
565

Index

a-periodic messages, 98
a-periodic tasks, 121
Aalto, Alvar, 536
Abnormal network conditions, 167
ABSOLUTE OBJECT REFERENCE pattern,

393
AC (Authentication Center), 226
Access agents, 340, 343–345
Account class, 4–6, 17–19
AccountType class, 4–6, 17, 19–20
Acrobat plug-ins, 304
Action class, 55
Activation time of plug-ins, 323
Active Directory, 200
Active Object Model. See DYNAMIC

OBJECT MODEL pattern
Active Registration, 320
Actiweb system, 291–292
ADAPTERS pattern

COMPONENT WRAPPER, 370
VOID, 502

ADAPTIVE OBJECT MODEL pattern, 375
Adjectives, 444
ADP templates, 278
Advanced pattern writing

acknowledgments, 451
CONSISTENT “WHO”, 446–448

DEAD WEASELS, 443–444
existing work, 434–436
FORCES HINT AT SOLUTION, 444–446
“HOW“-PROCESS, 438–440
introduction, 433–434
POINTERS TO DETAIL, 448–451
references, 451–452
“WHY“-PROBLEMS, 440–443

Adverbs, 444
Agent module, 350
AGGREGATION pattern, 461, 494–497

DYNAMIC OBJECT MODEL, 12–13
RESOLUTION OF FORCES, 483

Aha effect, 519–521
Air interface, 217
Airplane Information Management

System (AIMS), 122
Alarm class, 318
Alexander, Christopher

biological analogy by, 464
on city structure, 488
on complex systems, 455–456, 489
on context, 498
on designed systems, 454–455
on differentiation, 473, 492
on emptiness, 500
on entrances, 481

Manolescu_book.fm Page 565 Thursday, March 30, 2006 4:30 PM

566 INDEX

Alexander, Christopher, continued
on evolution, 501
on forces, 461–462, 468–469, 472,

480–483, 488, 498
on fundamental process, 463
on HALF-HIDDEN GARDEN, 484
and LDPL, 453, 458
motivation of, 552
on paths, 499
on pattern growth, 495–496
Pattern Language, A—Towns, Build-

ings, Construction, 259
on pattern sequences, 464–465
on scale, 485–486

Alexandrian pattern form, 437–438
Prairie Houses, 534–537
Web content conversion and gener-

ation, 259
ALIGN DIRECTORIES WITH ORGANIZA-

TION pattern, 199–200
CONSULT DIRECTORY, 196
OVERLAY NETWORK, 193
SERVER DOES HEAVY WORK, 205

Ambiguous comparands, 180
Analog mobile wireless systems, 227
Analysis Patterns (Fowler), 22
Analyzers, 309
Anchor entities

in mobile wireless systems, 220,
242–244

summary, 255
“And They Lived Happily Ever After”

syndrome, 523
Andrade, Rossana Maria de Castro

biographical information, 555
MoRaR, 213

Anti-patterns, 520
Blob, 53, 58–59
Poltergeist, 47

AOL Server, 293

Apache Axis framework, 381, 396–397
Appleton, Jay

on prospect and refuge, 533
on symmetries, 484–485

Application/Communication Buffer
pattern. See TEMPORAL APPLICA-

TION DECOUPLING pattern
Application servers, 32
Application Submission and Control

Tool (ASCT) module, 351
Application tasks, 116–117
Applications

configurable. See Plug-ins
deployment of, 351–352
development of, 102

Apptimizer system, 60
Architectural concepts for MoRaR,

215–218
Architectural pattern languages,

299–300, 458
CLUSTER OF FORCES, 469
COMMON GROUND, 498
CROSS LINKAGES, 489
HALF-SYNC/HALF-ASYNC, 120
LEVELS oF SCALE, 486–487
RESOLUTION OF FORCES, 481–482
VOID, 501

Arguments Object pattern, 62
ARINC 659 standard

BIUs in, 115
in hard real-time systems, 122
in SYNC FRAME, 111
in TEMPORAL APPLICATION DECOU-

PLING, 119
Artix framework, 381
ASCT (Application Submission and

Control Tool) module, 351
ASK LOCAL NETWORK pattern, 191–192

CONSULT DIRECTORY, 196
LISTEN TO ADVERTISEMENTS, 194

Manolescu_book.fm Page 566 Thursday, March 30, 2006 4:30 PM

INDEX 567

PLACE DIRECTORIES DYNAMICALLY,
201

SEPARATE IDENTITY FROM LOCATION,
202

SERVICES REGISTER IN DIRECTORY, 197
in SLP, 206
USE ADVERTISER, 195

ASP pages, 293
Aspect configuration, 390–393
Aspect ratio in Prairie Houses, 538
Asynchronous-Change Commands

pattern, 84–85
Attribute reuse, 178
Audiences, 447
Authentication

in mobile wireless systems, 215, 220,
225–227, 229–232

summary, 254
Authentication Centers (ACs), 215,

226
Authenticator pattern, 232
Author as Owner pattern, 508, 517–518
AUTOMATIC CONTROLS pattern

in Equitable Resource Allocation,
146

in Real Time and Resource Over-
load language, 132, 148

Automatic Invocation application, 323
AUTOMATIC OUT-OF-CHAIN ROUTING

pattern
in Equitable Resource Allocation,

147
in Real Time and Resource Over-

load language, 132, 148
AUTOMATIC TYPE CONVERTER pattern,

359–360, 377–381
COMMAND LANGUAGE, 365
COMPONENT WRAPPER, 370
CONTENT CONVERTER, 273
SPLIT OBJECT, 383, 386, 390, 397

Automation, DYNAMIC OBJECT MODEL
for, 10

Availability in distributed systems,
157

Available bandwidth for a-periodic
transmissions, 98

Axis framework, 381, 396–397

BACKEND pattern, 30, 35
BALANCED CONTEXT pattern, 509,

523–525
BANDS OF WINDOWS pattern, 539,

545–547
Bandwidth utilization

in hard real-time systems, 96
in PRESCHEDULED PERIODIC TRANS-

MISSION, 98, 101
in SYNC FRAME, 110

Banking systems. See DYNAMIC OBJECT
MODEL pattern

Bar-Yam, Y., 483
Base station controllers (BSCs), 216–218
Base station transceivers (BSTs),

217–218
Base stations, 217
Bathing Room pattern, 500
BEA WebLogic Integration, 291
BEAUTY OF SIMPLICITY pattern, 407–411,

413, 418
Behavioral patterns in MoRaR,

218–221
BIG PICTURE pattern, 436, 438, 508–509,

515–516
Biological systems

AGGREGATION, 497
CROSS LINKAGES, 491
DIFFERENTIATION, 493–494
in LDPL, 458, 464, 467
LOCAL SYMMETRIES, 477–478
VOID, 502

Manolescu_book.fm Page 567 Thursday, March 30, 2006 4:30 PM

568 INDEX

Bit masks, 141–142
BIUs (Bus Interface Units), 115, 119
Blob antipattern, 53, 58–59
Bottlenecks, 58
Boundary conditions, 177
Brake control systems. See Hard real-

time systems
Brand, Stewart, 463
BROKER pattern, 345, 353
Browsers

FRAMEWORK PROVIDING APPLICA-

TION, 318
PLUG-IN, 309

BSCs (base station controllers), 216–218
BSP API, 348
BSTs (base station transceivers),

217–218
BUILD TRUST pattern, 423
Bus cycles, 102
BUS GUARDIAN pattern

consequences, 114
context, 111
examples, 112, 114
in hard real-time systems, 92, 97
implementation, 113–114
known uses, 115
problem, 111
related patterns, 115
solution, 112
in SYNC FRAME, 109

Bus Interface Units (BIUs), 115, 119
Business logic, 25–26, 32
Business rules engine, 21
Buy class, 47
Byzantine situations, 109, 111

C language
AUTOMATIC TYPE CONVERTER, 381
dispatching in, 79
OBJECT SYSTEM LAYER, 376

C++ language
dispatching in, 79
encapsulation in, 50, 60–61
OBJECT SYSTEM LAYER, 374
and OTcl, 389–390
sameness in, 177, 183
wrappers in, 371–373

C++ Idioms Language, 459
AGGREGATION, 496
COMMON GROUND, 499
CROSS LINKAGES, 489–490
DIFFERENTIATION, 493
LOCAL SYMMETRIES, 474
operator overloading in, 465

Calder, Paul
biographical information, 555
LDPL, 453

Camargo, Raphael Y. de
biographical information, 555–556
GRID, 337

CANTILEVERED TERRACE pattern,
543–545

BANDS OF WINDOWS, 546
FIREPLACE AS REFUGE, 547
for horizontal spread, 539

Car brake control systems. See Hard
real-time systems

Carneiro, Marcio
biographical information, 556
GRID, 337

CAVE (Cellular Authentication and
Voice Encryption), 232

Cells in mobile wireless systems, 215
Central Bus Guardian, 113–114
CHAIN OF RESPONSIBILITY pattern

CONTENT CONVERTER, 271–272
DYNAMIC OBJECT MODEL, 13
ENCAPSULATED CONTEXT, 61

Change requests in framework devel-
opment, 423–425

Manolescu_book.fm Page 568 Thursday, March 30, 2006 4:30 PM

INDEX 569

Channel-specific formats, 264
CheckingAccount class, 17
Checkpointing, 349
CHECKS pattern language, 459, 466–467

CLUSTER OF FORCES, 470
CROSS LINKAGES, 490–491
LEVELS OF SCALE, 487
RESOLUTION OF FORCES, 482
VOID, 501

CHI (controller host interfaces), 119
CHIMNEY AS ANCHOR pattern, 539,

541–543
CANTILEVERED TERRACE, 545
FIREPLACE AS REFUGE, 547

Ciphering
in mobile wireless systems, 215, 220,

223, 226–229
summary, 253

CIRCUITOUS APPROACH pattern, 539,
541, 550–551

City is Not a Tree, A (Alexander), 488
Classes, comparable, 176–177
CLEAR TARGET AUDIENCE pattern, 435,

447, 525
CLEAVAGE pattern, 477–478
Client class, 9
CLIENT-DISPATCHER-SERVER pattern, 203
CLIENT KNOWS BEST pattern, 203–204
Clients

DECENTRALIZED LOCKING, 157–158
in Service Discovery, 189

Cliques in SYNC FRAME, 109
Clock synchronization, 103–105
Clone comparisons, 175–176
CLUSTER OF FORCES pattern, 460,

467–471
CNI (communication network inter-

face), 119
Cocoon framework, 426
CODE SAMPLES pattern, 436, 449

CODE SAMPLES AS BONUS pattern, 436,
449

Collaborations, 7–8, 30–31
Collection Framework, 177
Collections

COMPARAND, 183–184
GRID, 350

Collisions on Ethernet, 94–95
COM (Component Object Model), 182
COMMAND pattern, 359–360

ENCAPSULATED CONTEXT, 47, 61
substitutions in, 363

COMMAND LANGUAGE pattern, 358–360
AUTOMATIC TYPE CONVERTER, 377,

379–380
COMPONENT WRAPPER, 370
consequences, 366–367
context, 361
discussion, 363–366
forces, 362
known uses, 367
OBJECT SYSTEM LAYER, 374
problem, 361–362
scenarios, 362, 366
solution, 363
SPLIT OBJECT, 382, 384–385, 387–389,

391, 393–394
COMMANDS pattern, 358–360

COMMAND LANGUAGE, 365
COMPONENT WRAPPER, 370

Comments in shepherding, 514
COMMON AREA AT THE HEART pattern,

499
COMMON GROUND pattern, 497–500

in LDPL, 461
LEVELS OF SCALE, 487
RESOLUTION OF FORCES, 483

Communication
in DISASTER NOTIFICATION, 135
in GRID, 343, 348

Manolescu_book.fm Page 569 Thursday, March 30, 2006 4:30 PM

570 INDEX

Communication handlers, 116–117
Communication network interface

(CNI), 119
COMMUNITY OF TRUST pattern, 513
COMPARAND pattern

acknowledgments, 187
conclusion, 186–187
consequences, 183–184
context, 170
example, 169–170
implementation, 174–183
known uses, 184–186
overview, 169
problem, 171–173
references, 187–188
related patterns, 186
solution, 173–174

ComparandFactory class, 176
Comparisons

operations, 178–179
semantics, 174

Complex systems, pattern languages
as, 455–456

Complexity
in BUS GUARDIAN, 114
COMPARAND, 183
DYNAMIC OBJECT MODEL, 6–7
in framework development, 408,

416
GRID, 352
in SYNC FRAME, 110

Component and language integration,
357

acknowledgments, 398
AUTOMATIC TYPE CONVERTER,

377–381
COMMAND LANGUAGE, 361–367
COMPONENT WRAPPER, 368–372
conclusion, 397
introduction, 358–360

OBJECT SYSTEM LAYER, 372–376
patterns, 360–361
references, 398–400
SPLIT OBJECT. See SPLIT OBJECT

pattern
Component class, 7, 9
Component Object Model (COM), 182
COMPONENT WRAPPER pattern,

368–372
implementation, 359
OBJECT SYSTEM LAYER, 373
SPLIT OBJECT, 394, 397

COMPONENT WRAPPERS pattern
AUTOMATIC TYPE CONVERTER, 359
OBJECT SYSTEM LAYER, 374
SPLIT OBJECT, 382, 386, 388

Components
in hard real-time systems, 120
vs. plug-ins, 302–303

ComponentType class, 7, 9, 14
Composability, 101
COMPOSITE pattern

DYNAMIC OBJECT MODEL, 22
FRAGMENTS, 281, 284
GENERIC CONTENT FORMAT, 265, 267

Compound comparands, 180–182
CompoundContent class, 266
Computations, grid, 338–339
Computed comparands, 182
CONCEALED VERTICALS pattern,

549–550
CONCRETE EVIDENCE FOR REUSE pat-

tern, 404–407, 425
CONCRETEFINDER pattern, 30
CONCRETEMANAGER pattern, 30, 34
Concurrency in reference counting, 79
Condor Grids, 350
Configurable software. See Plug-ins
“Connecting Business Object to Rela-

tional Databases” (Yoder), 40

Manolescu_book.fm Page 570 Thursday, March 30, 2006 4:30 PM

INDEX 571

Connection interface, 30
CONSISTENT “WHO” pattern, 434,

446–448
Constraints

DYNAMIC OBJECT MODEL, 13
GRID, 346
in PRESCHEDULED PERIODIC TRANS-

MISSION, 97
in TEMPORAL APPLICATION DECOU-

PLING, 119
CONSULT DIRECTORY pattern,

195–196
CONSULT DIRECTORY, 196
LISTEN TO ADVERTISEMENTS, 194
SEPARATE IDENTITY FROM LOCATION,

202
in SLP, 206
USE ADVERTISER, 195

Consumer/user behavior in OVER-

LOAD EMPIRES, 134
CONTENT CACHE pattern, 257, 264

CONTENT CONVERTER, 272
FRAGMENTS, 283
overview, 262
PUBLISHER AND GATHERER, 268
Web content conversion and gener-

ation, 284–287
CONTENT CONVERTER pattern, 257

AUTOMATIC TYPE CONVERTER, 380
CONTENT CREATOR, 275
GENERIC CONTENT FORMAT, 266
overview, 261
Web content conversion and gener-

ation, 270–274, 289
CONTENT CREATOR pattern, 257, 260

CONTENT CONVERTER, 273
CONTENT FORMAT TEMPLATE, 279
overview, 261
Web content conversion and gener-

ation, 274–277, 290

CONTENT FORMAT TEMPLATE pattern,
257, 260

overview, 262
Web content conversion and gener-

ation, 277–279
Context, encapsulated. See ENCAPSU-

LATED CONTEXT pattern
Context Beans, 61
Context class, 51–59
Controller host interfaces (CHI), 119
Conversions

AUTOMATIC TYPE CONVERTER. See
AUTOMATIC TYPE CONVERTER
pattern

content. See CONTENT CONVERTER
pattern

Web. See Web content conversion
and generation

CONVINCING SOLUTION pattern, 509,
519–521

COOPERATING PLUG-INS pattern, 306,
310, 327–330

Coordinated comparands, 182–183
Copies

COMPARAND, 172
ENCAPSULATED CONTEXT, 50–51, 57,

61
Coplien, Jim

C++ Idioms Language, 459, 465
ENGAGE CUSTOMERS, 415
“Pattern Language for Writers’

Workshops”, 508
on pattern languages, 455
SIZE THE ORGANIZATION, 413
on symmetry breaking, 457
THREE ITERATIONS, 512

COPY-ON-DEMAND pattern, 82–84
COPY-THEN-DISPATCH pattern, 81–82
CORBA Object Adapter component,

71–73

Manolescu_book.fm Page 571 Thursday, March 30, 2006 4:30 PM

572 INDEX

CORBA Object Factories component,
39

CORBA Relationship Service, 185
CorbaSEC security, 348
CosObjectIdentity module, 185
Costanza, Pascal

biographical information, 556
COMPARAND, 169

Costs in BUS GUARDIAN, 114
COUNTED BODY pattern, 466

AGGREGATION, 496–497
COMMON GROUND, 499
DIFFERENTIATION, 493
LOCAL SYMMETRIES, 475–476

Counting references in dispatch, 78–80
Coupling encapsulated context, 50, 57
COURTYARDS WHICH LIVE pattern, 489
CPU utilization, 119, 133
Credibility, 520
Credit Control Platform, 292
CROSS LINKAGES pattern, 460,

487–491
CRUD pattern, 40
Cunningham, W., 482
Czarnecki, K., 473

D-AMPS (Digital Advanced Mobile
Phone System), 213

DA (Directory Agent), 196
Dasgupta, S., 456
Data access layer framework

background, 402–403
evidence for reuse, 406
framework user involvement, 422
multiple change requests, 424–425
pilot applications, 415
pilot-based tests, 419–420
simplicity, 409–410
skilled teams, 412
small objects, 417–418

Data conversion
AUTOMATIC TYPE CONVERTER. See AU-

TOMATIC TYPE CONVERTER pattern
content. See CONTENT CONVERTER

pattern
Web. See Web content conversion

and generation
Data copying, 50–51, 57, 61
Data Router system, 60
Data Update Propagation (DUP) algo-

rithms, 282
Data Visualizers, 292
Databases

in mobile wireless systems, 215, 220,
223, 225–226, 235–237

in paging, 233–234
summary, 253–254

DEAD WEASELS pattern, 434, 443–444
Debugging

COMPARAND for, 170
GRID for, 352

DECENTRALIZED LOCKING pattern
acknowledgments, 167–168
consequences, 166–167
context, 156
dynamics, 159–161
example, 155–156, 164
implementation, 161–164
introduction, 155
known uses, 165–166
problem, 156–157
references, 168
related patterns, 167
solution, 157
structure, 157–158
variants, 165

Decentralized start-up, 110
DECORATOR pattern

COMPARAND, 171, 175
COMPONENT WRAPPER, 370

Manolescu_book.fm Page 572 Thursday, March 30, 2006 4:30 PM

INDEX 573

Deferred plug-in loading, 308
DeLano, David, 515
DEPARTMENT HEARTH pattern, 498
Dependency Injection technique, 320
Dependent Demand pattern, 22
Deployment structure in DECENTRAL-

IZED LOCKING, 157
Design Patterns: Elements of Object-

Oriented Software Design, 526
Designed systems, pattern languages

as, 454–455
Destruction in encapsulation, 50
DETACHED COUNTED BODY pattern, 466

AGGREGATION, 496–497
COMMON GROUND, 499

Device drivers, 309
DIFFERENTIATION pattern, 491–494

LEVELS OF SCALE, 487
purpose, 461
RESOLUTION OF FORCES, 483

Digital Advanced Mobile Phone Sys-
tem (D-AMPS), 213

Directory Agent (DA), 196
DIRECTORY FINDS SERVICES pattern,

197–199
DISASTER NOTIFICATION pattern

in Equitable Resource Allocation,
147

in Real Time and Resource Over-
load language, 134–136

Discovering services. See Service
discovery

Dispatching components, 69
conclusion, 85–86
introduction, 69–70
multiple objects, 80–85
overview, 70–73
references, 86–88
single objects, 74–80
SPLIT OBJECT, 383

Distributed environments, 179–180
Distributed Locking. See DECENTRAL-

IZED LOCKING pattern
Distributed object computing (DOC)

middleware, 69–70
Distributed processing capabilities.

See GRID pattern
Distributed resources, 352
Distributed systems, 153–154, 173
Disturbances in PRESCHEDULED

PERIODIC TRANSMISSION, 102
DNS

ALIGN DIRECTORIES WITH ORGANIZA-

TION, 200
SEPARATE IDENTITY FROM LOCATION,

202
SERVICES REGISTER IN DIRECTORY, 198

Doble, Jim, “Pattern Language for Pat-
tern Writing”, 434

DOC (distributed object computing)
middleware, 69–70

DocMe system, 292
Document archiving systems

SPLIT OBJECT, 386
Web content conversion and gener-

ation, 292
DOM (Document Object Model), 289,

291
Domain names, 202
DOMAIN OBJECT MANAGER pattern, 25

acknowledgments, 41
applicability, 28–29
collaborations, 30–31
consequences, 32
implementation, 32–35
intent, 25
known uses, 39
motivation, 25–28
participants, 29–30
references, 42–43

Manolescu_book.fm Page 573 Thursday, March 30, 2006 4:30 PM

574 INDEX

DOMAIN OBJECT MANAGER pattern,
continued

related patterns, 40
sample code, 35–38
structure, 29

Domain-specific languages, 7, 367
Domain-specific patterns, 211–212
DOMAINOBJECT pattern, 30, 32–33
Dominant siblings, 59–60
DUP (Data Update Propagation)

algorithms, 282
Dynamic behavior, 11–12
Dynamic consumer subscriptions, 73
Dynamic languages, wrappers for, 383
Dynamic loading of plug-ins, 323
DYNAMIC OBJECT MODEL pattern, 3

acknowledgments, 22
dynamic behavior, 11–12
end-user configuration, 11
extensions, 12–13
flexibility, 10
implementation, 13–15
known uses, 20–21
motivation, 3–6
portability, 12
problem, 6–7
programming environment, 11
references, 22–24
related patterns, 22
runtime typing, 12
sample code, 15–20
simplicity, 9–10
solution structure, 7–9

DYNAMIC OVERLOAD CONTROL pattern
DISASTER NOTIFICATION, 136
in Real Time and Resource Over-

load language, 132, 148

ECHO BACK pattern, 487
Eckstein, Jutta, 515

Eclipse application plug-ins, 304, 309
PLUG-IN BASED PRODUCT, 332
PLUG-IN CONTRACT, 315
PLUG-IN LIFE CYCLE, 324
PLUG-IN REGISTRATION, 321

Edge Side Includes, 293
Editing databases, 21
Eisenecker, U. W., 473
Electro Mechanical Brake (EMB) sys-

tems. See Hard real-time systems
Elevation in Prairie Houses, 541
Embedded systems, 90
Emergency braking, 92
Emptiness, 500
ENABLING THE SYSTEM TO SHARE LOAD

pattern, 133
ENCAPSULATED CONTEXT pattern

acknowledgments, 63–64
audience, 45
consequences, 56–60
examples, 45–48, 63
forces, 49–51
implementation, 52–54
known uses, 60–61
problem, 49
references, 64–65
related patterns, 61–63
resolution, 54–55
solution, 51–52
summary, 63
variations, 55–56

Encapsulation of heterogeneity, 351
Encryption, 223, 226–229
End-user configuration in DYNAMIC

OBJECT MODEL, 11
ENGAGE CUSTOMERS pattern, 415
Enterprise Java Beans

COMPARAND, 185
DOMAIN OBJECT MANAGER, 39
ENCAPSULATED CONTEXT, 61

Manolescu_book.fm Page 574 Thursday, March 30, 2006 4:30 PM

INDEX 575

Entities in mobile wireless systems,
220

ENTRANCE TRANSITION pattern
CIRCUITOUS APPROACH, 551
CONCEALED VERTICALS, 550
forces for, 469–470, 481–482

Equation constraints, 119
Equitable manner, 132
Equitable Resource Allocation

OVERLOAD EMPIRES, 133
in Real Time and Resource Over-

load language, 146–147
Eronen, Pasi

biographical information, 556
Service Discovery, 189

Erroneous node detection, 101
Errors

in hard real-time systems, 120
in Real Time and Resource Over-

load language, 130
SOS, 112

Ethernet-like communications, 94–95
EVALUATE PAPERS FAST pattern, 516
Event and Notification Services, 72
Event channel dispatching compo-

nents, 72
Event-driven communication, 94–95
Event Driven Invocation, 323
EVERYONE DOES EVERYTHING pattern,

497
EVERYONE SPECIALIZES pattern, 497
Evidence for reuse, 404–407, 425
EVOCATIVE PATTERN NAME pattern, 434
Evolution of systems, 6–7
Evolved systems, pattern languages

as, 456–457
EXCEPTIONAL VALUE pattern, 470–471

CROSS LINKAGES, 491
RESOLUTION OF FORCES, 482–483
VOID, 501

Expat standard, 291
Extended Plug-in Contract pattern,

314
External comparisons, 178–179

FACADE pattern
COMPONENT WRAPPER, 372
FRAMEWORK PROVIDING APPLICA-

TION, 317
OBJECT SYSTEM LAYER, 359, 374

Fail silent systems, 120
Failures in hard real-time systems, 120
Fallback operations, 166
FAMILY OF ENTRANCES pattern,

469–470, 481
FAMILY ROOM CIRCULATION pattern,

498
Fault containment units (FCUs), 121
Fault hypotheses, 121
Fault-tolerance

in Real Time and Resource Over-
load language, 131

in safety-critical systems, 92
in SYNC FRAME, 110
in TIME-TRIGGERED CLOCK SYNCHRO-

NIZATION, 105
Fault-tolerant units (FTUs), 121
Faults in hard real-time systems, 120
FCUs (fault containment units), 121
FDSs (Fragment Definition Sets),

281–282
Feedback from shepherds, 509
FINAL HANDLING pattern

in Equitable Resource Allocation,
147

in Real Time and Resource Over-
load language, 131–132, 148

Financial industry. See Web portal
framework

FINDABLE SECTIONS pattern, 516

Manolescu_book.fm Page 575 Thursday, March 30, 2006 4:30 PM

576 INDEX

FINE-GRAINED OBJECTS pattern,
418FINDER pattern, 30, 33–35

FINISH WORK IN PROGRESS pattern, 129
OVERLOAD EMPIRES, 134
Real Time and Resource Overload

language, 131, 148
REASSESS OVERLOAD DECISION, 136

Firefox plug-ins, 304
FIREPLACE AS REFUGE pattern, 541, 543,

546–547
Fitting Form pattern, 525–526
Flexibility

COMPARAND, 183
DYNAMIC OBJECT MODEL, 10
in PRESCHEDULED PERIODIC TRANS-

MISSION, 102
FlexRay architecture

in hard real-time systems, 122–123
in PRESCHEDULED PERIODIC TRANS-

MISSION, 102–103
FLYWEIGHT pattern, 467, 501
FOCUS ON LONG-TERM RELEVANCE pat-

tern, 421–422
Foote, Brian

LOW SURFACE-TO-VOLUME RATIO, 418
PROTOTYPE A FIRSTPASS DESIGN, 415
SELFISH CLASS, 410

FORCES DEFINE PROBLEM pattern, 436
FORCES HINT AT SOLUTION pattern,

446
FORM FOLLOWS FUNCTION, 525
in shepherding, 508–509, 521–522

FORCES HINT AT SOLUTION pattern, 434,
444–446

FORM FOLLOWS FUNCTION pattern, 509,
525–527

FORM FOLLOWS PREDOMINANT FEATURE
pattern, 537–539

BANDS OF WINDOWS, 546
CANTILEVERED TERRACE, 544

Forwarding functions, 56
Fowler, Martin

Analysis Patterns, 22
on knowledge level, 5
TEMPLATE VIEW, 279

Frag language, 385, 390–393
Fragment Definition Sets (FDSs),

281–282
FRAGMENTS pattern, 257, 260

CONTENT CACHE, 264, 285–287
CONTENT CONVERTER, 272–273
CONTENT FORMAT TEMPLATE, 277–279
GENERIC CONTENT FORMAT, 267
overview, 262
PUBLISHER AND GATHERER, 268
Web content conversion and gener-

ation, 279–284, 287, 290–291
Framegrabbers, 89
Framework development

acknowledgments, 427
conclusions, 425–426
evidence for reuse, 404–407
framework user involvement,

420–423
introduction, 401–402
multiple change requests, 423–425
pilot applications, 413–416
pilot-based tests, 418–420
references, 427–429
roadmap, 403–404
simplicity, 407–411
skilled teams, 411–413
small objects, 416–418

Framework Interface, 311
FRAMEWORK PROVIDING APPLICATION

pattern, 305, 310, 315–319
COOPERATING PLUG-INS, 330
PLUG-IN BASED PRODUCT, 333
PLUG-IN CONTRACT, 313
PLUG-IN REGISTRATION, 321

Manolescu_book.fm Page 576 Thursday, March 30, 2006 4:30 PM

INDEX 577

FRAMEWORK USER INVOLVEMENT pat-
tern, 415, 420–423

FRESH WORK BEFORE STALE pattern
in Equitable Resource Allocation, 146
OVERLOAD EMPIRES, 133, 134
in Queue for Resources, 143–144
in Real Time and Resource Over-

load language, 131, 149
Front distance credibility, 99
FRUIT TREES pattern, 484, 487
FTUs (fault-tolerant units), 121
Functional Form pattern, 525–526
Functors, 55
Fundamental process, 463
Fundamental units, 470

Garbage collection, 79
GARDEN GROWING WILD pattern, 484,

487, 489
GARDEN SEAT pattern, 486, 487
Gaston, K. J., 491
GASTRULATION pattern, 477–478
Gatherer class, 288–289
General Packet Radio Services

(GPRS), 213
GENERIC CONTENT FORMAT pattern,

257, 260
FRAGMENTS, 281, 284
overview, 261
PUBLISHER AND GATHERER, 267–268
Web content conversion and gener-

ation, 264–267, 287, 289
Generic representation of Web con-

tent, 265
Generic Security Services (GSS), 348
Ginko client, 186
Global Resource Manager (GRM), 351
Global System for Mobile communica-

tions 900 (GSM-900), 213
Global variables in encapsulation, 50

GLOBUS grids, 350
Globus Resource Allocation Manager

(GRAM), 350
GoF book, 526
GOF pattern form, 437
Goldchleger, Andrei

biographical information, 556
GRID, 337

Golubitsky, M., 453
“Good For What Ails You” syndrome,

523
GPRS (General Packet Radio Ser-

vices), 213
Grabow, S., 461
GRAM (Globus Resource Allocation

Manager), 350
Green, R., “Hide Forbidden Globals”,

59
GREENHOUSE pattern, 484
Grid clusters, 341–342, 348–349
Grid Computing, 338–339
GRID pattern

acknowledgments, 353
consequences, 351–352
context, 339
dynamics, 343–344
example, 337–339
implementation, 343, 345–350
intent, 337
known uses, 350–351
problem, 339–340
references, 354–356
related patterns, 353
solution, 340
structure, 340–342

Grid Security Infrastructure (GSI), 350
GRM (Global Resource Manager), 351
Gruber, Manfred

biographical information, 556
hard real-time systems, 89

Manolescu_book.fm Page 577 Thursday, March 30, 2006 4:30 PM

578 INDEX

GSI (Grid Security Infrastructure), 350
GSM-900 (Global System for Mobile

communications 900), 213
GSS (Generic Security Services), 348
GUIDs, 182

Haase, Arno
biographical information, 557
COMPARAND, 169

HALF A LOAF pattern, 508, 511–512,
514–515

HALF-HIDDEN GARDEN pattern, 484,
486–487, 489

HALF-OBJECT PLUS PROTOCOL (HOPP),
459, 476–477

HALF-SYNC/HALF-ASYNC pattern, 120
HANDLE/BODY pattern, 465–466

AGGREGATION, 496–497
COMMON GROUND, 499
DIFFERENTIATION, 493
LOCAL SYMMETRIES, 474–476

Handoff procedures in mobile wire-
less systems, 217–221, 240–242

anchor entities in, 242–244
failure action for, 246–247
intersystem, 244–246
summary, 254–255

Hanmer, Robert S.
biographical information, 557
Real Time and Resource Overload

language, 127
Hard real-time systems

brake-by-wire example, 90–92
BUS GUARDIAN, 111–115
introduction, 89–90
known uses, 122–123
patterns-outline, 92–93
PRESCHEDULED PERIODIC TRANSMIS-

SION pattern. See Prescheduled
Periodic Transmission pattern

references, 124–125

SYNC FRAME, 106–111
TEMPORAL APPLICATION DECOU-

PLING, 115–120
terminology, 120–122
TIME-TRIGGERED CLOCK SYNCHRONI-

ZATION, 103–106
Hardware selection for MHP product

lines, 386–389
Harrison, Neil B.

advanced pattern writing, 433
biographical information, 557
“Language of Shepherding”, 436
shepherding, 507

HashMap class, 4
Hashtables, 14, 20
Haugen, Robert, 22
Herzner, Wolfgang

biographical information, 557
hard real-time systems, 89

Hidden Globals, 59
“Hide Forbidden Globals” (Green),

59
Hierarchical directories, 200
Hildebrand, G.

essential characteristics, 533–534
Prairie Houses, 535–536
The Wright Space, 532

HIP host identities, 202
HLRs (home location registers)

databases for, 236
in mobile wireless systems, 215

Home databases in mobile wireless
systems, 220, 225–226, 235–237

in paging, 233–234
summary, 254

“Home in a Prairie Town, A”, 531
Home interface, 39
Home location areas, 215
Home location registers (HLRs)

databases for, 236
in mobile wireless systems, 215

Manolescu_book.fm Page 578 Thursday, March 30, 2006 4:30 PM

INDEX 579

HOMOGENOUS ADDITION pattern, 465,
490

HOOK INJECTOR pattern, 384, 391
Horizontal splits, 53
Horizontal spread in Prairie Houses,

538–539
Horizontal tasks, 402–403
Host Application, 315–319
Host objects, 350
Hot spots plug-ins, 316
How Buildings Learn (Brand), 463
“HOW”-PROCESS pattern, 434, 438–440
HTML, 258

CONTENT CREATOR, 274–277
Web content conversion and gener-

ation, 288–290
Htmllib, 292
Hyperlinks, 450

I-frames, 111
ICMPv6 Router Advertisements, 194
IDENTIFICATION patterns, 203
Idioms languages, 459, 465

AGGREGATION, 496
COMMON GROUND, 499
CROSS LINKAGES, 489–490
DIFFERENTIATION, 493
LOCAL SYMMETRIES, 474
operator overloading in, 465

IDL interface, 39
IEEE 802.11 wireless LAN Beacon

messages, 194
IMT-200 (International Mobile Tele-

communications 2000) Systems,
214

IN THE REGION OF WHOLE VALUE pat-
tern, 467

Indirection, 32
Information Integrity, 459
INFORMATION MARKETPLACE pattern,

422

Information secrecy, 229, 232
Inheritance, 12
Initial Resync, 111
Input processing in CONTENT CON-

VERTER, 271
Insertion collaborations, 30
Instance class, 9
Instances, plug-in, 307
Instantiation in encapsulation, 50, 58
Insurance, 21, 402–403, 407, 415,

419–422
InteGrade services, 351
Integration, component and language.

See Component and language in-
tegration

Integrity Controller, 138
Intended audiences, 447
Interbase station transceiver handoff,

217
INTERFACE DESCRIPTION pattern, 360

AUTOMATIC TYPE CONVERTER, 377,
378–381

COMPONENT WRAPPER, 370
SPLIT OBJECT, 393–394, 397

Internal comparisons, 178–179
International Mobile Telecommunica-

tions 2000 (IMT-200) Systems, 214
Internet browsers

FRAMEWORK PROVIDING APPLICA-

TION, 318
PLUG-IN, 309

Internet Explorer plug-ins, 304
INTERPRETER pattern, 359–360

COMMAND LANGUAGE, 363, 365–367
DYNAMIC OBJECT MODEL, 13
ENCAPSULATED CONTEXT, 61
OBJECT SYSTEM LAYER, 374
SPLIT OBJECT, 384, 390, 391, 394–396

Intersystem handoffs, 218, 220–221,
244–246, 255

Intrasystem handoffs, 218

Manolescu_book.fm Page 579 Thursday, March 30, 2006 4:30 PM

580 INDEX

Introduce Parameter Object pattern, 62
ITERATORS pattern, 501
IT’S A RELATIONSHIP NOT A SALE pat-

tern, 416
JAC framework, 367
Java and Java-like languages

comparisons in, 177
DYNAMIC OBJECT MODEL, 7
OBJECT SYSTEM LAYER, 374

Java Connector Architecture (JCA), 291
Java Debug Interface (JDI), 169, 184
Java Debug Wire Protocol (JDWP), 169
Java Platform Debugger Architecture

(JPDA), 169
Java RMI (JRMI), 184
Java Virtual Machine (JVM), 169–170
Java Virtual Machine Debug Interface

(JVMDI), 169
JCA (Java Connector Architecture),

291
JDI (Java Debug Interface), 169, 184
JDWP (Java Debug Wire Protocol), 169
Jiffy server, 60
Jini services

CONSULT DIRECTORY, 196
SEPARATE IDENTITY FROM LOCATION,

202
SERVICES REGISTER IN DIRECTORY,

197–198
Jitter in hard real-time systems, 121
Johnson, Ralph

biographical information, 558
DYNAMIC OBJECT MODEL, 3
FINE-GRAINED OBJECTS, 418
THREE EXAMPLES, 407

Join protocols, 197–198
Jolin, Art, 410
JPDA (Java Platform Debugger Archi-

tecture), 169
JRMI (Java RMI), 184

JVM (Java Virtual Machine), 169–170
JVMDI (Java Virtual Machine Debug

Interface), 169

Kelly, Allan
biographical information, 558
ENCAPSULATED CONTEXT, 45

Kerberos security, 348
Keys

DYNAMIC OBJECT MODEL, 14
JavaBeans, 185

Kinds, plug-in, 307
Knowledge level, 5, 22
Kon, Fabio

biographical information, 558
GRID, 337

Koponen, Teemu
biographical information, 558
Service Discovery, 189

Kubinger, Wilfried
biographical information, 558
hard real-time systems, 89

Laboratory Systems Manager (LSM),
304, 309

COOPERATING PLUG-INS, 329
FRAMEWORK PROVIDING APPLICA-

TION, 318
PLUG-IN CONTRACT, 315
PLUG-IN LIFECYCLE, 324
PLUG-IN PACKAGE, 327
PLUG-IN REGISTRATION, 321

Language Designer’s Pattern Lan-
guage (LDPL), 453

AGGREGATION, 494–497
basis for, 454–457
CLUSTER OF FORCES, 467–471
COMMON GROUND, 497–500
conclusion, 502–503
CROSS LINKAGES, 487–491

Manolescu_book.fm Page 580 Thursday, March 30, 2006 4:30 PM

INDEX 581

DIFFERENTIATION, 491–494
examples, 457–459
introduction, 453
LEVELS OF SCALE, 483–487
LOCAL REPAIR, 461–467
LOCAL SYMMETRIES, 471–479
pattern language, 459–461
references, 502–506
RESOLUTION OF FORCES, 479–483
VOID, 500–502

LANGUAGE EXTENSION pattern, 365
“Language of Shepherding, The: A

Pattern Language for Shepherds
and Sheep” (Harrison), 436

LANs (Local Area Networks), 214
LAYER pattern, 359
Layers, 448–449
LDAP directory, 200
LDPL. See Language Designer’s Pat-

tern Language (LDPL)
LEASING pattern

DECENTRALIZED LOCKING, 165
SERVICES REGISTER IN DIRECTORY, 197

Leaves, HTML, 290
Legion grids, 350
LEVELS OF SCALE pattern, 460, 483–487

LOCAL REPAIR, 467
LOCAL SYMMETRIES, 479

Libraries
GRID, 348
OBJECT SYSTEM LAYER, 376
SPLIT OBJECT, 385, 393–394, 396

Liebenau, John
biographical information, 558–559
DOMAIN OBJECT MANAGER, 25

LIGHT ON TWO SIDES OF EVERY ROOM
pattern, 546

Limburg, K. E., 486
Linux plug-ins, 304
Liskov Substitution Principle (LSP), 49

LISTEN TO ADVERTISEMENTS pattern,
193–194

CONSULT DIRECTORY, 196
PLACE DIRECTORIES DYNAMICALLY, 201
SERVICES REGISTER IN DIRECTORY, 197
in SLP, 206
USE ADVERTISER, 195

Little helpers, 328
Local Area Networks (LANs), 214
Local Lock Acquisition scenario,

159–160
LOCAL-REGIONAL SPECIES RICHNESS RE-

LATIONSHIP pattern, 491
LOCAL REPAIR pattern, 460

AGGREGATION, 497
context, 461
examples, 465–467
forces, 461–462
problem, 461
rationale, 463–465
solution, 462
VOID, 502

LOCAL REPAIR OF THE LANGUAGE pat-
tern, 467

Local Resource Manager (LRM), 351
Local scheduling, 346
LOCAL SYMMETRIES pattern, 460

AGGREGATION, 497
COMMON GROUND, 500
context, 471
CROSS LINKAGES, 491
DIFFERENTIATION, 494
examples, 474–478
forces, 472
LEVELS OF SCALE, 487
LOCAL REPAIR, 467
problem, 471
rationale, 473–474
related patterns, 479
solution, 473

Manolescu_book.fm Page 581 Thursday, March 30, 2006 4:30 PM

582 INDEX

LocalSystem class, 324
LocalSystemPlugin class, 309–310,

314–315
Locations in mobile wireless systems,

215, 220, 237–239, 254
Lock-Permit. See DECENTRALIZED

LOCKING pattern
Lock Relay variant, 165
Lock Release scenario, 159–160
Locking Overhead force, 157
LockManager service, 158, 162–165
LockManager Proxy service, 158–161,

165
Locks

decentralized. See DECENTRALIZED
LOCKING pattern

in dispatching components, 75–78
Logical design of plug-ins, 308
Logically deleted objects in reference

counting, 80
LogManager class, 48
Logrippo, Luigi

biographical information, 559
MoRaR, 213

Long Resync frames, 111
LOOKUP pattern

GRID, 353
SPLIT OBJECT, 393

Lookup services, 196
LOW SURFACE-TO-VOLUME RATIO, 418
LRM (Local Resource Manager), 351
LSM. See Laboratory Systems Man-

ager (LSM)
LSP (Liskov Substitution Principle),

49

MAHO (mobile station-assisted hand-
offs), 241

Maintenance work, 139
MANAGER pattern, 29

MANDATORY ELEMENTS PRESENT pat-
tern, 516

Manolescu, Dragos, 559
Maps

framework development, 409
patterns, 508–510
Real Time and Resource Overload

language, 129–130
UCMs, 218

MarketContext class, 54, 56, 59–60
MarketDataStore class, 48
MarketMessageCommand class,

47–48, 54–55, 59
Marquardt, Klaus

biographical information, 559
plug-ins, 301

MARSHALLER pattern, 396
Mash toolkit, 389
MASK PRIORITIES TO SHED WORK

pattern
in Real Time and Resource Over-

load language, 141–142
in Working Hard, Don’t Fix it, 140

MASTER-SLAVE pattern, 353
MATCHING PROBLEM AND SOLUTION

pattern, 436
FORM FOLLOWS FUNCTION, 526
problem and solution in, 442,

518–519
in shepherding, 509

Matchmaker module, 350
MDS (Monitoring and Discovery Ser-

vice), 350
MEANINGFUL METAPHOR NAME pattern,

435
MEANINGLESS BEHAVIOR pattern

CROSS LINKAGES, 490, 491
VOID, 501

MEDL (Message Description List),
102

Manolescu_book.fm Page 582 Thursday, March 30, 2006 4:30 PM

INDEX 583

Memory
for COMPARAND, 184
for OVERLOAD EMPIRES, 133
in TEMPORAL APPLICATION DECOU-

PLING, 119
MESSAGE INTERCEPTORS pattern

COMPONENT WRAPPER, 370
CONTENT CONVERTER, 273
OBJECT SYSTEM LAYER, 375
SPLIT OBJECT, 386

Message RAM, 119
MESSAGE REDIRECTOR pattern, 360

OBJECT SYSTEM LAYER, 359, 374
PUBLISHER AND GATHERER, 268–270
SPLIT OBJECT, 386

Message slots, 98
Meszaros, Gerard, “Pattern Language

for Pattern Writing, A”, 434, 509
Meta-patterns, 431–432
Metadata in SPLIT OBJECT, 394
Methods for States pattern, 61
MHP (Multimedia Home Platform),

276
products, 386–389
Web content conversion and gener-

ation, 293
Middleware, 350
MIND YOUR MANNERS pattern, 441
Minimum front distance, 99
Mobile station-assisted handoffs

(MAHO), 241
Mobile stations, 215–218
Mobile switching centers (MSCs),

215–218
Mobility and radio resource manage-

ment. See MoRaR pattern
language

Mobility management functions,
221–222

Module Interface, 119

Monitor locks, 75–76
Monitor Object pattern

in dispatching components, 75
ENCAPSULATED CONTEXT, 62

Monitoring and Discovery Service
(MDS), 350

Montgomery, Warren, 492–493
MoRaR pattern language

acknowledgments, 250
anchor entities, 242–244
architectural concepts, 215–218
authentication, 215, 220, 225–227,

229–232
ciphering, 226–229
handoff decisions, 240–242
handoff failure actions, 246–247
home and visitor databases,

235–237
intersystem handoffs, 244–246
introduction, 213–214
location registration, 237–239
mobility management functions,

221–222
paging, 233–235
pattern language, 218–221
radio resource management, 239
references, 250–253
releasing resources, 247–248
security database, 225–226
summary, 253–255
temporary identification, 222–224

Motivation, 3
MPI API, 348, 350
MSCs (mobile switching centers),

215–218
Multimedia Home Platform (MHP),

276
products, 386–389
Web content conversion and gener-

ation, 293

Manolescu_book.fm Page 583 Thursday, March 30, 2006 4:30 PM

584 INDEX

MULTIPLE CHANGE REQUESTS pattern,
410, 413, 423–425

Multiple objects, dispatching to, 80–85
Multiple Plug-in Contracts pattern, 314
Multiple read permits, 167
Multithreading

in CORBA Object Adapter, 72–73
ENCAPSULATED CONTEXT, 58

Mutexes
ENCAPSULATED CONTEXT, 58
in serialized dispatching, 76

Naming patterns, 434–436
Natural systems, 456–457
Nature of Order (Alexander), 463, 485
NetBIOS networks, 201
Netscape plug-ins, 304
Network management systems,

155–156
Network Simulator (NS), 385, 389
NEURULATION pattern, 478
Noble, James

Arguments Object, 62
biographical information, 560
OBJECT SYSTEM, 22

Nodes in hard real-time systems, 121
Non-existent objects in CORBA, 72
NOUN PHRASE NAME pattern, 434
NP-complete problems, 121
NP-hard problems, 121
NS (Network Simulator), 385, 389
NULL OBJECT pattern, 501–502

Object activation/deactivation use
cases, 72

Object Adapter, CORBA, 71–73
Object COBOL, 373–374
Object Factories, 39
Object ids (OIDs), 32–33
Object Request Broker (ORB), 69

OBJECT SYSTEM pattern. See DYNAMIC
OBJECT MODEL pattern

OBJECT SYSTEM LAYER pattern, 359–360
consequences, 375–376
context, 372–373
discussion, 374–375
forces, 373–374
known uses, 376
OBJECT SYSTEM LAYER, 374
problem, 373
scenario, 373, 375
solution, 374
SPLIT OBJECT, 384, 386, 394, 397

Objectivity database system, 165–166
OBSERVER pattern

CONSULT DIRECTORY, 196
in dispatching components, 73
DYNAMIC OBJECT MODEL, 13
ENCAPSULATED CONTEXT, 61–62

OID pattern, 186
OIDs (object ids), 32–33
OKBOX pattern, 387
Olympic Games 2000 Web Site, 293
One Plug-in per Task pattern, 327
Opdyke, William, 415
Open Mash project, 385
Operational level, 5
Opportunistic computing, 349
Oracle system, 166
ORB (Object Request Broker), 69
Order class, 26, 36–37
Order pattern, 30
Order-processing framework, 26
OrderFinder interface, 26–28, 30, 37
OrderManager interface, 26–29, 35–36
Orders class, 26
Oregon Experiment, The, 501
O’Ryan, Carlos, 69
Ostwald, J., 457
OTcl, 385, 389

Manolescu_book.fm Page 584 Thursday, March 30, 2006 4:30 PM

INDEX 585

OURGRID pattern, 351
OurGridPeer modules, 351
Out-of-sync transmissions, 114
OUTDOOR ROOM pattern, 484
Output processing in CONTENT CON-

VERTER, 271
Overhead

in dispatching components, 73
in Prescheduled Periodic Transmis-

sion, 102
OVERLAY NETWORK pattern, 192–193
OVERLOAD ELASTICS pattern

OVERLOAD EMPIRES, 134
in Real Time and Resource Over-

load language, 131, 144–145
OVERLOAD EMPIRES pattern

OVERLOAD ELASTICS, 144
in Queue for Resources, 143
in Real Time and Resource Over-

load language, 131–134
refinement of, 129

OVERLOAD OUT-OF-CONTROL pattern,
132

Owner class, 8–9

Paging
in mobile wireless systems, 215, 220,

225, 233–235
summary, 254

Palladio, Andrea, 535
Parallel computation, 348
Parameter Block pattern, 62–63
Parameter Database pattern, 239
Parameter lists in encapsulation, 50
Parameterizing Finders, 33
Parlsberg, Jens, 516
Parsing Web content, 291
Parssinen, Juha

biographical information, 560
Service Discovery, 189

Partially removed objects in reference
counting, 80

Pattern Almanac, The (Rising), 448
Pattern Language, A—Towns, Buildings,

Construction (Alexander), 259
“Pattern Language for Pattern Writ-

ing, A” (Meszaros and Doble),
434, 509

“Pattern Language for Writers’ Work-
shops” (Coplien), 508

Pattern Language of Feature Interac-
tion pattern, 239

Pattern Languages of Program Design,
526

Pattern Writing Patterns, 509
Patterns

advanced. See Advanced pattern
writing

maps of, 508–510
PCS-1900 (Personal Communication

System 1900), 213
Peer-to-peer file sharing networks, 193
PEOPLE KNOW BEST pattern, 204
Performance in locking, 166
Periodic tasks, 121
Peripheral equipment for OVERLOAD

EMPIRES, 133
Perl language, 367
Permit Revoke scenario, 160–161
Permits

in locking, 157
multiple read, 167

PersistenceManager interface, 39
Persistent states, 28–29, 32–33
Personal Communication System 1900

(PCS-1900), 213
Phone Call class, 476–477
Photoshop program, 304, 308–309, 324
PHP language, 293
Physical design for plug-ins, 308

Manolescu_book.fm Page 585 Thursday, March 30, 2006 4:30 PM

586 INDEX

Physical systems, 457
PIECEMEAL GROWTH pattern, 487
PIGGYBACK pattern, 365–366
PILOT APPLICATIONS pattern, 407,

413–416, 420, 423
PILOT-BASED TESTS pattern, 416, 418–420
Pipes, 98
PLACE DIRECTORIES DYNAMICALLY pat-

tern, 200–201
CONSULT DIRECTORY, 196
OVERLAY NETWORK, 193

Platitudes, 444
PLMN (Public Land Mobile Net-

work), 215
PLUG-IN pattern, 306–310
PLUG-IN BASED APPLICATION pattern,

323
PLUG-IN BASED PRODUCT pattern, 310,

314, 330–333
PLUG-IN CONTEXT pattern, 315–319
PLUG-IN CONTRACT pattern, 305, 310–315
Plug-in Definition interface, 311
PLUG-IN LIFECYCLE pattern, 305, 322–324
PLUG-IN PACKAGE pattern, 305, 310,

325–327
PLUG-IN REGISTRATION pattern, 305,

319–321
PLUG-IN SUBCONTRACT pattern, 314
Plug-ins, 305–310

acknowledgments, 333
vs. components, 302–303
COOPERATING PLUG-INS, 327–330
example, 303–304
FRAMEWORK PROVIDING APPLICA-

TION, 315–319
known uses, 304
PLUG-IN, 306–310
PLUG-IN BASED PRODUCT, 330–333
PLUG-IN CONTRACT, 310–315
PLUG-IN LIFECYCLE, 322–324

PLUG-IN PACKAGE, 325–327
PLUG-IN REGISTRATION, 319–321
references, 333–335
roadmap, 304–306

POINTERS TO DETAIL pattern, 434, 444,
448–451

Poltergeist antipattern, 47
Pools in Equitable Resource Alloca-

tion, 147
Portability in DYNAMIC OBJECT MODEL,

12
PortalToGo architecture, 291
POSITIVE CLOSURE pattern, 513
POSITIVE FEEDBACK FIRST pattern, 513
POSITIVE OUTDOOR SPACE pattern, 500
Power consumption in Prescheduled

Periodic Transmission, 102
Power Tools, 309
Prairie Houses, 531–533

acknowledgments, 553
Alexandrian rendition, 534–537
assessment and conclusion, 551–553
BANDS OF WINDOWS, 545–546
CANTILEVERED TERRACE, 543–545
CHIMNEY AS ANCHOR, 541–543
CIRCUITOUS APPROACH, 550–551
CONCEALED VERTICALS, 549–550
FIREPLACE AS REFUGE, 546–547
FORM FOLLOWS PREDOMINANT FEA-

TURE, 537–539
PROSPECT AND REFUGE, 533–534,

539–541
PROSPECTIVE VIEWS, 547–548
references, 553–554

PrepStmtOrderFinder interface, 30
PRESCHEDULED PERIODIC TRANSMISSION

pattern, 93
consequences, 101
context, 93
example, 93–94, 99–100

Manolescu_book.fm Page 586 Thursday, March 30, 2006 4:30 PM

INDEX 587

implementation, 97–99
known uses, 102–103
problem, 94–96
related patterns, 103
solution, 96–97

Primary keys, 185
PrimitiveContent class, 266
Printers, 206–207
PRIVATE TERRACE ON THE STREET pat-

tern, 484
Processing pipes, 98
Processor CPU time, 133
PROFILE-BASED SERVICE BROWSING pat-

tern, 204
Programming environment, 11
PROMOTE AND ADD pattern, 490
PROMOTION LADDER pattern, 465–466,

490
Property class, 4–7, 9
PROPERTY LIST pattern, 4–5, 8–9, 17–19,

22
PropertyType class, 5–7, 9, 14, 19–20
PROSPECT AND REFUGE pattern, 539–541

BANDS OF WINDOWS, 546
CANTILEVERED TERRACE, 545
FIREPLACE AS REFUGE, 547
PROSPECTIVE VIEWS, 547–548

PROSPECTIVE VIEWS pattern, 541,
547–548

PROTOTYPE A FIRSTPASS DESIGN pattern,
415

Prototype design patterns, 40
Proven knowledge, 520
PROXY pattern, 359

COMPONENT WRAPPER, 369–371
DECENTRALIZED LOCKING, 163–164

Public Land Mobile Network
(PLMN), 215

Public switched telephone networks
(PSTNs), 128

PUBLISHER AND GATHERER pattern, 257,
260, 264

CONTENT CACHE, 285–287
CONTENT CONVERTER, 272
overview, 261
Web content conversion and gener-

ation, 267–270, 287
PUBLISHER-SUBSCRIBER pattern, 196
PVM API, 348, 350
Pyarali, Irfan, 69
Python language

COMMAND LANGUAGE, 367
OBJECT SYSTEM LAYER, 376

Quality of Service standards, 130
Query mechanisms

CLIENT KNOWS BEST, 204
DOMAIN OBJECT MANAGER, 30, 32

Queue for Resources
OVERLOAD EMPIRES, 133
in Real Time and Resource Over-

load language, 131, 143–144

Race conditions, 119
Radio resource management, 217, 239
RAISED FLOWERS pattern, 484
Random values in authentication,

230–231
Rational Rose application, 304, 327
RdbOrderManager class, 26–28, 30,

36
RDF library

OBJECT SYSTEM LAYER, 376
SPLIT OBJECT, 385, 393–394, 396

Reactive computing systems, 127
Read permits in locking, 167
READABLE REFERENCES TO PATTERNS

pattern, 436, 450
Readers/writer locks, dispatching

with, 77–78

Manolescu_book.fm Page 587 Thursday, March 30, 2006 4:30 PM

588 INDEX

READING JUST BEFORE REVIEWING pat-
tern, 516

Real Time and Resource Overload
language

acknowledgments, 150–151
DISASTER NOTIFICATION, 134–136
Equitable Resource Allocation,

146–147
introduction, 127–129
language context, 130–132
language maps, 129–130
MASK PRIORITIES TO SHED WORK,

141–142
OVERLOAD ELASTICS, 144–145
OVERLOAD EMPIRES, 132–134
previously published patterns,

148–150
Queue for Resources, 143–144
REASSESS OVERLOAD DECISION,

136–138
references, 151–152
Working Hard, Don’t Fix it, 138–140

Real-time systems. See Hard real-time
systems

Reasoning in encapsulation, 57
REASSESS OVERLOAD DECISION pattern

OVERLOAD ELASTICS, 145
in Real Time and Resource Over-

load language, 136–138
in Working Hard, Don’t Fix it, 140

Recursive access in multithreading, 73
Recursive applications, 13
Recursive mutexes, 76
Redland RDF library

OBJECT SYSTEM LAYER, 376
SPLIT OBJECT, 385, 393–394, 396

Redundancy in safety-critical systems,
90

REFERENCE COUNTER pattern, 499

Reference counting in dispatch, 78–80
Reference semantics in comparisons,

171–172
Refresh rate in scheduling, 97–98
Regenerative switching delays, 135
Registering in mobile systems, 215
Relationship Service Specification, 185
RELATIONSHIP TO OTHER PATTERNS pat-

tern, 436, 450
Relationship type objects, 13
Relationships in shepherding, 517
Release Strategy variant, 165
Releasing resources

in mobile wireless systems, 220–221,
247–248

summary, 255
Remote interface, 39
Remote Method Invocation (RMI),

184–185
remote objects, 183
Remote procedure call (RPC) protocol,

291
Remote Proxy, 163
Remote query interface, 394
Removal collaborations, 30
Rendezvous protocol, 192
Repository pattern. See DOMAIN OB-

JECT MANAGER pattern
RESOLUTION OF FORCES pattern, 460,

471, 479–483
RESOURCE LIFECYCLE MANAGER pattern,

353
Resource management services,

340–341, 346
Resource module, 350
Resource providers, 340
Resource provision services, 340–341,

343–346
Resource usage information, 346, 352

Manolescu_book.fm Page 588 Thursday, March 30, 2006 4:30 PM

INDEX 589

Response times in locking, 157
Reuse

COMPARAND attributes, 178
in framework development,

404–407, 425
GRID, 351

Revocation requests, 160–163
Riehle, Dirk

biographical information, 560
DYNAMIC OBJECT MODEL, 3
HALF A LOAF, 515
THREE ITERATIONS, 512

Rising, Linda
IT’S A RELATIONSHIP NOT A SALE, 416
The Pattern Almanac, 448

RMI (Remote Method Invocation),
184–185

Roaming, 215
Roberts, Don

FINE-GRAINED OBJECTS, 418
THREE EXAMPLES, 407

Round robin scheduling, 145
RPC (remote procedure call) protocol,

291
Rule of three, 405–406
RUNNING EXAMPLE pattern, 525
Runtime Domain Model. See DY-

NAMIC OBJECT MODEL pattern
Runtime typing, 12
Rüping, Andreas

biographical information, 560
framework development, 401

Safe Framework Providing Applica-
tion, 317

SAFE SETTING pattern, 513
SAFEbus standard

BIUs in, 115
in hard real-time systems, 122

in SYNC FRAME, 111
in TEMPORAL APPLICATION DECOU-

PLING, 119
Safety-critical systems, 90, 92
Salingaros, N. A., 485–486
Sameness of objects, 172
Sandboxes in GRID, 347
Sandboxing Without A Name (SWAN)

module, 351
SavingsAccount class, 15–16
SavingsAccountType class, 6,

16–17
SAX standard, 291
Scalable processor-independent de-

sign for electromagnetic resilience
(SPIDER), 123

Scarce resources, 146
SCATTERED WORK pattern, 488
Scheduled Invocation plug-ins, 323
Scheduler objects, 350
Scheduling

round robin, 145
services, 340–341, 343, 346–347
tasks, 119

Schmidt, Douglas C.
biographical information, 561
dispatching components, 69

Schütz, Dietmar
biographical information, 561
DECENTRALIZED LOCKING, 155

Screen savers, 324
Screening devices, 548
Script interpreters, 394
Search engines

CONSULT DIRECTORY, 196
SERVER DOES HEAVY WORK, 205

Secrecy, 229, 232
Secure-channel communication pat-

tern, 232

Manolescu_book.fm Page 589 Thursday, March 30, 2006 4:30 PM

590 INDEX

Security databases
in mobile wireless systems, 220,

225–226
summary, 253

Security in GRID, 340–341, 347–348,
352

SELECTIVE DYNAMIC OVERLOAD CON-

TROL pattern
in DISASTER NOTIFICATION, 136
in Equitable Resource Allocation,

147
in Real Time and Resource Over-

load language, 132, 149
SELECTIVE TRUNK RESERVATION pattern

in Equitable Resource Allocation,
147

in Real Time and Resource Over-
load language, 132, 149

Self-stabilization in SYNC FRAME, 110
SELFISH CLASS pattern, 410
Sell class, 47
Semantic lookup service, 393–396
Semi-lattice systems, 488
Sender authentication pattern, 232
Senge, P. M., 463–464
SEPARATE IDENTITY FROM LOCATION pat-

tern, 201–203
DIRECTORY FINDS SERVICES, 199
in SLP, 206

Serialized dispatching, 74–76
Serializer design pattern, 40
Servants in CORBA, 71
SERVER DOES HEAVY WORK pattern,

204–205
Server Lock Acquisition scenario,

159–160
Server-side caching, 285
SERVICE ABSTRACTION LAYER pattern,

260, 269–270
Service centers in locking, 166

Service discovery, 189–190
acknowledgments, 206
ALIGN DIRECTORIES WITH ORGANIZA-

TION, 199–200
ASK LOCAL NETWORK, 191–192
CLIENT KNOWS BEST, 203–204
combining patterns, 205–207
CONSULT DIRECTORY, 195–196
DIRECTORY FINDS SERVICES,

198–199
LISTEN TO ADVERTISEMENTS,

193–194
OVERLAY NETWORK, 192–193
PLACE DIRECTORIES DYNAMICALLY,

200–201
references, 206–209
SEPARATE IDENTITY FROM LOCATION,

201–203
SERVER DOES HEAVY WORK, 204–205
SERVICES REGISTER IN DIRECTORY,

196–198
USE ADVERTISER, 194–195

Service Location Protocol (SLP), 190
ASK LOCAL NETWORK, 192
LISTEN TO ADVERTISEMENTS, 194
in service discovery, 205–207
SERVICES REGISTER IN DIRECTORY, 197
USE ADVERTISER, 195

Service registration messages, 197
SERVICES REGISTER IN DIRECTORY pat-

tern, 196–198
CONSULT DIRECTORY, 196
DIRECTORY FINDS SERVICES, 199
SEPARATE IDENTITY FROM LOCATION,

202
in SLP, 206

Session Beans, 61
Set-top boxes, 386–389
Severity of overloads, 145
SHARE THE LOAD pattern, 131, 149

Manolescu_book.fm Page 590 Thursday, March 30, 2006 4:30 PM

INDEX 591

SHED LOAD pattern
OVERLOAD EMPIRES, 133
in Real Time and Resource Over-

load language, 131, 149
REASSESS OVERLOAD DECISION,

136–137
in Working Hard, Don’t Fix it, 139

SHEPHERD KNOWS THE SHEEP pattern,
508, 512–514

Shepherding, 507
acknowledgments, 528–529
Author as Owner, 517–518
BALANCED CONTEXT, 523–524
BIG PICTURE, 515–516
CONVINCING SOLUTION, 519–521
epilogue, 528
FORCES DEFINE PROBLEM, 521–522
FORM FOLLOWS FUNCTION, 525–526
HALF A LOAF, 514–515
map of patterns, 508–510
references, 529
SHEPHERD KNOWS THE SHEEP, 512–514
SMALL PATTERNS, 527–528
THREE ITERATIONS, 509–512
WAR STORIES, 524–525

“Should” in patterns, 520
SICO First and Always

in Real Time and Resource Over-
load language, 131–132

REASSESS OVERLOAD DECISION, 138
Simplicity

DYNAMIC OBJECT MODEL, 9–10
framework development, 407–411

SimulatorContext class, 60
Single objects, dispatching to, 74–80
SINGLE-PASS READABLE PATTERN pat-

tern, 516
SINGLETON pattern

ENCAPSULATED CONTEXT, 61
VOID, 501

SIP URIs, 202
SIZE THE ORGANIZATION pattern, 413
SIZE THE SCHEDULE pattern, 413
SKILLED TEAM pattern, 407, 411–413
SKIPPABLE SECTIONS pattern, 435, 438
Slightly out of specification (SOS) er-

rors, 112
SLP (Service Location Protocol), 190

ASK LOCAL NETWORK, 192
LISTEN TO ADVERTISEMENTS, 194
in service discovery, 205–207
SERVICES REGISTER IN DIRECTORY, 197
USE ADVERTISER, 195

Small objects in framework develop-
ment, 416–418

SMALL PATTERNS pattern, 509, 527–528
Smalltalk language

class modification in, 7
flexibility of, 10

SOAP standard
AUTOMATIC TYPE CONVERTER, 377
Web content conversion and gener-

ation, 291
SOB interface, 293
Soft real-time systems, 89
Software

configurable. See Plug-ins
integration, 358

SOS (slightly out of specification) er-
rors, 112

SPATIAL VARIATION IN ABUNDANCE pat-
tern, 491

SPECIAL pattern, 501
SPECIES—AREA RELATIONSHIP pattern,

491
Specification-based queries, 34–35
Speed in SYNC FRAME, 110
SPIDER (scalable processor-indepen-

dent design for electromagnetic
resilience), 123

Manolescu_book.fm Page 591 Thursday, March 30, 2006 4:30 PM

592 INDEX

SPLIT OBJECT pattern, 359, 382–383
Apache Axis, 396–397
Aspect configuration, 390–393
AUTOMATIC TYPE CONVERTER, 379
COMMAND LANGUAGE, 365
context, 381
discussion, 383–384
document archive systems, 386
forces, 382
OBJECT SYSTEM LAYER, 374
problem, 381–382
scenario, 382, 384–385
semantic lookup service, 393–396
set-top boxes, 386–389
solution, 382
TclCL and XOTcl/SWIG, 389–390

Sporadic messages, 98
Sporadic tasks, 121
Start-up in SYNC FRAME, 110
State design pattern, 40
STATE pattern

DECENTRALIZED LOCKING, 165
VOID, 501

Statement interface, 30
STEM CELL SPECIALIZATION pattern, 494
Stewart, I., 453
Stock quotes, 280–281, 286
Storch, D., 491
StoredProcOrderFinder class, 30, 37–38
STRATEGIES pattern, 275
Strategized Locking pattern, 74
STRATEGY pattern

CONTENT CACHE, 286
in dispatching components, 74
DYNAMIC OBJECT MODEL, 13
GRID, 347
VOID, 501

STRING A WIRE pattern
in DISASTER NOTIFICATION, 136
in Real Time and Resource Over-

load language, 150

Structural patterns in MoRaR, 218–221
Struts framework, 426
Substitutability in encapsulation, 49,

56
Substitution rules in XML, 290
SUNNY PLACE pattern, 484
SWAN (Sandboxing Without A Name)

module, 351
SWIG wrapper generator

COMPONENT WRAPPER, 372
SPLIT OBJECT, 389

Switching delays, 135
Symmetry breaking, 456–458
SYNC FRAME pattern

consequences, 110
context, 106
example, 106–107, 109–110
in hard real-time systems, 92
implementation, 108–109
known uses, 111
problem, 106
related patterns, 111
solution, 107–108
Synchronization
in multithreading, 58
time-triggered, 101, 103–105

System costs in BUS GUARDIAN, 114
System Integrity Control (SICO First

and Always)
in Real Time and Resource Over-

load language, 131–132
REASSESS OVERLOAD DECISION, 138

T-fault-tolerant midpoint, 105
TANGENT PATHS pattern, 499
TARGET READERS pattern, 421
Tasks

application, 116–117
in hard real-time systems, 121
in TEMPORAL APPLICATION DECOU-

PLING, 119

Manolescu_book.fm Page 592 Thursday, March 30, 2006 4:30 PM

INDEX 593

Tautologies, 440
Taylor, Paul R.

biographical information, 561
Prairie Houses, 531

Tcl language
AUTOMATIC TYPE CONVERTER, 381
COMMAND LANGUAGE, 367

Tclcl language, 385, 389
TclHttpd, 294
TDMA (Time Division Multiple Access)

in hard real-time systems, 122
in MoRaR, 222
in Prescheduled Periodic Transmis-

sion. See PRESCHEDULED PERI-

ODIC TRANSMISSION pattern
Telecommunications Input Output

Language, 136
TEMPLATE METHODS pattern, 272
TEMPLATE VIEW pattern, 279
TEMPLATES pattern, 273
TEMPORAL APPLICATION DECOUPLING

pattern
acknowledgements, 120
consequences, 119
context, 115
example, 116
in hard real-time systems, 93
implementation, 118–119
known uses, 119
problem, 115–116
related patterns, 120
solution, 116–118

Temporal splits, 53
Temporary identification

in mobile wireless systems, 220,
222–224

summary, 253
Temporary Mobile Subscriber Identity

(TMSI), 224
TERMINOLOGY TAILORED TO AUDIENCE

pattern, 436, 447

Testing
ENCAPSULATED CONTEXT, 58
GRID, 352

This pointers, 55
Thread-Specific Storage pattern, 82
THREE EXAMPLES pattern, 407
THREE ITERATIONS pattern, 436, 442,

508–512
Thumbnails, 450
Tilman, Michel

biographical information, 561
DYNAMIC OBJECT MODEL, 3

TIME DIVISION MULTIPLE ACCESS
(TDMA)

in hard real-time systems, 122
in MoRaR, 222
in Prescheduled Periodic Transmis-

sion. See PRESCHEDULED PERI-

ODIC TRANSMISSION pattern
TIME-TRIGGERED CLOCK SYNCHRONIZA-

TION pattern, 103–106
in hard real-time systems, 92
vs. PRESCHEDULED PERIODIC TRANS-

MISSION, 101–102
Time-triggered communication on

CAN (TTCAN) protocol
in hard real-time systems, 123
in PRESCHEDULED PERIODIC TRANS-

MISSION, 102–103
in TEMPORAL APPLICATION DECOU-

PLING, 119
Time-Triggered Communication pat-

tern. See PRESCHEDULED PERIODIC
TRANSMISSION pattern

Time-Triggered Protocol (TTP)
in hard real-time systems, 122
in Prescheduled Periodic Transmis-

sion, 102
Titles of pattern collections, 447
TMSI (Temporary Mobile Subscriber

Identity), 224

Manolescu_book.fm Page 593 Thursday, March 30, 2006 4:30 PM

594 INDEX

Token Ring networks, 96
TPMHP project, 293
TradingContext class, 60
TradingDayChange class, 47
Transient states, 28
Transmissions. See PRESCHEDULED PERI-

ODIC TRANSMISSION pattern
TREE PLACES pattern, 484, 487, 489
Trigger-based registration, 321
Trigger events

for location registration, 239
for plug-ins, 323

Trigger memory, 119
Triple-T system. See Hard real-time

systems
TTCAN (time-triggered communica-

tion on CAN) protocol
in hard real-time systems, 123
in PRESCHEDULED PERIODIC TRANS-

MISSION, 102–103
in TEMPORAL APPLICATION DECOU-

PLING, 119
TTP (Time-Triggered Protocol)

in hard real-time systems, 122
in PRESCHEDULED PERIODIC TRANS-

MISSION, 102
Two-pass reads, 450
Twombly, Robert, 532
Type-checking property access, 14
TYPE OBJECTS pattern

AUTOMATIC TYPE CONVERTER, 379
DYNAMIC OBJECT MODEL, 4, 8–9, 22
OBJECT SYSTEM LAYER, 375

Types, plug-in, 307

UCMs (Use Case Maps), 218
UDDI protocol

SERVER DOES HEAVY WORK, 205
SERVICES REGISTER IN DIRECTORY,

198

UML
collaboration, 7–8
virtual machines, 21

Uncluttered code, 58
Universal Mobile Telecommunica-

tions System (UMTS), 213
Update collaborations, 30
UPnP protocol

ASK LOCAL NETWORK, 192
CLIENT KNOWS BEST, 204
LISTEN TO ADVERTISEMENTS, 194
SEPARATE IDENTITY FROM LOCATION,

202
URLs in service discovery, 202
Usage patterns in GRID, 349
USE ADVERTISER pattern, 194–195
Use Case Maps (UCMs), 218
UserAgent module, 351
Users in framework user involvement,

421

Validating DomainObjects, 33
Validity time spans

in hard real-time systems, 122
in Prescheduled Periodic Transmis-

sion, 97
Value class, 9
VALUE HOLDER pattern, 4, 9
Value semantics, 171
Variable dispatching times, 73
VCF, 372
VEGETABLE GARDEN pattern, 484
Vertical height in Prairie Houses,

538
Vertical splits, 53
VISIBLE FORCES pattern, 435, 446,

522
VISIBLE IMPLICATION pattern, 487
Visited areas in mobile systems,

215

Manolescu_book.fm Page 594 Thursday, March 30, 2006 4:30 PM

INDEX 595

Visitor databases
in mobile wireless systems, 215, 220,

223, 225–226, 235–237
in paging, 233–234
summary, 254

Visitor design pattern, 40
Visitor location registers (VLRs), 236
Visual Basic pattern, 11
Voelter, Markus, 562
Vogel, Oliver

biographical information, 562
Web content conversion and gener-

ation, 257
VOID pattern, 461, 500–502

AGGREGATION, 497
DIFFERENTIATION, 494
LEVELS OF SCALE, 487

VxWorks plug-ins, 304

Waiting period in SYNC FRAME, 109
WANs (Wide-Area Networks), 214
WAR STORIES pattern, 509, 524–525
WCET (Worst Case Execution Time)

in EMB systems, 99
in hard real-time systems, 122

Weasels, 434, 443–444
Weather forecasting, 337–339
Web-based applications, 258–259
Web browsers

FRAMEWORK PROVIDING APPLICA-

TION, 318
PLUG-IN, 309

Web content conversion and genera-
tion, 257

acknowledgments, 295
conclusion, 294–295
CONTENT CACHE, 284–287
CONTENT CONVERTER, 270–274
CONTENT CREATOR, 274–277
CONTENT FORMAT TEMPLATE, 277–279

form, 259–260
FRAGMENTS, 279–284
GENERIC CONTENT FORMAT, 264–267
implementation example, 287–291
intended audience, 259
introduction, 257–259
known uses and related work,

291–294
overview, 260–264
PUBLISHER AND GATHERER, 267–270
references, 295–297

Web portal framework
background, 403
evidence for reuse, 407
framework user involvement,

422–423
multiple change requests, 425
pilot applications, 415
pilot-based tests, 420
simplicity, 410
skilled teams, 412–413
small objects, 418

Web search engines
CONSULT DIRECTORY, 196
SERVER DOES HEAVY WORK, 205

WebLogic application servers, 39
WebShell, 293
WebSphere, 39
Welch-Lynch algorithm, 105
“WHAT”—SOLUTIONS pattern, 434
WHOLE VALUE pattern, 466–467

CLUSTER OF FORCES, 470–471
CROSS LINKAGES, 491
HOPP, 476–477
LEVELS OF SCALE, 487
RESOLUTION OF FORCES, 482–483

“WHY”—PROBLEMS pattern, 434,
440–443

Wide Area Networks (WANs), 214
Wild clock readings, 104

Manolescu_book.fm Page 595 Thursday, March 30, 2006 4:30 PM

596 INDEX

WIN (Wireless Intelligent Network),
214

Windows (operating system) plug-ins,
304, 309

Windows (Prairie Houses), 545–546
Winn, Tiffany

biographical information, 562
LDPL, 453

Wireless Intelligent Network (WIN),
214

Wireless mobile Asynchronous Trans-
fer Mode (WmATM) systems,
214, 241

Wireless systems. See MoRaR pattern
language

Witthawaskul, W., 21
Word application, 304

FRAMEWORK PROVIDING APPLICA-

TION, 318
PLUG-IN LIFECYCLE, 324
PLUG-IN PACKAGE, 327

WORK SHED AT PERIPHERY pattern, 150
Worker objects, 55–56
Working Hard, Don’t Fix it strategy,

138–140
Workloads in real time systems, 128
Workshops

disadvantages of, 446–447
framework user involvement, 421

World Peace syndrome, 519–520
Worst Case Execution Time (WCET)

in EMB systems, 99
in hard real-time systems, 122

WRAPPER FACADE pattern, 359, 370–371
Wrappers in SPLIT OBJECT, 382–383,

386, 394
Wright, Frank Lloyd. See Prairie

Houses
Wright Space, The—Pattern and meaning

in Frank Lloyd Wright’s Houses
(Hildebrand), 532

Writer locks, dispatching with, 77–78
WSDL files, 394, 397

X-frames, 111
XML

CONTENT CREATOR, 274–277
Web content conversion and gener-

ation, 288–290
XML Database Server, 60–61
XML Schema Data (XSD), 396–397
xoComm architecture, 291–292
xoRDF architecture, 292
XOTcl language, 376, 389
XSD (XML Schema Data), 396–397
XSLT standard, 291

Yoder, Joseph
“Connecting Business Object to Re-

lational Databases”, 40
LOW SURFACE-TO-VOLUME RATIO, 418
SELFISH CLASS, 410

Zdun, Uwe
biographical information, 562
component and language integra-

tion, 357
Web content conversion and gener-

ation, 257
Zeus, 304

COOPERATING PLUG-INS, 329
PLUG-IN, 309
PLUG-IN BASED PRODUCT, 333
PLUG-IN CONTRACT, 315
PLUG-IN LIFECYCLE, 324
PLUG-IN PACKAGE, 327
PLUG-IN REGISTRATION, 321

Zhao, L., 457
Zope system, 293

Manolescu_book.fm Page 596 Thursday, March 30, 2006 4:30 PM

