
Foreword

Software development has come a long way.

Back in the dark ages of our profession, we clung to classical models root-
ed in traditional approaches to project management. Requirements were
specified, then frozen, and it was off to the races. The cycle was clear: Plan
the work, then work the plan. Results were, shall we say, mixed.

The problem often turned out to be a puzzling one. The software develop-
ment organization could declare victory and demonstrate that they had
delivered on the specified requirements. But from the business’s point of
view, the system was destined to be a failure, and this was often obvious
from the moment of delivery. Why?

Because change happens. All significant software development efforts last
sufficiently long so they are bound to suffer from changes due to the exter-
nal environment. New technology bursts onto the scene, new competitors
arrive, fundamental economic drivers shift, and so on. Sometimes you are
forced by the outside world to innovate, and that forcing function doesn’t
always conveniently fall on software development project cycle bound-
aries. In today’s fast-paced world, it is certain that if you build something
precisely according to your initial set of requirements, you will build the
wrong thing and fail in the marketplace.

Of course, there is also the problem of poor execution along the way, again
due perhaps to ambiguities in the original requirements. But the argument,
which has been made many times, is that you will fail even in the face of
perfect execution. Because that approach is enough to drive any manager to
drink, a new approach was clearly necessary, one that focused on business
success, not just software development success.

If we now define a software development organization’s success in terms of
its ability to react to change, we have a new view of the problem. Change is

00Bittner_FM.qxd 6/9/06 9:06 AM Page xix

xx FOREWORD

expressed through requirements, so the fundamental issue facing any soft-
ware development organization is its ability to deal with requirements flux.
Moreover, changes to requirements arrive randomly; their scope and
arrival time are externally determined. You may have a very neat project
rhythm or cycle, but the changes to requirements will arrive asynchronous-
ly with that heartbeat. As with anything else in life that you can’t control,
what you need is a mechanism for coping. The message is clear:
“Requirements change—adapt or die!”

That, in essence, is what iterative development is all about. It is software
development’s response to a fundamental business problem: delivering
systems that have value. Yes, the “system” is a moving target. We have given
up on the irrational belief that we can nail that target to the wall; we now
work very hard to track the target and still hit the bull’s eye.

Iterative development is a relatively new approach, having begun to gather
momentum in the 1980s. Companies that embraced it in the 1990s found
that they were doing a better job of delivering value than they had in the
past with other methodologies. But, like all other advances in technology,
the path was not always a smooth one; in hindsight, of course, it looks like
a steady path “up and to the right.” The reality is that there were lots of
bumps in the road, some things that turned out to only look good at first,
and many approaches that were tried and abandoned. What survived is the
distillation of many projects’ scar tissue, and we need to pay tribute to the
managers who pioneered and persevered to give us a robust set of ideas for
modern software development project management.

After a few decades, there is always a pause for reflection and summing up.
Thought leaders sit down and try to capture, as best they can, the essence
of what has been learned. Walker Royce did a great job in his 1998 classic
Software Project Management, A Unified Framework (Addison-Wesley), and
I attempted to add my own views on the subject in The Software
Development Edge (Addison-Wesley, 2005). Now we have this addition by
Kurt Bittner and Ian Spence.

Kurt and Ian are far from newcomers on the scene. They have many collec-
tive years of experience working with iterative development. Kurt was on
the original Unified Process development team at Rational Software and
led many teams applying the iterative approach. Ian’s experiences are sim-
ilar, having spent many years working with project teams applying iterative

00Bittner_FM.qxd 6/9/06 9:06 AM Page xx

development. They have lived “in the trenches,” and the guidance present-
ed in this book reflects their experience.

They are also experienced writers. Their 2002 book, Use Case Modeling
(Addison-Wesley), has already guided a generation of analysts and devel-
opers in getting requirements right. Their approach in that book was
methodical and thorough, without being heavy and pedantic. It was a book
that was written to be used, and it has been extremely well received. When
I heard they were going to write the definitive book on iterative develop-
ment, I jumped at the chance to be a reviewer.

They have not disappointed. This is a book for people who want to under-
stand the principles and be successful in their practice. This is not a super-
ficial popularization; this is “the real deal.” I would recommend it to any
software development manager who is serious about getting better at his
craft. No matter how experienced you are, you will learn something from
this book.

Great job, guys!

Joe Marasco
President and CEO
Ravenflow
March, 2006

FOREWORD xxi

00Bittner_FM.qxd 6/9/06 9:06 AM Page xxi

