

495

Index

ABC.

See

 Architecture Business Cycle
ABM.

See

 Atomic Broadcast Manager
“Abstract common services” tactic, 106, 135,

138, 148–149, 442
Abstraction, 21, 37, 43, 210, 477,

478

mastering at CelsiusTech, 375–376
and packaging, 142
and SS2000, 396

Abstract syntax tree, for information
extraction, 235, 236

Access control, 117, 118
Accessibility, and the Web, 331
Access layer, for libWWW, 336
Access (Microsoft), 468, 470
Access procedures, 54, 64
access_read relationship, 235
access_write relationship, 235
Account bean, 414, 415,

416

,

419

Acronyms, 218, 485
Activation, of stateful bean, 410
Activation list, in Active Object design

pattern, 124
Active design review, 268
Active Object design pattern, 124
“Active redundancy” tactic, 103, 141
ActiveX, 343
Activity control problems, 162
actually_calls relation, 240
Ada, 132, 139, 144, 371, 380, 387, 462
Ada package specification, and signature

specification, 212
Ada programs, 142, 147, 378, 390
Adaptation data, 147–148
Adapters, 109
ADD.

See

 Attribute-Driven Design
Address spaces, 139,

140

“Adherence to defined protocols” tactic, 111
and client-server view, 142
and code templates, 149
and integrability, 175

Ad hoc tools, for information extraction, 236
Advanced Automation System (AAS), 129, 131
Aerodynamics, and flight simulator, 181, 182
Aggregate, 122
Aggregation, in UML, 219–221
Aircraft structure, unclear mapping between

software structure and, 181

Aircraft systems, and airframe, 193, 195
Air traffic control case study, 129–151

architectural solution in, 135–149
requirements and qualities in, 132–135

Air traffic controllers, 132, 133,

134

Air traffic control system,

132

,

150

ABC applied to,

132

availability requirements for architecture
of, 155

Air vehicle model, 182, 183
application modules, 187–192
executive modules, 185–187

n-

square chart for, 194,

195

AIX (IBM), operating system, 144
Ada tasks mapped onto processes, 142
and SS2000, 373

Algorithms, voting, 102
“Allocated-to” relation, 38
Allocation structures, 36, 38–39
Allocation views, 41, 206

options in, 208–209
in UML, 227–229

Allowed-to-use structure, 60,

61

, 62, 63
Amazon.com, 348–349
Analysis results, in architecture background,

209
Analyze architectural approaches

in ATAM evaluation phases, 282–284, 285
in Nightingale system evaluation phases,

297–299, 302
“And” states, 210
Annotations, interfaces as, 224
Anomaly detection, 118
“Anonymity of processor assignment,” and

SS2000, 390
“Anticipate expected changes” tactic, 107,

138, 148, 442
AOLbyPhone, 454
AOL/Netscape, 347
Apache project, 346, 347
Aperiodic operations, 187, 191
Aperiodic processing, and flight simulator, 183
AppleScript, CGI scripts in, 339, 340
Application constituent, of Structural Model

architectural pattern, 185
Application Data Type Module, 57, 62
Application module layer, for libWWW, 336

Bass.book Page 495 Thursday, March 20, 2003 10:29 PM

496

Index

Application programming interfaces (APIs), 457
and libWWW, 336
and Luther architecture, 441

Application proxies, 343, 344
Applications, 138, 139, 147

and Ada packages, 142
as clients and servers,

141

and Luther architecture, 432, 433–434,
440–442

Application servers, for modifiability,
performance, and scalability, 345

Application-specific business logic, and
Luther architecture, 441

Architects, 69, 108, 233, 245, 285
and ABC for the Web, 347
and architectural approaches, 285
and architectural documentation, 202–203
architecture and background/experience

of, 8
and architecture reconstruction, 232
and ATAM, 272, 277
and conceptual integrity, 96
design decisions by, 261
and EJB system design, 423
and evaluations, 267
and impact of components, 482
model problems used by, 463
and Nightingale system, 289
product line, 360
and recovery of “lost” architecture, 247
and relationship of tactics to architectural

patterns, 123–124, 126
and scheduling policies, 115
and stakeholders, 7
tactics used by, 99, 100
and testing cost reduction, 118
and usability, 122
and viable product lines, 398
views produced by, 145

Architectural abstractions, as hypotheses, 245
Architectural approaches

and ATAM, 279, 282–284, 285
example of analysis,

283

and Nightingale system, 293–294,
297–299, 302

Architectural changes, 31
Architectural decisions, 231

architecture reconstruction and
redetermination of, 246

benefits of, 307
costs with, 309
quality requirements mapped to, 274

Architectural design, 23, 355

Architectural drivers, 154, 157, 166, 277
choosing in ADD, 158
determining, 155

Architectural evaluations, ATAM and limited
time for, 288

Architectural integrity, 96
Architectural metrics, 265
Architectural mismatch, 33, 43, 456–462, 476
Architectural patterns, 24–25,

26

, 33, 42, 62,
99, 100,

126

, 127, 232, 462
choosing, 157, 158,

159

and off-the-shelf components, 456
and query languages, 237
and reconstruction, 242
and styles, 124–125
tactics related to, 123–124
use of, 279

Architectural quality, and system quality, 92
Architectural reconstruction, using results

of, 232
Architectural representation, 42
Architectural solution for the Web, 334–340

common gateway interface, 339–340
early client-server architecture using

libWWW, 337–339
and libWWW, 334–337

Architectural solution, in air traffic control
case study, 135–149

adaptation data, 147–148
client-server view, 141–142
code templates, 148–149
code view, 142
fault tolerance view, 144–147
ISSS physical view, 135–138
layered view, 142–144
module decomposition view, 138
process view, 138–141
relating views to each other in, 147

Architectural solution in flight simulation
case study, 182–196

decomposing groups into systems, 195–196
functionality allocated to controller

children, 192–193
group decomposition, 193–195
modules of air vehicle model, 185–192
skeletal system, 192
Structural Modeling architectural pattern,

185
time treatment in flight simulator, 183–184

Architectural solutions
achievement of application needs and, 150
for J2EE and EJB, 406–419
and Luther architecture, 434–451

Bass.book Page 496 Thursday, March 20, 2003 10:29 PM

Index

497

Architectural strategies, 99, 100
and benefit and normalization

determination, 313
and CBAM, 309, 316
ROI value for, 313
and scenarios addressed in NASA ECS

Project,

320–323

side effects, 312–313
Architectural structures

for A-7E avionics system, 47,

48

choosing, 41–42
and organizational structure, 168, 169
relationships between, 40–41

Architectural style, 25, 349
Architectural tradeoffs, and ATAM, 307
Architectural views, 43, 66

and architecture presentation, 278
and ATAM, 308
in Dali,

242

Architecture, 3, 25, 31, 43–45, 67, 71, 217,
218, 478.

See also

 Software
architecture

analyzing/evaluating, 14
and architects’ background/experience, 8
for A-7E avionics system, 54–65
behavior of elements in, 22
communicating about, 13–14
components, connectors, and, 24
components and impact on, 455–456
constraints on implementation, 29
creating/selecting, 13, 69–70
designing, 155–166, 171, 479–481
developing organization and, 8
ensuring conformance to, 14
evaluations of, 23, 265
feedback loops and, 9–12
functionality and, 72
future of, 477–484
goals/requirements for, 266
“good,” 14–16
hierarchy of test interfaces in, 120
as high-level design, 23
implementing based on, 14
influences on, 9,

10

layered, 62
in life cycle, 153–155, 481–482
Mk2, 376
moving from, to code, 482
.NET, 402
Nightingale system and presentation of,

292–293
organizational structure dictated by, 29–30
as overall structure of system, 23

pivotal role of, 19
process-centered definitions of, 24
for product lines, 360–363
purposes of, 205
qualities in, 96–97
and quality attributes, 73–74, 453
rationale for, 218
relationship between organization and, 167
representations, 35
and re-use, 351, 353
and software product lines, 363
sources of, 6–12
stakeholders and communication needs

served by, 27–29,

204

stakeholders and influence on, 6–8
technical environment and influence on, 9

Architecture activities, 12–14
Architecture analysis, 261–269

costs and benefits, 263–265
planned or unplanned, 266
preconditions, 266–267
results, 268
techniques, 265–266
when, 262
why, 261–262

Architecture background, in documenting a
view, 209

Architecture Business Cycle, 6,

11

, 12, 69,
71, 261, 271

and air traffic control system,

132

and Celsius Tech,

370–

371, 383, 399
backward flow of, 452
current state of, 346–347
flight simulators and relationship to,

176–177
and future of software architecture, 479
relationship of, to A-7E avionics system,

48–

49
relationship of, to Inmedius and Luther

architectures, 429–432
software processes and, 12–14
and story of

Vasa

, 4–5
and Sun and J2EE/EJB, 402,

403

and Web-based architectures, 340–342
and the Web, 327, 328–329

Architecture documentation
in ATAM-based evaluation, 274
importance of, 22
and Nightingale system, 290
stakeholders and helpfulness of,

206

and structures, 41
uses of, 203–203

Architecture presentation, example,

278

Bass.book Page 497 Thursday, March 20, 2003 10:29 PM

498

Index

Architecture reconstruction, 22, 231, 232,
activities, 233,

234

complexity with, 258
motives for, 481, 482
and redetermination of architectural

decisions, 246
Architecture stakeholders, and ATAM, 272
Architecture Tradeoff Analysis Method, 14,

31, 203, 262, 265, 268, 271–305, 307,
465, 466

and evaluation team roles,

273–274

historical roots of, 305
initial draft on training course on, 304
in Nightingale system, 288–303
outputs with, 274–275
participants with, 272
reviews based on, 263
stakeholders and evaluations with, 267
steps and outputs, correlated,

287

Architecture Tradeoff Analysis Method
evaluation phases steps, 276–285

analyze the architectural approaches
(step 6), 282–284

analyze the architectural approaches
(step 8), 285

brainstorm and prioritize scenarios
(step 7), 284–285

generate quality attribute utility tree
(step 5), 279–282

identify architectural approaches
(step 4), 279

present architecture (step 3), 277–279
present results (step 9), 285
present the ATAM (step 1), 277
present the business drivers (step 2), 277

Architecture Tradeoff Analysis Method
phases, 275–288

evaluation (phase 1), 276, 277–284
evaluation (phase 2), 276, 284–287
follow-up (phase 3), 276
partnership and preparation (phase 0), 275

Arch/Slinky pattern, 123, 127
Arcs, decomposition in UML with,

221

ArithmeticOp class, 239
ARM, 258
Artifact

of modifiability general scenarios, 82
of performance general scenarios, 84
of security general scenarios, 87
of testability general scenarios, 89
of usability general scenarios, 91

Artifact stimulated, in quality attribute
scenarios, 75

“As-built” architecture, 231, 232, 481
“As-designed” architecture, 232, 252, 481
ASEILM example.

See

 Automated SEI
Licensee Management system

A-7C aircraft, 49
A-7E architecture, 54–65

allowed-to-use specification,

61

modifiability and performance
requirements for, 154

Physical Models Module of, 168
A-7E avionics system case study, 47–68

A-7E project description, 52–53
architectural structures, 47,

48

process structure, 63–65
relationship to ABC, 48–49
requirements and qualities, 49–52
uses structure, 61–63

A-7E Corsair II,

49

, 51
A-7E module decomposition structure,

56–59, 73
quality goals achieved by,

56

A-7E module decomposition view, textual
primary presentation in, 208

A-7E software, 49,

59

coarse-grained data-flow view for,

67

design of, 461
primary sensors read/managed by, 50

As-implemented architectures, as-designed
architectures related to, 252

Aspect-oriented programming, 120
Aspect-oriented software development, 481
Assemblies of compatible components, 453
Assembling elements, 33
Assembly language, 477
Asset base, and CelsiusTech product line, 396
Asset re-use, 8
Assign utility step, 316, 319
Association classes, connector types as, 226
Association role, UML, 225
Associations

connector types as, 225
and nodes, 228

Assurance, 86, 116
AST.

See

 Abstract syntax tree
Asymmetric encryption, 117
AT&T, architectural evaluations at, 263, 269
ATAM.

See

 Architecture Tradeoff Analysis
Method

ATC.

See

 Air traffic control
Atomic Broadcast Manager, 144
Attachment relation, 38
AttachOp class, 239
Attacker identification, 118

Bass.book Page 498 Thursday, March 20, 2003 10:29 PM

Index

499

Attacks, 85, 86, 87
detecting, 118
recovering from, 118
resisting, 116–117

Attribute-Driven Design method, 155–166,
171, 203

Attribute requirements, and product line
architecture, 362

Auditing, 86
Audit trails, 87, 118
Authentication, 116, 339
Authorization, 117
Authorship, in documenting a view, 209
Automated SEI Licensee Management

system, 466, 467
example, 466–476

Automatic build checking, 211
Automatic detection, 434
Automatic repair strategies, 79
Automotive industry, and architecture

reconstruction, 232
Availability, 7, 69, 79, 86

and air traffic control system, 132–133
and component repair, 457
databases for, 345
and e-commerce, 341
load balancing for, 344
and Nightingale system, 292
of resources, 112
Simplex architecture for, 127
and SS2000 product line, 388
and system quality attributes, 74
and tactics, 100
and Web-based applications, 404

Availability scenarios, 76, 77, 80,

81

Availability tactics, 101–105, 125
fault detection, 102
fault prevention, 104–105
fault recovery, 102–104
and process view, 141

Avionics, 168, 193, 478
awk, 232, 239

Back-office systems, front-line workers
integrated with, 427, 432, 452

Backup Communications Network, 137, 138
Balanced specificity, with J2EE and EJB, 406
Base System, 382
Base System 2000, 392
Basic SS2000 Configuration Project, at

CelsiusTech, 385, 387
BCN.

See

 Backup Communications Network
Bean-managed persistence entity beans, 410

Beans, 443
Behavior, 7, 230

documenting, 209–211
of elements, 22

Behavior-hiding module, in A-7E module
decomposition structure, 56

Benefit, of architectural strategy, 313
Best-case quality attribute level, in

utility-response curve, 311–312
Best-case response, for NASA ECS Project

scenario, 317
Billing, 345
Binding time, 124, 209
Biometric identifications, 116
“Bird’s-eye” program overview capability, 258
Blackboard architectural pattern, 57
“Black box” elements, 3
Blocked time, 112–113
Boolean algebra, 213
“Borgs,” 428
Bottlenecks, 40, 171
Bottom-up adoption, of product line, 364
Bottom-up approach, for architecture

reconstruction, 258
Bound execution times tactic, 114
Bound queue sizes tactic, 114
Box-and-line diagrams, 230
Box-and-line sketches, 24
Brainstorm and prioritize scenarios, 284–285,

300–302
Branching, and work-flow component, 445
Branching statements, 477
“Brick-and-mortar” bookstores, 348
Bridge pattern, 109
Bridges, 458–459

and Logical Communications Network, 137
Broadly scoped product lines, 358
Broker bean, 414,

415

, 417,

418

Broker EJB, 413
Broker pattern, 110
Broker remote interface,

414

Browser-based clients
intended use for, 439
and Luther architecture, 437, 439

Browsers, 329, 342
BSpline element, 255
B-2 Weapons System Trainer, 177
Budgets, 170, 354, 355
Buffers, 112
Buhr-style use case maps, 248
Buildability, 97, 480

of EJB-based systems, 416
Build files, 234, 236

Bass.book Page 499 Thursday, March 20, 2003 10:29 PM

500

Index

Build first, buy-later strategy, 433
Built-in monitors, and internal monitoring, 120
Business case, 12–13
Business component tier, in J2EE multi-tier

model, 408
Business constraints, and Nightingale

system, 291
Business context, for CelsiusTech, 378–380
Business delegate pattern, 441, 452
Business drivers

ATAM and presentation of, 277
Nightingale system and presentation of,

291–292
and risk themes, 302
and SS2000 product line, 377

Business goals
and ATAM, 271, 274, 308
identifying, 155
and quality requirements, 99
and risk themes, 275

Business influences, and software
architecture, 5, 6

Business logic, and component packaging, 443
Business qualities, 74, 95–96
Business requirements, 154

and Nightingale system, 291
and Web architecture, 340

Business rules, 345
Business-to-business Web sites, 340
Business-to-consumer Web sites, 340
Business units, and product development, 366
Buttons, 435

C, 144, 339
C&C.

See

Component-and-connector views
C++, 239, 339
Caching, 114, 336, 343, 345
Calculate total benefit from architectural

strategy, 316, 322
Callback methods, 413
Call graph, 235
Call-out functions, 336
calls relationship, between functions, 60,

235, 240
Cancel, 122
Candidate view lists, producing, 206–207
Capability, and CelsiusTech product line, 396
Capability partitioning, and Luther

architecture, 442
Captured rationales, and architectural

evaluations, 264
Case studies

air traffic control and designing for high
availability, 129–151

A-7E avionics system, 47–68
CelsiusTech AB, 369–399
flight simulation, 175–199
Luther architecture, 427–452
NASA ECS Project, 317–324
Nightingale System, 288–303
the World Wide Web, 327–349

CBAM.

See

 Cost Benefit Analysis Method
CDL.

See

 Chart description language
CelsiusTech, 351, 355, 431, 432

corporate evolution of, 370,

371

,

377

CelsiusTech AB case study, 369–399
architectural solution, 390–398
business context analysis, 378–380
economics of product lines results, 373–374
mastering abstraction, 375–376
motivations at CelsiusTech, 376–377
organizational structure at CelsiusTech,

380–387
product schedules,

373

relationship to ABC, 370–374
requirements and qualities, 387–388

CERN.

See

 European Laboratory for Particle
Physics

cfx program, 258
CGI.

See

 Common gateway interface
Champions, and product line adoption, 364
Change

architecture and management of, 31
cost of, 80
timing of, 81

Change histories, in documenting a view, 209
Chart description language, 470
ChartWorks (Visual Mining), 468, 469,

470, 472
C header (.h) files, and signature

specification, 212
Checklists, 265
Checkpointing, and database models, 237
“Checkpoint” tactic, 104
Checksums, 117
Child modules, 157, 161, 163–164
Choose architectural strategies based on ROI,

316, 323–324
Choose deadline-driven scheduling policy, 159
“Chunking” design work, 156
Circle Module, 222
Class box, in UML, 219
Class containment, code segments for,

254

class_contains-method relation, static and
dynamic information about,

240

Classes
connector types as, 226
interfaces as, 225

Bass.book Page 500 Thursday, March 20, 2003 10:29 PM

Index

501

structure of, 38
in UCMEdit model, 250
UML, 223

Classifiers, in UML, 219, 220
Class symbol, in UML, 219
Clients, 334

applications as,

141

and EJB, 414
testing by, 89

Client-server pattern, 25
Client-server structure, 38, 40
Client-server system, 170
Client-server view, 141–142, 147, 207
Client tier, in J2EE multi-tier model, 407
Clustering services, 422
Coarse-grained EJBs, and J2EE, 450
Cockpit display devices, in A-7E aircraft, 50
Code, 234

moving from architecture to, 482
repair, 458
re-use, 32, 374
servlet, 408
structure, 47

Code coverage analysis tools, 236
Code instrumentation, 236
Code patterns, 125
Coders, and architecture, 27
Code segments, 242, 244

for class/file containment,

254

developing, 246
and UCMEdit,

252

,

255

Code templates, 135, 141, 148–149, 150
Code view, 42, 142, 147
Cognitive psychologists, and Luther

architecture user interface, 436, 437
Cohesion, and teams, 168
Cohesion metrics, 106
Cold restarts, 145, 146
Collaboration diagrams, in UML, 227
Collate scenarios step, 316, 317
COM, 236
COM+, 425
Command, control, and communication (C3)

systems, 370, 394
Command-and-control systems, CelsiusTech

as supplier of, 370
Commercial components, growth in

capability/availability of, 482
Commercial off-the-shelf (COTS) products,

33, 95, 398.

See also

 Off-the-shelf
components

and Nightingale system, 289, 290, 292,
298, 303

Commercial world, success and failure in, 65–66

Common gateway interface, 338, 339–340
Common object manager,

391

Common Object Request Broker Architecture
(CORBA), 236, 292, 345, 401–402,
403, 425, 458

and EJB architecture interoperation
with, 405

Common services, abstracting, 106, 107
Common System Services, in ISSS, 138
Communication

and architecture, 13–14
restricting paths of, 109
skills, 9

Communication virtual machine module, in
example, 165, 166

Compiler generators, 12
Compile-time artifacts, 236
Compile-time switches, 81
Completeness, 96
Complexity, of flight simulators, 180, 181
Component-and-connector structure, 36, 38,

40, 41
Component-and-connector views, 66, 139,

162, 206, 207, 212
and architecture presentation, 278
options in, 208
in UML, 222–227

Component-based systems, 342
and architectural mismatch, 456–457
design of, 462

Component design
at Inmedius, 442
and J2EE, 450

Component developers, and Luther
architecture, 444

Component Development Group, at
Inmedius, 431

“Component glue,” 457
Component/interface repair, 457
Component projects, and SS2000, 383
Component qualification, 460
Component replacement, 111
“Component replacement” tactic, and

client-server view, 142
Components, 24,

224

, 436, 441
and allocation views in UML, 228
core, 442
and design process, 453
elements related to, 255, 256
future impact of, 482–483
impact of on architecture, 455–456
life-cycle services, 401
for Luther architecture, 442–444
and object containment, 227

Bass.book Page 501 Thursday, March 20, 2003 10:29 PM

502

Index

Components

continued

types, in patterns and styles, 125
in UML, 223–224

Composing elements, 33
Composition of systems, and SS2000, 387
Composition relation, in UML, 221
Computation, dependency on, 112–113
Computational efficiency, increasing, 113
Computational overhead, reducing, 113
Compute method, 239
Computer Software Components, 37
Computer Software Configuration Items, 37

in ISSS, 138, 147
.com Web sites, growth of, 332
Conceptual integrity, 13, 16, 44, 74, 96
Conceptual view, 42
Concrete scenarios, 75, 78
Concurrency, 25, 210

enhancing, 124
introducing, 114
Java servlet ensemble and management

of, 475
structure, 38
view, 147, 161–162, 164
and work-flow model, 446

Confidence, increasing, 91
Confidentiality, 86, 116, 117
Configuration control data, in documenting a

view, 209
Configuration control system, 167
“Configuration files” tactic, 111, 147
Configuration management, and software

product lines, 363
Configuration management systems, software

architecture within, 481–482
Configuration parameters, 213
configure operation, 187, 189, 190, 191
Configure state, in flight simulator, 179
Confirm results with intuition step, for

CBAM, 316
Connector instances, 225, 226
Connectors, 24, 36, 225–226
Connector types, 225, 226
constituent_event operation, 187
Constraints, 9, 165
Construction problems, and electronic flight

simulators, 176
Contained objects, systems as, 227
Container-managed persistence, 410, 415, 422
Containers

EJB, 408, 410, 413
J2EE-compliant, 443–444

Container services, 413

contains class, 235
Contention for resources, 112
Content on the Web, labeling of, 333
Content providers, and ABC for the Web,

346, 347
Context

of availability scenarios, 80
diagrams, 208, 278
of modifiability general scenarios, 82
of performance general scenarios, 85
of quality attribute scenarios, 75
of security general scenarios, 87
of testability general scenarios, 89
of usability general scenarios, 92

Control, sequence of, 108
Control frequency of sampling tactic, 113
Controller children, 192–193, 198
Controller children module, and air vehicle

structural model, 187, 190–192
Control mechanisms, 41
Control Process (CP), 20, 21
Controls (or widgets), 97
Conversational with respect to calling

process, 409, 410
COOB.

See

 Common object manager
Cooperating sequential processes, 52
Coordinating processes structure, 38
CORBA.

See

 Common Object Request
Broker Architecture

Core asset base, 354, 357
Core assets, and CelsiusTech, 374
Core layer, for libWWW, 335, 336
Correctness, 96
Cost and benefit, as business quality goal, 95
Cost Benefit Analysis Method, 14, 265, 268,

304, 308–325, 479
basis for, 309–313
decision-making context for, 308–309
implementing, 314
and NASA ECS Project, 317–324
process flow diagram for,

315

and product line evaluations, 363
results of exercise with, 324

Cost-effectiveness, with evaluations, 267
Cost efficiency, and Web-enabled enterprise

systems, 423
Cost estimates, and software architecture, 32
Cost modeling, 325

and buildability, 97
importance of, 314

Costs
with architectural decisions, 309
and architectural evaluations, 263, 265

Bass.book Page 502 Thursday, March 20, 2003 10:29 PM

Index

503

of change and modifiability, 80
development, 95
and flight simulators, 181, 196
of testing, 118

COTS products.

See

 Commercial off-the-
shelf products

Coupling, 106
metrics, 127
of scenarios and tactics, 480

Crew simulator training, 179
“Cross-cutting” requirements, 481
Cross-side scripting, 474
Cross-view documentation, 215,

216

Cross-view rationale, 218
Cryptography, 349
CSCI.

See

 Computer Software Configuration
Item

CSCs.

See

 Computer Software Components
C-17 Aircrew Training System, 177
C Shell, CGI scripts written in, 340
Currencies, and Nightingale system, 291
Current-case response, for NASA ECS

Project scenario, 317
Current utility level, for scenario, 312
Custom clients, in J2EE, 439
Custom component, and Miva Script

applications, 467
Customer projects, and SS2000, 383
Customer relations management, 345
Customer requirements, 11
Customers

and ABC for the Web, 347
and architecture, 27
and evaluations, 267

Custom user interfaces, advantages with
custom Web-based clients over, 440

Custom Web-based clients, and Luther
architecture, 437, 439–440

Cutovers, 146
C/X-band antenna, on Göteborg class, 371
“Cyberporn” industry, 333
Cyclic executive schedule, 115

Dali, 233,

238

,

242

, 247, 258
code segments created in, 248
and visualization and interaction, 241
workbench, 238

Dashed-arrow dependencies, and allocation
views in UML, 228

Data, 109
semantics and sequence of, 108
syntax of, 107

Data access, designer’s decisions, J2EE, and
implementation of, 450

Data Access Working Group, of ECS Project,
317, 321

Data analysis, and the Web, 331
Data Banker Module, 57–58
Database construction

and database tables, 239
guidelines for, 239
and reconstruction, 233, 237–239, 248–249

Database management, 478
Database management systems, 453
Database models, choosing, 237
Databases, for performance, scalability, and

availability, 345
Data confidentiality, maintaining, 117
Data controllers, 133–134
Data exchange problems, 162
Data extraction tools, 233
Data-flow analysis, 477
Data-flow view, 66
Data integrity problems, 162
Data loss, 85
Data-producing conventions, and COOB, 391
Data publishing, and the Web, 331
Data sources, separation and abstraction of, 435
Data tags, and ISSS physical view, 136
Data type definitions, in interface

documentation, 213
Data types, and avionics applications, 57
DAWG.

See

 Data Access Working Group
Deadline monotonic, and fixed-priority

scheduling, 115
Deadlines in processing, 84
Deadlock, 40, 209

avoidance of, 64
Dead man timer, 102
DBMS.

See

 Database management systems
Debugging, and cost with flight simulator, 181
Decision Support and Report Generation

Manager, 292, 298
Declarative transaction management, 450, 451
Decomposition structure, 36–37, 40

for A-7E avionics system, 54–59
Decomposition view, 147, 206–207
Defect elimination, and re-use, 356
“Defer binding time” tactic, 110–111,

159, 417
Define the starting evaluation criteria (step 2),

in model problem process, 469
Demand process, 63
Demilitarized zone, 117
Denial-of-service attacks, 86, 87
Dependency, UML notation for, 222
Dependency types, 107–108
Deployment, and quality attributes, 73

Bass.book Page 503 Thursday, March 20, 2003 10:29 PM

504

Index

Deployment descriptors
for Account entity bean,

419

for Broker bean, 417,

418

and EJBs, 417
and support for Sun’s J2EE quality

attribute requirements,

418

Deployment structure, 38–39
Deployment time, 110
Deployment type diagram, 228
Deployment view, 41, 164, 205

with ADD, 163
and architecture presentation, 278
of Luther applications,

436

in UML,

229

UI as a C&C view mapped onto,

439

Design
artifacts, 236
attribute-driven, 155–156
beginning, 154–155
of flight simulator software, 181
improving, 480–481
and interface documentation, 214
judging, 69
and quality attributes, 73
questions, 464
rationale for, 214
reviews, 119
as search, 462–465
work-flow component, 445–447

Design alternatives, restricting vocabulary
of, 33

Design decisions, 261
quality attribute requirements related

to, 305
and software architecture, 26, 29–32

Designers, and evaluations, 267
Design patterns, 99, 125, 173

and ARM, 258
Business Delegate, 441
EJB, 422

Design teams, model problems used by, 463
Design-time tactics, 123
Desired-case response, for NASA ECS

Project scenario, 317
Desired utility level, for scenario, 312
Detached operations, and work-flow model

definition, 449
Determine utility of “expected” quality

attribute response levels step
for CBAM, 316
in NASA ECS Project, 321–322

Develop architectural strategies for scenarios
step, 316, 320

Developers, 13
and architectural integrity, 96
and ATAM, 272
changes made by, 81, 82
and usability, 123

Developing organizations, 8, 10
Development costs, 95
Development department model, and product

development, 366
Development Group, at CelsiusTech, 384, 385
Development view, 41
Device Interface Module, 58, 62, 62
Device Interface procedure, 64
Device types, and Luther architecture, 432, 433
Diagnosis module, in example, 165, 166
Dials, 435
Digital artifacts, and work-flow component, 445
Digital certificates, 116
dir_contains_dir, 235, 239
dir_contains_file, 235
Directory structure, code segments based

on, 246
Display Management, in ISSS, 138
Distributed computing

growth of, 402
and Luther architecture, 432, 434

Distributed object-oriented systems, 401
Distributed objects, 8
Distributed object technology, and enterprise

information systems, 403
Distributed operations, and work-flow model

definition, 449–450
Distributed systems, and deployment

structure, 39
Distributed transactions, and EJB systems, 423
Diversity, 103
DMZ.

See

 Demilitarized zone
Documentation, 70, 211–214, 354

of architectures, 14
in ATAM-based evaluations, 274, 275
of behavior, 209–211
of decomposition structure, 55
of interfaces of modules in ADD, 163–164
as introduction to software architecture, 203
and Nightingale system, 290, 303
for product line architecture, 361
for software interfaces, 58
stakeholder access and organization of,

216–218
within tool environment, 481

Documenting software architectures, 201–230
basic principle of, 205
choosing relevant views, 205–207

Bass.book Page 504 Thursday, March 20, 2003 10:29 PM

Index

505

documentation across views, 215–218
and UML, 218–229

Documenting views, 204–205, 207–214
architecture background, 209
context diagram, 208
element catalog, 208
glossary of terms, 209,

210

primary presentation, 207–208
variability guide, 208–209

Documents, 478
Document Type Definition (DTD), 417
Domain engineering units, and product

development, 366, 367
Domain experts, and Luther architecture user

interface, 436, 437
Domain model, 53
Domain name services, 117, 118
Domains, 168, 478
Domain-specific architectures, availability

of, 482
Domain-specific components, 442
Downdrafts, 179
Downtimes, 79, 104
Drift angle, 50
DSRGM.

See

 Decision Support and Report
Generation Manager

Dual redundancy, 103
Dynamic extraction, 241
Dynamic information, 235, 236, 237, 239,

240

Dynamic link libraries (DLLs), 361
Dynamic priority scheduling, 115
Dynamic views, 15, 236

Earliest deadline first, and dynamic priority
scheduling, 115

Earth Core System (ECS), 317
Earth Observing System Data Information

System (EOSDIS), 317
e-commerce architecture, 332,

341

and ABC, 340–342
applications, and J2EE framework, 403
quality goals achieved by,

346

e-commerce systems
deployment view of, 342
and entity beans, 422
and performance, 349

Economic models, of software, 307, 308
Efficiency, and usability, 90
EJB client code, simplified example of,

415

EJBContext interface, 413
EJBHome, 413
EJBObject interface, remote interfaces and

extension of, 413

EJBs.

See

 Enterprise JavaBeans
Electronic flight simulators, 176
Electronic warfare systems, 370
Element catalog, in documenting a view, 208
Element list, 217
Elements, 21, 22, 44, 47

clustering of, into Path and Component, 256
extraction of, from UCMEdit,

248

graphical representation and subset of,

243

and information extraction, 234, 235
raw set of, 249
requirements, in interface documentation,

214
and re-use, 355

elements table, 238, 250
Ellipsis (...), in UML, 222
e-mail, 117
Emergency mode, 85
Encapsulation, 66
Encryption, 117, 332, 343
End demand process, 64
Ending evaluation criteria, 465
End periodic process, 63
End users

changes made by, 81, 82
and Luther architecture, 429–430

Engine control systems, 83
Enhanced Direct Access Radar Channel

(EDARC), 137
En route centers, 130, 131, 133, 147
En route display consoles, and ISSS physical

view, 136
Ensembles

model-process work flow and definition
of, 468

of off-the-shelf components, 462, 463
Enterprise information systems tier, in J2EE

multi-tier model, 408
Enterprise JavaBeans, 345, 346, 351, 352,

401, 425, 443, 482
ABC for, 402, 403
aims of, 404–405
architectural approach for, 408–410
and dependence on JVM performance, 424
deployment descriptors, 417
and distributed transactions, 423
and J2EE containers, 443–444
package diagram, 413
programming, 413–416
resource pooling with, 424
and system deployment decisions, 419–420
and work-flow component packaging,

447, 448, 449

Bass.book Page 505 Thursday, March 20, 2003 10:29 PM

506 Index

Enterprise software systems, requirements
for, 404

Entity beans, 410, 443
and EJB, 409, 410
using or not using?, 422
work-flow component packaged as, 447

Entity-relation diagrams, 477
Environment

and airframe, 193
in ATAM scenarios, 280
in CBAM scenarios, 310
and flight simulator, 178, 182, 183

Errors, 44
minimizing impact of, 91
Nightingale system and recovery of, 303

ESI. See External System Interface
e-stores, 348–349
European Laboratory for Particle Physics,

328, 329, 332, 334, 346, 347
Evaluate the model solution (step 6), in model

problem process, 471–472
Evaluation criteria, 469, 470–471
Evaluation leader

ATAM and role of, 273, 277
in Nightingale system, 289

Evaluation of model solution, 465
Evaluation phases

and ATAM, 276
in Nightingale system, 290–303

Evaluations, importance of, 262
Evaluation teams

architecture approaches analysis and, 285
and ATAM, 272, 275, 276, 279
competent, 267
and Nightingale system, 289, 290
and risk theme identification, 286
and scenario brainstorming, 284

Evaluators
and ATAM, 275
and utility tree, 282

Event-based time management, in flight
simulator, 184

Event handler
in air vehicle model executive, 185, 187
for flight simulator, 192

Event rate, managing, 113
Events, 82, 83
Event streams, and resource demand, 113
Event systems, subpatterns in, 125
Evolutionary Delivery Development Process, 63
Evolutionary Delivery Life Cycle, 154, 171, 173
Evolutionary prototyping, and architecture,

31–32

Examples. See also Case studies
ASEILM, 465, 466–476
garage door opener, 156–166
reconstruction, 248–257

Exception definitions, in interface
documentation, 213

Exception handler, 102
Exceptions, 44
Exceptions tactic, 102, 147
“Excludes” relation, 65
Execution times, bounding, 114
Execution traces, 234
Execution view, 42
Executive constituent, of Structural Modeling

architectural pattern, 185
Executive states, of flight simulators, 189
Exemplar systems, and re-use, 356
Existence of A dependency type, 108, 110
Expectations, evaluations and management

of, 267
Expected changes, anticipating, 107
Explicit invocation, 125
Exposure, limiting, 117
Extended Computer Module, 56, 57, 62, 63
Extensibility, and the Web, 329
Extension points, 361
External sources, and product line evolution,

365
External System Interface (ESI), 137

FAA. See Federal Aviation Administration
Facade pattern, 109
Factory pattern, 109, 110
Failures, 101

differing standards for, 65–66
faults versus, 79
within SAS, 140

Fast attack craft (FAC), 371
FAST process, 358, 367
Fat clients, 440
Fault detection, and availability, 102
Fault prevention, and availability, 104–105
Fault recovery

and availability, 102–104
and ISSS, 146

Faults, 101
discovering, 119
failures versus, 79

Fault tolerance, 139
ISSS C&C hierarchy for, 145
mechanisms, 150
view, 144–147

Fault-tolerant hierarchy, 146

Bass.book Page 506 Thursday, March 20, 2003 10:29 PM

Index 507

Fault-tolerant ISSS applications, code
structure template for, 149

Federal Aviation Administration, 70, 129,
130, 132

Fidelity, range of and flight simulators, 179
File containment, code segments for, 254
Files, 234

in UCMEdit model, 250
File Transfer Protocol, 336
Filter architectural type, 227
Filter Behavior Module, 58
Filter class, 223
Filtering, 118
Filters, and bridges, 459
Financial benefits, from architectural

inspections, 263
findByPrimaryKey method, 415
finder method, 415
Finite-state-machine models, 13
Fire control systems, 370, 372
Firewalls, 87, 117, 336, 343–344, 471, 472
First-in/First-out (FIFO), 115
First-order effects, and flight simulator, 193
“Fitness for use” criteria, and component

qualification, 460
Fitness of purpose, evaluating software

product line for, 362
Fixed-priority scheduling, 115
Flight controls system, in air vehicle model, 195
Flight data, and ISSS physical view, 136
Flight simulation case study, 175–199

architectural solution, 182–196
relationship to ABC, 176–177
requirements and qualities, 177–181

Flight simulators, 70
and ABC, 176–177
design challenges with, 175
execution states with, 179–181, 189
geographically distributed areas, 180
properties of, 179–181
purpose of, 177
reference model for, 182
roles in, 177–178

Flight simulator software, 155
Flight strips, 136, 151
Follow-up (phase 3)

and ATAM, 276
in Nightingale system, 303

Formal specification languages, 13
Fortran, CGI scripts in, 339
Fortran libraries, 458
Forward-looking radar, 50, 51
“Four Plus One” approach, 41

Frame rates
for flight simulators, 179–180
and periodic time management, 183

Frameworks, 478, 482
Front-line workers, computer support for,

427, 429
FTP. See File Transfer Protocol
Fuel system, in air vehicle model, 196
Functional group (FG), 139, 140
Functionality, 72

allocating in example, 160, 161
and architecture, 72
for controller children, 192–193
and market share, 95

Functional requirements, for child modules in
ADD, 164–165

Functional subsets, rapid identification of, 60
Function calls, disambiguating, 241
function_calls_function, 239
Function Driver modules, 58, 62, 65, 66
Function pointers, 236
Functions, 234, 253
Function type, 244
Fused views, items, 240
Future, in Active Object design pattern, 124

Garage door opener example, 156–166, 480
Garbage collection, and heap size, 424
Gateways, 336
-gcverbose compiler option, 424
Gen++, 235
Generalization, in UML, 221–222
Generalized capability components, 442
“Generalize the module” tactic, 107, 147

and code templates, 149
and module decomposition view, 138

General quality scenarios, generation of, 78
General scenarios, 75, 97

availability, 76
communicating concepts and use of, 93–94

Generate quality attribute utility tree
in ATAM evaluation phase 1, 279–282
in Nightingale system evaluation phase 1,

294–295, 297
Generators for systems, 478
Generic utilities, for libWWW, 335, 336
get method, 422
get_outbound_msg operation, 187
Global Availability Management, 144
Global variables, in UCMEdit model, 250
GNU make utility, 248
Good design, promotion of, 265
Gopher, 336

Bass.book Page 507 Thursday, March 20, 2003 10:29 PM

508 Index

Göteborg class (Swedish), 371, 372
goto statement, 477
gprof, 236
Graphical images, 478
Graphical notations, in primary presentation,

208
Graphical user interface (GUI) facilities, and

ISSS, 135
Graphic artists, and Luther architecture user

interface, 436, 437
Graphics, 331, 332, 343
Graphics element, 252
grep, 232, 236
grok fact manipulator tool, 258
Ground control, 130
Group decomposition, in air vehicle model,

193–195
Groups, 195–196
GUI-builder tools, 405

Hackers, 71, 86, 457, 474
Halt state, in flight simulator, 179
Handheld computers, 352, 427
Handheld, pen-based tablets, 433
Hard real time, 129
Hardware-hiding module, in A-7E module

decomposition structure, 56
Hash results, 117
has_subclass relation, 240
Header files, 234
Head-mounted displays, 428, 429, 430
Heads-up displays, 50, 51, 63
Health monitoring, and availability, 101
Heap, 424
“Heartbeat” tactic, 102, 146
Helicopter guidance systems, architecture

reconstruction used for, 232
Heterogeneity, and the Web, 330
Hierarchical domain engineering units, and

product development, 367
High-bandwidth communication, 167, 168
High-level design, architecture as, 23
Highly distributed software applications, 129
High-order effects, and flight simulator, 193
hold_parameter, 190
home class, 417
Home information system, and example,

157, 166
home interface, 413, 414, 416
“Horizontal” scaling (or scaling out), 344,

422, 425
Host Computer System (HCS), 134, 135–136
Hot restart, 103

Hot spots, 343
Human–computer interaction research, 122
Human–computer interface (HCI), 150, 382,

383, 388, 391, 394
Hypertext, 349
HyperText Markup Language (HTML),

158, 329
Hypertext systems, 329

criteria/features with, 331
HyperText Transfer Protocol (HTTP), 334,

336, 343, 470
and browser-based interfaces, 439
and custom Web-based clients, 440
and load balancers, 344
and Luther architecture, 435

HyperText Transfer Protocol Secure
(HTTPS), 332, 336, 343, 344, 470

Hypotheses, 250, 255
architectural abstractions as, 245
in identify a design question, 469
and reconstruction, 233, 234

IDE. See Integrated development
environment

Identify a design question (step 1), in model
problem process, 468–469

Identify architectural approaches, in ATAM
evaluation phase 1, 279

Identify ending evaluation critiera (step 5), in
model problem process, 470–471

Identify implementation constraints (step 3),
in model problem process, 469

Identity of an interface of A, 108, 110
Idioms, 125
IDL. See Interface Definition Language
IEEE. See Institute of Electrical and

Electronics Engineers
IEEE 802.11b, 435
IIOP (Internet Inter-ORB Protocol), 440
IIS. See Internet Information Server
Imagix, 235
Immediate business influence, and

architectures, 8
Implementation

architecture and defining constraints on, 29
architecture versus, 43
changes made to, 81
constraints, 465
interface separated from, 120
and quality attributes, 73
structure, 39

Implicit invocation, 8, 125
import operation, 186, 189, 190

Bass.book Page 508 Thursday, March 20, 2003 10:29 PM

Index 509

includes relationship, 235
“Increase available resources” tactic, 114
“Increase computational efficiency” tactic,

113, 480
Index, 217
Industrial development projects, architectural

views in, 43
Inertial measurement set (IMS), 50
Information extraction, 234–237

guidelines for, 237
and reconstruction, 233, 248
typical extracted element and relations,

234, 235
Information hiding, 16, 42, 44, 45, 49, 66,

159, 168, 477
and Active Object design pattern, 124
and A-7E module decomposition, 54–56
and A-7E Project, 52
and packaging, 142
prevention of ripple effects and, 108–109

Infrastructure technology, and CelsiusTech, 379
Inheritance, 219, 477
“Inherits-from” relation, 38
initialize state, 190
Initial Sector Suite System, 130–131

availability requirement for, 132–133
C&C hierarchy for fault tolerance, 145
functions required of, 134–135
levels in fault-tolerant hierarchy, 146
physical view, 135–138
scale of, 134
software architecture layers, 143
software audit of architecture, 150–151

Inmedius, 352, 427, 428, 435, 443, 452
ABC as it pertains to, 429
and components, 436
device types and, 433
library of components at, 442
Luther architecture, and business

approach at, 431–432
and Luther’s quality goal achievement, 450
solution development at, 430
and user interfaces, 432
work-flow design rationale at, 445

Input/output (I/0), managing for testing, 120
InputValue method, 239
Instance-level collaboration diagram, 227
Instances, as objects in UML, 223
Institute of Electrical and Electronics

Engineers, 98
Instructors, simulation, 178
Instructor station, and flight simulators,

182, 183

Integrability, 100
designing for, 175
and flight simulators, 180, 196
Structural Modeling pattern and

achievement of, 198
Integral factor of base rate, and flight

simulator, 180
Integrated development environment, 345
Integration, 354
Integration mechanisms, 96
Integration testers, 89
Integrators, and ATAM, 272
Integrity, 86, 116
Intelligent data fusion, and mediation, 459
Interaction mechanisms, in architectural

patterns and styles, 125
Interchangeability, 33
Interconnection strength, 255
Inter-element communication, 30
Interface Definition Language, 212, 458
Interface documentation template, 212–214, 215

data type definitions, 213
element requirements, 214
exception definitions, 213
interface identity, 212
quality attribute characteristics of, 214
rationale and design issues, 214
resources provided, 212–213
usage guide, 214
variability provided by, 213–214

Interface mismatch, 457
avoidance techniques for, 461–462
detection techniques for, 460–461
repair techniques, 457–460

Interfaces, 230
adding, 109
as annotations, 224
of child modules, 157
of child modules, in example, 163–164
as classes, 225
as class/object attributes, 225
documenting, 211–214
and information hiding, 54
no explicit representation of, 224
separating from implementation, 120
to software element, 44–45
specification of, 211
stability, 109
subsystems, 194
translation of, 458
in UML, 219, 224–225

<<interface stereotype>>, in UML, 212
Intermediaries, using, 109–110

Bass.book Page 509 Thursday, March 20, 2003 10:29 PM

510 Index

Intermediary (modifiability), and Active
Object design pattern, 124

“Intermediary” tactic, 413
Internal monitoring tactic, 120
Internal sources, and product line evolution, 365
Internal Time Synchronization, 144
Internet, 117, 329, 404

backbones, in United States, 333
growth of, 332
and security, 332

Internet-enabled business systems,
requirements of, 403

Internet Information Server (Microsoft), 467,
468, 470, 475

Internet Protocol (IP), 332
Interoperability, 7, 94, 478, 480

and language-independent interfaces, 58
World Wide Web case study in, 327–349

Interprocess communication, for SS2000, 390
Inter-product commonality, and software

product lines, 354
“Introduce an intermediary” tactic, and

SS2000, 391
“Introduce concurrency” performance

tactic, 124
“Introduce concurrency” tactic, 114, 345
Intrusion detection systems, 118
Inventory, 345
Inverse mappings

and extracted information, 244
and reconstruction, 233

IP addresses, 343
“is-an-instance-of” relation, 38
“is-a” relation, 125, 126

and module class view, 219
“is-a-submodule-of” relation, 36, 54
“is-part-of” relation, 208, 219
ISSS. See Initial Sector Suite System
is_subclass_of class, 235
IT architecture, 478
Iterative prototyping, 9

Java applets, 343
Java Database Connectivity (JDBC), 435
Java Naming and Directory Interface, 413
Java programming language, 346, 401, 402,

404, 425
JavaScript, 439
JavaServer Pages (JSP), 407, 437, 473
Java servlet ensemble

evaluation of, 472, 474–476
layers of custom component, 474

Java 2 Enterprise Edition (Sun Microsystems),
351, 352, 401, 407, 452, 482

ABC for, 402, 403
and aims of EJBs, 404–405
browser-based clients and, 437
business needs and creation of, 425
and component packaging, 443
deployment view of multi-tier architecture

for, 406
EJB support for quality attribute

requirements of, 411–412
and Luther architecture, 428, 431,

434–435, 450–451
major platform features, 406
Sun’s quality attribute requirements for, 405
and system deployment decisions, 419–420
and transaction and security services, 408
and the Web, 403–405

Java Virtual Machine (JVM), 402, 408, 424,
443, 448

Jini, 236
Jitter, 84, 85
JNDI. See Java Naming and Directory

Interface
J2EE. See Java 2 Enterprise Edition

“Keeping interfaces small, simple, and
stable” tactic, and integrability, 175

Keys, 117, 208
Kinetics, and airframe, 193
Kinetics group, systems in, 195–196
Knowledge and insight, reconstruction

process guided by, 258

LAN. See Local area network
Landing gear system, in air vehicle model, 195
Language-independent interfaces, 58
Language requirements, and Nightingale

system, 291
Late binding, 236, 237
Latency, 84, 85, 111

and contention for resource, 112
reducing, 113, 114

Layered architectures, 62
Layered patterns, 279
Layered structure, 37, 44
Layered view, 41, 142, 144, 147, 205, 207

and architecture presentation, 278
for SS2000, 392

Layers, 37, 62
LCN. See Logical Communications Network
LCN interface units (LIU-H), 137
Learning system features, 90
“Least effort” extraction, 237
“Leftover” functions, in UCMEdit model, 250
Legacy systems, 96, 232, 257, 341

Bass.book Page 510 Thursday, March 20, 2003 10:29 PM

Index 511

Lexicon analyzers, for information extraction,
235, 236

lex/yacc, 232
libWWW, 329, 330, 334–336, 349

content producers/consumers interacting
through clients/servers, 334

deployment view of Web client server, 338
early client-server architecture use of,

337–339
layered view of, 335
lessons from, 336–337

Life cycle
architecture in, 153–155, 481–482
electronic flight simulators and problems

with, 176
evolutionary delivery, 154

“Limit exposure” tactic, 144
“Limit possible options” tactic, 107
Links, 435

connector instances as, 225
and the Web, 331

Linux system, 258
List class, 254, 255
List element, 255
ListItem class, 254, 255
ListIterator class, 254, 255
List method, 239
Load balancing, 114, 443

and e-commerce sites, 344
and EJB container, 444
and Luther architecture, 434

Loading factors, and arrival patterns, 83
Load time, 110
Local area network, and SS2000, 371
Local Availability Manager, 144, 146
Local changes, 31
Local file systems, 336
“Localize changes” tactic, 159
“Localize modifications” tactic, 106–107
Local variable aggregation, and SQL and

perl, 244
Location independence, and Luther

architecture, 434
Location of A (runtime), 108, 110
Location sensing, 434
Locks, and work-flow model definitions, 447,

448, 449
Logging, 336
Logical Communications Network, 137, 138
Logical_Interaction architectural element, 244

query for identifying, 245
Logical threads, 38
Logical view, 41
Lollipop notation, in UML, 219, 225

Long-term business influences, and
architectures, 8

Looping, and work-flow component, 445
Loose coupling, and teams, 168
“Lost” architecture, beginning process of

recovering, 246–247
Low-bandwidth communication, between

teams, 167
lsedit visualization tool, 258
LSME, 235
Luther applications, deployment view of, 436
Luther architecture, 427–452

ABC as it pertains to, 429–432
and browser-based clients, 437, 439
and business approach, 431–432
and business delegate pattern, 452
components for, 442–444
and custom Web-based client, 439–440
and organizational structure, 431
quality goals achieved by, 451
requirements/qualities met by, 432–434
and software developers’ experience, 431
strategy and quality goals achieved by, 451
and use of J2EE, 450–451
work-flow component and, 444–450

Luther system, 358

M&C. See Monitor-and-Control consoles
mailcap, 338
main procedure, 241
Maintainability, and Nightingale system, 291
“Maintain an audit trail” tactic, 118
Maintainers

and architectural integrity, 96
and ATAM, 272

Maintain existing interfaces, prevention of
ripple effects and, 109

“Maintain interface stability” tactic
and client-server view, 142
and code templates, 149
and module decomposition view, 138

“Maintain multiple copies” tactic, 114
“Maintain semantic coherence” tactic, 106–107
Maintenance phase, 14
Makefiles, 236
Malfunctions, 191, 193
Manageability, and Web-based applications, 404
“Manage event rate” tactic, 113
Manage input/output tactics, 120
Management information, in documenting a

view, 209
Many-to-many mappings, between

structures, 40
Mapping between views, 217, 481

Bass.book Page 511 Thursday, March 20, 2003 10:29 PM

512 Index

Marketing Plan, at CelsiusTech, 383, 384
Market segmentation, and product scope, 358
Marshalling, 112
Measuring techniques, 265–266
Mediator pattern, 109
Mediators, 459–460
Melard Sidearm, 433
Memory footprints, for various device

classes, 433
Memory leaks, preventing, 105
Memory utilization, 7
MergeAndSort, in UML, 223, 224
Merging, and work-flow component, 445
Mesa, 250
Message passing, 139
Method request, in Active Object design

pattern, 124
Metrics, 265, 269
Microsoft, 347

Access, 468, 470
COM+, 425
development practices at, 173
and Evolutionary Delivery Life Cycle, 171
IIS, 467, 468
.NET, 402
Passport, 332

Middleware Company, The, 425, 478
“Migrates-to” relation, 38
Migration, and COTS adoption, 476
mimerc, 338
Mining machinery, and architecture

reconstruction, 232
Mismatch correction, 457
Miss rate, 85
Misuse detection, 118
MIT, Media Laboratory at, 428
Miva Empressa ensemble, 467, 468–472
Miva Script applications, 467
Mixed initiative, 122
Mixed-time systems, in flight simulator, 184
Mk2, 376
Mk2.5, 376, 377, 378, 380, 381
Mk3, 377
ML polymorphism, 462
Mobile devices, 439

and Luther architecture, 437
Modeling and analysis, and re-use, 355
Model problem process steps

define the starting evaluation criteria, 469
evaluate the model solution, 471–472
identify a design question, 468–469
identify ending evaluation criteria, 470–471
identify implementation constraints, 469
produce a model solution, 469–470

Model problems, work flow, 463, 464
Models

flight simulators and use of, 179
and system initiative tactics, 122

Model solution, 463, 465
evaluating, 471–472
for Java servlet ensemble, 472
producing, 469–470

Model-View-Controller pattern, 109, 123, 127
Modifiability, 7, 16, 25, 30, 69, 73, 80–81,

127, 442
application servers for, 345
and avoidance of interface mismatch, 461
and common services, 106
and component repair, 457
and e-commerce, 341
and flight simulators, 196
performance versus, 159
and software architecture, 201
and SS2000 product line, 388
Structural Modeling pattern and

achievement of, 198
and system quality attributes, 74
Web browsers for, 342–343

Modifiability scenarios, 76–77, 82, 83
Modifiability tactics, 105–111, 125, 480

and client-server view, 142
and code templates, 148
defer binding time, 110–111
design-time tactics related to, 121
localize modifications, 106–107
and module decomposition view, 138
prevention of ripple effects, 107–110

Modification, and flight simulators, 180, 181
MODN. See Noise Model
MODP. See Prop Loss Model
MODR. See Reverb Model
Modularity, and Nightingale system, 292
Module-based programming languages, 477
Module-based structures, 36–38
Module decomposition

goals of, 55
SS2000, and units of software in, 394

Module decomposition structure, 40, 41, 47, 48
and A-7E system, 66
and team structure, 168

Module decomposition view, 138, 147, 164
with ADD, 161
of A-7E software architecture, 59
for SS2000, 392, 394–395

Module guide, 55, 57, 58
Module interconnection view, 42
Module re-use, and CelsiusTech product

line, 397

Bass.book Page 512 Thursday, March 20, 2003 10:29 PM

Index 513

Modules, 35, 36, 97, 477
of air vehicle model application, 185–192
and avoidance of interface mismatch, 461
choosing those for decomposition in

ADD, 157
in decomposition structure, 54
for flight simulator, 192
instantiating in example, 160
and SS2000, 396
structures, 35–36
in UML, 219

Module views, 17, 41, 206
and architecture presentation, 278
options in, 208
in UML, 218–222

Monitor-and-Control (M&C) consoles, 137
MRI scanners, 232, 233
Multi-process applications, name clashes in, 241
Multi-processor systems, 170, 236
Multi-threaded servers, 344
MVC pattern. See Model-View-Control pattern

Name clashes, in multi-process applications,
241

Names, in ATAM utility tree, 281
Name servers, 110
Naming conventions, code segments based

on, 246
Naming services, 401
Narrowly scoped product lines, 358
NASA ECS Project case study

architectural strategies and scenarios
addressed, 320–322

assign utility step, 319
calculate total benefit obtained from archi-

tectural strategy step, 322–323
CBAM applied to, 317–324
choose architectural strategies based on

ROI value step, 323–324
collate scenarios step, 317
collected scenarios, 318
determine utility of “expected” quality

attribute response levels step,
321–322

prioritize scenarios step, 318–319
refine scenarios step, 317, 319
response goals for refined scenarios, 318
ROI of architectural strategies, 323

NASA satellite data system, ATAM applied
to, 305

NASA systems, architecture reconstruction
used for, 232

National Airspace System Modification
(NASM), in ISSS, 138

National Reconnaissance Office, 354
Natural language, semantic information

conveyed with, 213
Naval Business Unit, at CelsiusTech, 384
Naval product lines, SS2000, 371–373
Naval Research Laboratory (NRL), 52, 66
Negotiated interface, 462
Negotiated resolutions, 264
Nesting, 210, 221
Nesting of symbols, and node symbol in

UML, 229
.NET architecture, 402
Netscape Secure Sockets Layer, 343
Network address translation (NAT), 343
Network interface sublayer (NISL), 144
Network News Transport Protocol, 336
Network-related conventions, and COOB, 391
Network usage, 7
NeXT platform, 329
Nightingale ATAM exercise, tabular form of

utility tree for, 296–297
Nightingale system case study, 288–303

analyze architectural approaches step
(phase 1: evaluation), 297–299

analyze architectural approaches step
(phase 2: evaluation), 302

brainstorm and prioritize scenarios step
(phase 2: evaluation), 300–302

catalog architectural approaches step
(phase 1: evaluation), 293–294

follow-up (phase 3), 303
generate quality attribute utility tree step

(phase 1: evaluation), 294–295, 297
hospital installation scenario in, 302
partnership and preparation (phase 0),

288–290
present architecture step (phase 1:

evaluation), 292–293
present business drivers step (phase 1:

evaluation), 290–292
present results step (phase 2: evaluation),

302–303
present the ATAM step (phase 1:

evaluation), 290
NNTP. See Network News Transport Protocol
NobelTech AB, 370
Nodes, 227, 228, 388
Noise Model, 20
Noncentralization, and the Web, 331
Nonintegral factor of base rate, and flight

simulator, 180
Nonlocal changes, 31
Non-real-time systems, 6
Nonrepudiation, 86, 116, 118

Bass.book Page 513 Thursday, March 20, 2003 10:29 PM

514 Index

Non-risks
and architectural approaches, 282, 283, 284
and ATAM, 274, 304
and Nightingale system, 299, 302, 303

Normalization, and architectural strategy, 313
Normal mode, 85
Notation, UML, 219
n-square charts, 194–195, 198
n-tier applications, 345
n-tier architecture, 341
Numerical analysis, 168

Object-based design, 44, 53, 55
Object containment, and systems, 227
Object Management Group, 112, 230

and CORBA, 401–402
Object-oriented analysis, 13
Object-oriented decomposition, and

controller children, 192
Object-oriented design methods, 160
Object-oriented systems, 401
Object request broker (ORB), 402
Objects, 45, 477, 478

and allocation views in UML, 228
connector instances as, 226
within work-flow model definition, 448

Object technology, and CelsiusTech, 379
Obstacle detection algorithm, 480
Obstacle detection module, in example, 160,

165, 166
ODBC, 435
Off-the-shelf components, 476

and architectural mismatch, 456–462
challenges with, 456
ensembles of, 462, 463
and Quack.com, 454–455
requirements negotiation with, 467
systems built from, 453–476

OMG. See Object Management Group
Omission, 80
One-time passwords, 116
Online bookshop example, and state

management, 420–422
Online stores, 348–349
OnLine Transaction Manager (OLTM), 298

communication, data flow, and processors
of, 294

data flow architectural view of, 295
layered view of, 293
and Nightingale system, 292

Openness, and air traffic control system, 133
operate operation, 187
operate state, 179, 189
Operating systems, 373, 453

Operating system threads, 162
Operational modes, 85
Operational units, 139, 140–141
Opportunistic evaluation, 269
Options, 208, 209
Optronic directors, on Göteborg class

multi-role corvette, 372
Organizational structure, 8, 32, 70, 171

and architectural structure, 168, 169
architecture and dictation of, 29–30
for CelsiusTech, 380–387
and Luther architecture, 431
and system structure, 167

Outputs, ATAM, 285–287
Output values, of avionics software, 63
Overloading, 361
Overload mode, 85
Ownership changes, for CelsiusTech, 378–379

Packages/packaging, 142, 147
UML, 219, 222, 226
work-flow components, 447–449

Packet filter firewalls, 344
Packet filters, 343
PAC pattern. See Presentation-Abstraction-

Control pattern
Paging, and heap size, 424
Parallelism, 38, 97
Parallel systems

architectures for, 16
and deployment structure, 39

Parameterized function call, 477
Parameterized interface, 462
Parameterized modules, and CelsiusTech

product line, 397–398
Parameter setting, 81
Parsers, for information extraction, 235, 236
Partitioning

flight simulator sample, 192–193
and n-square charts, 194–195

Partnership and preparation (phase 0)
in ATAM-based evaluation, 275
in Nightingale system, 288–299

PAS. See Primary address space
PAS failures, and switchovers, 139–140
Passivation

and scalability, 420
of stateful bean, 410

Passive redundancy tactic, 103–104
Passwords, 116, 118
Paths, elements related to, 255, 256
Pattern definition and recognition, and

reconstruction, 241
Pattern matching, 236

Bass.book Page 514 Thursday, March 20, 2003 10:29 PM

Index 515

Pattern-oriented software architecture, 42, 127
Patterns, 33, 261

architectural, 24–25, 232, 242, 279
and ARM, 258
business delegate, 452
in Dali, 242
design, 259
and Nightingale system, 290
and tactics, 100, 480–481

Payload sizes, 118
PDF. See Portable Document Format
.pdf files, 337
Performance, 7, 69, 73, 82–84, 100, 171

and air traffic control system, 133
application servers for, 345
databases for, 345
and e-commerce, 341, 349
and entity beans, 422
for flight simulators, 179, 196
and JVM, 424
load balancing for, 344
and market share, 95
modifiability versus, 159
and Nightingale system, 291
proxy servers for, 343
and quality attributes, 74
and software architecture, 201
and SS2000 product line, 388
Structural Modeling pattern and

achievement of, 197–198
and system quality attributes, 74
Web servers for, 344–345

Performance engineers, and ATAM, 272
Performance scenarios, 83

generation of, 85
sample, 84

Performance tactics, 111–116, 125
goal of, 111, 112
resource arbitration tactic, 114–116
resource demand tactic, 113–114
resource management tactic, 114

Periodic event arrival, 83, 84
Periodic operations, and controller children, 191
Periodic process, 63
Periodic sequencer

in air vehicle model executive, 185, 186
for flight simulator, 192

Periodic time management, in flight
simulator, 183

perk, 239
perl, 232, 236, 238, 243, 339

expressions and Dali, 242
and local variable aggregation, 244

Perl proxy server, 470, 471
Persistence services, 401
Personal computers, price/performance ratio

for, 402
Personal digital assistants (PDAs), 433
Personnel, and re-use, 356
Philips Elektronikindustrier AB, 370
Philips Research, 258, 358, 367
Physical distribution, 40
Physical Models Module, 58

of A-7E architecture, 168
Physical Models procedure, 62
Physical view, 41

and ISSS, 135, 136–138
Physics simulation systems, and architecture

reconstruction, 232
Ping/echo fault detectors, 102
“Ping/echo” tactic, 102, 146
Pipe-and-filter style, in UML, 223
Pittsburgh Digital Greenhouse, Spot, 433
Planned evaluations, 266
Planning function, with mediators, 459
Platform changes, 81
Platform compatibility, 7
Platform for Internet content selection

(PICS), 333
Plug-and-play operation, 110
Plug-ins, 335
Polygon Module, 222
Polymorphism, 111, 236
Portability, 25, 81, 94, 100

and Java, 402
with J2EE/EJB, 425
and language-independent interfaces, 58
and Luther architecture, 434
and market share, 95
and quality attributes, 74
and the Web, 340

Portable Document Format, 459
Port number, 118
Ports, 224
POSIX, and SS2000, 373
Postconditions, 213
POSTGRES relational database, 238
Post-mortem meetings, and ATAM, 276
PostScript, 337
Preconditions, 213
Prepare BCN Messages, 144
Prepare Messages (PMS) layer, 144
Preprocessor macros, 120
Present architecture step

in ATAM evaluation phase 1, 277–279
in Nightingale evaluation phase 1, 292–293

Bass.book Page 515 Thursday, March 20, 2003 10:29 PM

516 Index

Presentation-Abstraction-Control pattern,
123, 127

Presentation class, 250, 254, 255
Presentation logic, and Java servlets, 472
Present results step

in ATAM evaluation phase 2, 285
in Nightingale evaluation phase 2, 302–303

Present the ATAM step
in ATAM evaluation phase 1, 277
in Nightingale evaluation phase 1, 290

Present the business drivers step
in ATAM evaluation phase 1, 277
in Nightingale evaluation phase 1, 290–292

Preset adaptation data, 147
“Prevent the ripple effect” tactic, 107–110, 159
Primary address space, 139, 148
Primary component, 103, 104
Primary presentation

in documenting a view, 207–208
and UML, 218

PrimitiveOp class, 239, 240
PrimitiveOp::Compute, 240
printf function, 248
Prioritization, and utility tree generation, 280
Prioritization strategies, common, 115
Prioritize scenarios step

for CBAM, 316
in NASA ECS Project, 318–319

Private interfaces, 461
Private keys, 117, 343
Private links, and the Web, 331
Proactive product lines, and scope, 364
Problems, early detection of, 264
Procedures, processes and systems, and

Luther architecture, 432, 433
Proceedings scribe, ATAM and role of, 273
Process communication, 40
Process enforcer

ATAM and role of, 273
in Nightingale system, 289

Processes, 138
for A-7E, 63
and re-use, 356

process_event operation, 189, 190, 191
Processing deadlines, 84
process_malfunction, 190
“Process monitor” tactic, 105
Process observer

ATAM and role of, 273
in Nightingale system, 289

Processor groups, 139, 140
Processors, 139
Processor speeds, for various device classes, 433

Process recommendations, in “good”
architecture, 15

<<process>> stereotype, 224
Process structure, 38, 40, 47, 48

for A-7E, 63–65, 66
Process views, 41, 138–141, 147, 207

and element catalog, 208
for SS2000, 390–392

Produce a model solution (step 4), in model
problem process, 469–470

Product architectures, results of evaluation of,
362–363

Product-based organizations, 375
Product line architects, considerations by, 360
Product line architecture, 11, 388

evaluating, 362–363
Product-line-based organization, 375
Product line development, for SS2000, 369
Product line organizational models, types of,

366–367
Product line pitch, 203
Product lines, 45, 367

architecture-based, 232
and CelsiusTech’s organizational

structure, 380–387
failure with, 359
scope of, 357–358
SS2000 architecture and achievement

of, 396
summary of CelsiusTech’s conversion to,

398–399
and variation, 82

Product line support, for SS2000, 390–392
Product Line Users Group, at CelsiusTech, 384
Product (or structural) recommendations, 15
Product Plan, at CelsiusTech, 383, 384
Products Group, at Inmedius, 431
Profilers, for information extraction, 236
Profiling tools, 236
Program families, 42, 44, 45
Programmatic transaction management,

450, 451
Programming, 33

and EJBs, 413–416
Programming languages, early, 477
Project decision makers

and ATAM, 272, 275, 276, 304
and utility tree, 279

Project glossary, 218
Project managers, 272

and architecture, 27
and Nightingale system, 290

Project planning, and re-use, 355

Bass.book Page 516 Thursday, March 20, 2003 10:29 PM

Index 517

Prop Loss Model, 20
Propulsion subsystem, 196
Propulsion system, in air vehicle model, 195
Protocols, 118, 214
Prototypes/prototyping

and architecture, 31–32
creation of, 13
and Luther architecture user interface, 437

Provides assumptions, 457, 458
Proxy, in Active Object design pattern, 124
Proxy pattern, 109
Proxy servers, 336, 343
Pseudo-threads, and libWWW, 337
Public keys, 117, 343
Publish-subscribe

in example, 161
patterns, 109
registration, 110

python, 232

Quack.com, 453, 454–455
Qualification, and COTS adoption, 476
Quality, 69
Quality attribute characteristics of interface,

in interface documentation, 214
Quality attribute names, in ATAM utility

tree, 281
Quality attribute parts, 75
Quality attribute requirements, 305

and future impact of components, 483
for J2EE, 405
meaningful generation of, 78
for typical Web-based applications, 404

Quality attributes, 14, 16, 42, 69, 99, 480
and architectural structures, 40
and architecture, 73–74, 453
and ATAM, 279, 280
and Attribute-Driven Design, 155
and CBAM, 324
and cross-cutting requirements, 481
and documentation, 205
functionality and architecture, 72
importance of architecture and, 144–145
and integrability, 175
and Nightingale system, 292
and patterns, 25
and scenarios, 75–78
and software architecture, 30–31
stimuli, 94
system, 74–75
and tactics, 100
understanding, 71–98

Quality-attribute scenarios, 13, 70, 74, 75,
78–94

availability scenario, 76, 79–80
generation of, 77
modifiability scenario, 76–77, 80–82
performance scenario, 82–85
in practice, 78–94
security scenario, 85–88
testability scenario, 88–90
usability scenario, 90–93

Quality-attribute-specific tables, 78
Quality attribute utility tree

ATAM and generation of, 279
Nightingale system and generation of,

294–295, 297
Quality goals

A-7E module decomposition structure and
achievement of, 56

A-7E process structure and achievement
of, 64

A-7E uses structure and achievement of, 61
Luther and achievement of, 451

Quality of service/data provided by A
dependency type, 108

Quality requirements, 99
and architectural drivers, 158
and Attribute-Driven Design, 156
mapping of architectural decisions to, 274

Quality scenarios
and architectural drivers, 158
and business goals, 155
for example, 156
verifying/refining as constraints for child

modules, 164, 165–166
Queries, and database models, 237
Questioner

ATAM and role of, 274
in Nightingale system, 289

Questioning techniques, 265, 266
Questionnaires, 265
Queue sizes, bounding, 114

R&D group, at CelsiusTech, 385
Radar controllers, 133
Radar reports, 134
Radio buttons, 435
Raising/lowering door module, in example,

165, 166
Rate monotonic, and fixed-priority

scheduling, 115
Rate Monotonic Analysis, 110
Rationales

in architecture background, 209
capturing, 264
in interface documentation, 214

Rational Unified Process, 41, 43, 155, 173

Bass.book Page 517 Thursday, March 20, 2003 10:29 PM

518 Index

Reactive model, and product family, 364–365
Reactive systems, and statecharts, 210
Reader’s viewpoint, 230

and architectural documentation, 202
Real-time deadlines, 6
Real-time embedded software systems, 53
Real-time performance, with Structural

Modeling pattern, 197
Real-time performance constraints, for flight

simulators, 179–180
Real-time scheduling mechanism, 163
Re-architecting tool suite, 258
Reconstructing software architectures,

231–259, 481
database construction, 237–239
example, 248–257
information extraction, 234–237
reconstruction, 241–246
reconstruction activities, 233–234
view fusion, 239–241
workbench approach, 232–233

Reconstruction, 203, 233
Reconstruction example, 248–257

database construction, 248–249
information extraction, 248
view fusion, 249–257

Reconstruction workbenches, 258
Reconstructors, 233, 244, 245

and UCMEdit example, 248
Recording, Analysis, and Playback, in ISSS,

138
“Record/playback” tactic, 179

and managing input/output for testing, 120
Recovery, 101
“Reduce computational overhead” tactic, 113
Reduce demand, 159
Redundancy, 70, 146

and availability, 101
and Web-enabled enterprise systems, 423

“Redundancy” tactic, 100
Re-engineering workbench, 258
Reference architectures, 25, 26, 42, 53

for e-commerce systems, 341
Reference model, 25, 42

for flight simulator, 182
Refine, 235
Refine scenarios step

for CBAM, 316
in NASA ECS Project, 317

Reflective programs, 361
Relational database model, and Dali

workbench, 238
Relational databases, 12

Relations
extraction of from UCMEdit, 248
and information extraction, 234, 235
raw set of, 249

Relationship models, 26
Relationships

graphical representation of, 243
subset of, 243
tables, 238

Releases, and Evolutionary Delivery Life
Cycle, 154, 173

Relevant views, choosing, 205–207, 229
Reliability, 7, 44

and market share, 95
and SS2000 product line, 388

Remote access, and the Web, 329
remote class, 417
remote interface, 413, 414, 416
Remote method invocation, 113, 402, 440
“Removal from service” tactic, 104–105, 141
Reorganizations, at CelsiusTech, 379
Repair code, classes of, 458
Repair of system failure, 79
Repairs, 101
Replay state, in flight simulator, 179
Replicas, purpose of, 114
Replication, 163
Reports

after ATAM-based evaluations, 275, 276
evaluation, 268

Repositories, 109
Repository structure, 38
Requirements, 12, 479

for garage door opener example, 158
and re-use, 355
specification, 6
understanding, 13

Requirements analysis
and architecture design, 171
preliminary, 154

Requirements document, 3, 7, 8
for A-7E Project, 53

Requirements validation, 264
“Requires assumptions” interface, 457, 458
Research world, success and failure in, 65–66
Resource allocation decisions, and

implementations, 29
“Resource arbitration” tactic, 114–116, 159
Resource behavior of A, 108, 110
Resource consumption, 112
Resource contention areas, 15
Resource contention problems, 162
Resource demand tactics, 113–114, 159

Bass.book Page 518 Thursday, March 20, 2003 10:29 PM

Index 519

Resource management tactics, 114
Resource managers, 110
Resource name, 212
Resource ownership, 108
Resource pools, 424, 425
Resources, contention for, 112
Resource semantics and syntax, in interface

documentation, 212–214
Resource usage restrictions, in interface

documentation, 213
Response, 80

in ATAM scenario, 280
of availability scenario, 80
CBAM and scenarios in, 310
jitter of, 84
of modifiability general scenario, 82
of performance general scenario, 85
of quality attribute scenario, 75
of security general scenario, 87
tactics for control of, 100
of testability general scenario, 90
of usability general scenario, 92

Response measure
of availability scenario, 80
of modifiability general scenario, 82
of performance general scenario, 85
in quality attribute scenario, 75
of security general scenario, 87–88
of testability general scenario, 90
of usability general scenario, 92–93

Response time, 112–113
Restrict communication paths, prevention of

ripple effects and, 109
“Restrict communication” tactic, 188
Results, Nightingale system and presentation

of, 302–303
return function, 248
Return on investment (ROI), 309, 310, 315

calculating, 313
CBAM and architectural strategies based

on, 316
Re-use/reusability, 44, 353

and architecture, 351
and CelsiusTech product line, 396, 397
and components, 442
failures with, 356
of Java components, 405
and Luther architecture, 444–450
of modules, 477
and software architecture, 26, 32–35
and software product lines, 355
of work-flow component, 445

Re-use library, 356, 357

Reverb Model, 20
Reverse-direction arrows, 155
Reverse engineering expert, 232
Reviews, forced preparations for, 264
rigiparse, 235
Rigi Standard Form, 233, 238, 258
Rigi tool, 241, 258
Risks, 268

and architectural approaches, 282, 283, 284
and ATAM, 274, 304, 309
and COTS adoption, 476
and Nightingale system, 299, 302, 303

Risk themes
and ATAM, 275, 285, 286
for Nightingale system, 303

rlogin, 336
RMI. See Remote method invocation
ROI. See Return on investment
Roles, in flight training simulator, 177–178
Rollback tactic, 104
Rollout schedule, 96
Root node, utility of, 279
Rose model, and Nightingale system, 303
Round robin, and dynamic priority

scheduling, 115
Routers, for security, 343
RTL/2, 376, 378
Rule-based system, 170
Rules engine, and Nightingale system,

298–299, 303
Runtime, 237

architectural and interface mismatch and
errors in, 457

binding at, 110
components, 36
parameterization, 236
registration, 110
structure, 47

Runtime tactics, 121–122
RUP. See Rational Unified Process

SAAM. See Software Architecture Analysis
Method

Safety, and SS2000 product line, 388
Safety-critical systems, 13, 129
Sampling, control frequency of, 113
SAS. See Standby address space
Satellites, and architecture reconstruction, 232
Scalability, 30, 94

application servers for, 345
databases for, 345
and e-commerce, 341
load balancing for, 344

Bass.book Page 519 Thursday, March 20, 2003 10:29 PM

520 Index

Scalability continued
and Luther architecture, 434
and Nightingale system, 292
and passivation strategies, 420
and Web-based applications, 404
and the Web, 329

Scaling out (or “horizontal” scaling), 422
Scaling up (or “vertical” scaling), 422
scanf function, 248
Scenario-based techniques, 14
Scenarios, 13, 40, 99, 265

and ATAM, 280, 304
ATAM and brainstorming/prioritizing of,

284–285
CBAM and collating/prioritizing/refining

of, 316
coupling tactics and, 480
and Luther architecture, 449
and Nightingale system, 295, 297,

300–301, 302
and product line architecture, 362
quality attribute, 69, 70
and quality attribute names, 281
usability, 122
utility and priorities of, 312
utility and variations of, 310
and utility tree, 280

Scenario scribe
ATAM and role of, 273
in Nightingale system, 289

Schedule estimates, and software
architecture, 32

Scheduler, in Active Object design pattern, 124
Scheduler module, in example, 165, 166
Schedules, 170, 354, 355
Scheduling policies, 114–115, 159

and Active Object design pattern, 124
and flight simulator, 183

Scheduling theory, 115, 127
Scope/scoping, 354

controlled, 267
and product lines, 357–358, 364

SCR. See Software Cost Reduction
Screen shots, and Luther architecture user

interface, 437
Scribe, 279
Scripts, and bridges, 459
Secondary address space (SAS), 139, 148
Sector suite, controllers at, 133, 134
Secure communications, between IIS and perl

proxy server, 470
Secure Sockets Layer, 117, 332, 343
Security, 7, 25, 69, 85–86, 127, 443

designer’s decisions, J2EE, and imple-
mentation of, 450

and e-commerce, 341
and EJB container, 444
HTTPS for, 343
and Java servlet ensemble, 472, 474
and Nightingale system, 292
routers and firewalls for, 343–344
and software architecture, 201
and system quality attributes, 74
and the Web, 332, 340, 349, 404

Security general scenarios, 86–88
Security kernel, 73
Security scenarios, sample, 87
Security tactics, 116–119, 125

detecting attacks, 118
recovering from, 118
resisting attacks, 116–117

sed, 232
Seeheim pattern, 123, 127
SEI. See Software Engineering Institute
Self-configuring software, 462
Semantic coherence, 107, 123, 159

and CSCIs, 138
maintaining, 106

“Semantic coherence” tactic
and code templates, 149
and separation of concerns with EJB, 417

Semantic constraints, in architectural patterns
and styles, 125

Semantic importance, and fixed-priority
scheduling, 115

Semantics, 108
Semicolon, 477
send operation, 187
Sensitivity points

and architectural approaches, 282, 283, 284
and ATAM, 274, 309
and Nightingale system, 298, 299, 302, 303

Sensor/actuator virtual machine, synchron-
ization mechanisms for, 162, 165

Sensory inputs, and flight simulator, 180
“Separate user interface” tactic, 123, 435, 442
“Separating interface from implementation”

tactic, and managing input/output for
testing, 120

Separation of concerns, 41, 45, 55, 417
Sequence, 108
Sequence diagrams, 209, 211
Servant, in Active Object design pattern, 124
Servers, 334

applications as, 141
multi-threaded, 344

Bass.book Page 520 Thursday, March 20, 2003 10:29 PM

Index 521

Server-side components, EJB, 413
Server tier, processing power increases in,

422–423
Service, 109

semantics of, 108
syntax of, 107

Service providers, and ABC for the Web,
346, 347

Service request message, 139
Servlet code, 408
Servlets, 407, 437
Session beans, 409, 443
Session EJBs, and work-flow component

packaging, 448
Session state, and Luther architecture, 441
set method, 422
set_parameter, 190
SF300 class multi-role patrol vessels

(Danish), 371
“Shadowing” tactic, and process view, 141
“Shadow mode,” 104
“Shadow operation” tactic, 104
Shadow pages, 104
Shape Module, 222
Shared data structure, 38
Shared data view, 207
Shared Services procedure, 62
“Shares-a-secret-with” relation, 54
Shipboard systems, requirements of, 388
Ship System 2000

applying architecture, 395–398
architectural goals for, 395
history behind product line, 377
layered software architecture for, 393
layered view for, 392
module decomposition view for, 392,

394–395
naval product line, 371–373
organization, 381–383, 384, 385
process view for, 390–392
product line development for, 369
staffing, 385–387
and STRIC, 374

Show multiple views, 122
Side effects, 457

and architectural strategies, 312–313
Signature(s)

of elements, 212
interface, 211, 219
matching, 211
and resource syntax, 212

Simplex approach, 103
Simplex architecture for availability, 127

Simulation algorithm, for controller children, 190
Simulation instructor, and flight simulator, 178
Simulation parameters, and controller

children, 191
Simulator development, 180
Simulator sickness, 180
Site-specific adaptation data, 147
Size, of flight simulators, 180
Skeletal system, 15, 31, 70, 173

creating, 170–171
for flight simulator, 192

SLOC. See Source lines of code
SNiFF+, 235
Social influences, and software architecture, 5
Socket connections, and resource pooling, 424
Software

A-7E, 49
economic models of, 307, 308
flight simulator, 181
self-configuring, 462

Software architects, 25, 97
Software architecture, 19–23, 43, 69. See also

Architecture Tradeoff Analysis
Method; Reconstructing software
architectures

central role of, 201
and change management, 31
common structures, 37
within configuration management

systems, 481–482
and cost/schedule estimates, 32
definition of, 3, 21
and design decisions, 29–32
documentation as introduction to, 203
in education, 483
and evolutionary prototyping, 31–32
future of, 477–484
importance of, 26–35
and product lines, 360
and quality attributes, 30–31
relationship between reference models,

architectural patterns, reference
architecture, and, 26

re-use of, 353
system architecture versus, 34
and template-based development, 34–35
and training, 35
as transferable, re-usable model, 26, 32–35
typical, uninformative presentation of, 20
and usability, 91, 92, 97

Software Architecture Analysis Method, 305
Software architecture documentation,

fundamental principle of, 230

Bass.book Page 521 Thursday, March 20, 2003 10:29 PM

522 Index

Software Cost Reduction, 52, 66
Software decision module, 56–57
Software design patterns, 173
Software elements, architecture and definition

of, 21
Software engineering, 42

education, future of software architecture
in, 483

and software product lines, 354
Software Engineering Institute, 268, 399

ASEILM developed at, 466
Dali developed by, 258
practice areas identified by, in fielding

product lines, 363
software architecture Web page, 43

Software engineers, 233
Software interfaces, documentation for, 58
Software life cycle, testing within, 89
Software process, and ABC, 12–14
Software product lines, 170, 351, 353–368, 367

adoption of, 364–365
architectures for, 360–363
common architecture shared by, 32
and crafting common components, 442
creating products and evolution of, 365–366
difficulties with, 363–367
failure of, 359
and organizational structure, 366–367
scoping of, 357–358
working discussion of, 355–357

Software quality evaluation, 262
Software renovation factories, 258
Software re-use, and Luther architecture, 433
Software structures, 39–40

unclear mapping between aircraft
structures and, 181

Software systems, acquiring, 262
Software testability, 88
Software Utility Module, 58
Solution Group, at Inmedius, 431
Source code, 236
Source lines of code, 376
Source of stimulus

of availability scenario, 80
of modifiability general scenario, 82
of performance general scenario, 84
of quality attribute scenario, 75
of security general scenario, 86
of testability general scenario, 89
of usability general scenario, 91

Spare tactic, 104, 147
“Specialized access routes/interfaces” tactic, and

managing input/output for testing, 120

Special Operations Forces family of trainers,
177

Specification-level collaboration diagram, 227
Spline Module, 222
Splitter class, 223
Splitter role, 227
Sporadic event arrival, 83, 84
Spot (Pittsburgh Digital Greenhouse), 433
“Spot the Architecture,” playing, 246–247
Spreadsheets, 12, 478
SQL (Structured Query Language) code,

generation of in Dali, 238
SQL dialect, and Nightingale system, 298
SQL format, conversion of extracted

information to, 238
SQL queries, 243

and Dali, 242
and local variable aggregation, 244
and recovery of “lost” architecture, 247

SQL Server, 472
SS2000. See Ship System 2000
SSL. See Secure Sockets Layer
stabilize state, 189
Staff-days, and architectural evaluations, 263
Stakeholder communication, and

architecture, 27–29
Stakeholder list, 206
Stakeholders, 201, 229, 479

and air traffic control system, 133
and architectural integrity, 96
architecture reviewed by, 15
and ATAM, 271, 272, 275, 285–287, 304
and CBAM, 309
in CelsiusTech experience, 369, 370
and communication needs served by

architecture, 204
documentation organization for, 216–218
engagement of, 9
and future impact of components, 483
general scenarios and communication

with, 93
helpful architecture documentation for, 206
influence on architectures by, 6–8
and Nightingale system, 289, 300, 301
and scenario brainstorming, 284
seasoned and new, 202
software architecture and communication

among, 26, 42
and utility-response curves, 310, 311, 312

Standards, source of, 172
Standby address space, 139
Standby components, 103, 104
Starting evaluation criteria, 464

Bass.book Page 522 Thursday, March 20, 2003 10:29 PM

Index 523

Statecharts, 209, 210
Stateful model, and EJB server tier, 420
Stateful session bean instances, clients’ static

bindings to, 421
Stateful session beans, 409, 410

in online bookshop example, 420
Stateful session EJBs, and work-flow

component packaging, 448
Stateless model, and EJB server tier, 420
Stateless session bean instances, clients’

dynamic bindings to, 421
Stateless session beans, 409, 414, 417, 425, 443

advantages with, 420–421
in online bookshop example, 420
work-flow component packaged as, 447

Stateless session EJBs, and work-flow
component packaging, 448, 449

State management
and EJB, 420–422
J2EE and simplification of, 441

“State resynchronization” tactic, 104, 141
Static extraction, 241
Static extractor tool, 239
Static information, 235, 239, 240
Static libraries, 361
Static scheduling, 115
Static views, 15
Station Manager, 144
Stimuli, tactics and responses to, 100
Stimulus

of ATAM scenario, 280
of availability scenario, 80
of CBAM scenario, 310
of modifiability general scenario, 82
of performance general scenario, 84
of quality attribute scenario, 75
of security general scenario, 86
of testability general scenario, 89
of usability general scenario, 91

Stochastic arrival, 83, 84
Storyboards, and Luther architecture user

interface, 437
Strategy pattern, 109
Stream layer, for libWWW, 336
STRIC, 374
StringOp class, 239
Strong typing, and SS2000, 390, 391
Structural-model-based flight simulators, 176
Structural Modeling pattern, 181, 185–187

of air vehicle system processor with focus
on executive, 186

and controller children, 188
and flight simulation, 176

goals achieved with, 197–198
uses for, 177

Structural rules, for “good” architecture, 16
Structures, 35, 40–41
Stubbing implementations, 120
“Stubbing out” code sections, 170, 171
Stubs, 109
Styles, architectural, 125
Subclassing, 38
Subcontractors, 167
Submodules, 55, 157
Subprograms, 142
Subroutines, 477
Subsets, 62

delivery of, 63
of systems, 42

Subsystem controllers, 198
for air vehicle model, 192
capabilities of, 189
for flight simulator, 192
module, and air vehicle structural model,

187, 188–190
<<subsystem>> package stereotype, 226
Subsystems, 157

and groups, 193
integrating, 198
malfunctions with, 191
and periodic sequencer, 186
propulsion, 196
skeletal, 171
and surrogates, 187
in UML, 219, 226

Success, differing standards for, 65–66
Sun Microsystems, 347

home page, 425
Java 2 Enterprise Edition, 401, 404

Supersets, of systems, 42
Supportability, and Nightingale system, 292
<<supports>> stereotype, 228
Surrogates

in air vehicle model executive, 187
for flight simulator, 192

Surveillance data, and ISSS physical view, 136
Surveys, 276
Swedish Navy, CelsiusTech contract with,

370, 376
Switchovers, 104

and PAS failures, 139–140
Symmetric encryption, 117
Synchronization, 40, 70

and active redundancy, 103
and passive redundancy, 104

Synchronization points, 162

Bass.book Page 523 Thursday, March 20, 2003 10:29 PM

524 Index

Synchronization tactic, 100
“Synchronize-with” relation, 64
Syntax, 107
Synthetic interviewing, 434
System administrators, changes made by,

81, 82
System architecture

and e-commerce, 341
software architecture versus, 34

System design, and tactics, 100
System development, architectural

constraints in, 462
System failures, 79, 80
System functions/function groups

for CelsiusTech, 390, 392
in SS2000, 394, 395

System Generation Module, 58
System initiative, 122
System overview, 215, 217
System quality, 31

and architectural quality, 92
System quality attributes, 74–78, 94–95

component-dominated architectures and
achievement of, 463

problems with previous discussions of, 74
System requirements, and design, 154
Systems, 42, 479

architectural structures of, 39–40
ASEILM, 466–476
building from OTS components, 453–476
as collaborations, 227
concurrency in, 162
as contained objects, 227
elements in, 47
and groups, 193
in kinetics group, 195–196
maintaining model of, 122
projected lifetime of, 95
qualities of, 74
in UML, 226–227

Systems Definition Group, at CelsiusTech,
384, 385

Systems of systems, 478
System-specific scenarios, 78, 156
System structure, and organizational

structure, 167
System testers, 89

Table-driven operating systems, 12
Tables

fusing, 241
in primary presentation, 208

Tactics, 127, 129
architectural patterns and, 123–124, 125

availability, 101–105, 125
coupling scenarios and, 480
and design, 99
and integrability, 175
introduction to, 100–101
modifiability, 105–111, 125
performance, 111–116, 125
predicting results of application of, 480
security, 116–118, 125
selecting, 158
testability, 118–121, 125
usability, 121–123, 125
“weaving” of into systems, 481

Targeted markets, 95–96
Task models, 122
Tasks, Ada, 142
TCP (Transmission Control Protocol) flags, 118
TCP/IP, 137, 343, 435
Team leaders

ATAM and role of, 273
in Nightingale system, 289

Teams, 30
formation of, 10, 167–170

Technical-Architecture Plan, at CelsiusTech,
383, 384

Technical constraints, and Nightingale
system, 291

Technical documentation
fundamental principle of, 230
and reader viewpoint, 202

Technical environment, influence on
architectures by, 9

Technical influences, and software
architecture, 5, 6

Technical Steering Group, at CelsiusTech, 385
Technology changes, at CelsiusTech, 379–380
Technology development, and Luther

architecture, 431
Telephone switches, architecture

reconstruction used for, 232
TELNET, 336
Telub, 370
Template-based development, and

architecture, 34–35
Templates, for documenting interfaces, 212–214
Terminal control area (TCA), 130
Testability, 69, 88–89, 98, 127

and Nightingale system, 292
and SS2000 product line, 388
and system quality attributes, 74

Testability scenarios, 89–90
Testability tactics, 118–121, 125

internal monitoring, 120
managing input/output, 120

Bass.book Page 524 Thursday, March 20, 2003 10:29 PM

Index 525

Test and Training subsystems, 137
Testers, 14

and architecture, 27
and ATAM, 272

Test harness, 89, 119, 120
Testing, 354

cost of with flight simulator, 181
and re-use, 355

Test plans and cases, 354
Textual primary presentations, 208
Thin clients, 440
Thread model, for Java servlet ensemble, 475
Threads, and resource pooling, 424
Thread safety, and libWWW, 337
Tiers, 341
Time budgets, 15

with Structural Modeling pattern, 197
Timekeeper

ATAM and role of, 273
in Nightingale system, 289

Timeline synchronizer
in air vehicle model executive, 185
for flight simulator, 192

Time sequences, in sequence diagrams, 211
Time-to-market, 95, 97
Timing/time, 80

in flight simulator, 183–184
and performance, 82

Token ring networks, Logical Communications
Network composed of, 137

Tomcat
application server, 472
and IIS, 475

Tool environment, documentation within, 481
Tools

and architecture reconstruction, 258
for information extraction, 235
and re-use, 356

Tool support
for architecture reconstruction, 232
for design process, 481

Top-down adoption, of product line, 364
Top-down approach, for architecture

reconstruction, 258
“Top-level architecture,” 19
Topological layout, in architectural patterns

and styles, 125
Traces, semantic information conveyed

with, 213
Tradeoff points

and architectural approaches, 282, 283, 284
and ATAM, 274, 309
and Nightingale system, 299, 302, 303

Training
architecture as basis for, 35
and documentation, 203
with flight simulators, 179, 180

Transaction management, and J2EE, 450
Transaction monitors/processors, 345
Transactions services, 401
“Transactions” tactic, 105
Transaction support, 443

designer’s decisions, J2EE, and
implementation of, 449, 450

and EJB container, 444
Translator library layer, 458
Triggering events, 63
Triple redundancy, 103
TSG. See Technical Steering Group
Turbulence, 179
type field, 249
Types, as classes in UML, 223

UCMEdit model
after application of common code

segments, 255
after application-specific direct

manipulation, 256
after clustering based on application

domain, 257
classes, files and “leftover” functions

shown in, 251
graphics subsystem, code, classes, files, and

remaining functions in, 252, 253
reconstruction of architecture for,

248–257
UI. See User interface
Ultrix (Digital), and SS2000, 373
Unauthorized access, protection from, 117
Underwriters Laboratories, 482
undo command, 122
Unified Modeling Language (UML), 201,

218–229
aggregation in, 219–221
allocation views, 227–229
and behavioral descriptions, 209
C&C views, 222–227
connectors in, 225–226
decomposition in with nesting, 221
dependency in, 222
deployment view in, 229
detail representation, 223
generalization documented in, with two

line styles, 221
interfaces in, 219
layers represented in, 222

Bass.book Page 525 Thursday, March 20, 2003 10:29 PM

526 Index

Unified Modeling Language continued
module views and, 218–222
and Nightingale system, 303
for primary presentation, 208
systems in, 226–227

Uniform Resource Locators (URLs), 329
United States, Internet backbones in, 333
Unit tests, 89
Universal Description, Discovery, and

Integration (UDDI), 347
UNIX operating system, 142, 298
UNIX processes, Ada tasks mapped onto, 142
Unplanned evaluations, 266
Unstructured evaluations, 269
updateAccount method, 414, 415
update method, 415, 416
update operation, 186, 190, 191

and subsystem controllers, 189–190
Updating, 190
Updrafts, 179
U.S. Air Force, 176

and simulator design problems, 180–181
U.S. Department of Defense standards, 37
U.S. Naval Research Laboratory, 48
Usability, 7, 25, 69, 73, 90–91, 121, 127

and market share, 95
and Nightingale system, 291
and software architecture, 97
and system quality attributes, 74

Usability engineers, 123
Usability scenarios, 91–93, 122
Usability tactics, 121–123, 125

design-time, 123
runtime, 121–122

Usage guide, in interface documentation, 214
“Use an intermediary” tactic, and surrogates, 187
Use case maps, computer-based editing of, 254
Use cases, 155

and concurrency in system, 162
verifying/refining as constraints for child

modules, 164
Usenet, 172
Usenet messages, 336
User, maintaining model of, 122
User experience paradigm, and J2EE, 435
User initiative, 122
User input devices, for various device

classes, 433
User interaction styles, and Luther archi-

tecture, 433
User interface

and libWWW, 337
and Luther architecture, 432, 436–437,

439–440

revising, 123
separating from rest of application, 123

“User interface agnostic” applications, 441
User interface module, in example, 164, 166
User manuals, 354
User needs, system adapted to, 91
User profile data, 118
Users

and architecture, 27
and ATAM, 272
authorization of, 117

uses relation, 37, 60–61
Uses structure, 37, 40, 42, 44, 47, 48,

62, 170
and A-7E system, 53, 60–63, 66

Uses view, 207
Utility

architectural strategies, 312–313
and CBAM, 309, 316
priorities of scenarios, 312
utility-response curves, 310–312
and variations of scenarios, 310

Utility-response curves, 310–312, 324
Utility scores, scenarios with (NASA ECS

Project), 319
Utility trees, 155, 282, 284, 305, 309

ATAM and generation of, 279
Nightingale system and generation of,

294–295, 297
tabular form of, for Nightingale ATAM

exercise, 296–297

Validation agencies, 482
Validation of extracted information, 237
Variability guide, in documenting a view,

208–209
Variability provided by interface, in interface

documentation, 213–214
Variability techniques, 367
Variables, 234
Variation, 82

in event arrival time, 85
in latency, 84

Variation points
core assets designed with, 354
identifying in product lines, 360
supporting in product lines, 361–362

Vasa (Swedish ship), 4–5
VAX/VMS minicomputers, 378
“Vertical” scaling (or scaling up), 345, 422
View catalog, 215–216
View fusion, 235, 239–241

and architecture reconstruction, 233
and database models, 237

Bass.book Page 526 Thursday, March 20, 2003 10:29 PM

Index 527

disambiguating function calls, 241
and reconstruction, 249–257

Views, 35, 129, 204–205
allocation of, 206, 227–229
architecture represented with, in example,

161–163
choosing, 205–207, 229
combining, 207
C&C, 206, 222–227
documentation across, 215–218
documenting, 207–209
improving, 239–240
mapping between, 217, 481
module, 206, 218–222
prioritizing, 207

View template, 215, 216
Virtual documents, 339
Virtual hardware, 56
Virtual machines, 37, 62, 159
Virtual private network (VPN), 117
Virtual threads, 162, 163
Viruses, 86
Vision, 201
Visual Basic, 339, 340, 405, 455
Visualization and interaction, and recon-

struction, 241
Visual Mining, 468
Voice input, 435
Votes

refined scenarios with (NASA ECS
Project), 319

and scenario brainstorming, 285
Voting tactic, 102

Warm restarts, 103, 146
Weapons control, and system function

groups, 394
Wearable computing, 352, 452

devices, 433
history of, 428

Wearable Project, at Carnegie Mellon
University, 427, 428

Weather patterns, modeling, 179
Web-based applications, quality attribute

requirements for, 404
Web-based financial systems, 83
Web browsers, 329, 342–343
Web-enabled enterprise systems, distribution

and scaling issues with, 422–423
Web pages, 167
Web servers, 332, 342, 344–345
Web server styles, comparison of, 349
Web services, 117

Web sites, successful, 404
Web site software, and client surges, 404
Web spiders, 335
Web tier, in J2EE multi-tier model, 407
White noise, 249
Wide Area Information Server (WAIS), 336
Widgets, 97
Windowing systems, 12
Windows-based platforms, and .NET, 402
Windows CE PC devices, handheld, with pen

and keyboard, 433
Windows 98 and NT 4.0 operating system, 468
Windows NT platform, 298
Wireless access, and Luther architecture, 432
Wireless Application Protocol (WAP), 437
Wireless Markup Language (WML), 437
Wireless technology, 352
Work assignment structure, 39
Work assignment view, 167
Workbench approach, 232–233, 238, 258
Work breakdown structure, 29–30, 167
Work flow, 345
Work-flow component

class diagram for, 446
design rationale for, 445–447
distributed and detached operations and,

449–450
and Inmedius, 442
and Luther architecture, 444–450
packaging for, 447–449

Work-flow management, and Luther
architecture, 427, 435

Workflow Management Coalition, 452
at Inmedius, 445, 446

Work-flow model definition, 446
Work practices, 167
World Wide Web (WWW), 12, 268, 327–349,

479
and Amazon.com, 348–349
current ABC for, 346, 347
growth of, 330, 332
initial quality goals achieved by, 340
and J2EE, 403–405
original ABC for, 328
original requirements for, 330–332
requirements and qualities for, 329–332
success of, 348

World Wide Web Consortium (W3C), 334,
346

Reference Library, 349
Worms, 86
Worst-case quality attribute level, in

utility-response curve, 312

Bass.book Page 527 Thursday, March 20, 2003 10:29 PM

528 Index

Worst-case response, for NASA ECS Project
scenario, 317

Wrappers, 458, 462
Wrapper session beans, 422
“Write Once, Run Anywhere,” 408

XForms, 250
Xlib, 250
XML (eXtensible Markup Lnnguage), 343,

417

Bass.book Page 528 Thursday, March 20, 2003 10:29 PM

