll move into the realm of component-based development with
COM and VCL components.

Advanced Techniques

PART II
332

22.65227_Ch19CDx  11/30/99  12:20 PM  Page 332


