
CHAPTER

18
Multimedia Programming
with Delphi

IN THIS CHAPTER
• Creating a Simple Media Player 290

• Using WAV Files in Your
Applications 291

• Playing Video 293

• Device Support 298

• Creating an Audio CD Player 299

• Summary 314

21.65227_Ch18CDx 11/30/99 11:40 AM Page 289

Delphi’s TMediaPlayer component is proof that good things come in small packages. In the
guise of this little component, Delphi encapsulates a great deal of the functionality of the
Windows Media Control Interface (MCI)—the portion of the Windows API that provides con-
trol for multimedia devices.

Delphi makes multimedia programming so easy that the traditional and boring “Hello World”
program may be a thing of the past. Why write Hello World to the screen when it’s almost as
easy to play a sound or video file that offers its greetings?

In this chapter, you learn how to write a simple yet powerful media player, and you even con-
struct a fully functional audio CD player. This chapter explains the uses and nuances of the
TMediaPlayer component. Of course, your computer must be equipped with multimedia
devices, such as a sound card and CD-ROM, for this chapter to be of real use to you.

Creating a Simple Media Player
The best way to learn is by doing. This application demonstrates how quickly you can create a
media player by placing TMediaPlayer, TButton, and TOpenDialog components on a form.
This form is shown in Figure 18.1.

Advanced Techniques

PART II
290

FIGURE 18.1
The EasyMM Media Player.

The EasyMM Media Player works like this: After you click Button1, the OpenDialog dialog box
appears, and you choose a file from it. The Media Player prepares itself to play the file you
chose in OpenDialog. You then can click the Play button on the Media Player to play the file.
The following code belongs to the button’s OnClick method, and it opens the Media Player
with the file you chose:

procedure TMainForm.BtnOpenClick(Sender: TObject);
begin
if OpenDialog1.Execute then
begin
MediaPlayer1.Filename := OpenDialog1.Filename;
MediaPlayer1.Open;

end;
end;

21.65227_Ch18CDx 11/30/99 11:40 AM Page 290

This code executes the OpenDialog1 dialog box, and if a filename is chosen, OpenDialog1’s
FileName property is copied to MediaPlayer1’s FileName property. The MediaPlayer’s Open
method is then called to prepare it to play the file.

You might also want to limit the files to browse through with the OpenDialog dialog box to
only multimedia files. TMediaPlayer supports a whole gaggle of multimedia device types, but
for now, you’ll just browse WAV, AVI, and MIDI files. This capability exists in the
TOpenDialog component, and you take advantage of it by selecting OpenDialog1 in the Object
Inspector, choosing the Mask property, and clicking the ellipsis to the right of this item to
invoke the Filter Editor. Fill in the .WAV, .AVI, and .MID extensions, as shown in Figure 18.2.

Multimedia Programming with Delphi

CHAPTER 18
291

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

FIGURE 18.2
The Filter Editor.

The project is saved as EasyMM.dpr and the main unit as Main.pas. The Media Player is now
ready to run. Run the program, and try it out using one of the multimedia files on your hard
disk. Other people might have convinced you—or perhaps you had convinced yourself—that
multimedia programming is difficult, but now you have firsthand proof that this just isn’t true.

Using WAV Files in Your Applications
WAV files (pronounced wave, which is short for waveform) are the standard file format for
sharing audio in Windows. As the name implies, WAV files store sounds in a binary format that
resembles a mathematical wave. The great thing about WAV files is that they have gained
industry acceptance, and you can find them everywhere. The bad thing about WAV files is that
they tend to be bulky, and just a few of those Homer Simpson WAV files can take up a hefty
chunk of hard disk space.

The TMediaPlayer component enables you to easily integrate WAV sounds into your applica-
tions. As just illustrated, playing WAV files in your program is no sweat—just feed a
TMediaPlayer component a filename, open it, and play it. A little audio capability can be just
the thing your applications need to go from neat to way cool.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 291

If playing WAV files is all you want to do, you might not need the overhead of a TMediaPlayer
component. Instead, you can use the PlaySound() API function found in the MMSystem unit.
PlaySound() is defined this way:

function PlaySound(pszSound: PChar; hmod: HMODULE;
fdwSound: DWORD): BOOL; stdcall;

PlaySound() has the capability to play a WAV sound from a file, from memory, or from a
resource file linked into the application. PlaySound() accepts three parameters:

• The first parameter, pszSound, is a PChar variable that represents a filename, alias name,
resource name, Registry entry, entry from the [sounds] section of your WIN.INI file, or
pointer to a WAV sound located somewhere in memory.

• The second parameter, hmod, represents the handle of the executable file that contains the
resource to be loaded. This parameter must be zero unless snd_Resource is specified in
the fdwSound parameter.

• The third parameter, fdwSound, contains flags that describe how the sound should be
played. These flags can contain a combination of any of the following values:

Flag Description

SND_APPLICATION The sound is played using an application-specific association.

SND_ALIAS The pszSound parameter is a system-event alias in the
Registry or the WIN.INI file. Don’t use this flag with either
SND_FILENAME or SND_RESOURCE, because they’re mutually
exclusive.

SND_ALIAS_ID The pszSound parameter is a predefined sound identifier.

SND_FILENAME The pszSound parameter is a filename.

SND_NOWAIT This flag indicates that if the driver is busy, it returns immedi-
ately without playing the sound.

SND_PURGE All sounds are stopped for the calling task. If pszSound is not
zero, all instances of the specified sound are stopped. If
pszSound is zero, all sounds invoked by the current task are
stopped. You must also specify the proper instance handle to
stop SND_RESOURCE events.

SND_RESOURCE The pszSound parameter is a resource identifier. When you’re
using this flag, the hmod parameter must contain the instance
that contains the specified resource.

SND_ASYNC Plays the sound asynchronously and returns the function
almost immediately. This achieves a background music effect.

SND_LOOP Plays the sound over and over until you make it stop or you go
insane. SND_ASYNC also must be specified when using this flag.

Advanced Techniques

PART II
292

21.65227_Ch18CDx 11/30/99 11:40 AM Page 292

SND_MEMORY Plays the WAV sound in the memory area pointed to by the
pszSound parameter.

SND_NODEFAULT If the sound can’t be found, PlaySound() returns immediately
without playing the default sound, as specified in the Registry.

SND_NOSTOP Plays the sound only if it isn’t already playing. PlaySound()
returns True if the sound is played and False if the sound is
not played. If this flag is not specified, Win32 will stop any
currently playing sound before attempting to play the sound
specified in pszSound.

SND_SYNC Plays the sound synchronously and doesn’t return from the
function until the sound finishes playing.

Multimedia Programming with Delphi

CHAPTER 18
293

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

TIP

To terminate a WAV sound currently playing asynchronously, call PlaySound() and
pass Nil or zero for all parameters, as follows:

PlaySound(Nil, 0, 0); // stop currently playing WAV

To terminate even non-waveform sounds for a given task, add the snd_Purge flag:

PlaySound(Nil, 0, snd_Purge); // stop all currently playing sounds

NOTE

The Win32 API still supports the sndPlaySound() function, which was a part of the
Windows 3.x API. This function is only supported for backward compatibility, how-
ever, and it might not be available in future implementations of the Win32 API. Use
the Win32 PlaySound() function rather than sndPlaySound() for future compatibility.

Playing Video
AVI (short for audio-video interleave) is one of the most common file formats used to
exchange audio and video information simultaneously. In fact, you’ll find a couple of AVI files
in the \Runimage\Delphi50\Demos\Coolstuf directory of the CD-ROM that contains your
copy of Delphi 5.

You can use the simple multimedia player program you wrote earlier in this chapter to display
AVI files. Simply select an AVI file when OpenDialog1 is invoked and click the Play button.
Note that the AVI file plays in its own window.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 293

Showing the First Frame
You might want to display the first frame of an AVI file in a window before you actually play
the file. This achieves a sort of freeze-frame effect. To do this after opening the TMediaPlayer
component, just set the Frames property of TMediaPlayer to 1 and then call the Step()
method. The Frames property tells TMediaPlayer how many frames to move when Step() and
Back() methods are called. Step() advances the TMediaPlayer frames and displays the current
frame. This is the code:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
Frames := 1;
Step;
Notify := True;

end;
end;

Using the Display Property
You can assign a value to TMediaPlayer’s Display property to cause the AVI file to play to a
specific window, instead of creating its own window. To do this, you add a TPanel component
to your Media Player, as shown in Figure 18.3. After adding the panel, you can save the project
in a new directory as DDGMPlay.dpr.

Advanced Techniques

PART II
294

FIGURE 18.3
The DDGMPlay main window.

Click the drop-down arrow button for MediaPlayer1’s Display property and notice that all the
components in this project appear in the list box. Set the value of the Display property to Panel1.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 294

Now notice that when you run the program and select and play an AVI file, the AVI file output
appears in the panel. Also notice that the AVI file doesn’t take up the whole area of the panel;
the AVI file has a certain default size programmed into it.

Using the DisplayRect Property
DisplayRect is a property of type TRect that determines the size of the AVI file output win-
dow. You can use the DisplayRect property to cause your AVI file’s output to stretch or shrink
to a certain size. If you want the AVI file to take up the whole area of Panel1, for example, you
can assign DisplayRect to the size of the panel:

MediaPlayer1.DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);

You can add this line of code to the OnClick handler for Button1, like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then begin
MediaPlayer1.Filename := OpenDialog1.Filename;
MediaPlayer1.Open;
MediaPlayer1.DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);

end;
end;

Multimedia Programming with Delphi

CHAPTER 18
295

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

CAUTION

You can set the DisplayRect property only after the TMediaPlayer’s Open()
method is called.

Understanding TMediaPlayer Events
TMediaPlayer has two unique events: OnPostClick and OnNotify.

The OnPostClick event is very similar to OnClick, but OnClick occurs as soon as the compo-
nent is clicked, and OnPostClick executes only after some action occurs that was caused by a
click. If you click the Play button on TMediaPlayer at runtime, for example, an OnClick event
is generated, but an OnPostClick event is generated only after the media device is done playing.

The OnNotify event is a little more interesting. The OnNotify event executes whenever the
TMediaPlayer completes a media-control method (such as Back, Close, Eject, Next, Open,
Pause, PauseOnly, Play, Previous, Resume, Rewind, StartRecording, Step, or Stop) and only
when TMediaPlayer’s Notify property is set to True. To illustrate OnNotify, add a handler for
this event to the DDGMPlay project. In the event handler method, you cause a message dialog
box to appear after a command executes:

21.65227_Ch18CDx 11/30/99 11:40 AM Page 295

procedure TForm1.MediaPlayer1Notify(Sender: TObject);
begin
MessageDlg(‘Media control method executed’, mtInformation, [mbOk], 0);

end;

Don’t forget to also set the Notify property to True in Button1’s OnClick handler after open-
ing the Media Player:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);
Notify := True;

end;
end;

Advanced Techniques

PART II
296

TIP

Notice that you moved the code dealing with MediaPlayer1 into a with..do con-
struct. As you learned in earlier chapters, this construct offers advantages in code
clarity and performance over simply qualifying each property and method name.

Viewing the Source Code for DDGMPlay
By now, you should know the basics of how to play WAV and AVI files. Listings 18.1 and 18.2
show the complete source code for the DDGMPlay project.

LISTING 18.1 The Source Code for DDGMPlay.dpr

program DDGMPlay;

uses
Forms,
Main in ‘MAIN.PAS’ {MainForm};

{$R *.RES}

begin
Application.CreateForm(TMainForm, MainForm);
Application.Run;

end.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 296

LISTING 18.2 The Source Code for Main.pas

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, MPlayer, ExtCtrls;

type
TMainForm = class(TForm)
MediaPlayer1: TMediaPlayer;
OpenDialog1: TOpenDialog;
Button1: TButton;
Panel1: TPanel;
procedure Button1Click(Sender: TObject);
procedure MediaPlayer1Notify(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);
Notify := True;

end;
end;

procedure TMainForm.MediaPlayer1Notify(Sender: TObject);
begin
MessageDlg(‘Media control method executed’, mtInformation, [mbOk], 0);

Multimedia Programming with Delphi

CHAPTER 18
297

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:40 AM Page 297

LISTING 18.2 Continued

end;

end.

Device Support
TMediaPlayer supports the vast array of media devices supported by MCI. The type of device
that TMediaPlayer controls is determined by its DeviceType property. Table 18.1 describes the
different values of the DeviceType property.

TABLE 18.1 Values of TMediaPlayer’s DeviceType Property

DeviceType Value Media Device

dtAutoSelect The TMediaPlayer automatically should select the correct device
type based on the filename to be played.

dtAVIVideo AVI file. These files have the .AVI extension and contain both sound
and full-motion video.

dtCDAudio An audio CD played from your computer’s CD-ROM drive.

dtDAT A digital audio tape (DAT) player connected to your PC.

dtDigitalVideo A digital video device, such as a digital video camera.

dtMMMovie A multimedia movie format.

dtOther An unspecified multimedia format.

dtOverlay A video overlay device.

dtScanner A scanner connected to your PC.

dtSequencer A sequencer device capable of playing MIDI files. MIDI files typi-
cally end in a .MID or .RMI extension.

dtVCR A video cassette recorder (VCR) connected to your PC.

dtVideodisc A video disc player connected to your PC.

dtWaveAudio A WAV audio file. These files end in the .WAV extension.

Although you can see that TMediaPlayer supports many formats, this chapter focuses primarily
on the WAV, AVI, and CD Audio formats because those are the most common under Windows.

Advanced Techniques

PART II
298

NOTE

The TMediaPlayer component is a TWinControl descendant, which means it can be
easily encapsulated as an ActiveX control through the Delphi 5 wizards. One possible

21.65227_Ch18CDx 11/30/99 11:40 AM Page 298

Creating an Audio CD Player
You’ll learn about the finer points of the TMediaPlayer component by creating a full-featured
audio CD player. Figure 18.4 shows the main form for this application, which is called
CDPlayer.dpr. The main unit for this form is called CDMain.pas.

Multimedia Programming with Delphi

CHAPTER 18
299

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

benefit of doing this is the ability to embed a Media Player in a Web page to extend
your pages with custom multimedia. Additionally, with a few lines of JavaScript or
VBScript, you could provide a CD player for everyone on the Internet or your intranet
running a Windows browser.

FIGURE 18.4
The audio CD player’s main form.

Table 18.2 shows the important properties to be set for the components contained on the CD
player’s main form.

TABLE 18.2 Important Properties for the CD Player’s Components

Component Property Value

mpCDPlayer DeviceType dtAudioCD

sbTrack1–sbTrack20 Caption ‘1’ - ‘20’

sbTrack1–sbTrack20 Tag 1 - 20

Displaying a Splash Screen
When the CD player is run, it takes a couple seconds for it to load, and it might take several
more seconds for the TMediaPlayer component to initialize after calling its Open() method.
This delay from the time the user clicks the icon in Explorer to the time he or she actually sees
the program often gives the user an “is my program gonna start, or isn’t it?” feeling. This
delay is caused by the time Windows takes to load its multimedia subsystem, which occurs

21.65227_Ch18CDx 11/30/99 11:40 AM Page 299

when TMediaPlayer is opened. To avoid this problem, you can give the CD player program a
splash screen that displays as the program starts. The splash screen tells users that, yes, the
program will eventually start—it’s just taking a moment to load, so enjoy this little screen in
the meantime.

The first step in creating a splash screen is to create a form that you want to use as the splash
screen. Generally, you want this form to contain a panel but not a border or title bar; this gives
it a 3D, floating-panel appearance. On the panel, place one or more TLabel components and
perhaps a TImage component that displays a bitmap or icon.

The splash screen form for the CD player is shown in Figure 18.5, and the unit, Splash.pas, is
shown in Listing 18.3.

Advanced Techniques

PART II
300

FIGURE 18.5
The CD player’s splash screen form.

LISTING 18.3 The Source Code for SPLASH.PAS

unit Splash;
interface

uses Windows, Classes, Graphics, Forms, Controls, StdCtrls,
ExtCtrls;

type
TSplashScreen = class(TForm)
StatusPanel: TPanel;

end;

var
SplashScreen: TSplashScreen;

implementation

{$R *.DFM}

begin
{ Since the splash screen is displayed before the main screen is created,
it must be created before the main screen. }

SplashScreen := TSplashScreen.Create(Application);
SplashScreen.Show;

21.65227_Ch18CDx 11/30/99 11:40 AM Page 300

SplashScreen.Update;
end.

Unlike a normal form, the splash screen is created and shown in the initialization section
of its unit. Because the initialization section for all units is executed before the main pro-
gram block in the DPR file, this form is displayed before the main portion of the program runs.

Multimedia Programming with Delphi

CHAPTER 18
301

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

CAUTION

Do not use Application.CreateForm() to create your splash screen form
instance. The first time Application.CreateForm() is called in an applica-
tion, Delphi makes that form the main application form. It would be a “bad
thing” to make your splash screen the main form.

Beginning the CD Player
Create an event handler for the form’s OnCreate method. In this method, you open and initial-
ize the CD player program. First, call CDPlayer’s Open() method. Open() checks to make sure
that the system is capable of playing audio CDs and then initializes the device. If Open() fails,
it raises an exception of type EMCIDeviceError. In the event of an exception opening the
device, you should terminate the application. Here’s the code:

try
mpCDPlayer.Open; { Open the CD Player device. }

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate; { bail out }

end;
end;

NOTE

The preferred way to end a Delphi application is by calling the main form’s Close()
method or by calling Application.Terminate.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 301

After opening CDPlayer, you should set its EnabledButtons property to ensure that the proper
buttons are enabled for the device. Which buttons to enable, however, depends on the current
state of the CD device. If a CD is already playing when you call Open(), for example, you
obviously don’t want to enable the Play button. To perform a check on the current status of the
CD device, you can inspect CDPlayer’s Mode property. The Mode property, which has all its pos-
sible values laid out nicely in the online help, provides information on whether a CD device is
currently playing, stopped, paused, seeking, and so on. In this case, your concern is only whether
the device is stopped, paused, or playing. The following code enables the proper buttons:

case mpCDPlayer.Mode of
mpPlaying: mpCDPlayer.EnabledButtons := [btPause, btStop, btNext, btPrev];
mpStopped, { show default buttons if stopped }
mpPaused : mpCDPlayer.EnabledButtons := [btPlay, btNext, btPrev];

end;

The following is the completed source code for the TMainForm.FormCreate() method. Notice
that you make calls to several methods after successfully opening CDPlayer. The purpose of
these methods is to update various aspects of the CD player application, such as the number of
tracks on the current CD and the current track position. (These methods are described in more
detail later in this chapter.) Here’s the code:

procedure TMainForm.FormCreate(Sender: TObject);
{ This method is called when the form is created. It opens and initializes the
player }

begin
try
mpCDPlayer.Open; // Open the CD Player device.
{ If a CD is already playing at startup, show playing status. }
if mpCDPlayer.Mode = mpPlaying then
LblStatus.Caption := ‘Playing’;

GetCDTotals; // Show total time and tracks on current CD
ShowTrackNumber; // Show current track
ShowTrackTime; // Show the minutes and seconds for the current track
ShowCurrentTime; // Show the current position of the CD
ShowPlayerStatus; // Update the CD Player’s status

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate;

end;
end;
{ Check the current mode of the CD-ROM and enable the appropriate buttons. }
case mpCDPlayer.Mode of

Advanced Techniques

PART II
302

21.65227_Ch18CDx 11/30/99 11:40 AM Page 302

mpPlaying: mpCDPlayer.EnabledButtons := PlayButtons;
mpStopped, mpPaused: mpCDPlayer.EnabledButtons := StopButtons;

end;
SplashScreen.Release; // Close and free the splash screen

end;

Notice that the last line of code in this method closes the splash screen form. The OnCreate
event of the main form is generally the best place to do this.

Updating the CD Player Information
As the CD device plays, you can keep the information on CDPlayerForm up-to-date by using a
TTimer component. Every time a timer event occurs, you can call the necessary updating meth-
ods, as shown in the form’s OnCreate method, to ensure that the display stays current. Double-
click Timer1 to generate a method skeleton for its OnTimer event. Here’s the source code you
use for this event:

procedure TMainForm.tmUpdateTimerTimer(Sender: TObject);
{ This method is the heart of the CD Player. It updates all information at
every timer interval. }

begin
if mpCDPlayer.EnabledButtons = PlayButtons then
begin
mpCDPlayer.TimeFormat := tfMSF;
ggDiskDone.Progress := (mci_msf_minute(mpCDPlayer.Position) * 60 +

mci_msf_second(mpCDPlayer.Position));
mpCDPlayer.TimeFormat := tfTMSF;
ShowTrackNumber; // Show track number the CD player is currently on
ShowTrackTime; // Show total time for the current track
ShowCurrentTime; // Show elapsed time for the current track

end;
end;

Notice that, in addition to calling the various updating methods, this method also updates the
DiskDoneGauge control for the amount of time elapsed on the current CD. To get the elapsed
time, the method changes CDPlayer’s TimeFormat property to tfMSF and gets the minute and
second value from the Position property by using the mci_msf_Minute() and
mci_msf_Second() functions. This merits a bit more explanation.

TimeFormat
The TimeFormat property of a TMediaPlayer component determines how the values of the
StartPos, Length, Position, Start, and EndPos properties should be interpreted. Table 18.3
lists the possible values for TimeFormat. These values represent information packed into a
Longint type variable.

Multimedia Programming with Delphi

CHAPTER 18
303

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

21.65227_Ch18CDx 11/30/99 11:41 AM Page 303

TABLE 18.3 Values for the TMediaPlayer.TimeFormat Property

Value Time Storage Format

tfBytes Number of bytes

tfFrames Frames

tfHMS Hours, minutes, and seconds

tfMilliseconds Time in milliseconds

tfMSF Minutes, seconds, and frames

tfSamples Number of samples

tfSMPTE24 Hours, minutes, seconds, and frames based on 24 frames per second

tfSMPTE25 Hours, minutes, seconds, and frames based on 25 frames per second

tfSMPTE30 Hours, minutes, seconds, and frames based on 30 frames per second

tfSMPTE30Drop Hours, minutes, seconds, and frames based on 30 drop frames per second

tfTMSF Tracks, minutes, seconds, and frames

Time-Conversion Routines
The Windows API provides routines to retrieve the time information from the different packed
formats shown in Table 18.4. Packed format means that multiple data values are packed
(encoded) into one Longint value. These functions are located in MMSystem.dll, so be sure to
have MMSystem in your uses clause when using them.

TABLE 18.4 Functions to Unpack Multimedia Time Formats

Function Works With Returns

mci_HMS_Hour() tfHMS Hours

mci_HMS_Minute() tfHMS Minutes

mci_HMS_Second() tfHMS Seconds

mci_MSF_Frame() tfMSF Frames

mci_MSF_Minute() tfMSF Minutes

mci_MSF_Second() tfMSF Seconds

mci_TMSF_Frame() tfTMSF Frames

mci_TMSF_Minute() tfTMSF Minutes

mci_TMSF_Second() tfTMSF Seconds

mci_TMSF_Track() tfTMSF Tracks

Advanced Techniques

PART II
304

21.65227_Ch18CDx 11/30/99 11:41 AM Page 304

Methods for Updating the CD Player
As you learned earlier in this chapter, you use several methods to help keep the information
displayed by the CD player up-to-date. The primary purpose of each of these methods is to
update the labels in the top portion of the CD player form and to update the gauges in the mid-
dle portion of that form.

GetCDTotals()
The purpose of the GetCDTotals() method, shown in the following code, is to retrieve the
length and total number of tracks on the current CD. This information is then used to update
several labels and DiskDoneGauge. This code also calls the AdjustSpeedButtons() method,
which enables the same number of speedbuttons as tracks. Notice that this method also makes
use of the TimeFormat and time-conversion routines discussed earlier:

procedure TMainForm.GetCDTotals;
{ This method gets the total time and tracks of the CD and displays them. }
var
TimeValue: longint;

begin
mpCDPlayer.TimeFormat := tfTMSF; // set time format
TimeValue := mpCDPlayer.Length; // get CD length
TotalTracks := mci_Tmsf_Track(mpCDPlayer.Tracks); // get total tracks
TotalLengthM := mci_msf_Minute(TimeValue); // get total length in mins
TotalLengthS := mci_msf_Second(TimeValue); // get total length in secs
{ set caption of Total Tracks label }
LblTotTrk.Caption := TrackNumToString(TotalTracks);
{ set caption of Total Time label }
LblTotalLen.Caption := Format(MSFormatStr, [TotalLengthM, TotalLengthS]);
{ initialize gauge }
ggDiskDone.MaxValue := (TotalLengthM * 60) + TotalLengthS;
{ enable the correct number of speed buttons }
AdjustSpeedButtons;

end;

ShowCurrentTime()
The ShowCurrentTime() method is shown in the following code. This method is designed to
obtain the elapsed minutes and seconds for the currently playing track as well as to update the
necessary controls. Here, you also use the time-conversion routines provided by MMSystem:

procedure TMainForm.ShowCurrentTime;
{ This method displays the current time of the current track }
begin
{ Minutes for this track }
m := mci_Tmsf_Minute(mpCDPlayer.Position);
{ Seconds for this track }
s := mci_Tmsf_Second(mpCDPlayer.Position);

Multimedia Programming with Delphi

CHAPTER 18
305

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

21.65227_Ch18CDx 11/30/99 11:41 AM Page 305

{ update track time label }
LblTrackTime.Caption := Format(MSFormatStr, [m, s]);
{ update track gauge }
ggTrackDone.Progress := (60 * m) + s;

end;

ShowTrackTime()
The ShowTrackTime() method, shown in the following code, obtains the total length of the
current track in minutes and seconds, and it updates a label control. Again, you make use of
the time-conversion routines. Also notice that you check to make sure that the track isn’t the
same as when this function was last called. This comparison ensures that you don’t make
unnecessary function calls or repaint components unnecessarily. Here’s the code:

procedure TMainForm.ShowTrackTime;
{ This method changes the track time to display the total length of the
currently selected track. }

var
Min, Sec: Byte;
Len: Longint;

begin
{ Don’t update the information if player is still on the same track }
if CurrentTrack <> OldTrack then
begin
Len := mpCDPlayer.TrackLength[mci_Tmsf_Track(mpCDPlayer.Position)];
Min := mci_msf_Minute(Len);
Sec := mci_msf_Second(Len);
ggTrackDone.MaxValue := (60 * Min) + Sec;
LblTrackLen.Caption := Format(MSFormatStr, [m, s]);

end;
OldTrack := CurrentTrack;

end;

CD Player Source
You’ve now seen all aspects of the CD player as they relate to multimedia. Listings 18.4 and
18.5 show the complete source code for the CDPlayer.dpr and CDMain.pas modules. The
CDMain unit also shows some of the techniques you use to manipulate the speedbuttons using
their Tag properties as well as other techniques for updating the controls.

LISTING 18.4 The Source Code for CDPlayer.dpr

program CDPlayer;

uses
Forms,
Splash in ‘Splash.pas’ {SplashScreen},

Advanced Techniques

PART II
306

21.65227_Ch18CDx 11/30/99 11:41 AM Page 306

CDMain in ‘CDMain.pas’ {MainForm};

begin
Application.CreateForm(TMainForm, MainForm);
Application.Run;

end.

LISTING 18.5 The Source Code for CDMain.pas

unit CDMain;

interface

uses
SysUtils, Windows, Classes, Graphics, Forms, Controls, MPlayer, StdCtrls,
Menus, MMSystem, Messages, Buttons, Dialogs, ExtCtrls, Splash, Gauges;

type
TMainForm = class(TForm)
tmUpdateTimer: TTimer;
MainScreenPanel: TPanel;
LblStatus: TLabel;
Label2: TLabel;
LblCurTrk: TLabel;
Label4: TLabel;
LblTrackTime: TLabel;
Label7: TLabel;
Label8: TLabel;
LblTotTrk: TLabel;
LblTotalLen: TLabel;
Label12: TLabel;
LblTrackLen: TLabel;
Label15: TLabel;
CDInfo: TPanel;
SBPanel: TPanel;
Panel1: TPanel;
mpCDPlayer: TMediaPlayer;
sbTrack1: TSpeedButton;
sbTrack2: TSpeedButton;
sbTrack3: TSpeedButton;
sbTrack4: TSpeedButton;
sbTrack5: TSpeedButton;
sbTrack6: TSpeedButton;
sbTrack7: TSpeedButton;
sbTrack8: TSpeedButton;
sbTrack9: TSpeedButton;

Multimedia Programming with Delphi

CHAPTER 18
307

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 307

LISTING 18.5 Continued

sbTrack10: TSpeedButton;
sbTrack11: TSpeedButton;
sbTrack12: TSpeedButton;
sbTrack13: TSpeedButton;
sbTrack14: TSpeedButton;
sbTrack15: TSpeedButton;
sbTrack16: TSpeedButton;
sbTrack17: TSpeedButton;
sbTrack18: TSpeedButton;
sbTrack19: TSpeedButton;
sbTrack20: TSpeedButton;
ggTrackDone: TGauge;
ggDiskDone: TGauge;
Label1: TLabel;
Label3: TLabel;
procedure tmUpdateTimerTimer(Sender: TObject);
procedure mpCDPlayerPostClick(Sender: TObject; Button: TMPBtnType);
procedure FormCreate(Sender: TObject);
procedure sbTrack1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }
OldTrack, CurrentTrack: Byte;
m, s: Byte;
TotalTracks: Byte;
TotalLengthM: Byte;
TotalLengthS: Byte;
procedure GetCDTotals;
procedure ShowTrackNumber;
procedure ShowTrackTime;
procedure ShowCurrentTime;
procedure ShowPlayerStatus;
procedure AdjustSpeedButtons;
procedure HighlightTrackButton;
function TrackNumToString(InNum: Byte): String;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const

Advanced Techniques

PART II
308

21.65227_Ch18CDx 11/30/99 11:41 AM Page 308

{ Array of strings representing numbers from one to twenty: }
NumStrings: array[1..20] of String[10] =

(‘One’, ‘Two’, ‘Three’, ‘Four’, ‘Five’, ‘Six’, ‘Seven’, ‘Eight’, ‘Nine’,
‘Ten’, ‘Eleven’, ‘Twelve’, ‘Thirteen’, ‘Fourteen’, ‘Fifteen’, ‘Sixteen’,
‘Seventeen’, ‘Eighteen’, ‘Nineteen’, ‘Twenty’);

MSFormatStr = ‘%dm %ds’;
PlayButtons: TButtonSet = [btPause, btStop, btNext, btPrev];
StopButtons: TButtonSet = [btPlay, btNext, btPrev];

function TMainForm.TrackNumToString(InNum: Byte): String;
{ This function returns a string corresponding to a integer between 1 and 20.
If the number is greater than 20, then the integer is returned as a string. }

begin
if (InNum > High(NumStrings)) or (InNum < Low(NumStrings)) then
Result := IntToStr(InNum) { if not in array, then just return number }

else
Result := NumStrings[InNum]; { return the string from NumStrings array }

end;

procedure TMainForm.AdjustSpeedButtons;
{ This method enables the proper number of speed buttons }
var
i: integer;

begin
{ iterate through form’s Components array... }
for i := 0 to SBPanel.ControlCount - 1 do
if SBPanel.Controls[i] is TSpeedButton then // is it a speed button?
{ disable buttons higher than number of tracks on CD }
with TSpeedButton(SBPanel.Controls[i]) do Enabled := Tag <= TotalTracks;

end;

procedure TMainForm.GetCDTotals;
{ This method gets the total time and tracks of the CD and displays them. }
var
TimeValue: longint;

begin
mpCDPlayer.TimeFormat := tfTMSF; // set time format
TimeValue := mpCDPlayer.Length; // get CD length
TotalTracks := mci_Tmsf_Track(mpCDPlayer.Tracks); // get total tracks
TotalLengthM := mci_msf_Minute(TimeValue); // get total length in mins
TotalLengthS := mci_msf_Second(TimeValue); // get total length in secs
{ set caption of Total Tracks label }
LblTotTrk.Caption := TrackNumToString(TotalTracks);
{ set caption of Total Time label }
LblTotalLen.Caption := Format(MSFormatStr, [TotalLengthM, TotalLengthS]);

Multimedia Programming with Delphi

CHAPTER 18
309

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 309

LISTING 18.5 Continued

{ intitialize gauge }
ggDiskDone.MaxValue := (TotalLengthM * 60) + TotalLengthS;
{ enable the correct number of speed buttons }
AdjustSpeedButtons;

end;

procedure TMainForm.ShowPlayerStatus;
{ This method displays the status of the CD Player and the CD that
is currently being played. }

begin
if mpCDPlayer.EnabledButtons = PlayButtons then
with LblStatus do
begin
case mpCDPlayer.Mode of
mpNotReady: Caption := ‘Not Ready’;
mpStopped: Caption := ‘Stopped’;
mpSeeking: Caption := ‘Seeking’;
mpPaused: Caption := ‘Paused’;
mpPlaying: Caption := ‘Playing’;

end;
end

{ If these buttons are displayed the CD Player must be stopped... }
else if mpCDPlayer.EnabledButtons = StopButtons then
LblStatus.Caption := ‘Stopped’;

end;

procedure TMainForm.ShowCurrentTime;
{ This method displays the current time of the current track }
begin
{ Minutes for this track }
m := mci_Tmsf_Minute(mpCDPlayer.Position);
{ Seconds for this track }
s := mci_Tmsf_Second(mpCDPlayer.Position);
{ update track time label }
LblTrackTime.Caption := Format(MSFormatStr, [m, s]);
{ update track gauge }
ggTrackDone.Progress := (60 * m) + s;

end;

procedure TMainForm.ShowTrackTime;
{ This method changes the track time to display the total length of the
currently selected track. }

var
Min, Sec: Byte;
Len: Longint;

Advanced Techniques

PART II
310

21.65227_Ch18CDx 11/30/99 11:41 AM Page 310

begin
{ Don’t update the information if player is still on the same track }
if CurrentTrack <> OldTrack then
begin
Len := mpCDPlayer.TrackLength[mci_Tmsf_Track(mpCDPlayer.Position)];
Min := mci_msf_Minute(Len);
Sec := mci_msf_Second(Len);
ggTrackDone.MaxValue := (60 * Min) + Sec;
LblTrackLen.Caption := Format(MSFormatStr, [m, s]);

end;
OldTrack := CurrentTrack;

end;

procedure TMainForm.HighlightTrackButton;
{ This procedure changes the color of the speedbutton font for the current
track to red, while changing other speedbuttons to navy blue. }

var
i: longint;

begin
{ iterate through form’s components }
for i := 0 to ComponentCount - 1 do
{ is it a speedbutton? }
if Components[i] is TSpeedButton then
if TSpeedButton(Components[i]).Tag = CurrentTrack then
{ turn red if current track }
TSpeedButton(Components[i]).Font.Color := clRed

else
{ turn blue if not current track }
TSpeedButton(Components[i]).Font.Color := clNavy;

end;

procedure TMainForm.ShowTrackNumber;
{ This method displays the currently playing track number. }
var
t: byte;

begin
t := mci_Tmsf_Track(mpCDPlayer.Position); // get current track
CurrentTrack := t; // set instance variable
LblCurTrk.Caption := TrackNumToString(t); // set Curr Track label caption
HighlightTrackButton; // Highlight current speedbutton

end;

procedure TMainForm.tmUpdateTimerTimer(Sender: TObject);
{ This method is the heart of the CD Player. It updates all information at
every timer interval. }

begin

Multimedia Programming with Delphi

CHAPTER 18
311

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 311

LISTING 18.5 Continued

if mpCDPlayer.EnabledButtons = PlayButtons then
begin
mpCDPlayer.TimeFormat := tfMSF;
ggDiskDone.Progress := (mci_msf_minute(mpCDPlayer.Position) * 60 +

mci_msf_second(mpCDPlayer.Position));
mpCDPlayer.TimeFormat := tfTMSF;
ShowTrackNumber; // Show track number the CD player is currently on
ShowTrackTime; // Show total time for the current track
ShowCurrentTime; // Show elapsed time for the current track

end;
end;

procedure TMainForm.mpCDPlayerPostClick(Sender: TObject;
Button: TMPBtnType);

{ This method displays the correct CD Player buttons when one of the buttons
are clicked. }

begin
Case Button of
btPlay:
begin
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

end;
btPause:
begin
mpCDPlayer.EnabledButtons := StopButtons;
LblStatus.Caption := ‘Paused’;

end;
btStop:
begin
mpCDPlayer.Rewind;
mpCDPlayer.EnabledButtons := StopButtons;
LblCurTrk.Caption := ‘One’;
LblTrackTime.Caption := ‘0m 0s’;
ggTrackDone.Progress := 0;
ggDiskDone.Progress := 0;
LblStatus.Caption := ‘Stopped’;

end;
btPrev, btNext:
begin
mpCDPlayer.Play;
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

end;
end;

Advanced Techniques

PART II
312

21.65227_Ch18CDx 11/30/99 11:41 AM Page 312

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ This method is called when the form is created. It opens and initializes the
player }

begin
try
mpCDPlayer.Open; // Open the CD Player device.
{ If a CD is already playing at startup, show playing status. }
if mpCDPlayer.Mode = mpPlaying then
LblStatus.Caption := ‘Playing’;

GetCDTotals; // Show total time and tracks on current CD
ShowTrackNumber; // Show current track
ShowTrackTime; // Show the minutes and seconds for the current track
ShowCurrentTime; // Show the current position of the CD
ShowPlayerStatus; // Update the CD Player’s status

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate;

end;
end;
{ Check the current mode of the CD-ROM and enable the appropriate buttons. }
case mpCDPlayer.Mode of
mpPlaying: mpCDPlayer.EnabledButtons := PlayButtons;
mpStopped, mpPaused: mpCDPlayer.EnabledButtons := StopButtons;

end;
SplashScreen.Release; // Close and free the splash screen

end;

procedure TMainForm.sbTrack1Click(Sender: TObject);
{ This method sets the current track when the user presses one of the track
speed buttons. This method works with all 20 speed buttons, so by looking at
the ‘Sender’ it can tell which button was pressed by the button’s tag. }

begin
mpCDPlayer.Stop;
{ Set the start position on the CD to the start of the newly selected track }
Track := (Sender as TSpeedButton).Tag;
mpCDPlayer.StartPos := mpCDPlayer.TrackPosition[Track];
{ Start playing CD at new position }
mpCDPlayer.Play;
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

Multimedia Programming with Delphi

CHAPTER 18
313

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 313

LISTING 18.5 Continued

end;

procedure TMainForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
mpCDPlayer.Close;

end;

end.

Summary
That about wraps up the basic concepts of Delphi’s TMediaPlayer component. This chapter
demonstrates the power and simplicity of this component through several examples. In particu-
lar, you learned about the common multimedia formats of WAV audio, AVI audio/video, and
CD audio.

Advanced Techniques

PART II
314

21.65227_Ch18CDx 11/30/99 11:41 AM Page 314

