

427

17

The Luther Architecture

A Case Study in Mobile
Applications Using J2EE

with Tanya Bass, James Beck, Kelly Dolan, Cuiwei Li,
Andreas Löhr, Richard Martin, William Ross, Tobias
Weishäupl, and Gregory Zelesnik

God is in the details.

— Ludwig Mies van der Rohe

Workers involved in the maintenance or operation of large vehicles (such as tanks
and aircraft) or portions of the industrial infrastructure (such as bridges and oil
rigs) have great difficulty using computers to support their tasks. Because the
object being maintained or operated is large, work on it must be in situ,

outdoors
or in special structures, neither of which is conducive to desktop computing. In
particular, a computer solution usually involves a wireless infrastructure and
either a handheld or a hands-free computing device.

Inmedius is a company that was established in 1995 as an outgrowth of Car-
negie Mellon University’s Wearable Project (see the sidebar History of Wearable
Computing) to provide support for front-line maintenance and operation workers.
Initially producing one-of-a-kind solutions for its customers, as the company
grew it realized the necessity for general solutions that could be quickly tailored
to a customer’s needs.

The front-line worker does not work alone but requires a great deal of back-
office support. Problem reports must be collected and work must be scheduled to
enable repairs to be made, replacement parts must be taken from inventory and
re-ordered, and maintenance records must be analyzed. All of this work-flow
management requires integrating the front-line worker with the back-office
worker who has access to a desktop computer.

Note:

 All of this chapter’s contributors work for Inmedius Corporation in Pittsburgh.

Bass.book Page 427 Thursday, March 20, 2003 10:29 PM

428

Part Four From One System to Many 17

—The Luther Architecture

The Luther architecture was designed to provide a general framework within
which Inmedius could provide customized solutions for the maintenance problems
of its customers. It is based on the Java 2 Enterprise Edition (J2EE) architecture,
so becomes an application of the general J2EE/EJB framework (discussed in
Chapter 16) to an environment where the end user is connected over a wireless
network and has a device with limited input/output capabilities, limited computa-
tional capabilities, or both.

History of Wearable Computing

Arguably, the first wearable computer was the wristwatch. It was invented
around 1900 and at first was unable to compete with the pocket watch. Why
would someone wear a watch on his wrist when his existing pocket watch
kept good time and could be accessed quite freely? However, during World
War I, the British Army issued wristwatches to its troops so that they could
synchronize attacks while keeping their hands free for weapons. Suddenly, it
became fashionable in Britain to show support for the “boys in the trenches”
by wearing wristwatches. Now, of course, you rarely see a pocket watch.

 By the early 1990s, technology had begun to support the wearing of digi-
tal, full-function computing devices. One organization investigating the use
of these devices was the Wearable Group of Carnegie Mellon University
headed by Dan Siewiorek. They viewed a wearable computer as a tool to
support workplace functions, with the workplace epitomized by locales where
aircraft and other large vehicles were maintained—out of doors or within
large buildings such as hangars or railroad roundhouses.

The focus on use in a workplace meant that ease of use and design
sophistication were primary. The Wearable group conducted experiments
with computers designed and constructed by students in actual workplaces.
The success of these experiments created the demand that Inmedius was
organized to exploit.

A second group, operating at the same time and centered at the Media
Laboratory of the Massachusetts Institute of Technology, styled themselves
“borgs.” They viewed the wearable computer as a consumer product designed
to change the lives of those who wore it. They wore their computers all of the
time and were interested in innovative uses of them and in memory support
applications. One example was using the conductivity of the skin as a net-
work medium and having two computers exchange business cards when
their wearers shook hands.

By the late 1990s, the two groups were collaborating to make wearable
computers a viable academic discipline. Various commercial companies had
begun to offer computers and head-mounted displays, and large commercial
concerns had begun to show interest. Now, with the increasing miniaturiza-
tion of hardware and the increasing sophistication of software (as evidenced
by this chapter), wearable computing can only become more prevalent.

— LJB

Bass.book Page 428 Thursday, March 20, 2003 10:29 PM

Relationship to the Architecture Business Cycle

429

17.1 Relationship to the Architecture Business Cycle

Figure 17.1 shows the Architecture Business Cycle (ABC) as it pertains to Inme-
dius and the Luther architecture. The quality goals of re-usability, performance,
modifiability, flexibility of the end user device, and interoperability with standard
commercial infrastructures are driven, as always, by the business goals of the
customer and the end user.

INFLUENCES ON THE ARCHITECTURE

The next sections elaborate on the things that influence the Luther architecture.

End Users.

Inmedius’s business is providing computer support for front-line
workers. Figure 17.2 shows such a worker utilizing one of the hardware configu-
rations supported by Luther applications. The worker is performing an industrial
process, the steps of which are displayed on the head-mounted display apparatus
that he is wearing. The computer is worn on the user’s chest and uses a dial as its
primary input device. The process is described in a manual stored on the back-
office computers, and the manual pages are served to the worker as various steps
of the process are completed, which can number more than 500. The worker

FIGURE 17.1

The ABC as it pertains to Inmedius and Luther

Requirements
(Qualities)
Flexibility
Interoperability
Modifiability
Performance
Re-usability

Architect’s Influences

Stakeholders
Industrial Front-Line Workers

Developing Organization
Inmedius

Technical Environment
Wireless Computers
Multiple Interfaces

Architect’s Experience
Java
J2EE Application Architecture

Architect(s)

System
J2EE
Luther

Architecture
Wireless Access
HTTP

Bass.book Page 429 Thursday, March 20, 2003 10:29 PM

430

Part Four From One System to Many 17

—The Luther Architecture

reports the results of portions of the process to the back office via the system. A
part may be replaced, for example, and the part number is reported so that the
inventory can be adjusted and any quality-control ramifications analyzed.

The workers may need to use one or both hands to perform the process, so
those hands are not available for computer input. Further, workers may need to be
mobile to carry out the tasks.

Different processes and customers may require different hardware configu-
rations because requirements, such as mobility and the number of hands available
for computer input, can vary.

Developing Organization.

If the Luther architecture can facilitate the devel-
opment of complex enterprise solutions in a fraction of the time they take to
develop as standalone, “stovepipe” systems, Inmedius gains a significant compet-
itive advantage. To achieve this, the company must meet increasingly shorter
time-to-market for enterprise solutions. The development cycles for these solu-
tions have to be in the low single-digit months for Inmedius to remain competi-
tive in its target markets.

Solution development must be performed quickly and frugally by a few tens
of engineers. The quality of the delivered solution must be high to ensure cus-
tomer satisfaction. Also, the delivered software artifacts must be easily modifi-
able so that corrections and enhancements require little effort by Inmedius and do
not compromise the integrity of the original solution’s architecture.

FIGURE 17.2

A field service worker using the Inmedius solution. Courtesy of
Inmedius Corporation.

Bass.book Page 430 Thursday, March 20, 2003 10:29 PM

Relationship to the Architecture Business Cycle

431

Technology Environment.

Luther has been influenced by developments in
both software and hardware. As we discussed in Chapter 16, J2EE provides
enterprise solutions for commercial organizations. It was a good fit with the
Luther requirement to interoperate with back-office processes. J2EE also facili-
tates the packaging of domain-specific application capabilities into re-usable
components that can be combined in different ways.

In addition to software influences, emerging hardware technology has influ-
enced Luther—specifically, in the need to support small wireless computers with
voice input capabilities and high-resolution, head-mounted displays. On the other
hand, differing environments may require different types of devices, each with its
own set of capabilities. This imposes a requirement that Luther be flexible with
respect to the types of user interfaces supported.

INFLUENCES ON THE ORGANIZATION

The influences of Luther on the organization are in the areas of organizational
structure, software developers’ experience, and business approach.

Organizational Structure.

Prior to Luther, Inmedius was a solution factory,
with each solution developed as a stovepipe application for a specific customer.
Organizationally, the Solution Group was the largest engineering group in the com-
pany. Luther’s development created the need for a Products Group (containing a
Component Development Group) to engineer and maintain the domain-specific
component capabilities the Solution Group uses to create its solutions for cus-
tomers. The Product Group is concerned with generalized capabilities for markets,
whereas the Solution Group is concerned with specific applications for individual
customers. This is an instance of a two-part organizational structure for software
product lines, as described in Chapter 14 and illustrated by CelsiusTech case
study in Chapter 15.

Software Developers’ Experience.

Prior to Luther, Inmedius was staffed
with experienced and sophisticated software developers, who nonetheless had a
number of new criteria to satisfy in Luther’s development:

�

Learning the Java programming language

�

Becoming Sun Java Programmer Certified

�

Learning the J2EE application architecture

�

Learning how to package capabilities as J2EE/EJBs

�

Learning how to create Java servlets and JavaServer Pages

�

Learning how to use the various J2EE services provided by J2EE
implementations

Business Approach.

The Luther architecture has had a dramatic effect on the
way Inmedius does business. As we said in Chapter 14, single-system solutions
require a large amount of resources, and this resource drain and the stovepipe

Bass.book Page 431 Thursday, March 20, 2003 10:29 PM

432

Part Four From One System to Many 17

—The Luther Architecture

mentality associated with single system development inhibits global thinking.
The move to a product line based on Luther enabled Inmedius to begin thinking
about product lines instead of focusing on individual systems. Furthermore, as
we saw with CelsiusTech, new markets became available to Inmedius that could
be seen as generalizations of existing markets, not only in a business sense but
also in a technical sense.

17.2 Requirements and Qualities

The Luther architecture was designed to meet two sets of complementary
requirements. The first set governs the applications to be built—namely, enter-
prise applications for field service workers. These requirements are directly visi-
ble to customers, since failure to meet them results in applications that do not
perform according to expectations—for instance, an application that may work
correctly but perform poorly over a wireless network. The second set of require-
ments involves introducing a common architecture across products. This reduces
integration time, brings products to market faster, increases product quality, eases
introduction of new technologies, and brings consistency across products.

Overall, the requirements can be separated into six categories:

�

Wireless access

�

User interface

�

Device type

�

Existing procedures, business processes, and systems

�

Building applications

�

Distributed computing

Wireless Access.

Field service workers must move about while performing
their tasks. Furthermore, they must move about in an environment rich in
machines, hazards, and other people. In order to interact with back-office sys-
tems, the devices used by workers must access remote servers and data sources
without being tethered by a landline to a local area network. Because of the vari-
ety of Inmedius customers, these wireless networks may need to be of varying
capacity and availability.

User Interface.

Part of the Inmedius competitive advantage is its high-fidelity
user interfaces, which allow a worker to focus on the task at hand without being
hindered by the interface or the access device. Different devices have different
screen footprints, and the Luther architecture must facilitate the display of mean-
ingful information on each of them. This does not mean constructing a single
user interface and adapting it to all device types. Instead, Luther must support the
rapid construction of interfaces that filter, synthesize, and fuse information in
ways that are displayable on a particular device and useful to its user.

Bass.book Page 432 Thursday, March 20, 2003 10:29 PM

Requirements and Qualities

433

Variety of Devices.

Field service workers use a variety of computing devices
in the field. No one device will suffice for all field applications, and each has lim-
itations that must be addressed by the Luther architecture. Inmedius must engi-
neer performance-enhancing solutions to run on all of these devices, which include:

�

Personal data assistant (PDA) devices such as Palm Pilot, Handspring Visor,
vTech Helio, IBM WorkPad, and Apple’s Newton and MessagePad 2000

�

Pocket PC devices such as Compaq iPAQ, Casio EM500, HP Jornada, and
Phillips Nino

�

Handheld, pen-based tablets running Windows CE such as Fujitsu Stylistic
and PenCentra and Siemens SIMpad SL4

�

Handheld Windows CE PC devices with pen and keyboard such as Vadem
Clio, HP Jornada 700 series, NEC MobilePro, Intermec 6651 Pen Tablet
Computer, and Melard Sidearm

�

Wearable computing devices such as Xybernaut MA-IV, Via family of prod-
ucts, and Pittsburgh Digital Greenhouse’s Spot

Different classes of device have different memory footprints, processor
speeds, and user input devices that can radically affect a user’s interaction style
from one class to another. For example, a wearable computer can bring the power
of the desktop computer into the field, making client applications as sophisticated
there as they are in the office. Users in this case also have a plethora of input
devices to choose from, including keyboard, voice, pen, and custom devices.

On the other hand, the processor speeds, memory footprints, and available
input devices for the PDA class are severely limited, which means that user inter-
actions that can be engineered for these devices are also constrained. Still, PDAs
are extremely important in the various contexts in which field service workers
perform their tasks. The Luther architecture must address the variability of the
users’ interaction styles, which are limited by differences in hardware capability
among the device classes.

Existing Procedures, Business Processes, and Systems.

Field service work-
ers are only one part of most enterprises. Information gathered by them must be
stored in the back office; instructions for them come, partially, from outside the
field; and many applications already support existing business processes.

To respond to these needs, the Luther architecture must intergrate its func-
tions with a worker’s existing procedures and processes, enable applications to be
hosted on servers and databases from many vendors, and simplify the integration
of applications with legacy systems

Building Applications.

Enabling faster construction of applications is one of the
main motivations for Luther. There are a number of aspects to this goal, including:

�

Encouraging software re-use and making it easier for applications to work
together. This avoids wasting valuable resources to “re-invent the wheel.”

�

Enabling a build-first, buy-later strategy for enterprise functions (e.g., work flow).

Bass.book Page 433 Thursday, March 20, 2003 10:29 PM

434

Part Four From One System to Many 17

—The Luther Architecture

�

Providing a stable platform for adoption of new features and emerging tech-
nologies that span applications, such as location sensing, automatic detec-
tion and identification of nearby physical objects and services, and advanced
user interface features like synthetic interviewing.

Distributed Computing.

The Luther architecture must provide enterprise appli-
cation developers with a framework and infrastructure that even out the differ-
ences in client device capabilities and provide application servers with the
following distributed application features.

�

Scalability

. The Luther server framework must facilitate scalability with no
impact on performance. That is, the addition of any number of domain-specific
components over time must have no impact on the performance of the appli-
cation software, nor must it cause the re-engineering of client applications.
In addition, client applications must be easily reconfigurable to make use of
added capability. The framework must also support the ability of applica-
tions to discover new capability and to dynamically reconfigure themselves
to make use of it.

�

Load balancing

. The Luther architecture must support load balancing in a
distributed environment. Most of the computation in its applications will be
performed on the server side, with the results sent to the client. As more and
more clients access the capability from a given server, the application server
infrastructure will have to detect heavy loads on a given server and offload
processing to application server components located on different server
nodes within the enterprise. Similarly, the enterprise environment applica-
tion must be able to detect a node failure and shift to another application
server in the enterprise to continue execution. In both cases, load balancing
must be transparent to the user, and in the first case it must also be transpar-
ent to the client application.

�

Location independence

. To support load balancing, domain-specific appli-
cation capability must be distributed, and the Luther architecture must sup-
port this. To be able to change locations dynamically, applications must be
location independent.

�

Portability

. Enterprise application environments invariably comprise a set
of heterogeneous server hardware platforms. The Luther architecture frame-
work will have to allow the software to run on myriad platforms in order for
enterprise applications to work.

17.3 Architectural Solution

The main architectural decision made in response to requirements was that
Luther would be constructed on top of J2EE, which has the following advantages:

Bass.book Page 434 Thursday, March 20, 2003 10:29 PM

Architectural Solution

435

�

It is commercially available from a variety of vendors. Components, such as
work-flow management, that may be useful in Luther are being widely developed.

�

HTTP becomes the basis of communication because it is layered on top of
the TCP/IP protocol, which in turn is supported by a variety of commercial
wireless standards, such as the IEEE 802.11b. Any Web-based client can be
made mobile given the appropriate wireless LAN infrastructure. Most of the
devices that must be supported by Luther can support HTTP.

�

It separates the user interface and allows the

user experience

 paradigm to be
implemented. This paradigm proposes that the computer and its application
be another, noninvasive, tool for the field service worker. It must be a natural
extension of the way that tasks are performed, yet provide performance-
enhancing benefits for both the field service worker and the organization.

The paradigm goes on to say that multiple views of an enterprise applica-
tion should be developed, each for a particular field service worker’s role. A
view is tailored to that role to enhance performance and job satisfaction, and
filters, fuses, synthesizes, and displays the appropriate information for it.
The view includes the use of role-appropriate input devices.

For example, if a keyboard is not appropriate, perhaps voice input can be
used. If the environment is too noisy, perhaps a custom input device like a

dial

 is used, which a user can turn (the dial is mounted on the user’s uniform
as shown in Figure 17.2) to navigate through links, buttons, radio buttons,
and other similar UI widgets in the client application to make them hot. In
the middle of the device, the user can tap an “enter” key to select the link,
click the button, and so forth. This device can be used in the most rugged
environments, for example, even when a worker is wearing thick gloves.

“Separating the user interface” is a tactic we saw for usability in Chapter 5.
In Luther it brings the flexibility to change the user interface and adapt it to dif-
ferent devices and needs as well, which is a kind of modifiability. Again we see
that some tactics apply to achieving more than one kind of quality attribute.

�

It supports the separation and abstraction of data sources. The user experi-
ences require the filtering, fusion, synthesis, and display of data that comes
from multiple, disparate data sources. Some of these data sources are data-
base management systems, others are legacy applications built on enterprise
resource planning systems that encapsulate corporate data. Inmedius real-
ized that by abstracting and separating data sources from the applications
that use them and by providing them with well-defined, standard interfaces,
the applications remain true to their defined abstractions and thus are re-usable.
Additionally, some interfaces are industry standards, such as JDBC/ODBC,
which allow the data sources themselves to be treated as abstract compo-
nents that can be swapped in and out of the enterprise application at will.

Figure 17. 3 shows how a Luther application interacts with its environment.
(It does not show the J2EE elements; we will discuss the mapping of the applica-
tion to J2EE shortly.) First, note the (

n

:1:

m

) relationship among user interfaces,

Bass.book Page 435 Thursday, March 20, 2003 10:29 PM

436

Part Four From One System to Many 17

—The Luther Architecture

applications, and what Inmedius calls “components,” that is, building blocks for
application functionality. A Luther application is thin; much of its business logic
is assembled from existing components, and it is not tied to any specific user
interface. Essentially, the application code contains these three things:

�

Session state definition and management

�

Application-specific (i.e., nonreusable) business logic

�

Logic that delegates business requests to an appropriate sequence of compo-
nent method invocations

The application does not have a main method; it has an application program-
ming interface (API), which represents the features and functions available from
the application to its user interfaces. The user interface is independent of the
application. It may expose any subset of features appropriate for the target inter-
face device. For instance, if a user interface is created for a device with a micro-
phone and speaker but no display, it does not expose features of the application
that require graphics.

Now we turn to an in-depth discussion of the three main elements shown in
Figure 17.3: the user interface (UI), the application, and the components.

USER INTERFACE

The strategy for developing user interfaces in the Luther architecture is as follows.
First, a combination of domain experts, cognitive psychologists, and graphic artists
work with a client to understand the various workers’ tasks and roles, the work

FIGURE 17.3

Deployment view of a Luther application

Application

Browser-
Based

Interface

Custom
Web-Based
User
Interface

Database

1..*

1..*

1..*

1..*

1..*

1

1

11

1

Component

Key: UML

User

Bass.book Page 436 Thursday, March 20, 2003 10:29 PM

Architectural Solution

437

environments, and the necessary interface characteristics of the desired access
devices. Next, they craft the user experience based on these constraints, with the
result being a storyboard, screen shots, and a prototype. The point is that the
result of the design process must be a high-quality, high-fidelity user experience,
as described before. This is essential, since the application is meant to augment
the user’s existing work procedures and be a natural extension of the work envi-
ronment. Consequently, the task of developing the user experience is delegated to
the people best suited for it—domain experts who understand the task and the
work environment; cognitive psychologists who understand how people think,
reason, and absorb information; and graphic artists who are skilled at presenting
information in an effective and appealing manner.

The next step is to take the output of the design process—the storyboard,
screen shots, and prototype—and quickly convert this to a working user interface
on real devices. Here, the architecture must support the integration of custom
user experiences. Integration must be rapid, and it should enable creation of com-
mon portions and re-use of software to the greatest extent possible, all the while
preserving the integrity and fidelity of the original user experience design.

Turning a user experience design into a working user interface is complicated
by many factors. First, a variety of client devices must be supported. This includes
an assortment of mobile devices with varying screen sizes, operating systems,
and input devices. A user interface that performs well on a desktop PC is severely
limited by the smaller screen, less memory, and less functional support on a mobile
device. Some mobile devices, for example, have no keyboard or mouse support,
rendering user interfaces that require them useless. A second factor is the limita-
tions introduced by technology. For instance, certain types of user interaction or
information display are cumbersome over HTTP and may lead to poor performance.

In the end, there may be multiple client devices and user interfaces for any
given application. The software architecture must be flexible enough to deal with
multiple clients that differ greatly from one another. In Figures 17.4 and 17.5, the
two types of user interface implementation supported by Luther are shown—
namely, browser-based clients (Figure 17.4) and custom, Web-based clients (Fig-
ure 17.5). Figure 17.6 refines the view given in Figure 17.3 and illustrates the
structure of each type.

Browser-Based Clients.

Browser-based user interface clients correspond sim-
ply to browser-based clients in J2EE. They are not restricted to Web browsers,
however, but equally support other forms of markup such as a Wireless Markup
Language (WML) over a Wireless Application Protocol (WAP) for cellular phones.
While the markup language is different in this case (i.e., WML), the same mech-
anisms for delivering the content can still be employed—that is, a combination of
servlets and JavaServer Pages (JSPs).

Browser-based clients use standardized methods for the exchange of infor-
mation (i.e., commercial Web browsers on the client side, HTTP over TCP/IP as
the network protocol, and JSPs and Java servlets on the server side), and use
common data formats (i.e., hypertext documents and style sheets). To make the

Bass.book Page 437 Thursday, March 20, 2003 10:29 PM

438

Part Four From One System to Many 17

—The Luther Architecture

FIGURE 17.4

Browser interface for maintenance procedure

FIGURE 17.5

Custom Web-based user interface

Bass.book Page 438 Thursday, March 20, 2003 10:29 PM

Architectural Solution

439

client thin, most of the presentation logic is implemented on the server, which
increases the chance of creating an interface that is portable across browser ven-
dors and versions.

Browser-based clients are primarily intended for

�

devices that support browsers and have traditional input devices such as
pens, keyboards, and mice.

�

applications that display content easily representable with markup lan-
guages and renderable by a browser, perhaps augmented with plug-ins.

Browsers were originally designed for desktop computers—making PCs their
optimum target device—but today’s mobile devices also support them.

Certain restrictions limit the use of browser-based interfaces. In design, for
instance, they do not always make the best use of valuable resources, such as the
available screen real estate, and the browser model supports only limited types of
user interactions built around the HTTP request/response cycle. Also, browser-
based interfaces are not suitable for all mobile devices because no browsers exist
for certain ones; when they do, they may lack support for essential features such
as frames, graphics, and JavaScript.

Custom Web-Based Clients.

Custom Web-based user interfaces are more
complex. This type is different from a custom client, which in J2EE is a standalone

FIGURE 17.6

User interface as a C&C view overlaid onto a deployment view

EIS Tier Business
Component Tier

Client Tier Web Tier

Browser-

User

Custom
Web-Based
User Interface

Servlets
JSPs

Client
Framework

Web Server

Application
Functionality

Application

API

Component

Database

Key: UML

Based

Interface

Bass.book Page 439 Thursday, March 20, 2003 10:29 PM

440

Part Four From One System to Many 17

—The Luther Architecture

program that implements all of the presentation logic and uses the remote invocation
method (RMI) over the Internet Inter-ORB Protocol (IIOP) to interact directly
with the business logic (i.e., EJBs). A custom Web-based client is also a stand-
alone program but, unlike a custom J2EE client, it uses HTTP to communicate
with the server and interacts with Web-tier entities, such as servlets and JSPs, in
the same way as a browser-based client does.

Custom Web-based clients are written in a native development environment
for a specific device or class of devices. Since the user interface is a standalone
program, this gives the UI designers the most freedom in terms of user interac-
tions that can be supported, and can lead to the best use of resources such as
screen real estate. The downside is higher cost of development.

The Luther architecture has tried to minimize the amount of native code that
must be written to create a custom, Web-based client, with a client framework that
supports interfaces of this type, as shown in Figure 17.6. Basically, the framework
standardizes elements that are needed across applications, including session manage-
ment, authentication, and support for creating and sequencing presentation logic on
the client, the Web container, or both. In essence, the client is a thin, standalone
program that creates and lays out the native UI widgets. It also implements a
small portion of the presentation logic such as input validation and sorting of tabu-
lar displays. Just as with browser-based clients, the bulk of the presentation logic
is implemented on the Web tier in components managed by the client framework.

Custom, Web-based clients have advantages over other types of custom user
interfaces. First, they are thin. In other words, compared to a fat client (i.e., a cus-
tom program where all of the presentation logic is implemented in the client tier),
they are smaller, easier to maintain, and easier to port across devices. Second,
they use HTTP to interact with the Web tier, unlike J2EE custom clients that use
RMI over IIOP. This makes them more appropriate for non-Java implementations
and simpler to implement over wireless networks.

Creating a custom, native user interface for each application on each device
is too costly, even for a small number of devices. This is avoided by sorting inter-
face devices into classes by characteristics. For each device class, a high-fidelity
interface is designed and implemented as described previously. The client frame-
work eases the burden of implementing this interface across a device class. Like-
wise, by implementing a significant portion of the presentation logic in the Web
tier, client devices in the same class can use this software and thus share a signif-
icant portion of their implementation. Finally, the client framework introduces
features that allow a device to advertise its interface characteristics. This informa-
tion is made available to the presentation logic on the Web tier so that small adap-
tations can be made to the content before it is delivered to the client.

APPLICATIONS

In the Luther architecture, the application is responsible for uniting the system
into a single functional entity and exposing an API for interacting with it. The
user interfaces call into this API to provide these features to an end user.

Bass.book Page 440 Thursday, March 20, 2003 10:29 PM

Architectural Solution

441

Applications reside between any number of user interfaces and any number
of components. An application ties together

m

 components and exposes the
aggregated “application” functionality to

n

 user interfaces. The applications are
“user interface agnostic,” meaning that they expose functionality that any user
interface can use. Each interface can expose all or a subset of this functionality as
appropriate. For example, a user interface running on a mobile client like a Win-
dows CE device cannot expose the administrative features you would expect to
find in a desktop version. The idea is to expose all functions that can be per-
formed in the system; each user interface decides which of these functions to
expose to the user and how to expose them.

The requirement for rapid development and deployment leads to designing
the application to be as thin as possible. This is achieved by delegating the bulk
of the business work to components (discussed in the next section). The criterion
for moving application code into a component is simple: Is the functionality re-
usable? If so, it should be generalized (to increase re-usability) and implemented
as a component. On the other hand, if a piece of functionality is not likely to be
re-used, it is incorporated into the application.

The essential elements of an application include the following:

�

Application programming interface.

A façade for the functions exposed by
the system to the user interfaces. Note that data passed through the API is
generic (e.g., XML) rather than presentation specific (e.g., HTML).

�

Session state.

Initialized when a user authenticates, a session state exists
until the client program terminates. J2EE simplifies state management, since
the containers support authentication and authorization along with storage
and retrieval of the session state. The application simply determines what
data needs to be persisted across requests and makes the appropriate calls to
store and to retrieve it.

�

Application-specific business logic.

Any logic that is unique to this applica-
tion and that cannot be re-used in other applications.

�

Delegation to components.

Code for delegating work to components. In gen-
eral, this is achieved via the Business Delegate design pattern.1

1 A business delegate acts as a façade for a component—it locates the component and
makes its functions available to the rest of the application. In this way, only the business
delegate need be concerned with how to locate and access the component, hiding these
details from the rest of the application. For instance, if a component is implemented as an
EJB, the business delegate performs the necessary Java Naming Directory Interface (JNDI)
look-ups and narrows the EJB remote interface; the fact that the component is imple-
mented as an EJB remains hidden. The application is not responsible for component life-
cycle management because the J2EE containers perform this function. However, since it
does the delegating, it has to choose which component(s) to use. The application also
includes logic that manages component interactions and inter-relationships. Clearly such
logic belongs in the application. Following this rule simplifies the implementation of the com-
ponents and minimizes inter-dependencies.

Bass.book Page 441 Thursday, March 20, 2003 10:29 PM

442 Part Four From One System to Many 17—The Luther Architecture

These elements result from application of the “anticipate expected changes” tac-
tic and the associated “separate user interface” tactic for modifiability.

A new user interface can be created without changing the application layer
or components at all. A new implementation of a component can be integrated
into the system without affecting the application layer or the user interfaces. New
functionality can be added to the system by incorporating another component,
adding the necessary API methods to the application layer, and adding (or not)
new features to each user interface to expose the new functions.

COMPONENTS

The intention behind a component is that it represent an element for re-use. The
strategy is therefore to create a library of components from which applications can
be easily and quickly synthesized to create specialized solutions for customers.
The library contains core components related to the client and server frame-
works; domain-specific components for domains, such as maintenance, repair, and
overhaul; and generalized capability (i.e., utility) components that applications
might need to round out functionality, such as security, authorization, and user
management.

Inmedius’s strategy is to evolve a large library of core, domain-specific, and
generalized capability components for the Luther architecture framework and for
specific customer domains. Application development therefore becomes an exer-
cise in creating business logic that composes the necessary set of capability com-
ponents into a customized solution for the customer.

Crafting common components is a central theme in the construction of soft-
ware product lines and represents an intense application of the “abstract common
services” tactic for modifiability—in this case, the ability to produce new solutions.

Component Design. The strategy for designing components is to use design
standards, wherever possible, for the component’s API and behaviors. For exam-
ple, the Inmedius work-flow component (described later) is an instantiation of the
Workflow Management Coalition’s specification for work-flow functionality and
behavior. This design strategy allows Inmedius to replace its own components
with any other vendor’s components that adhere to the same capability specifica-
tions. It facilitates the expansion of the Inmedius component library to include
such components.

Capability Partitioning. It may be that the library does not contain a capabil-
ity component required by a given application under development. A decision
must be made as to whether to design and implement the capability as part of the
application itself or as a new, re-usable component.

The key design heuristic is whether the capability is a part of the applica-
tion’s business logic for this specific solution or an instance of a more general
capability that might be used in other applications.

Bass.book Page 442 Thursday, March 20, 2003 10:29 PM

Architectural Solution 443

Component Packaging. Any application in Luther uses the J2EE environ-
ment and its services. Given this constraint, components in that environment can
be packaged as EJBs; Java bean components; individual Java class libraries,
applets, servlets, or some combinations of these. In other words, a component is
not synomous with an EJB, but rather can be packaged in a variety of ways.

The strategy for packaging a given capability depends on the J2EE services
used as well as the tradeoffs among a number of key factors (e.g., frequency of
inter-object communication, location of object instances, and need for J2EE ser-
vices such as transactions and persistence of object state over multiple user sessions).
For example, communication with an EJB is via RMI, a heavyweight communi-
cation mechanism. In some J2EE containers, communication with EJBs is opti-
mized (into local method calls) if the communication is within the same Java
Virtual Machine (JVM). However, since optimization is not required of a J2EE
container, communication between EJBs always has the potential of being costly,
so must not be taken lightly if performance is an issue. An alternative is to create
a Java class library to avoid the need (and overhead) for RMI. However, this also
forces the component to take on additional responsibilities previously handled by
the container, such as creation and deletion of component instances.

Objects associated with a component must be made accessible to a user for
the extent of a session. They may change during that time but the data must per-
sist and be consistent across sessions. Consequently, components often require
transactions. Multiple users may be accessing the same objects simultaneously,
potentially for the same purpose, and this has to be handled gracefully. Support-
ing transactions also makes graceful recovery from failure easier by leaving the
database in a consistent state.

As described in Chapter 16, the EJBs model supports several bean types,
including entity beans, session beans, and stateless session beans. The different
types are intended to support different forms of business logic, and they are han-
dled differently by the container. For instance, an entity bean allows the choice of
managing persistence yourself via callbacks supported by the container (i.e.,
bean-managed persistence) or having the container do it for you (i.e., container-
managed persistence). In either case, a significant amount of overhead is
involved, which limits the practical use of an entity bean to long-lived business
entities characterized by coarse-grained data accesses.

What the J2EE Container Provides. There are several capabilities that appli-
cations require, such as transaction support, security, and load balancing. These
capabilities are very complex (indeed, many corporations organize their entire
business around offering them) and are outside the scope of a given application or
application domain. One of the main drivers in Inmedius’s decision to build
Luther using J2EE was the fact that commercially available J2EE-compliant con-
tainers provide these features, so Inmedius does not have to implement them.

Many of these capabilities can be configured for an individual EJB at appli-
cation deployment time, or they are provided to the EJB transparently by the

Bass.book Page 443 Thursday, March 20, 2003 10:29 PM

444 Part Four From One System to Many 17—The Luther Architecture

J2EE container. In either case, the EJB developer does not have to embed calls to
them directly into the code, so they can be easily configured for a given customer.
This not only facilitates the creation of application-independent EJB components
but also guarantees that the components will successfully run within all J2EE-
compliant containers.

� The EJB container provides transaction support both declaratively and pro-
grammatically. The component developer can programmatically interact
with the container to provide fine-grained, hard-coded EJB transaction sup-
port. The developer may also declaratively specify, via the deployment
descriptor, how EJB methods should behave within transactions. This allows
transactions to behave differently in different applications without the EJB
having to implement or configure them directly in the code.

� J2EE provides an integrated security model that spans both Web and EJB
containers. Like transaction support, security features can be used either
declaratively or programmatically. If methods are written to include defini-
tions of the permissions required to execute them, the developer can specify
which users (or groups of users) are allowed method access in the deploy-
ment descriptor. Otherwise, entries in the deployment descriptor can be used
to declaratively associate access rights with methods. Again, this allows the
component methods to have arbitrary permissions determined by the appli-
cation, without having to rewrite the component.

� The EJB container also provides transparent load balancing. EJB instances
are created and managed by the container at runtime; that is, they are cre-
ated, activated, passivated, and removed, as necessary. If an EJB has not
been accessed recently, it may be passivated, meaning that its data will be
saved to persistent storage and the instance removed from memory. In this
way, the container effectively performs load balancing across all of the
instances in the container to manage resource consumption and to optimize
system performance.

What the Component Developer Provides. The component developer pro-
vides the client view, or API, of the component, as well as the component imple-
mentation. With a simple EJB, this amounts to writing only three classes: the
home interface, the remote interface, and the implementation class.

The component developer also provides definitions of the data types
exposed to clients through the API. These are implemented as additional classes,
and often take the form of value objects that are passed back and forth to an EJB
through the API.

EXAMPLE OF A RE-USABLE COMPONENT: WORK FLOW

In this section, we will look at one of the re-usable capability components devel-
oped for the Inmedius component library, the issues it raised, and the decisions

Bass.book Page 444 Thursday, March 20, 2003 10:29 PM

Architectural Solution 445

made. The work-flow component, the largest of the capability components thus
far created, is an example of the how a generalized capability is engineered and
packaged for inclusion in the Luther architecture.

Design Rationale. The primary responsibility of the work-flow component is
to allow a client to model a work flow and then move digital artifacts through it.
The component must also allow clients to define resources and assign them to
work-flow activities. Naturally, the component must be highly re-usable and
extendable, which means that it should provide general work-flow capabilities;
provide a clear but generic model of operation to the applications that will use
it; and be agnostic with respect to the digital artifacts that may move through a
particular work-flow instance. The creation of a full-functionality work-flow
component requires complex idioms such as branching, merging, and looping.
Generally implementing a work-flow capability is a very large, complex task.

Inmedius faced a dilemma in that there was a legitimate need for work-flow
capabilities in its applications but many factors, such as the following, prevented
their complete implementation:

� The size and complexity of a complete work-flow capability was beyond
Inmedius’s resources.

� Complete work-flow capability was not a core business objective or a core
competency.

� Other companies had built far more complete solutions.

The long-term solution was to form alliances with organizations that provide
componentized work-flow capability for J2EE applications. Until that happened,
however, Inmedius had to implement a subset of capability in order to deploy
solutions.

Thus, the strategy was to design a component that could be easily swapped
with a more complete one from another organization at a later time. This created
the need for a standardized work-flow component interface. Notice how the ABC
works in this case. The design of the Luther architecture opened up a new busi-
ness opportunity (work-flow management) and Inmedius had to make an explicit
business decision to enter this market. Inmedius decided that it was outside its
core competence.

The Workflow Management Coalition has developed of a set of functional
and behavioral work-flow specifications that have been recognized by the work-
flow community. Inmedius architects built its component to those specifications,
yet implemented only the functionality that is necessary for use by the current
applications.

This strategy leveraged the knowledge and experience of the work-flow
community and all of its activities. The community had already defined business
objects and relationships between objects, so Inmedius did not have to reinvent them.
Second, by adhering to Workflow Management Coalition specifications, Inmedius
could now replace its work-flow component with that of another vendor, with

Bass.book Page 445 Thursday, March 20, 2003 10:29 PM

446 Part Four From One System to Many 17—The Luther Architecture

minimal effort if a customer required a certain degree of functionality not pro-
vided in the Inmedius component.

Two Workflow Management Coalition specifications describe the two primary
elements: the definition of a work-flow model and the representation of its run-
time instances (see Figure 17.7). The work-flow model definition is made up of
one or more process definitions, each of which consists of activity definitions and
transitions between those activities and all participating resources. In each process
definition, a process manager oversees all runtime instances of a specific process
definition; each runtime instance maintains state as to which activities have been
completed, which are active and who is assigned them, and context data that the
work-flow component needs to make decisions while the process is active.

One issue of concern to Inmedius was concurrency. Should more than one user
be permitted to modify a work-flow model definition at one time? If active run-
time instances exist, should a user be permitted to modify a work-flow model def-
inition? Should a user be permitted to start a new work flow if its definition is
being modified? Given the implementation, a yes answer to any of these ques-
tions posed a significant problem because of the relationship between a definition

FIGURE 17.7 Class diagram for the work-flow component

0..1

0..*

Process

Activity

Process Manager

1

0..*

1

Resource 1

Assignment

1..*

Transition Definition

0..*

Process Definition

Activity Definition

Work-Flow Model Definition

1

0..*

1

Participation Definition

0..*

1..*

0..*2

Key: UML

Bass.book Page 446 Thursday, March 20, 2003 10:29 PM

Architectural Solution 447

and its runtime instances. As a result, any solution would have to prohibit these
situations from occurring.

Because the underlying problem in each of the situations described before
revolved around modifying the work-flow model definition, the solution was to
associate a lock with it. In order to modify a definition, a user must obtain a lock.
Only one lock can exist for a given definition and it cannot be obtained if the def-
inition has any associated active runtime instances. In addition, a new runtime
instance cannot be started if the work-flow model definition is locked.

Packaging. The work-flow component is packaged as two EJBs: a stateless
session bean for managing instances of work-flow model definitions and a single
entity bean for managing the definition itself (see Figure 17.8). The decision to
package the component this way was based strongly on the characteristics of the
different EJBs.

Entity EJBs implement abstractions in an application that represent shared
resources, where persistent object data is shared among many components and
users. The work-flow model definition represents just such a single shared
resource—namely, a definition of a process that can be instantiated many times.
In Inmedius applications, any user in any location can start a new process based
on this single work-flow model definition and participate in its activities.

FIGURE 17.8 Work-flow component packaging diagram

Participation Definition

Work-Flow
Data
Repository

1..*

Stateless Session EJB

Work-Flow
Data
Repository

Work-Flow Instance Manager

Work-Flow
Data
Repository

1

1

1

Key: UML

Bass.book Page 447 Thursday, March 20, 2003 10:29 PM

448 Part Four From One System to Many 17—The Luther Architecture

Session EJBs model state and behavior. The definition of new work-flow
models, the creation of work-flow model instances, the creation of activities, the
assignment of resources to activities, and the completion of activities, for exam-
ple, are all services provided to users over the course of a work-flow instance life
cycle or session. Therefore, work-flow instances are most naturally implemented
by session EJBs.

Once it was decided to make the work-flow instance manager a session EJB,
a decision had to be made as to whether to make the session EJB stateful or state-
less. This depended on the characteristics of the state to be maintained. Typically,
a stateful session EJB maintains state for a single client with whom it is having a
dialog. However, the state of a runtime work-flow instance is not manipulated by
just a single client but is updated by many clients, including those who partici-
pate in the actual work-flow process and managers who want to monitor the pro-
cess and analyze its results. As a result, the work-flow instance manager was
implemented as a stateless session EJB, which is more lightweight and scalable
than a stateful session EJB and which persists the state in a database on behalf of
a given client, where all the other clients have access to it.

Another design tradeoff concerned how to package the individual objects
within a work-flow model definition. Should they be packaged as entity EJBs, or
should they comprise Java classes packaged using some other structure, such as a
library? Because these objects interact with and are dependent on each other, to
package them as entity EJBs would constantly require locating and retaining
multiple EJB handles in the application, creating much overhead. In addition,
recall that any method invocation on an EJB is essentially an RMI call and can be
quite costly. While most J2EE containers can determine if the method invocation
is in the same Java Virtual Machine and therefore optimize it into a local method
call, this is not guaranteed. For these reasons, the design decision was to create
entity EJBs for coarse-grained abstractions in the application, such as the work-
flow model definition, and to implement the finer-grained abstractions in the
entity EJB itself as libraries of Java classes—all to reduce the overhead associ-
ated with the heavyweight entity EJB relationships.

An example of this type of design decision in the work-flow component was
deciding where to locate the logic that determines whether to grant a request for a
lock on the work-flow model definition. Originally, that logic was placed inside
the entity EJB implementing the work-flow model definition. A request to lock
the definition would be made directly to the entity EJB, which would determine if
the lock could be granted (and, if so, lock it).

A problem became apparent when it came time to enhance the business
logic so that a lock could be granted only if no active runtime work-flow
instances existed. The methods that provided runtime work-flow instance infor-
mation were defined on the stateless session EJB, the object interacting with the
entity EJB. It did not seem right to pass a reference to the stateless session EJB
into the entity EJB—first, because the entity EJB would be aware of the environment

Bass.book Page 448 Thursday, March 20, 2003 10:29 PM

Architectural Solution 449

in which it exists (thus, hampering re-use); second, because any method invoca-
tions made by the entity EJB on the stateless session EJB would be RMI calls.

Another option was to use the data access objects of the entity EJB directly
in order to retrieve the necessary information from the database. However, this
would break the abstraction implemented by the entity EJB, forcing it to be
responsible for something that it should not be responsible for and that is already
the responsibility of another object. Lastly, there would be a duplication of code
that would create maintainability problems.

The solution was to place the logic (i.e., that determines whether a request
for a lock on the work-flow model definition is granted) in the stateless session
EJB. The entity EJB now simply knows how to persist and retrieve locks to and
from the database. When a request for a lock is received, the stateless session EJB
determines if it can be granted and, if so, instructs the entity EJB to lock the work-
flow model definition. This solution maintains the integrity of the abstractions
implemented by the objects and eliminates unnecessary inter-EJB relationships.

Distributed and Detached Operations. When designing the component to
support distributed and detached operations, a number of interesting issues arose,
primarily about whether to support distributed concurrency of work-flow activi-
ties. Consider a scenario in which a work-flow model definition and its runtime
instances are located across multiple servers. While J2EE transaction support can
guarantee that no two users can violate work-flow rules if they access the same
data in the same database, it cannot guarantee that rules will not be violated if
two users access replicated data for the same work flow in different databases.

In this scenario, one user could lock a work-flow model definition in one
location for the purpose of modifying it while another user was creating a new
runtime instance of the same definition in another location. During data replica-
tion and synchronization among the distributed servers, conflicts might arise that
could corrupt the work-flow data in the enterprise environment if not resolvable.
To guarantee that work-flow rules would not be violated across multiple data-
bases, additional functionality would be needed to resolve every type of conflict.
Implementing this level of functionality was outside the scope of Inmedius’s ini-
tial release. To meet the requirement, distributed and detailed operation scenarios
had to be supported.

The system architecture and environment dictated the two scenarios of dis-
tributed and detached operations initially supported. In a distributed operation, a
common repository is shared that itself supports transactions (e.g., a database). In
other words, multiple instances of the application server may exist in several
locations but each must access the same data repository that contains the work-
flow model definitions and runtime instances. This is because the information
used by the application server to determine whether work-flow rules have been
violated is stored in the data repository. In detached operations, one installation
(i.e., application server and data repository) is designated as the master installa-
tion and all others as subordinate instances. The work-flow model definition must

Bass.book Page 449 Thursday, March 20, 2003 10:29 PM

450 Part Four From One System to Many 17—The Luther Architecture

be created and defined via the master and then replicated to all subordinates.
Once a definition is distributed, it cannot change other than specifying who can
participate in the defined activities. As runtime work-flow instances at the subor-
dinate installations are created and eventually closed, these are replicated back to
the master for historical purposes.

RAMIFICATIONS OF USING J2EE

This section discusses the rationale for several Luther decisions regarding the use
of J2EE.

Decisions Made by Design versus Those Dictated by J2EE. When design-
ing a system using the J2EE runtime environment, some decisions are left up to the
designer and others are constrained by the J2EE rules and structure. For example,
J2EE mandates where servlets, JSPs, and EJBs reside within a container—serv-
lets and JSPs in the Web tier and EJBs in the EJB tier.

However, the Java 2 Enterprise Edition environment also provides the designer
with some flexibility—for example, in implementing security (declarative versus
programmatic), transaction support (declarative versus programmatic), and data
access (container-managed versus bean-managed).

When designing a component, the designer has total control over function-
ality to allocate to a servlet, JSP, or EJB, and here the obvious choices might not
always be the best. For instance, one of Inmedius’s components supports collabo-
ration between two or more users. Since this component represents re-usable
business logic, the rules of component selection specify that it should be pack-
aged as an EJB. Unfortunately, further analysis proved that this was not the cor-
rect design. Additional factors must be considered when determining how to map
a component design onto the four logical tiers provided by J2EE, as shown in
Figure 16.2.

Issues Introduced by the Multiple Tiers in the J2EE. One issue is perfor-
mance. A major contributor to poor performance is the number of calls made
from one J2EE entity (e.g., servlet, EJB) to another within a given transaction.
Technically, each EJB method call is an RMI call, which can be very expensive.
The implementation of coarse-grained EJBs and the elimination of inter-entity
EJB relationships are two ways to address this issue and thereby ensure good
component performance.

Another issue is transactions, which may be managed programmatically or
declaratively. Obviously, managing transactions declaratively is somewhat easier
because code does not have to contain begin and end transaction statements.
However, developers must be mindful of how their J2EE entity will be used. The easy
course is to require transactions for all methods. Unfortunately, this creates unnec-

Bass.book Page 450 Thursday, March 20, 2003 10:29 PM

How Luther Achieved Its Quality Goals 451

essary runtime overhead if transactions are not truly needed. Another problem
arises when methods on a J2EE entity do not require transaction support and the
deployment descriptor enforces this. If another container involved in a trans-
action uses the J2EE entity, the transaction it has created will fail. Instead, the
deployment descriptor should declare that the method supports transactions.
Careful thought must be given to what aspects of a component require trans-
actions to ensure correct operation, and these decisions must be mapped to a com-
bination of the declarative and programmatic mechanisms supported by J2EE.

17.4 How Luther Achieved Its Quality Goals

All but one of Luther’s quality requirements came from its customers: wireless
access; flexibile user interfaces and devices; support for existing procedures,
business processes, and systems; and for distributed computing. The only one
that came from Inmedius was ease of building applications.

The primary decision in achieving these requirements was to use J2EE, but
only in a particular fashion. The user interface was clearly and cleanly separated
from the applications, standards were used whenever possible, and a re-usable
library of components was to be constructed opportunistically. Table 17.1 shows
the strategies and tactics used in this effort.

TABLE 17.1 How Strategy Achieves Goals

Goal Strategy Tactics

Wireless Access Use standard wireless
protocols

Adherence to defined protocols

Flexible User
Interface

Support both browser-based
and custom interfaces through
HTTP

Semantic coherence; separate
user interface; user model

Support Multiple
Devices

Use standard protocols Anticipate expected changes;
adherence to defined protocols

Integration with
Existing
Business
Processes

Use J2EE as an integration
mechanism

Abstract common services;
component replacement

Rapid Building
of Applications

Use J2EE as a basis for
Luther and construct
re-usable components

Abstract common services;
generalize module (in this case,
J2EE represents the generalized
module)

Distributed
Infrastructure

Use J2EE and standard
protocols

Generalize module; runtime
registration

Bass.book Page 451 Thursday, March 20, 2003 10:29 PM

452 Part Four From One System to Many 17—The Luther Architecture

17.5 Summary

Inmedius develops solutions for field service workers. Such workers require high
mobility with untethered access to computers. These computers are typically
highly portable—sometimes with hands-free operation. In each case, systems
require integration with back-office operations.

Luther is a solution that Inmedius constructed to support the rapid building
of customer support systems. It is based on J2EE. A great deal of attention has
been given to developing re-usable components and frameworks that simplify the
addition of various portions, and its user interface is designed to enable customer-
as well as browser-based solutions.

Reliance on J2EE furthered the business goals of Inmedius but also intro-
duced the necessity for additional design decisions in terms of what was pack-
aged as which kind of bean (or not). This is an example of the backward flow of
the ABC, emphasizing the movement away from stovepipe solutions toward
common solutions.

17.6 For Further Reading

The reader interested in wearable computers is referred to [Barfield 01] as well as
the proceedings of the annual IEEE-sponsored International Symposium on
Wearable Computers (http://iswc.gatech.edu/).

The business delegate pattern used in Luther can be found in [Alur 01]. The
Workflow Management Coalition reports its activities on http://www.wfmc.org.

17.7 Discussion Questions

1. Many of the case studies in this book feature architectures that separate the
producers of data within a system from the consumers of data. Why is that
important? What kind of tactic is it? Compile a list of the tactics or design
approaches used to achieve separation, beginning with the ones shown in this
chapter.

2. A great deal of attention has been given to separating the user interface from
the remainder of the application both in Luther and in our other case studies.
Why is this such a pervasive tactic?

Bass.book Page 452 Thursday, March 20, 2003 10:29 PM

