
CHAPTER

10
Printing in Delphi 5

IN THIS CHAPTER
• The TPrinter Object 154

• TPrinter.Canvas 155

• Simple Printing 156

• Printing a Form 159

• Advanced Printing 159

• Miscellaneous Printing Tasks 184

• Obtaining Printer Information 191

• Summary 207

13.65227_Ch10CDx 11/30/99 11:29 AM Page 153

Printing in Windows has been the bane of many a Windows programmer. However, don’t be
discouraged; Delphi simplifies most of what you need to know for printing. You can write sim-
ple printing routines to output text or bitmapped images with little effort. For more complex
printing, a few concepts and techniques are all you really need to enable you to perform any
type of custom printing. When you have that, printing isn’t so difficult.

Advanced Techniques

PART II
154

NOTE

You’ll find a set of reporting components by QuSoft on the QReport page of the
Component Palette. The documentation for this tool is located in the help file
QuickRpt.hlp.

QuSoft’s tools are suitable for applications that generate complex reports. However,
they limit you from getting to the nuts and bolts of printing at the source-code level,
where you have more control over what gets printed. This chapter doesn’t cover
QuickReports; instead, it covers creating your own reports in Delphi.

Delphi’s TPrinter object, which encapsulates the Windows printing engine, does a great deal
for you that you would otherwise have to handle yourself.

This chapter teaches you how to perform a whole range of printing operations by using
TPrinter. You learn the simple tasks that Delphi has made much easier for generating print-
outs. You also learn the techniques for creating advanced printing routines that should start you
on your way to becoming a printing guru.

The TPrinter Object
The TPrinter object encapsulates the Windows printing interface, making most of the printing
management invisible to you. TPrinter’s methods and properties enable you to print onto its
canvas as though you were drawing your output to a form’s surface. The function Printer()
returns a global TPrinter instance the first time it’s called. TPrinter’s properties and methods
are listed in Tables 10.1 and 10.2.

TABLE 10.1 TPrinter Properties

Property Purpose

Aborted Boolean variable that determines whether the user has aborted the print job.

Canvas The printing surface for the current page.

Fonts Contains a list of fonts supported by the printer.

Handle A unique number representing the printer’s device handle. See the sidebar
“Handles” in Chapter 20, “Key Elements of the Visual Component Library.”

13.65227_Ch10CDx 11/30/99 11:29 AM Page 154

Property Purpose

Orientation Determines horizontal (poLandScape) or vertical (poPortrait) printing.

PageHeight Height, in pixels, of the printed page’s surface.

PageNumber Indicates the page being printed. This is incremented with each subsequent call
to TPrinter.NewPage().

PageWidth Width, in pixels, of the printed page’s surface.

PrinterIndex Indicates the selected printer from the available printers on the user’s system.

Printers A list of the available printers on the system.

Printing Determines whether a print job is printing.

Title Text appearing in the Print Manager and on networked pages.

TABLE 10.2 TPrinter Methods

Method Purpose

Abort Terminates a print job.

BeginDoc Begins a print job.

EndDoc Ends a print job. (EndDoc ends a print job when printing is finished; Abort
can terminate the job before printing is complete.)

GetPrinter Retrieves the current printer.

NewPage Forces the printer to start printing on a new page and increments the
PageCount property.

SetPrinter Specifies a printer as a current printer.

TPrinter.Canvas
TPrinter.Canvas is much like the canvas for your form; it represents the drawing surface on
which text and graphics are drawn. The difference is that TPrinter.Canvas represents the
drawing surface for your printed output as opposed to your screen. Most of the routines you
use to draw text, to draw shapes, and to display images are used in the same manner for
printed output. When printing, however, you must take into account some differences:

• Drawing to the screen is dynamic—you can erase what you’ve placed on the screen’s
output. Drawing to the printer isn’t so flexible. What’s drawn to the TPrinter.Canvas is
printed to the printer.

• Drawing text or graphics to the screen is nearly instantaneous, whereas drawing to the
printer is slow, even on some high-performance laser printers. You therefore must allow

Printing in Delphi 5

CHAPTER 10
155

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 155

users to abort a print job either by using an Abort dialog box or by some other method
that enables them to terminate the print job.

• Because your users are running Windows, you can assume that their display supports
graphics output. However, you can’t assume the same for their printers. Different printers
have different capabilities. Some printers may be high-resolution printers; other printers
may be very low resolution and may not support graphics printing at all. You must take
this into account in your printing routines.

• You’ll never see an error message like this:

Display ran out of screen space,
please insert more screen space into your display.

But you can bet that you’ll see an error telling you that the printer ran out of paper.
Windows NT/2000 and Windows 95/98 both provide error handling when this occurs.
However, you should provide a way for the user to cancel the printout when this occurs.

• Text and graphics on your screen don’t look the same on hard copy. Printers and displays
have very different resolutions. That 300×300 bitmap might look spectacular on a
640×480 display, but it’s a mere 1×1-inch square blob on your 300 dpi (dots per inch)
laser printer. You’re responsible for making adjustments to your drawing routines so that
your users won’t need a magnifying glass to read their printed output.

Simple Printing
In many cases, you want to send a stream of text to your printer without any regard for special
formatting or placement of the text. Delphi facilitates simple printing, as the following sections
illustrate.

Printing the Contents of a TMemo Component
Printing lines of text is actually quite simple using the AssignPrn() procedure. The AssignPrn()
procedure enables you to assign a text file variable to the current printer. It’s used with the
Rewrite() and CloseFile() procedures. The following lines of code illustrate this syntax:

var
f: TextFile;

begin
AssignPrn(f);
try
Rewrite(f);
writeln(f, ‘Print the output’);

finally

Advanced Techniques

PART II
156

13.65227_Ch10CDx 11/30/99 11:29 AM Page 156

CloseFile(f);
end;

end;

Printing a line of text to the printer is the same as printing a line of text to a file. You use this
syntax:

writeln(f, ‘This is my line of text’);

In Chapter 16, “MDI Applications,” you add menu options for printing the contents of the
TMdiEditForm form. Listing 10.1 shows you how to print the contents from TMdiEditForm.
You’ll use this same technique for printing text from just about any source.

LISTING 10.1 Printing Code for TMdiEditForm

procedure TMdiEditForm.mmiPrintClick(Sender: TObject);
var
i: integer;
PText: TextFile;

begin
inherited;
if PrintDialog.Execute then
begin
AssignPrn(PText);
Rewrite(PText);
try
Printer.Canvas.Font := memMainMemo.Font;
for i := 0 to memMainMemo.Lines.Count -1 do
writeln(PText, memMainMemo.Lines[i]);

finally
CloseFile(PText);

end;
end;

end;

Notice that the memo’s font also was assigned to the Printer’s font, causing the output to
print with the same font as memMainMemo.

Printing in Delphi 5

CHAPTER 10
157

10

P
R

IN
TIN

G
IN

D
ELPH

I5

CAUTION

Be aware that the printer will print with the font specified by Printer.Font only if
the printer supports that font. Otherwise, the printer will use a font that approxi-
mates the characteristics of the specified font.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 157

Printing a Bitmap
Printing a bitmap is simple as well. The MdiApp example in Chapter 16, “MDI Applications,”
shows how to print the contents of a bitmap in TMdiBmpForm. This event handler is shown in
Listing 10.2.

LISTING 10.2 Printing Code for TMdiBmpForm

procedure TMdiBMPForm.mmiPrintClick(Sender: TObject);
begin
inherited;

with ImgMain.Picture.Bitmap do
begin
Printer.BeginDoc;
Printer.Canvas.StretchDraw(Canvas.ClipRect, imgMain.Picture.Bitmap);
Printer.EndDoc;

end; { with }
end;

Only three lines of code are needed to print the bitmap using the TCanvas.StretchDraw()
method. This vast simplification of printing a bitmap is made possible by the fact that since
Delphi 3, bitmaps are in DIB format by default, and DIBs are what the printer driver requires.
If you happen to have a handle to a bitmap that isn’t in DIB format, you can copy (Assign) it
into a temporary TBitmap, force the temporary bitmap into DIB format by assigning bmDIB to
the TBitmap.HandleType property, and then print from the new DIB.

Advanced Techniques

PART II
158

NOTE

One of the keys to printing is to be able to print images as they appear onscreen at
approximately the same size. A 3×3-inch image on a 640×480 pixel screen uses fewer
pixels than it would on a 300 dpi printer, for example. Therefore, stretch the image
to TPrinter’s canvas as was done in the example in the call to StretchDIBits().
Another technique is to draw the image using a different mapping mode, as
described in Chapter 8, “Graphics Programming with GDI and Fonts.” Keep in mind
that some older printers may not support the stretching of images. You can obtain
valuable information about the printer’s capabilities by using the Win32 API function
GetDeviceCaps().

13.65227_Ch10CDx 11/30/99 11:29 AM Page 158

Printing Rich Text–Formatted Data
Printing the contents of a TRichEdit component is a matter of one method call. The following
code shows how to do this (this is also the code for printing TMdiRtfForm in the MdiApp exam-
ple in Chapter 16, “MDI Applications”):

procedure TMdiRtfForm.mmiPrintClick(Sender: TObject);
begin
inherited;
reMain.Print(Caption);

end;

Printing a Form
Conceptually, printing a form can be one of the more difficult tasks to perform. However, this
task has been simplified greatly thanks to VCL’s Print() method of TForm. The following one-
line procedure prints your form’s client areas as well as all components residing in the client
area:

procedure TForm1.PrintMyForm(Sender: TObject);
begin
Print;

end;

Printing in Delphi 5

CHAPTER 10
159

10

P
R

IN
TIN

G
IN

D
ELPH

I5

NOTE

Printing your form is a quick-and-dirty way to print graphical output. However, only
what’s visible onscreen will be printed, due to Windows’ clipping. Also, the bitmap is
created at screen pixel density and then stretched to printer resolution. Text on the
form is not drawn at printer resolution; it’s drawn at screen resolution and stretched,
so overall the form will be noticeably jagged and blocky. You must use more elabo-
rate techniques to print complex graphics; these techniques are discussed later in this
chapter.

Advanced Printing
Often you need to print something very specific that isn’t facilitated by the development tool
you’re using or a third-party reporting tool. In this case, you need to perform the low-level
printing tasks yourself. The next several sections show you how to write such printing routines
and present a methodology you can apply to all your printing tasks.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 159

Printing a Columnar Report
Many applications, particularly those using databases, print some type of report. One common
report style is the columnar report.

The next project prints a columnar report from one of the tables in Delphi’s demo directories.
Each page contains a header, column titles, and then the record list. Each subsequent page also
has the header and column titles preceding the record list.

Figure 10.1 shows the main form for this project. The TEdit/TUpDown pairs enable the user to
specify the column widths in tenths of inches. By using the TUpDown components, you can
specify minimum and maximum values. The TEdit1 control, edtHeaderFont, contains a
header that can be printed using a font that differs from the one used for the rest of the report.

Advanced Techniques

PART II
160

NOTE

Although this section covers printing, you should know that at the time of this writing,
several third-party printing components are available that should handle most of your
printing needs. You’ll find demos of some of these tools on the CD with this book.

FIGURE 10.1
Columnar report main form.

Listing 10.3 shows the source code for the project. The mmiPrintClick() event handler basi-
cally performs the following steps:

1. Initiates a print job.

2. Prints a header.

3. Prints column names.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 160

4. Prints a page.

5. Continues steps 2, 3, and 4 until printing finishes.

6. Ends the print job.

LISTING 10.3 Columnar Report Demo

unit MainFrm;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, DBGrids, DB, DBTables, Menus, StdCtrls, Spin,
Gauges, ExtCtrls, ComCtrls;

type
TMainForm = class(TForm)
{ components not included in listing,
please refer to CD source }

procedure mmiPrintClick(Sender: TObject);
procedure btnHeaderFontClick(Sender: TObject);

private
PixelsInInchx: integer;
LineHeight: Integer;
{ Keeps track of vertical space in pixels, printed on a page }
AmountPrinted: integer;
{ Number of pixels in 1/10 of an inch. This is used for line spacing }
TenthsOfInchPixelsY: integer;
procedure PrintLine(Items: TStringList);
procedure PrintHeader;
procedure PrintColumnNames;

end;

var
MainForm: TMainForm;

implementation
uses printers, AbortFrm;

{$R *.DFM}

procedure TMainForm.PrintLine(Items: TStringList);
var
OutRect: TRect;
Inches: double;
i: integer;

Printing in Delphi 5

CHAPTER 10
161

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:29 AM Page 161

LISTING 10.3 Continued

begin
// First position the print rect on the print canvas
OutRect.Left := 0;
OutRect.Top := AmountPrinted;
OutRect.Bottom := OutRect.Top + LineHeight;
With Printer.Canvas do
for i := 0 to Items.Count - 1 do
begin
Inches := longint(Items.Objects[i]) * 0.1;
// Determine Right edge
OutRect.Right := OutRect.Left + round(PixelsInInchx*Inches);
if not Printer.Aborted then
// Print the line
TextRect(OutRect, OutRect.Left, OutRect.Top, Items[i]);

// Adjust right edge
OutRect.Left := OutRect.Right;

end;
{ As each line prints, AmountPrinted must increase to reflect how
much of a page has been printed on based on the line height. }
AmountPrinted := AmountPrinted + TenthsOfInchPixelsY*2;

end;

procedure TMainForm.PrintHeader;
var
SaveFont: TFont;

begin
{ Save the current printer’s font, then set a new print font based
on the selection for Edit1 }
SaveFont := TFont.Create;
try
Savefont.Assign(Printer.Canvas.Font);
Printer.Canvas.Font.Assign(edtHeaderFont.Font);
// First print out the Header
with Printer do
begin
if not Printer.Aborted then
Canvas.TextOut((PageWidth div 2)-(Canvas.TextWidth(edtHeaderFont.Text)

div 2),0, edtHeaderFont.Text);
// Increment AmountPrinted by the LineHeight
AmountPrinted := AmountPrinted + LineHeight+TenthsOfInchPixelsY;

end;
// Restore the old font to the Printer’s Canvas property
Printer.Canvas.Font.Assign(SaveFont);

finally
SaveFont.Free;

Advanced Techniques

PART II
162

13.65227_Ch10CDx 11/30/99 11:29 AM Page 162

end;
end;

procedure TMainForm.PrintColumnNames;
var
ColNames: TStringList;

begin
{ Create a TStringList to hold the column names and the
positions where the width of each column is based on values
in the TEdit controls. }

ColNames := TStringList.Create;
try
// Print the column headers using a bold/underline style
Printer.Canvas.Font.Style := [fsBold, fsUnderline];

with ColNames do
begin
// Store the column headers and widths in the TStringList object
AddObject(‘LAST NAME’, pointer(StrToInt(edtLastName.Text)));
AddObject(‘FIRST NAME’, pointer(StrToInt(edtFirstName.Text)));
AddObject(‘ADDRESS’, pointer(StrToInt(edtAddress.Text)));
AddObject(‘CITY’, pointer(StrToInt(edtCity.Text)));
AddObject(‘STATE’, pointer(StrToInt(edtState.Text)));
AddObject(‘ZIP’, pointer(StrToInt(edtZip.Text)));

end;

PrintLine(ColNames);
Printer.Canvas.Font.Style := [];

finally
ColNames.Free; // Free the column name TStringList instance

end;
end;

procedure TMainForm.mmiPrintClick(Sender: TObject);
var
Items: TStringList;

begin
{ Create a TStringList instance to hold the fields and the widths
of the columns in which they’ll be drawn based on the entries in
the edit controls }

Items := TStringList.Create;
try
// Determine pixels per inch horizontally
PixelsInInchx := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
TenthsOfInchPixelsY := GetDeviceCaps(Printer.Handle,

LOGPIXELSY) div 10;

Printing in Delphi 5

CHAPTER 10
163

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:29 AM Page 163

LISTING 10.3 Continued

AmountPrinted := 0;
MainForm.Enabled := False; // Disable the parent form
try
Printer.BeginDoc;
AbortForm.Show;
Application.ProcessMessages;
{ Calculate the line height based on text height using the
currently rendered font }

LineHeight := Printer.Canvas.TextHeight(‘X’)+TenthsOfInchPixelsY;
if edtHeaderFont.Text <> ‘’ then
PrintHeader;

PrintColumnNames;
tblClients.First;
{ Store each field value in the TStringList as well as its
column width }

while (not tblClients.Eof) or Printer.Aborted do
begin

Application.ProcessMessages;
with Items do
begin
AddObject(tblClients.FieldByName(‘LAST_NAME’).AsString,

pointer(StrToInt(edtLastName.Text)));
AddObject(tblClients.FieldByName(‘FIRST_NAME’).AsString,

pointer(StrToInt(edtFirstName.Text)));
AddObject(tblClients.FieldByName(‘ADDRESS_1’).AsString,

pointer(StrToInt(edtAddress.Text)));
AddObject(tblClients.FieldByName(‘CITY’).AsString,

pointer(StrToInt(edtCity.Text)));
AddObject(tblClients.FieldByName(‘STATE’).AsString,

pointer(StrToInt(edtState.Text)));
AddObject(tblClients.FieldByName(‘ZIP’).AsString,

pointer(StrToInt(edtZip.Text)));
end;
PrintLine(Items);
{ Force print job to begin a new page if printed output has
exceeded page height }

if AmountPrinted + LineHeight > Printer.PageHeight then
begin
AmountPrinted := 0;
if not Printer.Aborted then
Printer.NewPage;

PrintHeader;
PrintColumnNames;

Advanced Techniques

PART II
164

13.65227_Ch10CDx 11/30/99 11:29 AM Page 164

end;
Items.Clear;
tblClients.Next;

end;
AbortForm.Hide;
if not Printer.Aborted then
Printer.EndDoc;

finally
MainForm.Enabled := True;

end;
finally
Items.Free;

end;
end;

procedure TMainForm.btnHeaderFontClick(Sender: TObject);
begin
{ Assign the font selected with FontDialog1 to Edit1. }
FontDialog.Font.Assign(edtHeaderFont.Font);
if FontDialog.Execute then
edtHeaderFont.Font.Assign(FontDialog.Font);

end;

end.

mmiPrintClick() first creates a TStringList instance to hold the strings for a line to be
printed. Then the number of pixels per inch along the vertical axis is determined in
PixelsPerInchX, which is used to calculate column widths. TenthsOfInchPixelsY is used to
space each line by 0.1 inch. AmountPrinted holds the total amount of pixels along the printed
surface’s vertical axis for each line printed. This is required to determine whether to start a new
page when AmountPrinted exceeds Printer.PageHeight.

If a header exists in edtHeaderFont.Text, it’s printed in PrintHeader(). PrintColumnNames()
prints the names of the columns for each field to be printed. (These two procedures are dis-
cussed later in this section.) Finally, the table’s records are printed.

The following loop increments through tblClients records and prints selected fields within
each of the records:

while (not tblClients.Eof) or Printer.Aborted do begin

Within the loop, the field values are added to the TStringList using the AddObject() method.
Here, you store both the string and the column width. The column width is added to the
Items.Objects array property. Items is then passed to the PrintLine() procedure, which
prints the strings in a columnar format.

Printing in Delphi 5

CHAPTER 10
165

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 165

In much of the previous code, you saw references to Printer.Aborted. This is a test to deter-
mine whether the user has aborted the print job, which is covered in the next section.

Advanced Techniques

PART II
166

TIP

The TStrings and TStringList’s Objects array properties are a convenient place to
store integer values. Using AddObject() or InsertObject(), you can hold any num-
ber up to MaxLongInt. Because AddObject() expects a TObject reference as its second
parameter, you must typecast that parameter as a pointer, as shown in the following
code:

MyList.AddObject(‘SomeString’, pointer(SomeInteger));

To retrieve the value, use a Longint typecast:

MyInteger := Longint(MyList.Objects[Index]);

The event handler then determines whether printing a new line will exceed the page height:

if AmountPrinted + LineHeight > Printer.PageHeight then

If this evaluates to True, AmountPrinted is set back to 0, Printer.NewPage is invoked to print
a new page, and the header and column names are printed again. Printer.EndDoc is called to
end the print job after the tblClients records have printed.

The PrintHeader() procedure prints the header centered at the top of the report using
edtHeaderFont.Text and edtHeaderFont.Font. AmountPrinted is then incremented and
Printer’s font is restored to its original style.

As the name implies, PrintColumnNames() prints the column names of the report. In this
method, names are added to a TStringList object, ColNames, which then is passed to
PrintLine(). Notice that the column names are printed in a bold, underlined font. Setting
Printer.Canvas.Font accordingly does this.

The PrintLine() procedure takes a TStringList argument called Items and prints each string
in Items on a single line in a columnar manner. The variable OutRect holds values for a bind-
ing rectangle at a location on Printer’s canvas to which the text is drawn. OutRect is passed
to TextRect(), along with the text to draw. By multiplying Items.Object[i] by 0.1,
OutRect.Right’s value is obtained because Items.Objects[i] is in tenths of inches. Inside the
for loop, OutRect is recalculated along the same X-axis to position it to the next column and
draw the next text value. Finally, AmountPrinted is incremented by LineHeight +
TenthsOfInchPixelsY.

Although this report is fully functional, you might consider extending it to include a footer,
page numbers, and even margin settings.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 166

Aborting the Printing Process
Earlier in this chapter, you learned that your users need a way to terminate printing after
they’ve initiated it. The TPrinter.Abort() procedure and the Aborted property help you do
this. The code in Listing 10.3 contains such logic. To add abort logic to your printing routines,
your code must meet these three conditions:

• You must establish an event that, when activated, calls Printer.Abort, thus aborting the
printing process.

• You must check for TPrinter.Aborted = True before calling any of TPrinter’s print
functions, such as TextOut(), NewPage(), and EndDoc().

• You must end your printing logic by checking the value of TPrinter.Aborted for True.

A simple Abort dialog box can satisfy the first condition. You used such a dialog box in the
preceding example. This dialog box should contain a button that will invoke the abort process.

This button’s event handler should simply call TPrinter.Abort, which terminates the print job
and cancels any printing requests made to TPrinter.

In the unit MainForm.pas, examine the code to show AbortForm shortly after calling
TPrinter.Begindoc():

Printer.BeginDoc;
AbortForm.Show;
Application.ProcessMessages;

Because AbortForm is shown as a modeless dialog box, the call to
Application.ProcessMessages ensures that it’s drawn properly before any processing of the
printing logic continues.

To satisfy the second condition, the test for Printer.Aborted = True is performed before
calling any TPrinter methods. The Aborted property is set to True when the Abort() method
is called from AbortForm. As an example, before you call Printer.TextRect, check for
Aborted = True:

if not Printer.Aborted then
TextRect(OutRect, OutRect.Left, OutRect.Top, Items[i]);

Also, you shouldn’t call EndDoc() or any of TPrinter.Canvas’s drawing routines after calling
Abort(), because the printer has been effectively closed.

To satisfy the third condition in this example, while not Table.Eof also checks whether the
value of Printer.Aborted is True, which causes execution to jump out of the loop where the
print logic is executed.

Printing in Delphi 5

CHAPTER 10
167

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 167

Printing Envelopes
The preceding example showed you a method for printing a columnar report. Although this
technique was somewhat more complicated than sending a series of writeln() calls to the
printer, it’s still, for the most part, a line-by-line print. Printing envelopes introduces a few fac-
tors that complicate things a bit further and are common to most types of printing you’ll do in
Windows. First, the objects (items) you must print probably need to be positioned at some spe-
cific location on the printed surface. Second, the items’ metrics, or units of measurement, can
be completely different from those of the printer canvas. Taking these two factors into account,
printing becomes much more than just printing a line and keeping track of how much print
space you’ve used.

This envelope-printing example shows you a step-by-step process you can use to print just
about anything. Keep in mind that everything drawn on the printer’s canvas is drawn within
some bounding rectangle on the canvas or to specific points on the printer canvas.

Printing in the Abstract
Think of the printing task in a more abstract sense for a moment. In all cases, two things are
certain: You have a surface on which to print, and you have one or more elements to plot onto
that surface. Take a look at Figure 10.2.

Advanced Techniques

PART II
168

Plane A

Plane B

Plane C

FIGURE 10.2
Three planes.

In Figure 10.2, Plane A is your destination surface. Planes B and C are the elements you want
to superimpose (print) onto Plane A. Assume a coordinate system for each plane where the unit
of measurement increases as you travel east along the X-axis and south along the Y-axis—that
is, unless you live in Australia. Figure 10.3 depicts this coordinate system. The result of com-
bining the planes is shown in Figure 10.4.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 168

FIGURE 10.3
The Plane A, B, and C coordinate system.

Printing in Delphi 5

CHAPTER 10
169

10

P
R

IN
TIN

G
IN

D
ELPH

I5

X– X+
Y–

Y+

Plane A

Plane B

Plane C

FIGURE 10.4
Planes B and C superimposed on Plane A.

Notice that Planes B and C were rotated by 90 degrees to achieve the final result. So far, this
doesn’t appear to be too bad. Given that your planes are measured using the same unit of mea-
surement, you can easily draw out these rectangles to achieve the final result with some simple
geometry. But what if they’re not the same unit of measurement?

Suppose that Plane A represents a surface for which the measurements are given in pixels. Its
dimensions are 2,550×3,300 pixels. Plane B is measured in inches: 61⁄2×33⁄4 inches. Suppose

13.65227_Ch10CDx 11/30/99 11:30 AM Page 169

that you don’t know the dimensions for Plane C; you do know, however, that it’s measured
in pixels, and you’ll know its measurements later. These measurements are illustrated in
Figure 10.5.

Advanced Techniques

PART II
170

6-1/2 in

3-3/4 in

?
?

Pixels

2550 pixels

3300

pixels

FIGURE 10.5
Plane measurements.

This abstraction illustrates the problem associated with printing. In fact, it illustrates the very
task of printing an envelope. Plane A represents a printer’s page size on a 300 dpi printer (at
300 dpi, 81⁄2×11 inches equals 2,550×3,300 pixels). Plane B represents the envelope’s size in
inches, and Plane C represents the bounding rectangle for the text making up the address. Keep
in mind, however, that this abstraction isn’t tied to just envelopes. Planes B and C might repre-
sent TImage components measured in millimeters.

By looking at this task in its abstraction, you’ve achieved the first three steps to printing in
Windows: Identify each element to print, identify the unit of measurement for the destination
surface, and identify the units of measurement for each individual element to be plotted onto
the destination surface.

Now consider another twist—literally. When you’re printing an envelope in a vertical fashion,
the text must rotate vertically.

A Step-by-Step Process for Printing
The following list summarizes the process you should follow when laying out your printed out-
put in code:

1. Identify each element to be printed to the destination surface.

2. Identify the unit of measurement for the destination surface or printer canvas.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 170

3. Identify the units of measurement for each individual element to be plotted onto the des-
tination surface.

4. Decide on the common unit of measurement with which to perform all drawing routines.
Almost always, this will be the printer canvas’s units—pixels.

5. Write the translation routines to convert the other units of measurement to that of the
common unit of measurement.

6. Write the routines to calculate the size for each element to print in the common unit of
measurement. In Object Pascal, this can be represented by a TPoint structure. Keep in
mind dependencies on other values. For example, the address’s bounding rectangle is
dependent on the envelope’s position. Therefore, the envelope’s data must be calculated
first.

7. Write the routines to calculate the position of each element as it will appear on the
printer canvas, based on the printer canvas’s coordinate system and the sizes obtained
from step 6. In Object Pascal, this can be represented by a TRect structure. Again, keep
dependencies in mind.

8. Write your printing function, using the data gathered from the previous steps, to position
items on the printed surface.

Printing in Delphi 5

CHAPTER 10
171

10

P
R

IN
TIN

G
IN

D
ELPH

I5

NOTE

Steps 5 and 6 can be achieved by using a technique of performing all drawing in a
specific mapping mode. Mapping modes are discussed in Chapter 8, “Graphics
Programming with GDI and Fonts.”

Getting Down to Business
Given the step-by-step process, your task of printing an envelope should be much clearer.
You’ll see this in the envelope-printing project. The first step is to identify the elements to print
or represent. The elements for the envelope example are the envelope, itself, and the address.

In this example, you learn how to print two standard envelope sizes: a size 10 and a size 63⁄4.

The following record holds the envelope sizes:

type

TEnvelope = record
Kind: string; // Stores the envelope type’s name
Width: double; // Holds the width of the envelope
Height: double; // Holds the height of the envelope

end;

13.65227_Ch10CDx 11/30/99 11:30 AM Page 171

const
// This constant array stores envelope types
EnvArray: array[1..2] of TEnvelope =
((Kind:’Size 10’;Width:9.5;Height:4.125), // 9-1/2 x 4-1/8
(Kind:’Size 6-3/4’;Width:6.5;Height:3.625)); // 6-1/2 x 3-3/4

Steps 2 and 3 are covered: You know that the destination surface is the TPrinter.Canvas,
which is represented in pixels. The envelopes are represented in inches, and the address is rep-
resented in pixels. Step 4 requires you to select a common unit of measurement. For this pro-
ject, you use pixels as the common unit of measurement.

For step 5, the only units you need to convert are from inches to pixels. The GetDeviceCaps()
Win32 API function can return the amount of pixels per one inch along the horizontal and ver-
tical axis for Printer.Canvas:

PixPerInX := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
PixPerInY := GetDeviceCaps(Printer.Handle, LOGPIXELSY);

To convert the envelope’s size to pixels, you just multiply the number of inches by PixPerInX
or PixPerInY to get the horizontal or vertical measurement in pixels:

EnvelopeWidthInPixels := trunc(EnvelopeWidthValue * PixPerInX);
EnvelopeHeightInPixels := trunc(EnvelopeHeightValue * PixPerInY);

Because the envelope width or height can be a fractional value, it’s necessary to use the
Trunc() function to return the integer portion of the floating-point type rounded toward zero.

The sample project demonstrates how you would implement steps 6 and 7. The main form for
this project is shown in Figure 10.6; Listing 10.4 shows the source code for the envelope-
printing project.

Advanced Techniques

PART II
172

FIGURE 10.6
The main form for the envelope demo.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 172

LISTING 10.4 Envelope Printing Demo

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, printers, StdCtrls, ExtCtrls, Menus, ComCtrls;

type

TEnvelope = record
Kind: string; // Stores the envelope type’s name
Width: double; // Holds the width of the envelope
Height: double; // Holds the height of the envelope

end;

const
// This constant array stores envelope types
EnvArray: array[1..2] of TEnvelope =
((Kind:’Size 10’;Width:9.5;Height:4.125), // 9-1/2 x 4-1/8
(Kind:’Size 6-3/4’;Width:6.5;Height:3.625)); // 6-1/2 x 3-3/4

type

// This enumerated type represents printing positions.
TFeedType = (epLHorz, epLVert, epRHorz, epRVert);

TPrintPrevPanel = class(TPanel)
public
property Canvas; // Publicize the Canvas property

end;

TMainForm = class(TForm)
gbEnvelopeSize: TGroupBox;
rbSize10: TRadioButton;
rbSize6: TRadioButton;
mmMain: TMainMenu;
mmiPrintIt: TMenuItem;
lblAdressee: TLabel;
edtName: TEdit;
edtStreet: TEdit;
edtCityState: TEdit;
rgFeedType: TRadioGroup;
PrintDialog: TPrintDialog;

Printing in Delphi 5

CHAPTER 10
173

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 173

LISTING 10.4 Continued

procedure FormCreate(Sender: TObject);
procedure rgFeedTypeClick(Sender: TObject);
procedure mmiPrintItClick(Sender: TObject);

private
PrintPrev: TPrintPrevPanel; // Print preview panel
EnvSize: TPoint; // Stores the envelope’s size
EnvPos: TRect; // Stores the envelope’s position
ToAddrPos: TRect; // Stores the address’s position
FeedType: TFeedType; // Stores the feed type from TEnvPosition
function GetEnvelopeSize: TPoint;
function GetEnvelopePos: TRect;
function GetToAddrSize: TPoint;
function GetToAddrPos: TRect;
procedure DrawIt;
procedure RotatePrintFont;
procedure SetCopies(Copies: Integer);

end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

function TMainForm.GetEnvelopeSize: TPoint;
// Gets the envelope’s size represented by a TPoint
var
EnvW, EnvH: integer;
PixPerInX,
PixPerInY: integer;

begin
// Pixels per inch along the horizontal axis
PixPerInX := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
// Pixels per inch along the vertical axis
PixPerInY := GetDeviceCaps(Printer.Handle, LOGPIXELSY);

// Envelope size differs depending on the user’s selection
if RBSize10.Checked then
begin
EnvW := trunc(EnvArray[1].Width * PixPerInX);
EnvH := trunc(EnvArray[1].Height * PixPerInY);

end
else begin
EnvW := trunc(EnvArray[2].Width * PixPerInX);

Advanced Techniques

PART II
174

13.65227_Ch10CDx 11/30/99 11:30 AM Page 174

EnvH := trunc(EnvArray[2].Height * PixPerInY);
end;

// return Result as a TPoint record
Result := Point(EnvW, EnvH)

end;

function TMainForm.GetEnvelopePos: TRect;
{ Returns the envelope’s position relative to its feed type. This
function requires that the variable EnvSize be initialized }

begin
// Determine feed type based on user’s selection.
FeedType := TFeedType(rgFeedType.ItemIndex);

{ Return a TRect structure indicating the envelope’s
position as it is ejected from the printer. }

case FeedType of
epLHorz:
Result := Rect(0, 0, EnvSize.X, EnvSize.Y);

epLVert:
Result := Rect(0, 0, EnvSize.Y, EnvSize.X);

epRHorz:
Result := Rect(Printer.PageWidth - EnvSize.X, 0,

➥ Printer.PageWidth, EnvSize.Y);
epRVert:
Result := Rect(Printer.PageWidth - EnvSize.Y, 0,

➥ Printer.PageWidth, EnvSize.X);
end; // Case

end;

function MaxLn(V1, V2: Integer): Integer;
// Returns the larger of the two. If equal, returns the first
begin
Result := V1; // Default result to V1 }
if V1 < V2 then
Result := V2

end;

function TMainForm.GetToAddrSize: TPoint;
var
TempPoint: TPoint;

begin
// Calculate the size of the longest line using the MaxLn() function
TempPoint.x := Printer.Canvas.TextWidth(edtName.Text);
TempPoint.x := MaxLn(TempPoint.x, Printer.Canvas.TextWidth(edtStreet.Text));
TempPoint.x := MaxLn(TempPoint.x,

Printing in Delphi 5

CHAPTER 10
175

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 175

LISTING 10.4 Continued

Printer.Canvas.TextWidth(edtCityState.Text))+10;

// Calculate the height of all the address lines
TempPoint.y := Printer.Canvas.TextHeight(edtName.Text)+

➥ Printer.Canvas.TextHeight(edtStreet.Text)+
➥ Printer.Canvas.TextHeight(edtCityState.Text)+10;

Result := TempPoint;
end;

function TMainForm.GetToAddrPos: TRect;
// This function requires that EnvSize, and EnvPos be initialized
Var
TempSize: TPoint;
LT, RB: TPoint;

begin
// Determine the size of the Address bounding rectangle
TempSize := GetToAddrSize;
{ Calculate two points, one representing the Left Top (LT) position
and one representing the Right Bottom (RB) position of the
address’s bounding rectangle. This depends on the FeedType }

case FeedType of
epLHorz:
begin
LT := Point((EnvSize.x div 2) - (TempSize.x div 2),
((EnvSize.y div 2) - (TempSize.y div 2)));

RB := Point(LT.x + TempSize.x, LT.y + TempSize.Y);
end;

epLVert:
begin
LT := Point((EnvSize.y div 2) - (TempSize.y div 2),
((EnvSize.x div 2) - (TempSize.x div 2)));

RB := Point(LT.x + TempSize.y, LT.y + TempSize.x);
end;

epRHorz:
begin
LT := Point((EnvSize.x div 2) - (TempSize.x div 2) + EnvPos.Left,
((EnvSize.y div 2) - (TempSize.y div 2)));

RB := Point(LT.x + TempSize.x, LT.y + TempSize.Y);
end;
epRVert:
begin
LT := Point((EnvSize.y div 2) - (TempSize.y div 2) + EnvPos.Left,
((EnvSize.x div 2) - (TempSize.x div 2)));

RB := Point(LT.x + TempSize.y, LT.y + TempSize.x);
end;

Advanced Techniques

PART II
176

13.65227_Ch10CDx 11/30/99 11:30 AM Page 176

end; // End Case

Result := Rect(LT.x, LT.y, RB.x, RB.y);
end;

procedure TMainForm.DrawIt;
// This procedure assumes that EnvPos and EnvSize have been initialized
begin
PrintPrev.Invalidate; // Erase contents of Panel
PrintPrev.Update;
// Set the mapping mode for the panel to MM_ISOTROPIC
SetMapMode(PrintPrev.Canvas.Handle, MM_ISOTROPIC);
// Set the TPanel’s extent to match that of the printer boundaries.
SetWindowExtEx(PrintPrev.Canvas.Handle,

Printer.PageWidth, Printer.PageHeight, nil);
// Set the viewport extent to that of the PrintPrev TPanel size.
SetViewPortExtEx(PrintPrev.Canvas.Handle,

PrintPrev.Width, PrintPrev.Height, nil);
// Set the origin to the position at 0, 0
SetViewportOrgEx(PrintPrev.Canvas.Handle, 0, 0, nil);
PrintPrev.Brush.Style := bsSolid;

with EnvPos do
// Draw a rectangle to represent the envelope
PrintPrev.Canvas.Rectangle(Left, Top, Right, Bottom);

with ToAddrPos, PrintPrev.Canvas do
case FeedType of
epLHorz, epRHorz:
begin
Rectangle(Left, Top, Right, Top+2);
Rectangle(Left, Top+(Bottom-Top) div 2, Right,

➥ Top+(Bottom-Top) div 2+2);
Rectangle(Left, Bottom, Right, Bottom+2);

end;
epLVert, epRVert:
begin
Rectangle(Left, Top, Left+2, Bottom);
Rectangle(Left + (Right-Left)div 2, Top,

➥ Left + (Right-Left)div 2+2, Bottom);
Rectangle(Right, Top, Right+2, Bottom);

end;
end; // case

end;

procedure TMainForm.FormCreate(Sender: TObject);

Printing in Delphi 5

CHAPTER 10
177

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 177

LISTING 10.4 Continued

var
Ratio: double;

begin
// Calculate a ratio of PageWidth to PageHeight
Ratio := Printer.PageHeight / Printer.PageWidth;

// Create a new TPanel instance
with TPanel.Create(self) do
begin
SetBounds(15, 15, 203, trunc(203*Ratio));
Color := clBlack;
BevelInner := bvNone;
BevelOuter := bvNone;
Parent := self;

end;

// Create a Print preview panel
PrintPrev := TPrintPrevPanel.Create(self);

with PrintPrev do
begin
SetBounds(10, 10, 200, trunc(200*Ratio));
Color := clWhite;
BevelInner := bvNone;
BevelOuter := bvNone;
BorderStyle := bsSingle;
Parent := self;

end;

end;

procedure TMainForm.rgFeedTypeClick(Sender: TObject);
begin
EnvSize := GetEnvelopeSize;
EnvPos := GetEnvelopePos;
ToAddrPos := GetToAddrPos;
DrawIt;

end;

procedure TMainForm.SetCopies(Copies: Integer);
var
ADevice, ADriver, APort: String;
ADeviceMode: THandle;
DevMode: PDeviceMode;

Advanced Techniques

PART II
178

13.65227_Ch10CDx 11/30/99 11:30 AM Page 178

begin
SetLength(ADevice, 255);
SetLength(ADriver, 255);
SetLength(APort, 255);

{ If ADeviceMode is zero, a printer driver is not loaded. Therefore,
setting PrinterIndex forces the driver to load. }

if ADeviceMode = 0 then
begin
Printer.PrinterIndex := Printer.PrinterIndex;
Printer.GetPrinter(PChar(ADevice), PChar(ADriver),

➥ PChar(APort), ADeviceMode);
end;

if ADeviceMode <> 0 then
begin
DevMode := GlobalLock(ADeviceMode);
try
DevMode^.dmFields := DevMode^.dmFields or DM_Copies;
DevMode^.dmCopies := Copies;

finally
GlobalUnlock(ADeviceMode);

end;
end
else
raise Exception.Create(‘Could not set printer copies’);

end;

procedure TMainForm.mmiPrintItClick(Sender: TObject);
var
TempHeight: integer;
SaveFont: TFont;

begin
if PrintDialog.Execute then
begin
// Set the number of copies to print
SetCopies(PrintDialog.Copies);
Printer.BeginDoc;
try
// Calculate a temporary line height
TempHeight := Printer.Canvas.TextHeight(edtName.Text);
with ToAddrPos do
begin
{ When printing vertically, rotate the font such that it paints
at a 90 degree angle. }

if (FeedType = eplVert) or (FeedType = epRVert) then

Printing in Delphi 5

CHAPTER 10
179

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 179

LISTING 10.4 Continued

begin
SaveFont := TFont.Create;
try
// Save the original font
SaveFont.Assign(Printer.Canvas.Font);
RotatePrintFont;
// Write out the address lines to the printer’s Canvas
Printer.Canvas.TextOut(Left, Bottom, edtName.Text);
Printer.Canvas.TextOut(Left+TempHeight+2, Bottom,

➥ edtStreet.Text);
Printer.Canvas.TextOut(Left+TempHeight*2+2, Bottom,

➥ edtCityState.Text);
// Restore the original font
Printer.Canvas.Font.Assign(SaveFont);

finally
SaveFont.Free;

end;
end
else begin
{ If the envelope is not printed vertically, then
just draw the address lines normally. }

Printer.Canvas.TextOut(Left, Top, edtName.Text);
Printer.Canvas.TextOut(Left, Top+TempHeight+2, edtStreet.Text);
Printer.Canvas.TextOut(Left, Top+TempHeight*2+2,

➥ edtCityState.Text);
end;

end;
finally
Printer.EndDoc;

end;
end;

end;

procedure TMainForm.RotatePrintFont;
var
LogFont: TLogFont;

begin
with Printer.Canvas do
begin
with LogFont do
begin
lfHeight := Font.Height; // Set to Printer.Canvas.font.height
lfWidth := 0; // let font mapper choose width

Advanced Techniques

PART II
180

13.65227_Ch10CDx 11/30/99 11:30 AM Page 180

lfEscapement := 900; // tenths of degrees so 900 = 90 degrees
lfOrientation := lfEscapement; // Always set to value of lfEscapement
lfWeight := FW_NORMAL; // default
lfItalic := 0; // no italics
lfUnderline := 0; // no underline
lfStrikeOut := 0; // no strikeout
lfCharSet := ANSI_CHARSET; //default
StrPCopy(lfFaceName, Font.Name); // Printer.Canvas’s font’s name
lfQuality := PROOF_QUALITY;
lfOutPrecision := OUT_TT_ONLY_PRECIS; // force TrueType fonts
lfClipPrecision := CLIP_DEFAULT_PRECIS; // default
lfPitchAndFamily := Variable_Pitch; // default

end;
end;
Printer.Canvas.Font.Handle := CreateFontIndirect(LogFont);

end;

end.

When the user clicks one of the radio buttons in gbEnvelopeSize or gbFeedType, the
FeedTypeClick() event handler is called. This event handler calls the routines to calculate the
envelope’s size and position based on the radio button choices.

The address rectangle’s size and position also are calculated in these event handlers. This rec-
tangle’s width is based on the longest text width of the text in each of the three TEdit compo-
nents. The rectangle’s height consists of the combined height of the three TEdit components.

All calculations are based on Printer.Canvas’s pixels. mmiPrintItClick() contains logic to
print the envelope based on the choices selected. Additional logic to handle font rotation when
the envelope is positioned vertically is also provided. Additionally, a pseudo–print preview is
created in the FormCreate() event handler. This print preview is updated as the user selects the
radio buttons.

The TFeedType enumerated type represents each position of the envelope as it may feed out of
the printer:

TFeedType = (epLHorz, epLVert, epRHorz, epRVert);

TMainForm contains variables to hold the envelope’s size and position, the address’s TRect size
and position, and the current TFeedType.

TMainForm declares the methods GetEnvelopeSize(), GetEnvelopePos(), GetToAddrSize(),
and GetToAddrPos() to determine the various measurements for elements to be printed, as
specified in steps 6 and 7 of this chapter’s model.

Printing in Delphi 5

CHAPTER 10
181

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 181

In GetEnvelopeSize(), the GetDeviceCaps() function is used to convert the envelope size in
inches to pixels, based on the selection from gbEnvelopeSize. GetEnvelopPos() determines the
position of the envelope on TPrinter.Canvas, based on Printer.Canvas’s coordinate system.

GetToAddrSize() calculates the size of the address’s bounding rectangle, based on the mea-
surements of text contained in the three TEdit components. Here, Printer.Canvas’s
TextHeight() and TextWidth() methods are used to determine these sizes. The function
MaxLn() is a helper function used to determine the longest text line of the three TEdit compo-
nents, which is used as the rectangle’s width. You can also use the Max() function from the
Math.pas unit to determine the longest text line.

GetToAddrPos() calls GetToAddrSize() and uses the returned value to calculate the address’s
bounding rectangle’s position on Printer.Canvas. Note that the envelope’s size and placement
are needed for this function to position the address rectangle properly.

The mmiPrintItClick() event handler performs the actual printing logic. First, it initializes
printing with the BeginDoc() method. Then it calculates a temporary line height used for text
positioning. It determines the TFeedType, and if it’s one of the vertical types, saves the printer’s
font and calls the method RotatePrintFont(), which rotates the font 90 degrees. When it
returns form RotatePrintFont(), it restores Printer.Canvas’s original font. If the TFeedType
is one of the horizontal types, it performs the TextOut() calls to print the address. Finally,
mmiPrintItClick() ends printing with the EndDoc() method.

RotatePrintFont() creates a TLogFont structure and initializes its various values obtained
from Printer.Canvas and other default values. Notice the assignment to its lfEscapement
member. Remember from Chapter 8, “Graphics Programming with GDI and Fonts,” that
lfEscapement specifies an angle in tenths of degrees at which the font is to be drawn. Here,
you specify to print the font at a 90-degree angle by assigning 900 to lfEscapement. One thing
to note here is that only TrueType fonts can be rotated.

A Simple Print Preview
Often, a good way to help your users not make a mistake by choosing the wrong selection is to
enable them to view what the printed output would look like before actually printing. The pro-
ject in this section contains a print preview panel. You did this by constructing a descendant
class of TPanel and publicizing its Canvas property:

TPrintPrevPanel = class(TPanel)
public
property Canvas; // Publicize this property

end;

The FormCreate() event handler performs the logic to instantiate a TPrintPrevPanel. The fol-
lowing line determines the ratio of the printer’s width to its height:

Advanced Techniques

PART II
182

13.65227_Ch10CDx 11/30/99 11:30 AM Page 182

Ratio := Printer.PageHeight / Printer.PageWidth;

This ratio is used to calculate the width and height for the TPrintPrevPanel instance.

Before the TPrintPrevPanel is created, however, a regular TPanel with a black color is created
to serve as a shadow to the TPrintPrevPanel instance, PrintPrev. Its boundaries are adjusted
so that they’re slightly to the right of and below the PrintPrev’s boundaries. The effect is that it
gives PrintPrev a three-dimensional look with a shadow behind it. PrintPrev is used primarily
to show how the envelope would be printed. The routine DrawIt() performs this logic.

TEnvPrintForm.DrawIt() calls PrintPrev.Invalidate to erase its previous contents. Then it
calls PrintPrev.Update() to ensure that the paint message is processed before executing the
remaining code. It then sets PrintPrev’s mapping mode to MM_ISOTROPIC to allow it to accept
arbitrary extents along the X- and Y-axes. SetWindowExt() sets PrintPrev’s windows’ extents
to those of Printer.Canvas, and SetViewPortExt() sets PrintPrev’s viewport extents to its
own height and width (see Chapter 8, “Graphics Programming with GDI and Fonts,” for a dis-
cussion on mapping modes).

This enables DrawIt() to use the same metric values used for the Printer.Canvas, the enve-
lope, the address rectangle, and the PrintPrev panel. This routine also uses rectangles to rep-
resent text lines. The effect is shown in Figure 10.7.

Printing in Delphi 5

CHAPTER 10
183

10

P
R

IN
TIN

G
IN

D
ELPH

I5

FIGURE 10.7
An envelope-printing form with a print preview feature.

NOTE

An alternative and better print preview can be created with metafiles. Create the
metafile using the printer handle as the reference device, then draw into the
metafile canvas just as you would the printer canvas, and then draw the metafile on
the screen. No scaling or viewport extent tweaking is required.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 183

Miscellaneous Printing Tasks
Occasionally, you’ll need to perform a printing task that isn’t available through the TPrinter
object, such specifying the print quality of your print job. To perform these tasks, you must
resort to the Win32 API method. However, this isn’t too difficult. First, you must understand
the TDeviceMode structure. The next section discusses this. The following sections show you
how to use this structure to perform these various printing tasks.

The TDeviceMode Structure
The TDeviceMode structure contains information about a printer driver’s initialization and envi-
ronment data. Programmers use this structure to retrieve information about or set various
attributes of the current printer. This structure is defined in the Windows.pas file.

You’ll find definitions for each of the fields in Delphi’s online help. The following sections
cover some of the more common fields of this structure, but it would be a good idea to take a
look at the online help and read what some of the other fields are used for. In some cases, you
might need to refer to these fields, and some of them are used differently in Windows NT/2000
than in Windows 95/98.

To obtain a pointer to the current printer’s TDeviceMode structure, you can first use
TPrinter.GetPrinter() to obtain a handle to the memory block that the structure occupies.
Then use the GlobalLock() function to retrieve a pointer to this structure. Listing 10.5 illus-
trates how to get the pointer to the TDeviceMode structure.

LISTING 10.5 Obtaining a Pointer to a TDeviceMode Structure

var
ADevice, ADriver, APort: array [0..255] of Char;
DeviceHandle: THandle;
DevMode: PDeviceMode; // A Pointer to a TDeviceMode structure

begin
{ First obtain a handle to the TPrinter’s DeviceMode structure }
Printer.GetPrinter(ADevice, ADriver, APort, DeviceHandle);
{ If DeviceHandle is still 0, then the driver was not loaded. Set
the printer index to force the printer driver to load making the
handle available }

if DeviceHandle = 0 then
begin
Printer.PrinterIndex := Printer.PrinterIndex;
Printer.GetPrinter(ADevice, ADriver, APort, DeviceHandle);

end;
{ If DeviceHandle is still 0, then an error has occurred. Otherwise,
use GlobalLock() to get a pointer to the TDeviceMode structure }

Advanced Techniques

PART II
184

13.65227_Ch10CDx 11/30/99 11:30 AM Page 184

if DeviceHandle = 0 then
Raise Exception.Create(‘Could Not Initialize TDeviceMode structure’)

else
DevMode := GlobalLock(DeviceHandle);

{ Code to use the DevMode structure goes here }
{ !!!! }
if not DeviceHandle = 0 then
GlobalUnlock(DeviceHandle);

end;

The comments in the preceding listing explain the steps required to obtain the pointer to the
TDeviceMode structure. After you’ve obtained this pointer, you can perform various printer rou-
tines, as illustrated in the following sections. First, however, notice this comment in the preced-
ing listing:

{ Code to use the DevMode structure goes here }
{ !!!! }

It’s here that you place the code examples to follow.

Before you can initialize any of the members of the TDeviceMode structure, however, you must
specify which member you’re initializing by setting the appropriate bit in the dmFields bit
flags. Table 10.3 lists the various bit flags of dmFields and also specifies to which
TDeviceMode member they pertain.

TABLE 10.3 TDeviceMode.dmFields Bit Flags

dmField Value Corresponding Field

DM_ORIENTATION dmOrientation

DM_PAPERSIZE dmPaperSize

DM_PAPERLENGTH dmPaperLength

DM_PAPERWIDTH dmPaperWidth

DM_SCALE dmScale

DM_COPIES dmCopies

DM_DEFAULTSOURCE dmDefaultSource

DM_PRINTQUALITY dmPrintQuality

DM_COLOR dmColor

DM_DUPLEX dmDuplex

DM_YRESOLUTION dmYResolution

DM_TTOPTION dmTTOption

DM_COLLATE dmCollate

Printing in Delphi 5

CHAPTER 10
185

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 185

TABLE 10.3 Continued

dmField Value Corresponding Field

DM_FORMNAME dmFormName

DM_LOGPIXELS dmLogPixels

DM_BITSPERPEL dmBitsPerPel

DM_PELSWIDTH dmPelsWidth

DM_PELSHEIGHT dmPelsHeight

DM_DISPLAYFLAGS dmDisplayFlags

DM_DISPLAYFREQUENCY dmDisplayFrequency

DM_ICMMETHOD dmICMMethod (Windows 95 only)

DM_ICMINTENT dmICMIntent (Windows 95 only)

DM_MEDIATYPE dmMediaType (Windows 95 only)

DM_DITHERTYPE dmDitherType (Windows 95 only)

In the examples that follow, you’ll see how to set the appropriate bit flag as well as the corre-
sponding TDeviceMode member.

Specifying Copies to Print
You can tell a print job how many copies to print by specifying the number of copies in the
dmCopies field of the TDeviceMode structure. The following code illustrates how to do this:

with DevMode^ do
begin

dmFields := dmFields or DM_COPIES;
dmCopies := Copies;

end;

First, you must set the appropriate bit flag of the dmFields field to indicate which member of
the TDeviceMode structure has been initialized. The preceding code is what you would insert
into the code in Listing 10.6 where specified. Then, whenever you start your print job, the
number of copies specified should be sent to the printer. It’s worth mentioning that although
this examples illustrates how to set the copies to print using the TDeviceMode structure, the
TPrinter.Copies property does the same.

Specifying Printer Orientation
Specifying printer orientation is similar to specifying copies except that you initialize a differ-
ent TDeviceMode structure:

Advanced Techniques

PART II
186

13.65227_Ch10CDx 11/30/99 11:30 AM Page 186

with DevMode^ do
begin

dmFields := dmFields or DM_ORIENTATION;
dmOrientation := DMORIENT_LANDSCAPE;

end;

The two options for dmOrientation are DMORIENT_LANDSCAPE and DMORIENT_PORTRAIT. You
might also look at the TPrinter.Orientation property.

Specifying Paper Size
To specify a paper size, you initialize TDeviceMode’s dmPaperSize member:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERSIZE;
dmPaperSize := DMPAPER_LETTER; // Letter, 8-1/2 by 11 inches

end;

Several predefined values exist for the dmPaperSize member, which you can look up in the
online help under TDeviceMode. The dmPaperSize member can be set to zero if the paper size
is specified by the dmPaperWidth and dmPaperHeight members.

Specifying Paper Length
You can specify the paper length in tenths of a millimeter for the printed output by setting the
dmPaperLength field. This overrides any settings applied to the dmPaperSize field. The follow-
ing code illustrates setting the paper length:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERLENGTH;
dmPaperLength := SomeLength;

end;

Specifying Paper Width
Paper width is also specified in tenths of a millimeter. To set the paper width, you must initial-
ize the dmPaperWidth field of the TDeviceMode structure. The following code illustrates this
setting:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERWIDTH;
dmPaperWidth := SomeWidth;

end;

This also overrides the settings for the dmPaperSize field.

Printing in Delphi 5

CHAPTER 10
187

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 187

Specifying Print Scale
The print scale is the factor by which the printed output is scaled. Therefore, the resulting page
size is scaled from the physical page size by a factor of TDeviceMode.dmScale divided by 100.
Therefore, to shrink the printed output (graphics and text) by half their original size, you would
assign the value of 50 to the dmScale field. The following code illustrates how to set the print
scale:

with DevMode^ do
begin

dmFields := dmFields or DM_SCALE;
dmScale := 50;

end;

Specifying Print Color
For printers that support color printing, you can specify whether the printer is to render color
or monochrome printing by initializing the dmColor field, as shown here:

with DevMode^ do
begin

dmFields := dmFields or DM_COLOR;
dmColor := DMCOLOR_COLOR;

end;

Another value that can be assigned to the dmColor field is DMCOLOR_MONOCHROME.

Specifying Print Quality
Print quality is the resolution at which the printer prints its output. Four predefined values exist
for setting the print quality, as shown in the following list:

• DMRES_HIGH. High-resolution printing

• DMRES_MEDIUM. Medium-resolution printing

• DMRES_LOW. Low-resolution printing

• DMRES_DRAFT. Draft-resolution printing

To change the quality of print, you initialize the dmPrintQuality field of the TDeviceMode
structure:

with DevMode^ do
begin

dmFields := dmFields or DM_PRINTQUALITY;
dmPrintQuality := DMRES_DRAFT;

end;

Advanced Techniques

PART II
188

13.65227_Ch10CDx 11/30/99 11:30 AM Page 188

Specifying Duplex Printing
Some printers are capable of duplex printing—printing on both sides of the paper. You can tell
the printer to perform double-sided printing by initializing the dmDuplex field of the
TDeviceMode structure to one of these values:

• DMDUP_SIMPLEX

• DMDUP_HORIZONTAL

• DMDUP_VERTICAL

Here’s an example:

with DevMode^ do
begin

dmFields := dmFields or DM_DUPLEX;
dmDuplex := DMDUP_HORIZONTAL;

end;

Changing the Default Printer
Although it’s possible to change the default printer by launching the printer folder, you might
want to change the default printer at runtime. This is possible as illustrated in the sample pro-
ject shown in Listing 10.6.

LISTING 10.6 Changing the Default Printer

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TMainForm = class(TForm)
cbPrinters: TComboBox;
lblPrinter: TLabel;
procedure FormCreate(Sender: TObject);
procedure cbPrintersChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

Printing in Delphi 5

CHAPTER 10
189

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 189

LISTING 10.6 Continued

var
MainForm: TMainForm;

implementation
uses IniFiles, Printers;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Copy the printer names to the combobox and set the combobox to
show the currently selected default printer }

cbPrinters.Items.Assign(Printer.Printers);
cbPrinters.Text := Printer.Printers[Printer.PrinterIndex];
// Update the label to reflect the default printer
lblPrinter.Caption := Printer.Printers[Printer.PrinterIndex];

end;

procedure TMainForm.cbPrintersChange(Sender: TObject);
var
IniFile: TIniFile;
TempStr1, TempStr2: String;

begin
with Printer do
begin
// Set the new printer based on the ComboBox’s selected printer
PrinterIndex := cbPrinters.ItemIndex;
// Store the printer name into a temporary string
TempStr1 := Printers[PrinterIndex];
// Delete the unnecessary portion of the printer name
System.Delete(TempStr1, Pos(‘ on ‘, TempStr1), Length(TempStr1));
// Create a TIniFile class
IniFile := TIniFile.Create(‘WIN.INI’);
try
// Retrieve the device name of the selected printer
TempStr2 := IniFile.ReadString(‘Devices’, TempStr1, ‘’);
// Change the default printer to that chosen by the user
IniFile.WriteString(‘windows’, ‘device’, TempStr1 + ‘,’ + TempStr2);

finally
IniFile.Free;

end;
end;
// Update the label to reflect the new printer selection
lblPrinter.Caption := Printer.Printers[Printer.PrinterIndex];

end;

end.

Advanced Techniques

PART II
190

13.65227_Ch10CDx 11/30/99 11:30 AM Page 190

The preceding project consists of a main form with a TComboBox and a TLabel component.
Upon form creation, the TComboBox component is initialized with the string list of printer names
obtained from the Printer.Printers property. The TLabel component is then updated to reflect
the currently selected printer. The cbPrintersChange() event handler is where we placed the
code to modify the system-wide default printer. What this entails is changing the [device] entry
in the [windows] section of the WIN.INI file, located in the Windows directory. The comments in
the preceding code go on to explain the process of making these modifications.

Obtaining Printer Information
This section illustrates how you can retrieve information about a printer device such as physi-
cal characteristics (number of bins, paper sizes supported, and so on) as well as the printer’s
text- and graphics-drawing capabilities.

You might want to get information about a particular printer for several reasons. For example,
you might need to know whether the printer supports a particular capability. A typical example
is to determine whether the current printer supports banding. Banding is a process that can
improve printing speed and disk space requirements for printers with memory limitations. To
use banding, you must make API calls specific to this capability. On a printer that doesn’t sup-
port this capability, these calls wouldn’t function. Therefore, you can first determine whether the
printer will support banding (and use it, if so); otherwise, you can avoid the banding API calls.

GetDeviceCaps() and DeviceCapabilities()
The Win32 API function GetDeviceCaps() allows you to obtain information about devices
such as printers, plotters, screens, and so on. Generally, these are devices that have a device
context. You use GetDeviceCaps() by supplying it a handle to a device context and an index
that specifies the information you want to retrieve.

DeviceCapabilities() is specific to printers. In fact, the information obtained from
DeviceCapabilities() is provided by the printer driver for a specified printer.
Use DeviceCapabilities() by supplying it with strings identifying the printer device as well
as an index specifying the data you want to retrieve. Sometimes two calls to
DeviceCapabilities() are required to retrieve certain data. The first call is made to determine
how much memory you must allocate for the data to be retrieved. The second call stores the
data in the memory block you’ve allocated. This section illustrates how to do this.

One thing you should know is that most of the drawing capabilities that aren’t supported by a
particular printer will still work if you use them. For example, when GetDeviceCaps() or
DeviceCapabilities() indicates that BitBlt(), StretchBlt(), or printing TrueType fonts
isn’t supported, you can still use any of these functions; GDI will simulate these functions for
you. Note, however, that GDI cannot simulate BitBlt() on a device that doesn’t support raster
scanline pixels; BitBlt() will always fail on a pen plotter, for example.

Printing in Delphi 5

CHAPTER 10
191

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 191

Printer Information Sample Program
Figure 10.8 shows the main form for the sample program. This program contains eight pages,
each of which lists different printer capabilities for the printer selected in the combo box.

Advanced Techniques

PART II
192

FIGURE 10.8
The main form for the printer information example.

Declaring the DeviceCapabilitiesA Function
If you attempt to use the function DeviceCapabilities() defined in Windows.pas, you won’t
be able to run your program because this function isn’t defined in GDI32.DLL as Windows.pas
indicates. Instead, this function in GDI32.DLL is DeviceCapabilitiesEx(). However, even if
you define this function’s prototype as follows, the function won’t work as expected and
returns erroneous results:

function DeviceCapabilitiesEx(pDevice, pPort: Pchar; fwCapability: Word;
pOutput: Pchar; DevMode: PdeviceMode):
Integer; stdcall; external ‘Gdi32.dll’;

It turns out that two functions—DeviceCapabilitiesA() for ANSI strings and
DeviceCapabilitiesW() for wide strings—are defined in WINSPOOL.DRV, which is the Win32
print spooler interface. This function is the correct one to use as indicated in the Microsoft
Developer’s Network CD (MSDN). The correct definition for the function prototype that’s
used in the sample program in Listing 10.8 (shown in the following section) is as follows:

function DeviceCapabilitiesA(pDevice, pPort: Pchar; fwCapability: Word;
pOutput: Pchar; DevMode: PdeviceMode):
Integer; stdcall; external ‘winspool.drv’;

Note that the preceding declaration can be found in WINSPOOL.PAS in Delphi 5.

Sample Program Functionality
Listing 10.8 (shown at the end of this section) contains the source for the Printer Information
sample program. The main form’s OnCreate event handler simply populates the combo box

13.65227_Ch10CDx 11/30/99 11:30 AM Page 192

with the list of available printers on the system. The OnChange event handler for the combo box
is the central point of the application where the methods to retrieve the printer information are
called.

The first page on the form General Data contains general information about the printer device.
You’ll see that the printer’s device name, driver, and port location are obtained by calling the
TPrinter.GetPrinter() method. This method also retrieves a handle to a TDeviceMode struc-
ture for the currently selected printer. This information is then added to the General Data page.
To retrieve the printer driver version, you use the DeviceCapabilitiesA() function and pass
the DC_DRIVER index. The rest of the PrinterComboChange event handler calls the various rou-
tines to populate the list boxes on the various pages of the main form.

The GetBinNames() method illustrates how to use the DeviceCapabilitiesA() function to
retrieve the bin names for the selected printer. This method first gets the number of bin names
available by calling DeviceCapabilitiesA(), passing the DC_BINNAMES index, and passing nil
as the pOutput and DevMode parameters. The result of this function call specifies how much
memory must be allocated to hold the bin names. According to the documentation on
DeviceCapabilitiesA(), each bin name is defined as an array of 24 characters. We defined a
TBinName data type like this:

TBinName = array[0..23] of char;

We also defined an array of TBinName:

TBinNames = array[0..0] of TBinName;

This type is used to typecast a pointer as an array of TBinName data types. To access an ele-
ment at some index into the array, you must disable range checking, because this array is
defined to have a range of 0..0, as illustrated in the GetBinNames() method. The bin names
are added to the appropriate list box.

This same technique of determining the amount of memory required and allocating this mem-
ory dynamically is also used in the methods GetDevCapsPaperNames() and
GetResolutions().

The methods GetDuplexSupport(), GetCopies(), and GetEMFStatus() all use the
DeviceCapabilitiesA() function to return a value of the requested information. For example,
the following code determines whether the selected printer supports duplex printing by return-
ing a value of 1 if duplex printing is supported or 0 if not:

DeviceCapabilitiesA(Device, Port, DC_DUPLEX, nil, nil);

Also, the following statement returns the maximum number of copies the device can print:

DeviceCapabilitiesA(Device, Port, DC_COPIES, nil, nil);

Printing in Delphi 5

CHAPTER 10
193

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 193

The remaining methods use the GetDeviceCaps() function to determine the various capabilities
of the selected device. In some cases, GetDeviceCaps() returns the specific value requested.
For example, the following statement returns the width, in millimeters, of the printer device:

GetDeviceCaps(Printer.Handle, HORZSIZE);

In other cases, GetDeviceCaps() returns an integer value whose bits are masked to determine a
particular capability. For example, the GetRasterCaps() method first retrieves the integer
value that contains the bitmasked fields:

RCaps := GetDeviceCaps(Printer.Handle, RASTERCAPS);

Then, to determine whether the printer supports banding, you must mask out the RC_BANDING
field by performing an AND operation whose result should equal the value of RC_BANDING:

(RCaps and RC_BANDING) = RC_BANDING

This evaluation is passed to one of the helper functions, BoolToYesNoStr(), which returns the
string Yes or No, based on the result of the evaluation. Other fields are masked in the same
manner. This same technique is used in other areas where bitmasked fields are returned from
GetDeviceCaps() as well as from the DeviceCapabilitiesA() function, such as in the
GetTrueTypeInfo() method.

You’ll find both functions, DeviceCapabilties() and GetDeviceCaps(), well documented in
the online Win32 API help.

LISTING 10.7 Printer Information Sample Program

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pgcPrinterInfo: TPageControl;
tbsPaperTypes: TTabSheet;
tbsGeneralData: TTabSheet;
lbPaperTypes: TListBox;
tbsDeviceCaps: TTabSheet;
tbsRasterCaps: TTabSheet;
tbsCurveCaps: TTabSheet;
tbsLineCaps: TTabSheet;
tbsPolygonalCaps: TTabSheet;

Advanced Techniques

PART II
194

13.65227_Ch10CDx 11/30/99 11:30 AM Page 194

tbsTextCaps: TTabSheet;
lvGeneralData: TListView;
lvCurveCaps: TListView;
Splitter1: TSplitter;
lvDeviceCaps: TListView;
lvRasterCaps: TListView;
pnlTop: TPanel;
cbPrinters: TComboBox;
lvLineCaps: TListView;
lvPolyCaps: TListView;
lvTextCaps: TListView;
procedure FormCreate(Sender: TObject);
procedure cbPrintersChange(Sender: TObject);

private
Device, Driver, Port: array[0..255] of char;
ADevMode: THandle;
public
procedure GetBinNames;
procedure GetDuplexSupport;
procedure GetCopies;
procedure GetEMFStatus;
procedure GetResolutions;
procedure GetTrueTypeInfo;
procedure GetDevCapsPaperNames;
procedure GetDevCaps;
procedure GetRasterCaps;
procedure GetCurveCaps;
procedure GetLineCaps;
procedure GetPolyCaps;
procedure GetTextCaps;

end;

var
MainForm: TMainForm;

implementation
uses
Printers, WinSpool;

const
NoYesArray: array[Boolean] of String = (‘No’, ‘Yes’);

type

// Types for holding bin names
TBinName = array[0..23] of char;
// Where used set $R- to prevent error

Printing in Delphi 5

CHAPTER 10
195

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 195

LISTING 10.7 Continued

TBinNames = array[0..0] of TBinName;

// Types for holding paper names
TPName = array[0..63] of char;

// Where used set $R- to prevent error
TPNames = array[0..0] of TPName;

// Types for holding resolutions
TResolution = array[0..1] of integer;
// Where used set $R- to prevent error
TResolutions = array[0..0] of TResolution;

// Type for holding array of pages sizes (word types)
TPageSizeArray = Array[0..0] of word;

var
Rslt: Integer;

{$R *.DFM}
(*
function BoolToYesNoStr(aVal: Boolean): String;
// Returns the string “YES” or “NO” based on the boolean value
begin
if aVal then
Result := ‘Yes’

else
Result := ‘No’;

end;
*)
procedure AddListViewItem(const aCaption, aValue: String; aLV: TListView);
// This method is used to add a TListItem to the TListView, aLV
var
NewItem: TListItem;

begin
NewItem := aLV.Items.Add;
NewItem.Caption := aCaption;
NewItem.SubItems.Add(aValue);

end;

procedure TMainForm.GetBinNames;
var
BinNames: Pointer;
i: integer;

Advanced Techniques

PART II
196

13.65227_Ch10CDx 11/30/99 11:30 AM Page 196

begin
{$R-} // Range checking must be turned off here.
// First determine how many bin names are available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_BINNAMES, nil, nil);
if Rslt > 0 then
begin
{ Each bin name is 24 bytes long. Therefore, allocate Rslt*24 bytes to hold
the bin names. }

GetMem(BinNames, Rslt*24);
try
// Now retrieve the bin names in the allocated block of memory.
if DeviceCapabilitiesA(Device, Port, DC_BINNAMES, BinNames, nil) = -1

then
raise Exception.Create(‘DevCap Error’);

//{ Add the information to the appropriate list box.
AddListViewItem(‘BIN NAMES’, EmptyStr, lvGeneralData);
for i := 0 to Rslt - 1 do
begin
AddListViewItem(Format(‘ Bin Name %d’, [i]),
StrPas(TBinNames(BinNames^)[i]), lvGeneralData);

end;
finally
FreeMem(BinNames, Rslt*24);

end;
end;

{$R+} // Turn range checking back on.
end;

procedure TMainForm.GetDuplexSupport;
begin
{ This function uses DeviceCapabilitiesA to determine whether or not the
printer device supports duplex printing. }

Rslt := DeviceCapabilitiesA(Device, Port, DC_DUPLEX, nil, nil);
AddListViewItem(‘Duplex Printing’, NoYesArray[Rslt = 1], lvGeneralData);

end;

procedure TMainForm.GetCopies;
begin
{ This function determines how many copies the device can be set to print.
If the result is not greater than 1 then the print logic must be
executed multiple times }

Rslt := DeviceCapabilitiesA(Device, Port, DC_COPIES, nil, nil);
AddListViewItem(‘Copies that printer can print’,

InttoStr(Rslt), lvGeneralData);

end;

Printing in Delphi 5

CHAPTER 10
197

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 197

LISTING 10.7 Continued

procedure TMainForm.GetEMFStatus;
begin
// This function determines if the device supports the enhanced metafiles.
Rslt := DeviceCapabilitiesA(Device, Port, DC_EMF_COMPLIANT, nil, nil);
AddListViewItem(‘EMF Compliant’, NoYesArray[Rslt=1], lvGeneralData);

end;

procedure TMainForm.GetResolutions;
var
Resolutions: Pointer;
i: integer;

begin
{$R-} // Range checking must be turned off.
// Determine how many resolutions are available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_ENUMRESOLUTIONS, nil, nil);
if Rslt > 0 then begin
{ Allocate the memory to hold the different resolutions which are
represented by integer pairs, ie: 300, 300 }

GetMem(Resolutions, (SizeOf(Integer)*2)*Rslt);
try
// Retrieve the different resolutions.
if DeviceCapabilitiesA(Device, Port, DC_ENUMRESOLUTIONS,
Resolutions, nil) = -1 then
Raise Exception.Create(‘DevCaps Error’);

// Add the resolution information to the appropriate list box.
AddListViewItem(‘RESOLUTION CONFIGURATIONS’, EmptyStr, lvGeneralData);

for i := 0 to Rslt - 1 do
begin
AddListViewItem(‘ Resolution Configuration’,
IntToStr(TResolutions(Resolutions^)[i][0])+
‘ ‘+IntToStr(TResolutions(Resolutions^)[i][1]), lvGeneralData);

end;
finally
FreeMem(Resolutions, SizeOf(Integer)*Rslt*2);

end;
end;

{$R+} // Turn range checking back on.
end;

procedure TMainForm.GetTrueTypeInfo;
begin
// Get the TrueType font capabilities of the device represented as bitmasks
Rslt := DeviceCapabilitiesA(Device, Port, DC_TRUETYPE, nil, nil);
if Rslt <> 0 then

Advanced Techniques

PART II
198

13.65227_Ch10CDx 11/30/99 11:30 AM Page 198

{ Now mask out the individual TrueType capabilities and indicate the
result in the appropriate list box. }

AddListViewItem(‘TRUE TYPE FONTS’, EmptyStr, lvGeneralData);
with lvGeneralData.Items do
begin
AddListViewItem(‘ Prints TrueType fonts as graphics’,
NoYesArray[(Rslt and DCTT_BITMAP) = DCTT_BITMAP], lvGeneralData);

AddListViewItem(‘ Downloads TrueType fonts’,
NoYesArray[(Rslt and DCTT_DOWNLOAD) = DCTT_DOWNLOAD],

➥ lvGeneralData);

AddListViewItem(‘ Downloads outline TrueType fonts’,
NoYesArray[(Rslt and DCTT_DOWNLOAD_OUTLINE) =

➥ DCTT_DOWNLOAD_OUTLINE],
lvGeneralData);

AddListViewItem(‘ Substitutes device for TrueType fonts’,
NoYesArray[(Rslt and DCTT_SUBDEV) = DCTT_SUBDEV], lvGeneralData);

end;
end;

procedure TMainForm.GetDevCapsPaperNames;
{ This method gets the paper types available on a selected printer from the
DeviceCapabilitiesA function. }

var
PaperNames: Pointer;
i: integer;

begin
{$R-} // Range checking off.
lbPaperTypes.Items.Clear;
// First get the number of paper names available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_PAPERNAMES, nil, nil);
if Rslt > 0 then begin
{ Now allocate the array of paper names. Each paper name is 64 bytes.
Therefore, allocate Rslt*64 of memory. }

GetMem(PaperNames, Rslt*64);
try
// Retrieve the list of names into the allocated memory block.
if DeviceCapabilitiesA(Device, Port, DC_PAPERNAMES,
PaperNames, nil) = - 1 then
raise Exception.Create(‘DevCap Error’);

// Add the paper names to the appropriate list box.
for i := 0 to Rslt - 1 do
lbPaperTypes.Items.Add(StrPas(TPNames(PaperNames^)[i]));

finally

Printing in Delphi 5

CHAPTER 10
199

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 199

LISTING 10.7 Continued

FreeMem(PaperNames, Rslt*64);
end;

end;
{$R+} // Range checking back on.
end;

procedure TMainForm.GetDevCaps;
{ This method retrieves various capabilities of the selected printer device by
using the GetDeviceCaps function. Refer to the Online API help for the
meaning of each of these items. }

begin
with lvDeviceCaps.Items do
begin
Clear;
AddListViewItem(‘Width in millimeters’,
IntToStr(GetDeviceCaps(Printer.Handle, HORZSIZE)), lvDeviceCaps);

AddListViewItem(‘Height in millimeter’,
IntToStr(GetDeviceCaps(Printer.Handle, VERTSIZE)), lvDeviceCaps);

AddListViewItem(‘Width in pixels’,
IntToStr(GetDeviceCaps(Printer.Handle, HORZRES)), lvDeviceCaps);

AddListViewItem(‘Height in pixels’,
IntToStr(GetDeviceCaps(Printer.Handle, VERTRES)), lvDeviceCaps);

AddListViewItem(‘Pixels per horizontal inch’,
IntToStr(GetDeviceCaps(Printer.Handle, LOGPIXELSX)), lvDeviceCaps);

AddListViewItem(‘Pixels per vertical inch’,
IntToStr(GetDeviceCaps(Printer.Handle, LOGPIXELSY)), lvDeviceCaps);

AddListViewItem(‘Color bits per pixel’,
IntToStr(GetDeviceCaps(Printer.Handle, BITSPIXEL)), lvDeviceCaps);

AddListViewItem(‘Number of color planes’,
IntToStr(GetDeviceCaps(Printer.Handle, PLANES)), lvDeviceCaps);

AddListViewItem(‘Number of brushes’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMBRUSHES)), lvDeviceCaps);

AddListViewItem(‘Number of pens’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMPENS)), lvDeviceCaps);

AddListViewItem(‘Number of fonts’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMFONTS)), lvDeviceCaps);

Rslt := GetDeviceCaps(Printer.Handle, NUMCOLORS);
if Rslt = -1 then
AddListViewItem(‘Number of entries in color table’, ‘ > 8’, lvDeviceCaps)

else AddListViewItem(‘Number of entries in color table’,
IntToStr(Rslt), lvDeviceCaps);

AddListViewItem(‘Relative pixel drawing width’,
IntToStr(GetDeviceCaps(Printer.Handle, ASPECTX)), lvDeviceCaps);

AddListViewItem(‘Relative pixel drawing height’,

Advanced Techniques

PART II
200

13.65227_Ch10CDx 11/30/99 11:30 AM Page 200

IntToStr(GetDeviceCaps(Printer.Handle, ASPECTY)), lvDeviceCaps);
AddListViewItem(‘Diagonal pixel drawing width’,
IntToStr(GetDeviceCaps(Printer.Handle, ASPECTXY)), lvDeviceCaps);

if GetDeviceCaps(Printer.Handle, CLIPCAPS) = 1 then
AddListViewItem(‘Clip to rectangle’, ‘Yes’, lvDeviceCaps)

else AddListViewItem(‘Clip to rectangle’, ‘No’, lvDeviceCaps);
end;

end;

procedure TMainForm.GetRasterCaps;
{ This method gets the various raster capabilities of the selected printer
device by using the GetDeviceCaps function with the RASTERCAPS index. Refer
to the online help for information on each capability. }

var
RCaps: Integer;

begin
with lvRasterCaps.Items do
begin
Clear;
RCaps := GetDeviceCaps(Printer.Handle, RASTERCAPS);
AddListViewItem(‘Banding’,
NoYesArray[(RCaps and RC_BANDING) = RC_BANDING], lvRasterCaps);

AddListViewItem(‘BitBlt Capable’,
NoYesArray[(RCaps and RC_BITBLT) = RC_BITBLT], lvRasterCaps);

AddListViewItem(‘Supports bitmaps > 64K’,
NoYesArray[(RCaps and RC_BITMAP64) = RC_BITMAP64], lvRasterCaps);

AddListViewItem(‘DIB support’,
NoYesArray[(RCaps and RC_DI_BITMAP) = RC_DI_BITMAP], lvRasterCaps);

AddListViewItem(‘Floodfill support’,
NoYesArray[(RCaps and RC_FLOODFILL) = RC_FLOODFILL], lvRasterCaps);

AddListViewItem(‘Windows 2.0 support’,
NoYesArray[(RCaps and RC_GDI20_OUTPUT) = RC_GDI20_OUTPUT],

➥ lvRasterCaps);
AddListViewItem(‘Palette based device’,
NoYesArray[(RCaps and RC_PALETTE) = RC_PALETTE], lvRasterCaps);

AddListViewItem(‘Scaling support’,
NoYesArray[(RCaps and RC_SCALING) = RC_SCALING], lvRasterCaps);

AddListViewItem(‘StretchBlt support’,
NoYesArray[(RCaps and RC_STRETCHBLT) = RC_STRETCHBLT],

➥ lvRasterCaps);
AddListViewItem(‘StretchDIBits support’,
NoYesArray[(RCaps and RC_STRETCHDIB) = RC_STRETCHDIB],

➥ lvRasterCaps);
end;

end;

Printing in Delphi 5

CHAPTER 10
201

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 201

LISTING 10.7 Continued

procedure TMainForm.GetCurveCaps;
{ This method gets the various curve capabilities of the selected printer
device by using the GetDeviceCaps function with the CURVECAPS index. Refer
to the online help for information on each capability. }

var
CCaps: Integer;

begin
with lvCurveCaps.Items do
begin
Clear;
CCaps := GetDeviceCaps(Printer.Handle, CURVECAPS);

AddListViewItem(‘Curve support’,
NoYesArray[(CCaps and CC_NONE) = CC_NONE], lvCurveCaps);

AddListViewItem(‘Circle support’,
NoYesArray[(CCaps and CC_CIRCLES) = CC_CIRCLES], lvCurveCaps);

AddListViewItem(‘Pie support’,
NoYesArray[(CCaps and CC_PIE) = CC_PIE], lvCurveCaps);

AddListViewItem(‘Chord arc support’,
NoYesArray[(CCaps and CC_CHORD) = CC_CHORD], lvCurveCaps);

AddListViewItem(‘Ellipse support’,
NoYesArray[(CCaps and CC_ELLIPSES) = CC_ELLIPSES], lvCurveCaps);

AddListViewItem(‘Wide border support’,
NoYesArray[(CCaps and CC_WIDE) = CC_WIDE], lvCurveCaps);

AddListViewItem(‘Styled border support’,
NoYesArray[(CCaps and CC_STYLED) = CC_STYLED], lvCurveCaps);

AddListViewItem(‘Round rectangle support’,
NoYesArray[(CCaps and CC_ROUNDRECT) = CC_ROUNDRECT], lvCurveCaps);

end;
end;

procedure TMainForm.GetLineCaps;
{ This method gets the various line drawing capabilities of the selected
printer device by using the GetDeviceCaps function with the LINECAPS index.
Refer to the online help for information on each capability. }
var
LCaps: Integer;

Advanced Techniques

PART II
202

13.65227_Ch10CDx 11/30/99 11:30 AM Page 202

begin
with lvLineCaps.Items do
begin
Clear;
LCaps := GetDeviceCaps(Printer.Handle, LINECAPS);

AddListViewItem(‘Line support’,
NoYesArray[(LCaps and LC_NONE) = LC_NONE], lvLineCaps);

AddListViewItem(‘Polyline support’,
NoYesArray[(LCaps and LC_POLYLINE) = LC_POLYLINE], lvLineCaps);

AddListViewItem(‘Marker support’,
NoYesArray[(LCaps and LC_MARKER) = LC_MARKER], lvLineCaps);

AddListViewItem(‘Multiple marker support’,
NoYesArray[(LCaps and LC_POLYMARKER) = LC_POLYMARKER], lvLineCaps);

AddListViewItem(‘Wide line support’,
NoYesArray[(LCaps and LC_WIDE) = LC_WIDE], lvLineCaps);

AddListViewItem(‘Styled line support’,
NoYesArray[(LCaps and LC_STYLED) = LC_STYLED], lvLineCaps);

AddListViewItem(‘Wide and styled line support’,
NoYesArray[(LCaps and LC_WIDESTYLED) = LC_WIDESTYLED], lvLineCaps);

AddListViewItem(‘Interior support’,
NoYesArray[(LCaps and LC_INTERIORS) = LC_INTERIORS], lvLineCaps);

end;
end;

procedure TMainForm.GetPolyCaps;
{ This method gets the various polygonal capabilities of the selected printer
device by using the GetDeviceCaps function with the POLYGONALCAPS index.

Refer to the online help for information on each capability. }
var
PCaps: Integer;

begin
with lvPolyCaps.Items do
begin
Clear;
PCaps := GetDeviceCaps(Printer.Handle, POLYGONALCAPS);

AddListViewItem(‘Polygon support’,
NoYesArray[(PCaps and PC_NONE) = PC_NONE], lvPolyCaps);

Printing in Delphi 5

CHAPTER 10
203

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 203

LISTING 10.7 Continued

AddListViewItem(‘Alternate fill polygon support’,
NoYesArray[(PCaps and PC_POLYGON) = PC_POLYGON], lvPolyCaps);

AddListViewItem(‘Rectangle support’,
NoYesArray[(PCaps and PC_RECTANGLE) = PC_RECTANGLE], lvPolyCaps);

AddListViewItem(‘Winding-fill polygon support’,
NoYesArray[(PCaps and PC_WINDPOLYGON) = PC_WINDPOLYGON], lvPolyCaps);

AddListViewItem(‘Single scanline support’,
NoYesArray[(PCaps and PC_SCANLINE) = PC_SCANLINE], lvPolyCaps);

AddListViewItem(‘Wide border support’,
NoYesArray[(PCaps and PC_WIDE) = PC_WIDE], lvPolyCaps);

AddListViewItem(‘Styled border support’,
NoYesArray[(PCaps and PC_STYLED) = PC_STYLED], lvPolyCaps);

AddListViewItem(‘Wide and styled border support’,
NoYesArray[(PCaps and PC_WIDESTYLED) = PC_WIDESTYLED], lvPolyCaps);

AddListViewItem(‘Interior support’,
NoYesArray[(PCaps and PC_INTERIORS) = PC_INTERIORS], lvPolyCaps);

end;
end;

procedure TMainForm.GetTextCaps;
{ This method gets the various text drawing capabilities of the selected
printer device by using the GetDeviceCaps function with the TEXTCAPS index.
Refer to the online help for information on each capability. }

var
TCaps: Integer;

begin
with lvTextCaps.Items do
begin
Clear;
TCaps := GetDeviceCaps(Printer.Handle, TEXTCAPS);

AddListViewItem(‘Character output precision’,
NoYesArray[(TCaps and TC_OP_CHARACTER) = TC_OP_CHARACTER], lvTextCaps);

AddListViewItem(‘Stroke output precision’,
NoYesArray[(TCaps and TC_OP_STROKE) = TC_OP_STROKE], lvTextCaps);

AddListViewItem(‘Stroke clip precision’,

Advanced Techniques

PART II
204

13.65227_Ch10CDx 11/30/99 11:30 AM Page 204

NoYesArray[(TCaps and TC_CP_STROKE) = TC_CP_STROKE], lvTextCaps);

AddListViewItem(‘90 degree character rotation’,
NoYesArray[(TCaps and TC_CR_90) = TC_CR_90], lvTextCaps);

AddListViewItem(‘Any degree character rotation’,
NoYesArray[(TCaps and TC_CR_ANY) = TC_CR_ANY], lvTextCaps);

AddListViewItem(‘Independent scale in X and Y direction’,
NoYesArray[(TCaps and TC_SF_X_YINDEP) = TC_SF_X_YINDEP], lvTextCaps);

AddListViewItem(‘Doubled character for scaling’,
NoYesArray[(TCaps and TC_SA_DOUBLE) = TC_SA_DOUBLE], lvTextCaps);

AddListViewItem(‘Integer multiples only for character scaling’,
NoYesArray[(TCaps and TC_SA_INTEGER) = TC_SA_INTEGER], lvTextCaps);

AddListViewItem(‘Any multiples for exact character scaling’,
NoYesArray[(TCaps and TC_SA_CONTIN) = TC_SA_CONTIN], lvTextCaps);

AddListViewItem(‘Double weight characters’,
NoYesArray[(TCaps and TC_EA_DOUBLE) = TC_EA_DOUBLE], lvTextCaps);

AddListViewItem(‘Italicized characters’,
NoYesArray[(TCaps and TC_IA_ABLE) = TC_IA_ABLE], lvTextCaps);

AddListViewItem(‘Underlined characters’,
NoYesArray[(TCaps and TC_UA_ABLE) = TC_UA_ABLE], lvTextCaps);

AddListViewItem(‘Strikeout characters’,
NoYesArray[(TCaps and TC_SO_ABLE) = TC_SO_ABLE], lvTextCaps);

AddListViewItem(‘Raster fonts’,
NoYesArray[(TCaps and TC_RA_ABLE) = TC_RA_ABLE], lvTextCaps);

AddListViewItem(‘Vector fonts’,
NoYesArray[(TCaps and TC_VA_ABLE) = TC_VA_ABLE], lvTextCaps);

AddListViewItem(‘Scrolling using bit-block transfer’,
NoYesArray[(TCaps and TC_SCROLLBLT) = TC_SCROLLBLT], lvTextCaps);

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Printing in Delphi 5

CHAPTER 10
205

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 205

LISTING 10.7 Continued

// Store the printer names in the combo box.
cbPrinters.Items.Assign(Printer.Printers);
// Display the default printer in the combo box.
cbPrinters.ItemIndex := Printer.PrinterIndex;
// Invoke the combo’s OnChange event
cbPrintersChange(nil);

end;

procedure TMainForm.cbPrintersChange(Sender: TObject);
begin
Screen.Cursor := crHourGlass;
try
// Populate combo with available printers
Printer.PrinterIndex := cbPrinters.ItemIndex;
with Printer do
GetPrinter(Device, Driver, Port, ADevMode);

// Fill the general page with printer information
with lvGeneralData.Items do
begin
Clear;
AddListViewItem(‘Port’, Port, lvGeneralData);
AddListViewItem(‘Device’, Device, lvGeneralData);

Rslt := DeviceCapabilitiesA(Device, Port, DC_DRIVER, nil, nil);
AddListViewItem(‘Driver Version’, IntToStr(Rslt), lvGeneralData);

end;

// The functions below make use of the GetDeviceCapabilitiesA function.
GetBinNames;
GetDuplexSupport;
GetCopies;
GetEMFStatus;
GetResolutions;
GetTrueTypeInfo;

// The functions below make use of the GetDeviceCaps function.
GetDevCapsPaperNames;
GetDevCaps; // Fill Device Caps page.
GetRasterCaps; // Fill Raster Caps page.
GetCurveCaps; // Fill Curve Caps page.
GetLineCaps; // Fill Line Caps page.
GetPolyCaps; // Fill Polygonal Caps page.
GetTextCaps; // Fill Text Caps page.

finally

Advanced Techniques

PART II
206

13.65227_Ch10CDx 11/30/99 11:30 AM Page 206

Screen.Cursor := crDefault;
end;

end;

end.

Summary
This chapter teaches the techniques you need to know in order to program any type of custom
printing, from simple printing to more advanced techniques. You also learned a methodology
that you can apply to any printing task. Additionally, you learned about the TDeviceMode struc-
ture and how to perform common printing tasks. You’ll use more of this knowledge in upcom-
ing chapters, where you build even more powerful printing methods.

Printing in Delphi 5

CHAPTER 10
207

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 207

