Christenson

Christenson-Textures-07 August 22, 2002 18:4

Chapter 7

Finding and Removing
Bottlenecks

So far, this book has focused on up-front design and configuration of an email
server. The goal of this chapter is to provide some methodology and explain the
use of tools that will assist the email administrator in determining the cause of poor
email server performance and rectifying the situation.

Over the years, operating systems have grown increasingly sophisticated. Today,
several levels of data caches are typically internal to the operating system kernel.
Most internal data structures are dynamically sized and hashed, so that they no
longer have fixed extents and table lookups remain rapid as the amount of data they
contain grows. This increased sophistication generally has been for the best, as these
additional variables ensure that operating systems require less manual intervention
to get them to work well in a high-performance capacity. Nevertheless, a system
administrator needs to be aware of two facts. First, these benefits can have side
effects. Second, this extra tuning often makes troubleshooting more difficult.

7.1 Kernel Parameters Run Amok

Let’s consider a real-life example. The Solaris operating system from Sun Microsys-
tems contains a kernel table called the Directory Name Lookup Cache (DNLC).
The DNLC is a kernel cache that matches the name of a recently accessed file with
its vnode (a virtual inode, an extra level of abstraction that makes writing interfaces
to filesystems easier and more portable) if the file name isn’t too long. Keeping this
table in memory means that if a file is opened once by a process, and then opened
again within a short period of time, the second open () won’t require a directory
lookup to retrieve the file’s inode. If many of the open () s performed by the system
operate on the same files over and over, this strategy could yield a significant
performance win.

165

Christenson

Christenson-Textures-07 August 22, 2002 18:4

166 Finding and Removing Bottlenecks

The DNLC table has a fixed size to make sure that it consumes a reasonable
amount of memory. If the table is full and a new file is opened, this file’s informa-
tion is added to the DNLC and an older, less recently used entry in the table is
removed to make space for the new data. The size of this table can be set manually
using the ncsize variable in the /etc/system file; otherwise, it’s derived from
MAXUSERS, a general sizing parameter used for most tables on the system, and a
variable called max_nprocs, which governs the total number of processes that
can run simultaneously on the system. In Solaris version 2.5.1, the equation used to
determine ncsize was

ncsize = (max_nprocs + 16 + MAXUSERS) + 64

In Solaris 2.6, this calculation changed to
ncsize = 4 * (max_nprocs + MAXUSERS) + 320

In Solaris 2.5.1, unless manually set, max_nprocs = 10 + 16 * MAXUSERS.
I do not know if this calculation changed in Solaris 2.6.

If MAXUSERS is set to 2048, which is typical for large servers running very
large numbers of processes, the DNLC on Solaris 2.5.1 would have 34,906 entries.
On Solaris 2.6, using the same kernel tuning parameters, the DNLC could contain
139,624 entries. In Solaris 8, the calculation of this parameter had been changed to
be more similar to the Solaris 2.5.1 method.

Performance on the new Solaris 2.6 system was horrible. File deletions on
Network File Systems (NFS) took a very long time to complete, and it required a
great deal of time to diagnose the problem. As it turns out, for some reason that I still
don’t fully understand, if one attempts to delete a file over NFS, and the DNLC is
completely full, the operating system makes a linear traversal of the table to find the
appropriate entry. The more entries the table holds, the longer this traversal takes.
If it has nearly 140,000 entries, this operation can take considerable time. With the
same /etc/system parameters on similar hardware running Solaris 2.5.1, these
lookups did not cause a noticeable problem.

In my case, a colleague who had encountered this problem before suggested
setting ncsize explicitly to a more moderate value (we chose 8192) in the /etc/
systenfile. We then rebooted the system, and performance improved dramatically.

This is a pretty exotic example, but it indicates the following points:

1. Today’s operating systems are complex. It’s always possible that a server
slowdown might occur under certain circumstances because of the
misbehavior of some obscure part of the operating system.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.1.

Kernel Parameters Run Amok 167

. It’s always possible that very slight changes in an operating system—even

changing minor version numbers or adding a single kernel patch—can have
far-reaching consequences.

. Larger cache sizes are not universally a good thing, especially if the system

designers do not fully explore the consequences of having large caches.

. There’s no such thing as having too much knowledge about the hardware and

software system that a site uses to operate a high-performance server.

This also leads to some obvious conclusions:

. On a high-performance or mission-critical server, make even small changes

with extreme caution.

. One can never have too much expertise. Fancy tools rarely solve the problem,

but a tool that can deliver one good insight during a crisis can prove
exceedingly valuable.

. Trust the data. When something is going wrong, the reasons may not be

evident, but they will be consistent within their own logic. Although it may
not seem obvious at times, once all the factors are understood, it will be
apparent that computers are deterministic objects.

. Test, test, and test again before deploying production system. Make the test as

close to “real life” as possible. There’s never enough time to be as thorough as
one would like, but if there isn’t enough time to test at least some extreme
cases, there isn’t enough time to do it right. In the preceding situation, we did
test, but with data set sizes less than 140,000 files (the size of the DNLC).
Because we never filled the DNLC, we never tripped over the bug. Obviously,
our testing wasn’t “close enough” to “real life.” Chapter 8 will explore testing
issues in more detail.

This example was not intended to criticize Solaris. Probably every operating

system vendor makes comparable changes from release to release, and many similar

stories could have been told that focus on other vendors.

There isn’t enough space in this book to cover general troubleshooting method-

ology, but one aspect should be mentioned because it causes many people difficulty.

In trying to focus on a problem, the troubleshooter often assembles a great deal

of data. Some of it is relevant to the problem at hand, and some of it is tangential.

Determining which data are relevant and which aren’t often poses the most diffi-

cult aspect of solving a problem. There’s no magic to categorizing data in this way;

Christenson

Christenson-Textures-07 August 22, 2002 18:4

168 Finding and Removing Bottlenecks

rather, experience and instinct take over. However, when faced with a problem that
isn’t easily solved, it’s often helpful to ask, “What would I think of this problem if
any one of the facts involved was removed from the equation?” If one arrives at a
conclusion that can be tested, it is often worthwhile to do so, or at least to reexamine
the datum in question to make sure it is valid. This sort of analysis is difficult to do
well, but in very difficult situations, it can prove a fruitful line of attack.

Another troubleshooting technique is preventive in nature—baselining the
system. To understand what’s going wrong when the system behaves poorly, it is
crucial to understand how the server should behave when the system performs cor-
rectly. One cannot overemphasize this point. On a performance-critical server, an
administrator should record data using each diagnostic tool that might be employed
during a crisis when the server is in the following states:

o Idle, with services running but unused
e Moderately loaded

e Heavily loaded, but providing an adequate response

Then, when the server begins to perform badly, one can determine what has
changed on the system. “What is different about the overloaded system from the
state where it is heavily loaded, but providing quality service?” This is a much easier
question to answer than the more abstract, “Why is this server performing poorly?”

The complexity of today’s operating systems exacerbates this need. On most
contemporary operating systems, it’s much more difficult to tell the difference,
for example, between normal memory paging activity and desperation swapping.
It’s difficult to know objectively what a reasonable percentage of output packet
errors on a network interface would be. It’s difficult to tell objectively how many
mail.local processes should be sleeping, waiting for such esoterica as an
nc_rele_lock event to wake them up. As with people, on computer systems
many forms of unusual behavior can be measured only in relative terms. Without a
baseline, this identification can’t happen.

Previously, I mentioned how important it is to distinguish information related
to a present problem from incidental information. Without a baseline, it can be
difficult—if not impossible—to tell whether a given piece of information is even
out of the ordinary. When something goes wrong, while looking for the source
of the problem we’ve all encountered something unexpected and asked ourselves,
“Wias this always like that?” Baselining reduces the number of times this uncertainty
will arise in a crisis, which should lead to faster problem resolution.

Run baseline tests periodically and compare their results against previous test
runs. Going the extra mile and performing a more formal trend analysis can prove

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.2. The Quick Fix 169

very valuable, too. It offers two benefits. First, it enables one to spot situations that
slowly are evolving into problems before they become noticeable. Of course, not
all changes represent problems waiting to happen, but trend analysis can also spot
secular changes in the way a server operates, which may indicate new patterns in
user behavior or changes in Internet operation.

Second, formal trend analysis allows administrators to become more famil-
iar with the servers they are charged with maintaining, which is unequivocally
a good thing. More familiarity means problems are spotted sooner and resolved
more quickly. System administrators responsible for maintaining high-performance,
critical servers who do not have time to perform these tasks are overburdened. In
this case, when something fails not only will they be unprepared to deal with the
crisis, but other important tasks will go unfulfilled elsewhere as a consequence.

In the “old days,” many guru-level system administrators could tell how, or
even what, the systems in their charge were running by looking at the lights blink
or listening to the disks spin or heads move. They could fee/ what was happening in
the box. Today’s trend toward less obtrusive and quieter hardware has been part
and parcel of the considerable improvements made in hardware reliability. This is
a good thing. However, through these hardware changes, as well as the aforemen-
tioned increasing operating system complexity and the much larger quantity of boxes
for which a system administrator is responsible, we’ve largely lost this valuable feel
for the systems we maintain. Now the data on the system state are likely the only
window we have into the operational characteristics of these servers. It should be
considered an investment to periodically get acquainted with the machines we main-
tain so as to increase the chance of finding problems before they become readily
apparent, and to give us the insight necessary to reduce the time to repair catas-
trophic problems when they do occur.

7.2 The Quick Fix

Despite our preventive measures, let us suppose a server does get itself into a jam
and email backs up. Further suppose that we know the problem is that the disk
on which the queue resides is not fast enough to handle the load. We may already
have another disk ready and an outage window scheduled to perform the upgrade
when the system will be less busy, perhaps after most people have gone home from
work for the day. Once we can take the machine down, we plan to carefully back
up the data on the queue disk, verify the backup, add the second disk, stripe the
old and new disks together using software RAID, bring the system back up, test it,
restore the backed-up data, verify that this restoration went well, restart setvices,

Christenson

Christenson-Textures-07 August 22, 2002 18:4

170 Finding and Removing Bottlenecks

monitor them for a while, and call it a success. All in all, this strategy sounds like a
well-reasoned upgrade plan.

The question is, What should we do 70w? The upgrade window may be hours
(or perhaps days) away, the system is running slowly at this moment, and users or
management may be asking if something can be done in the short term. Sometimes
a quick fix is possible. If the server normally serves other functions, perhaps they
can be suspended temporarily. With a POP server, perhaps incoming email could
be turned off or at least dialed back long enough so that users can read the email
they already have. Temporarily turning off lower-priority services is a reasonable
reaction to a short-term performance crunch.

In some circumstances, one might be tempted to try to make short-term alte-
rations to the server to get through the crisis. One could attempt to move older
messages out of the queue and into another queue to expedite processing of the
main queue. One could lower the RefuseLA parameter in the sendmail. cf file
to try to lower the load on the system. Many other things could be attempted as
well. In reality, these attempts at short-term fixes rarely help. Usually, it’s best to just
let the server work its way out of a jam.

Some assistance, such as rotating the queue or perhaps changing the queue sort
order to be less resource intensive, can prove beneficial, but most of the other prob-
lems won’t be mitigated by just stirring the pot. For example, if one wants to move
messages from one queue to another queue on a different disk, what operations
must happen on the busy disk? The files will be located, read, and then unlinked.
This is exactly the same load that will be put on the disk if the message is delivered. If
the message will be delivered on the next attempt, we gain zothing by trying to move
it. If the message will not be delivered for a while, we can lower the total number
of operations on the disk by rotating the queues, and then suspending or reducing
the processing of the old queue temporarily. Performing a queue rotation requires
far fewer disk operations while deferring or reducing the number of attempts that
will be made to deliver queued messages.

Similarly, attempting to reduce the number of processes, the maximum load
average on the system, or otherwise trying to choke off one resource in order to
reduce the load on another typically arises from a spurious assumption. One may be
able to reduce the load on the queue disks, for example, by reducing the number of
sendmail processes that run on a server. However, reducing the load on the disk
doesn’t solve the problem, because the load on the disk is a sy7zptom: of the problem.
The real problem is that more email is coming in than the server can handle. In this
case, having a saturated disk is a good thing. It means that the disk is processing
data as fast as it can. If we lower the amount of data it processes, the server will

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.2. The Quick Fix 171

process less email. The external demand on the busy server will not decline because
of our actions, but rather increase because we have voluntarily decreased the server’s
ability to process data, which is the last thing that we want to do.

Some administrators might voice concerns that a system under saturation load
will run less efficiently and, therefore, process fewer messages per unit time than
a less busy server does. With some types of systems, this concern is well founded,
but two points make this possibility less of an issue for the sorts of email systems
discussed in this book than for other types of systems.

The first point is that while there exist a large number of fixed resource pools
on an email server (CPU, memory, disk I/0, and so on), each process on that server
remains largely independent. Thus one process running slowly generally does not
cause another process to run slowly, other than through the side effect that both may
compete for aslice of the same fixed resource pie. For example, if a system is running
so slowly that the process table fills and the master sendmail daemon can’t fork
off a new process to handle a new incoming connection, this issue doesn’t cause
a currently running sendmail process to stop working. These events are largely
independent of one another. It doesn’t matter to a remote email server whether
an SMTP session with the busy server couldn’t be established because the master
daemon cannot fork a child process or whether the connection is rejected by policy
to avoid loading the server.

On the other hand, if, for example, sendmail were a multithreaded process
running on the server with one thread handling each connection, and it didn’t have
internal protection against running out of memory, then the process running out
of available memory could affect any or all other sendmail threads of execution,
which could have catastrophic consequences. Fortunately, today’s UNIX versions
do a remarkably good job of isolating the effects of one process on another. If yet
another process is competing for a fixed resource, that conflict may cause the other
processes using that resource to run more slowly, but the resource will almost always
be allocated fairly and the total throughput of the system: will stay roughly constant,
which is what we really want to happen.

The second point is that even if the system is processing less total data in sat-
uration than it would under a more carefully controlled load, maneuvering the
system to achieve higher throughput is very tricky. If some threshold, such as
MaxDaemonChildren, is lowered too little, it will have no effect on the sys-
tem’s total throughput. If it is lowered too much, resources will go unused, which
will lower aggregate throughput—a disaster. The sweet spot between these two ex-
tremes is often very narrow, hard to find, and, worst of all, time dependent. That
is, the right value for MaxDaemonChildren might differ depending on whether

Christenson

Christenson-Textures-07 August 22, 2002 18:4

172 Finding and Removing Bottlenecks

a queue runner has just started, how large the messages currently being processed
are, or how user behavior contributes to the total server load.
In summary:

1. When a server gets busy, the most important thing is to find the real cause of
the problem and schedule a permanent fix for it at the earliest convenient
moment.

2. In the meantime, one might be able to do some things to help out in the short
term, such as temporarily diverting resources away from lower-priority tasks.

3. Making configuration changes to overcome short-term problems is difficult at
best, and will often cause the total amount of data processed by the server to
go down, not up, which is not desirable.

4. Because an email server generally allocates limited resources fairly, even when
saturated with requests, the best course of action is often to let the server
regulate its own resources, as it will likely do so more efficiently than it would
with human intervention.

When a real fix for a saturated email server can’t be implemented immediately,
it’s usually better to let the server stay saturated and, hopefully, work its way out of
a jam rather than to try to interfere.

7.3 Tools

In this section, we examine just a few of the tools that are likely to be useful to the
email administrator. Many possibilities are available—many more than are listed
here. Some are very specific, whereas others have broad applications. The tools
discussed here are both generally useful and widely available. Email administrators
interested in tuning, or just understanding, an email system should not restrict their
studies to just the utilities mentioned here. Magazine articles, books, Web sites, and
other system administrators can all provide insight into very helpful tools.

Each tool discussed has different options and displays slightly different infor-
mation on each operating system version. While this inconsistency is annoying, some
of the differences are tied to the internal workings of the operating system and are
unavoidable. Also, some of the less common options are the most useful. It’s just not
practical to limit the use of these utilities to their common flag and output subsets, so
that won’t be done here. Instead, this section will generally provide examples using
the FreeBSD (version 4.5) operating system utilities, throwing in some examples
specific to other operating systems.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.3. Tools 173

A final note: As we know from science, it is impossible to measure a system
without affecting it. Just by running a tool we necessarily change the behavior of the
very computer we're monitoring. These utilities consume memory and CPU time,
they open sockets and files, and they read data off disks. Therefore, we can never
be entirely sure that a problem that we observe on a system isn’t at least partially
influenced by the fact that we’re monitoring it. Although this is rarely the case, it’s a
good idea to not go overboard by continually running top or by having scripts run
ps every five seconds to capture the state of the machine. A much more modest
approach to capturing data (running ps every five minutes, for example) will pro-
vide equally useful information without adding substantially to the server’s load.

73.1 ps

The venerable ps utility comes in two flavors: the Berkeley flavor (found on BSD-
based systems and Linux) and the System V flavor (found on AIX, HP-UX, and
other systems). Solaris provides the System V flavorin /usr /bin, and the Berkeley
flavor appears in /usr /ucb. My preference is for the Berkeley-style output of ps;
I like the information it provides and the way that the Berkeley ps -u sorts the
data. Essentially the same information is available from either version, however, so
other than remembering which option does what, one shouldn’t be handicapped
by any particular flavor.

A lot of information is available from ps, and it’s especially useful for such
tasks as tracking the number of certain types of processes running on a machine or
seeing which processes are the largest resource consumers. A great deal of infor-
mation is available from this program, which varies depending on the option flags
selected. Everyone performing system troubleshooting would be well advised to
become very familiar with the ps man page for the operating system that runs on
their email server.

For both varieties of ps, some command-line flags require more processing to
resolve than others. On Berkeley-type systems, it is more computationally intensive
to resolve commands with the -u flag than without it. For System V versions,
adding the -1 flag requires more computational resources than if the command is
run without it. Therefore, these flags, which produce extra output, should be used
only when they relate important information. One thing that ps provides is rough
process counts, for example:

ps -acx | grep -c "sendmail"

These sorts of data are useful, and periodic counts are often scripted. Especially in
automated systems, it’s worthwhile to make sure that they produce minimal strain

Christenson

Christenson-Textures-07 August 22, 2002 18:4

174 Finding and Removing Bottlenecks

on the server. Determining which options are more resource intensive than others
isn’t always straightforward, but the t ime command or shell built-in can aid in this
calculation. On quiet servers, the response time for this command might be too fast
to measure, so the aggregation of several commands may provide a more precise
measurement. For example:

/usr/bin/time sh -c¢ *for i in 1 2 3 4 56 7 8 9 10; \
do ps -aux > /dev/null; done‘

Some ps output from the CPU-bound test server during one of the tests cited
earlier in this book appears in Table 7.1. At the moment that this snapshot was
taken, sys1ogd was the most active process. While it is a busy process on an email
server, it rarely does the most work at any given time. However, unlike the MTA
and LDA processes that move data, this persistent process reads data from the IP
stack and writes it to disk on every delivery attempt.

Adding all numbers in the RSS column, they roughly equal the system’s total
main memory (only 32MB), which doesn’t count RAM consumed by the kernel
or the buffer cache. Because much of the memory consumed by the processes is
shared, it provides enough space to keep the parts of the programs that run while
resident in memory and still allow extra space for the kernel and the buffer cache.

On this machine, the script command is used to capture output from the
iostat and vmstat commands, which will be discussed shortly. The stat entry
is a home-built script that adds date and time information to the output of these
two utilities. As we’d expect, most of the CPU time is consumed by sendmail and
mail.local processes. Also as we'd expect, concurrent MTA processes outnum-
ber LDA processes, even though the email is sent to this server over a low-latency
local area network.

Most of the rest of the processes running on this server are either standard parts
of the operating system or processes related to remote connections to the server.

7.3.2 top

Many UNIX operating systems include the venerable top utility, which is also one
of the first Open Source programs installed on many other operating systems. The
top utility lists the largest CPU resource consumers on a system and updates this
list periodically, typically every few seconds. For understanding the general state of
the system, some of the most valuable information appears in the first few lines of the
program’s display. A system consistently showing a CPU idle state at or near 0% is

Christenson Christenson-Textures-07 August 22, 2002 18:4

7.3. Tools 175

Table 7.1. Sample /usr/ucb/ps -uaxc Output from the CPU-Bound Test Server

2

% /usr/ucb/ps -uaxc

USER PID %CPU $SMEM SZ RSS TT S START TIME COMMAND
root 11302 1.3 3.3 3480 1004 » S 15:03:18 0:23 syslogd
root 23420 1.1 4.3 2296 1304 » R 16:05:56 0:02 sendmail
root 24881 0.9 5.6 2392 1700 ? S 16:13:11 0:00 sendmail
root 24884 0.8 5.3 2352 1592 ? R 16:13:11 0:00 sendmail
root 24861 0.7 5.6 2392 1700 ? S 16:13:07 0:00 sendmail
root 11009 0.6 3.9 2012 1172 » S 14:47:30 0:08 nscd
root 24871 0.6 3.4 1552 1016 ? S 16:13:08 0:00 mail.local
root 24886 0.5 5.0 2312 1516 ? R 16:13:12 0:00 sendmail
root 24892 0.5 2.9 1140 860 pts/4 0 16:13:13 0:00 ps

testl 24890 0.5 3.4 1552 1012 » R 16:13:12 0:00 mail.local
root 24889 0.4 5.0 2312 1516 ? R 16:13:12 0:00 sendmail
root 18650 0.3 3.8 1712 1160 7 S 15:45:14 0:01 sshd
npc 18716 0.2 2.5 1016 756 pts/4 S 15:45:24 0:00 csh

root 24891 0.2 1.7 2296 492 ? S 16:13:12 0:00 sendmail
npc 23454 0.2 1.9 856 580 pts/3 S 16:08:02 0:00 stat
root 23449 0.1 1.9 856 580 pts/2 S 16:08:00 0:00 stat

npc 23434 0.1 1.9 788 560 pts/0 S 16:06:48 0:00 script
root 3 0.0 0.0 0 02 S Feb 04 19:27 fsflush
root 0 0.0 0.0 0 07 T Feb 04 0:00 sched
root 1 0.0 0.5 652 132 ? S Feb 04 0:26 init
root 2 0.0 0.0 0 0 ? S Feb 04 0:02 pageout
root 156 0.0 1.8 1464 548 » S Feb 04 0:01 cron
root 159 0.0 2.4 1644 724 2 S Feb 04 1:46 sshd
root 174 0.0 1.6 852 480 7 S Feb 04 0:00 utmpd
root 203 0.0 2.1 1404 632 7 S Feb 04 0:00 sac

root 204 0.0 2.1 1496 624 console S Feb 04 0:00 ttymon
root 206 0.0 2.3 1496 688 ? S Feb 04 0:00 ttymon
root 10540 0.0 3.1 1800 936 7 S 14:19:23 0:10 sshd
npc 10543 0.0 1.5 1012 448 pts/1 S 14:19:33 0:00 csh

root 10554 0.0 0.0 276 4 pts/1 S 14:20:03 0:00 sh

root 11262 0.0 3.0 1712 904 » S 15:01:22 0:02 sshd
npc 11265 0.0 2.5 1028 756 pts/0 S 15:01:25 0:00 csh

root 11456 0.0 2.7 1052 800 pts/1 S 15:05:33 0:00 csh

root 23429 0.0 1.8 764 536 pts/1 S 16:06:46 0:00 script
root 23430 0.0 1.9 788 560 pts/1 S 16:06:46 0:00 script
root 23431 0.0 2.4 996 732 pts/2 S 16:06:46 0:00 csh

npc 23433 0.0 1.8 764 536 pts/0 S 16:06:48 0:00 script
npc 23435 0.0 2.7 1024 804 pts/3 S 16:06:48 0:00 csh

root 23448 0.0 2.2 840 660 pts/2 S 16:08:00 0:00 vmstat
npc 23453 0.0 2.3 848 684 pts/3 S 16:08:02 0:00 iostat

Christenson

Christenson-Textures-07 August 22, 2002 18:4

176 Finding and Removing Bottlenecks

almost certainly CPU bound. The caveat is that some systems list an 1owait state
indicating what percentage of processes are waiting for I/O. This number doesn’t
represent CPU time being consumed, but rather consists of the system’s best guess
as to the amount of CPU time that would be consumed if no processes were blocked
waiting for I/O. If a significant percentage of processes are in the iowait state,
then the system may show 0% idle while the CPU is barely being used.

In the upper-left corner is the last process identifier (PID) used by the system.
From its rate of change, one can deduce how many new processes are spawned per
second, giving some idea of how fast sessions are coming and going on the server.
This method isn’t useful on those few operating systems, such as OpenBSD, that
assign new PIDs randomly rather than sequentially.

The memory information displayed isn’t as useful as one would first expect. On
nearly any system that has been running for a few minutes, or even a few seconds if
it’s busy, we should expect the amount of free memory listed to stay very near zero.
On contemporary operating systems, any RAM that goes unused by processes will
be allocated to caching some data. Thus, just because there is very little memory
free, it doesn’t mean that the system is memory starved. On some operating systems,
top will show more memory information, such as how much RAM is allocated to
filesystem caches; if this number drops near zero, it would likely indicate that the
server would use additional RAM effectively.

Even more so than with ps, the information displayed via top varies from
operating system to operating system. A thorough reading of the utility’s man page
should be performed before its results are interpreted.

7.3.3 vmstat

The vmstat utility explores the activity of the virtual memory system, which in-
cludes real memory used by processes, memory used for caching, and swap space.
The first line of data produced summarizes the activity since the system was booted.
Generally, this information should be ignored.

While it’s much less impressive than the output that one will find on a true
high-performance email server, some example output from the CPU-bound server
during one of the test cases discussed in this book can be instructive. This output
appears in Table 7.2.

Excessive memory activity will cause heavy paging, which translates into rel-
atively large numbers in the pi and po columns. Of course, what constitutes a
large number depends heavily on the particular system. Interpreting these numbers
without a baseline will be next to impossible. In the example case, these numbers
are so small that we can safely conclude that the system is not memory bound.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.3. Tools 177

Table 7.2. Sample vmstat 15 Output from the CPU-Bound Test Server

% vmstat 15

r b w swap free re mf pi po fr de sr in sy «c¢s us sy 1id
0 0 0 4692 1804 O 0O 0 o0 0 0 o0 3 39 22 0 0 100
7 1 0 64440 1956 5 925 6 38 38 0 256 2150 328 31 68 2
8 0 0 64008 1800 8 923 0 40 44 0 249 2030 285 24 67 9
8 0 0 64612 2276 10 950 1 46 48 0 249 2079 283 27 66 7
7 1 0 64712 2956 4 954 6 23 94 0 22 262 2101 294 28 67 5
7 1 0 64320 2852 0 1024 2 0 0 0 0 271 2260 317 27 73 0
9 0 0 61684 1960 8 995 6 62 170 0 37 281 2186 329 29 71 0
7 0 0 62968 3836 0 1061 4 O 0 0O 0 255 2209 315 29 71 0
15 1 0 58508 1800 12 956 7 71 138 0 27 288 2302 342 30 70 0
6 0 0 62936 4860 2 1035 1 10 10 O 0O 252 2072 299 26 71 2

On those systems whose vmstat provides this information, another column
worth tracking is de. It gives a system’s expected short-term memory deficiency,
for which memory space will have to be actively reclaimed. A nonzero entry will
show up occasionally in this column on a healthy but busy system. The more often
this result appears, though, the more likely the system could use more memory. Our
sample data show no deficiencies, another indication that this system is not memory
bound.

The first column, labeled r, indicates the number of runnable processes, which
provides a snapshot of the system load average. In this example, a number of pro-
cesses want to run but can’t because they have no CPU time slice available to them.
The second column, labeled b, gives the number of processes that are blocked from
proceeding because they are waiting for I/O. If a significant number of processes
are listed in this column, the system is likely I/O bound. In our example, we occa-
sionally see a blocked process, but this event is rare, giving us an indication that this
system isn’t I/O bound. Yet one more variable worth tracking is the third column,
labeled w. It represents the number of processes that are either runnable or have
been idle for a short period of time and have now been swapped out. Frequent
nonzero numbers in this column also indicate that the server may be desperately
short of RAM. The example looks like it’s in good shape on that point.

In the past, one could tell whether a system was memory starved just by looking
for swapping activity, as opposed to the more healthy activity of paging. Paging is
the process of writing parts of process data to swap space to make room for pages of
other data in active memory. An operating system may “page out” part of a process
if that page hasn’t been accessed in a while, even if the process is running. This
efficient behavior allows new processes to start up more quickly because memory

Christenson

Christenson-Textures-07 August 22, 2002 18:4

178 Finding and Removing Bottlenecks

reclamations don’t need to occur first, and it leaves more room for caching data,
leading to better performance. Some amount of paging will occur on all operating
systems and is considered normal and healthy.

Swapping usually refers to taking a process and moving its entire memory image
to disk. It might happen if the process has remained idle for a very long time (tens
of seconds, which is a very long time in computer terms) or if the system desperately
needs to make room for new processes. “Desperation swapping” and “thrashing” are
terms used to describe a system that is so memory starved that nearly every time a pro-
cess receives a CPU slice, it must be read in from swap to active memory before it can
proceed. This horrible circumstance effectively slows memory access (typically mea-
sured in tens of nanoseconds) to disk speeds (measured in ones to tens to hundreds of
milliseconds, a difference of two to four orders of magnitude). Once a system starts
thrashing, it will not operate efficiently. One should aggressively avoid this situation.

Somewhat unfortunately, as virtual memory algorithms have become more com-
plex and sophisticated over the years, it’s become more difficult to tell in a vacuum
whether a system is thrashing. In fact, many operating systems don’t distinguish
between paging and swapping, eliminating the latter behavior altogether. Here is
where a baseline becomes crucial. One must understand what sort of paging statistics
occur on a heavily loaded but properly operating server before one can determine
whether a system is beginning to thrash. However, once the disks with swap on
them begin to get loaded, it will be painfully obvious that the system has simply run
out of memory. Of course, this behavior will occur beyond the point where a server
starts to slow down noticeably.

Solaris 8 introduced a new system for managing the buffer cache. Now the
page daemon is no longer needed to free up memory used to cache filesystem
information. Consequently, the page daemon does not have to do any work to
reclaim memory space for new processes. The upshot is that on Solaris 8, if the sr
field of vmstat output is nonzero, running processes are being paged to disk to
make room for new processes. On this operating system, it has now become more
straightforward to identify significant memory deficiencies. Significant activity in
the sr field on other operating systems can indicate that the machine is memory
starved, but the demarkation point is not as obvious as it is on Solaris 8.

7.3.4 iostat

The iostat tool is similar to vmstat, except that it measures system I/O rather
than virtual memory statistics. On many systems, it can measure not only disk-by-
disk data transfers, but also I/O information to and from a wide variety of sources,

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.3. Tools 179

Table 7.3. Sample iostat -cx 15 Output from the CPU-Bound Test Server

)

% iostat -cx 15
extended device statistics cpu

device r/s w/s kr/s kw/s wait actv svc_t %w %b us sy wt id

sd0 0.0 0.6 0.1 3.0 0.0 0.0 9.2 0 1 0 0 0 100
sd3 0.0 0.0 0.0 0.2 0.0 0.0 22.8 0 0
extended device statistics cpu

device «r/s w/s kr/s kw/s wait actv sve_t %w %b us sy wt id

sdo0 0.5 12.0 1.7 62.0 0.0 0.1 10.9 0 12 27 68 1 4
sd3 0.0 47.9 0.0 225.8 0.0 0.4 7.4 0 30
extended device statistics cpu

device r/s w/s kr/s kw/s wait actv svc_t %w %b us sy wt id

sdo 0.7 10.7 1.9 54.3 0.0 0.1 11.0 0 11 29 71 © 0
sd3 0.2 51.2 0.4 251.9 0.0 0.5 10.0 0 34
extended device statistics cpu

device r/s w/s kr/s kw/s wait actv svc_t %w %b us sy wt id

sd0 0.7 13.9 2.4 71.1 0.0 0.2 11.1 0 14 29 71 0 0
sd3 0.9 47.6 1.3 235.7 0.0 0.4 9.2 0 33
extended device statistics cpu

device r/s w/s kr/s kw/s wait actv svc_t %w %b us sy wt id
sdo 0.7 9.8 2.3 51.3 0.0 0.1 10.2 0 10 30 70 O 0
sd3 1.0 54.0 1.8 268.9 0.0 0.5 8.3 0 36

including tape drives, printers, scanners, ttys, and so on. Like vmstat, this com-
mand displays CPU information in the last set of columns. On many systems, if one
specifies no I/O devices, it can be a good mechanism to track CPU usage in scripts,
such as running iostat -c 60 to get basic output of CPU information every
minute on a Linux or Solaris system. As with vmstat, the first line of output by the
iostat program is a summary since boot time and is effectively useless. Table 7.3
gives some data gathered with i ostat while testing earlier examples in this book.

Typically, iostat reports its data as kilobytes per second or transfers per
second. In this example, reads and writes per second for each device are listed in
the second and third columns, while the amount of data being moved appears in the
fourth and fifth columns. Some versions also show how long the average transfer
takes, sve_t in this example, which can be very useful metric for determining
loading. If this number starts going up, it indicates that the device is heavily loaded.

On Solaris and some recent versions of Linux, the -x flag gives even more
valuable information, as in this example, including the average amount of time
each request spends in the wait queue and the percentage of time I/O requests are
waiting to be serviced by the disk device. These numbers represent some of the best

Christenson

Christenson-Textures-07 August 22, 2002 18:4

180 Finding and Removing Bottlenecks

indicators of disk contention in the absence of a baseline, but they’re no substitute
for one. A disk can be 100% busy and yet the system can still provide adequate
service. In our example, we can clearly see that the two disk devices (sd0 contains
the message store and sd3 contains the logs and the email queue) are not saturated
and, therefore, this system is not I/O bound.

Knowing that a disk always has requests sitting in the wait queue doesn’t explain
why a change in server behavior has occurred. If kilobytes per second increases while
tps remains constant, it would indicate that we’re dealing with larger requests, which
may alert us to a temporary or permanent change in the type of email flowing through
the system.

On some operating systems, iostat has problems reporting useful informa-
tion about disks managed by software RAID or from a hardware RAID system.
This is especially true for those numbers indicated on a percentage basis. Absolute
throughput numbers such as numbers of reads and writes per second or bytes per
second compared against a baseline are likely to be more reliable. Because email
servers so often become I/O bound, iostat may be the single most important
utility in the email administrator’s toolkit. Anyone who expects to maintain such a
system would be well advised to become very familiar with it.

In the operating system used in the examples here (Solaris 2.6), note that the
CPU loading information given by the iostat command lists an I/O wait stat
(the wt column), whereas the vims tat command lumps it in with the idle CPU state
(the 1d column). Someone who looked at just the vmstat output might conclude
that the system is not quite CPU bound, whereas this result would become more
obvious if the CPU loading information was examined via top or iostat.

7.3.5 netstat

The third tool in the “*stat” trio is netstat. As one would expect, netstat
provides information about system networking. It can display either a snapshot
of very detailed information about nearly every conceivable network parameter
(netstat -s) or periodic data like that found with vmstat or iostat (e.g.,
netstat -w 5 on BSD systems, netstat -i 5 on Solaris, or netstat -c
on Linux).

Obviously, in its periodic mode, some of the parameters provided by netstat
that we want to carefully observe include the number of packets per second and
the number of bytes per second. Both statistics, and especially trends in them, can
provide the most direct information on the objective external load on a system, so
they should be tracked. How the ratio of input to output statistics might change
can also be highly informative.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.3. Tools 181

On some types of shared networks, such as Ethernet, when computers are
connected to the network via a hub rather than a switch, two machines could
potentially try to send a network packet at the same time. This attempt can result in
a collision. Both senders will then wait for a small, random amount of time and try
to send their packets again. On a shared network, the number of collisions is a good
indicator of general network load. Again, hard and fast numbers are difficult to
identify, as they depend on the speed of the network, packet sizes, and the number
of other machines on the network, but as a rule of thumb a busy email server should
not reside on a network that consistently shows hundreds of collisions per second.
On a switched network, no collisions should occur. If they do arise, it might mean
that the switch, or the connection between the server and the switch, dropped into
a nonswitched mode for some period of time. To avoid this possibility, one can lock
network interfaces on switched networks into full-duplex, rather than letting them
autonegotiate speed and mode.

The other piece of data of special value from netstat in periodic mode
involves the error rates. An error usually indicates that a packet has failed its
checksum—that is, its contents don’t match what the packet header indicates. An
output error indicates that this problem occurred somewhere between the formation
of the packet by the operating system and its transmission over the wire. This result
is never good. Even a handful of entries in this field can indicate a serious problem
with the server’s NIC and should be investigated. Input errors are less severe, as a
packet might legitimately have become corrupted traveling over a network to the
server, but input error rates of even 0.1% may indicate a network problem, such
as bad cabling, electrical interference, or a bad NIC. An error rate of 1% means
something is seriously wrong with the network somewhere, and this problem should
be tracked down and eliminated before it worsens and interferes with operations.

7.3.6 sar

On System V-derived UNIX versions, you can run the System Activity Reporter
(sar) program in the background to gather statistics and accounting information,
including much of the data reported by the tools that have already been mentioned
in this section. It is an excellent baselining tool, and collecting data every 1 to 15
minutes on a system via sar and archiving those data is something that every server
administrator should seriously consider. This effort will be worthwhile on any system
where performance monitoring is important.

Just about every piece of data one could want to examine is available via sar.
In fact, it’s more likely that one will miss key information due to the presence of too

Christenson

Christenson-Textures-07 August 22, 2002 18:4

182 Finding and Removing Bottlenecks

much data than that information on the nature of a given problem isn’t available.
This tool provides a superset of the information available from vmstat, iostat,
netstat, and other utilities. Any performance-critical server administrator should
become very familiar with sar and its affiliated utilities.

7.3.7 Other Utilities

Many other utilities could have been mentioned here, such as pstat, 1sof,
i fconfig, systat, pstack, ad nauseum. They have been omitted not because
they’re not valuable, but because a line must be drawn somewhere. Playing around
with these other possibilities is worthwhile with the proviso that before one makes
a new utility part of the “canon,” it should be demonstrated that programs that are
more familiar and already on the system cannot easily generate the same information.

Finally, if for no other reason than to satisfy the reader’s curiosity, I'll explain
the stat shell script that appeared on the example ps output. This trivial script
receives output from commands such as vimstat and iostat that do not indi-
cate the date and time the data were gathered, and adds this information. Thus,
instead of

% vmstat 15
procs memory
r b w swap free re
0 00 4692 1804
7 1 0 64440 1956
8 0 0 64008 1800
8 0 0 64612 2276 10

we could run

% vmstat 15 | /usr/local/etc/stat
020315 15:14:03 procs memory
020315 15:14:03 r b w swap free re
020315 15:14:03 0 0 O 4692 1804 O
020315 15:14:18 7 1 0 64440 1956
020315 15:14:33 8 0 0 64008 1800
020315 15:14:48 8 0 0 64612 2276 10

Now data from one source can be matched up in time against data from another
source.

Christenson Christenson-Textures-07 August 22, 2002 18:4

74. syslog 183

The stat script is trivial:
#!/bin/sh

OLDIFS=SIFS

IFS=

while read LINE

do
echo -n ‘date "+%y%m%d %$H:%M:%S"’
echo " " SLINE

done

IFS=SOLDIFS

IFS is redefined to be null so that the whitespace isn’t adjusted when each line
of input is collected by the read command.

7.4 syslog

The syslog facility isn’t a program used to evaluate system performance, but
rather a set of library calls and a daemon, sys1ogd, that records information that
the system and its programs think is worth logging. All email server applications
mentioned in this book, but especially sendmail, use syslog to log data about
their behavior, and it would be unwise for an email administrator to ignore this
fact. The syslog package was originally developed as a part of the sendmail
distribution to help maintain the information it would log. It was later adopted by
the rest of Berkeley UNIX around the BSD 4.1 timeframe, and from there spread to
other UNIX versions. Now it has become so ubiquitous that the fact that its origin
is tied to sendmail has been largely forgotten.

7.4.1 syslog and sendmail

During an SMTP message reception, sendmai 1 logs the sender information at the
end of the message transaction, whether the message is actually sent or not. If the
message is accepted, then the log entry occurs after the end of the DATA phase. If
the message is rejected, then the log entry is made immediately after the rejection.
During a successful SMTP message reception, sendmail logs the recipient infor-
mation at the end of the session, although the precise timing can vary depending on
sendmail’s delivery mode. At the conclusion of each failed delivery attempt, that
attempt is also logged. At least two log entries for each successful delivery and one

Christenson

Christenson-Textures-07 August 22, 2002 18:4

184 Finding and Removing Bottlenecks

log entry for each unsuccessful attempt, plus various other entries for start-up, en-
countering errors, STARTTLS information, and so on, will be made. The two types
of log entries mentioned initially make up the bulk of the log messages generated,
however, and are the two that occur as a result of a successful delivery. All of these
log messages can result in a lot of data, and this information can provide significant
insight into what is happening on the server.

Here is an example sendmail log entry for a successful message delivery:

Mar 12 14:39:49 discovery sendmail[44639]: g2CMdnkqg044639:
from=<npc@acm.org>, size=1047, class=0, nrcpts=1,
msgid=<200203122239.g2CMdcQL044635@mail.acm.org>,
proto=ESMTP, daemon=MTA, relay=mail.acm.org [199.222.69.4]

Mar 12 14:39:49 discovery sendmail[44641]: g2CMdnkg044639:
to=<npc@gangofone.com>, delay=00:00:00, xdelay=00:00:00,
mailer=local, pri=30052, dsn=2.0.0, stat=Sent

The first question asked might be, “How do we count the total number of
messages that flow through the system?” This question isn’t as simple to answer
as it might seem. The answer depends on whether one wants to count the number
of SMTP connections, the number of unique messages as sent by a sender, or the
number of messages (often sent to multiple recipients) that end up in someone’s
mailbox somewhere. Each of these metrics is a valid choice, but in my judgment
the bulk of the work is done for each successful message recipient, so I generally
choose to count the number of syslog entries with both the to= pattern and
stat=Sent in them. I call that measure the number of messages that the system
has successfully processed, mindful that it is merely one statistic that is much more
nebulous than it appears at first glance.

If we consider the format of these log entries to contain a set of fields delimited
by whitespace, the first three fields contain information about the date and time
when the log entry was made. This information can be parsed to track the busiest
time of day for the server. In the from entry, the eighth field contains the size of the
message in bytes, which we can use to find out the average message size handled
by the system. On the same entry, the tenth field lists the number of recipients per
message, another interesting statistic to track. In the t o entry, the information in the
delay and xdelay fields are of particular interest. The delay field measures the
total amount of elapsed time between the receipt of the message and this particular
delivery attempt. The xdelay field, which stands for transaction delay, measures
the amount of time consumed on this particular delivery attempt, which should
reveal something about the current connectivity to a particular site.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

74. syslog 185

A great deal more information available in the logs can be extracted for various
purposes, but at this point the next step will be left to the imagination of the reader.
Section 2.1.1 of the Sendmail Installation and Operation Guide provides additional
information on the sendmail log entries.

A similar set of information can be extracted from the logs left by any of the
POP or IMAP daemons discussed in this book. Combined with other statistical
information gathered with the tools described here, one can plot number of pro-
cesses versus load average, connection rates versus disk activity, and so on to obtain
a thorough understanding of any email server’s performance. These checks can
be easily automated, and at least the most basic ones should be part of an email
administrator’s baselining effort.

7.4.2 syslog and Performance

If a server handles a large volume of email, the resources consumed by syslog in
writing out the many log entries can be significant. On very large servers, mounting
/var/logorits equivalent on its own disk might be appropriate. Beyond this point,
an additional sys1og issue directly affects performance that should be mentioned.
On Linux systems, by default the syslog daemon will £sync () its log files
after each entry is written to them. On a busy email server, this operation can
cause a measurable slowdown. In most organizations, email server logs aren’t so
critical. This behavior can be switched off by preceding the appropriate entry in the

»

/etc/syslog.conf file with “-”:
mail.* -/var/adm/mail

If logging continues to pose a performance problem for a host, it may be appro-
priate to log the information to a dedicated remote logging host. If this step is taken,
replacing themail. entries in /etc/syslog.conf with one like the following
may be appropriate:

mail.* @loghost.example.com

The loghost . example . com machine may end up aggregating log information
for a large number of hosts. Because the host name is included in each log entry, it
should be straightforward to split the entries out again on the log host if desired. On
the log host, a RAID system with a high-performance filesystem may be mounted
on /var/log to handle this load.

One downside to remote logging is that syslog sends its messages to the
log host using UDP. Thus, if a log message becomes lost en route, it will not be

Christenson

Christenson-Textures-07 August 22, 2002 18:4

186 Finding and Removing Bottlenecks

retransmitted. This behavior makes this method less useful if saving each log message
is critical. One way to work around it is to replace the default syslog daemon
with syslog-ng [SYS] or one of several packages with similar feature sets that
support logging over TCP.

7.5 Removing Bottlenecks

Let’s assume that the system bottleneck has been revealed using the techniques
described earlier in this chapter. The next logical question to ask is, “What should
be done about it?” Some of the methods for effecting an improvement in system
performance will be obvious, and many have been discussed already. In this section
we will explore some of the ways in which bottlenecks may be alleviated and some
of the pitfalls that may be encountered.

It may seem that identifying the bottleneck and planning the fix should be
the most difficult part of improving system performance, and they usually are.
Additional frustration may arise, however. We never really completely eliminate
bottlenecks—we just improve the throughput of one aspect of a system. A truism of
information technology seems to be that the load placed on servers increases over
time. As the load on an email server grows, it is inevitable that we will eventually
encounter another bottleneck that must be removed. Perhaps this next bottleneck
lurks just around the corner, raising its ugly head after our capacity increases just
a few percentage points from the level at which the last obstacle was removed. If
we have a set of disks on a SCSI-2 interface that is saturated at peak times while
delivering 8 Mbps of data to our applications, we won’t have long to wait after
upgrading the disks before the SCSI controller becomes a bottleneck. Sometimes,
as in this example, the next hurdle that will need to be overcome is easy to see.
At other times, it’s almost invisible. With experience comes better instincts about
where the next problem lurks, and with some support from the folks who control
budgets, perhaps some of these roadblocks can be eliminated before they slow
down the system again. No matter how much experience a person has, no one can
anticipate everything. This uncertainty is just one of the things that makes the job
so challenging.

7.5.1 CPU-Bound Systems

With a CPU-bound system, the first step is to see if anything currently running on
the server can be stopped or moved to another server. If that’s possible, it would
be a fortunate fix. Of course, one cannot eliminate unnecessary tasks indefinitely.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.5. Removing Bottlenecks 187

Sometimes a shortage of CPU power really masks another problem—for example,
the system may be working very hard to move processes in and out of swap space.
The danger in interpreting utilities that seem to report CPU utilization but also
report I/O utilization, such as some versions of top or vmstat, has already been
discussed.

By some measures, having a CPU-bound system is a good thing. It usually
indicates that the rest of the system is well tuned and operating efficiently. Besides,
CPU is often the easiest component to upgrade. Even in the worst-case scenario,
we can expect the new chip released in the next quarter to offer a larger percentage
improvement over the current product line than for any other computer component
of the next-generation system.

Finally, the email applications discussed in this book have all run many pro-
cesses simultaneously to handle multiple requests. Thus they operate in parallel very
nicely to work on multiprocessor computers. If an email server with two processors
becomes CPU bound, it’s almost certain that the same vendor has an upgrade plan to
a four-CPU box, and upgrading to a system with more CPUs is almost always easier
to plan and execute than upgrading I/O controllers, software, or storage systems.
Not only is there typically less to configure, but also it’s straightforward to estimate
the actual improvement in CPU capability between the old and new systems. This
factor is generally much easier to predict than the effects of upgrading a storage
system or increased RAM.

7.5.2 Memory-Bound Systems

As we've already learned, some amount of paging on a system is normal. Excessive
paging, or “thrashing,” causes problems, however. This condition is not always easy
to detect when it is mild, but it is patently obvious when severe. If the system is
truly memory bound, the only solution is to add more RAM. Fortunately, memory is
relatively cheap when it comes to system costs. For most applications, having extra
memory will help reduce I/0 by providing more filesystem cache space. Email is
helped less than many other applications by surplus RAM, but extra memory does
help, sometimes a great deal. Rarely will a recently constructed email system require
more memory storage than can fit in that machine. That is, CPU, networking, and
I/O all tend to make an entire computer chassis obsolete before it needs to be
completely filled with RAM.

Another pitfall may become evident: It’s very easy to be fooled into think-
ing a system problem is a memory problem when that’s not the case. In point
of fact, every time a server runs out of a finite resource, if the load keeps

Christenson Christenson-Textures-07 August 22, 2002 18:4

188 Finding and Removing Bottlenecks

coming, the system will always run out of memory. Consider the following
scenario:

e A computer is relaying email from the Internet to an internal email server. The
internal server can handle anything the gateway can throw at it.

o The gateway’s queue resides on a single disk, and just today, the load has
reached the point where metadata operation contention exhausts the I/O
capability of the disk.

e The server is now processing as much email as it possibly can, but the rest of
the Internet won’t be sympathetic and back off. Instead, email keeps getting
sent, and at a faster rate than data can be moved into and out of the queue.
Putting some numbers to this scenario, let us suppose that email comes into
the server at a rate of 5 Mbps, but the queue is processed at 4 Mbps.

e Consequently, more sendmail processes are spawned on the server than exit
in a given time period, causing the number of processes to start to increase.

o While they share a single text image in memory, each process has its own data
image that starts eating away at available RAM.

o This shortfall in memory causes the system to reduce the size of the buffer
cache, placing more I/O demands on the queue disk that cannot be satisfied.
The total number of processes increases further as each process takes longer
to complete its work and exit.

o Eventually, real memory pages become exhausted by all of these surplus
processes, and the system starts to thrash.

When email administrators come to this machine and start running diagnostics,
they will see that the server is out of memory and thrashing. Stopping there, they will
erroneously conclude that the system needs more memory. They can obtain more
and install it, but next time this situation occurs the server will merely flail around
for a longer period before it begins to thrash. Adding memory will not correct the
real problem.

In fact, this example leads to a general maxim about Internet servers. Surplus
RAM acts as a buffer against temporary resource shortages. More RAM does not elim-
inate the problem, but it does buy the server more time in which the shortage might
become resolved, or at least be abated. In our example, the resource shortage was disk
I/O, but the same sort of scenario plays out for an email server that communicates
directly with other servers around the Internet when the organization’s Internet

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.5. Removing Bottlenecks 189

link is severed. Email backs up on the server filling the queue. As the queue grows
deeper, the amount of time any one process spends in the queue increases, leading
to resource contention that may become apparent to POP or IMAP users. Having
more RAM on the server means that a longer outage may be tolerated before inter-
vention becomes necessary.

Similar sorts of outages occur frequently and can be mitigated by good planning
and architecture, but cannot be completely eliminated no matter how much effort is
expended. DNS server outages, routers being given bad information or rebooting,
“backhoe fade,” or even unusual transient spikes in load can all cause these sorts of
problems. A good server will be resilient against these sorts of situations, but it can
never be made impervious to them. For this reason, it’s more difficult to provide
reliable Internet services than it is to provide many other utility services such as
reliable dial-tone phone service. When a phone switch runs out of circuits, it can
say “no” to the next entity wanting to use its resources; the process of saying “no”
does not significantly drain the switch’s resources. This result is much harder to
achieve in the Internet case. Even saying “no” takes more resources, and the load
will keep coming despite the refusal.

If a server is running normally at full capacity without any problems, but oc-
casionally runs out of resources without having to process either more email mes-
sages (transactions) or larger messages (overall volume), then running out of memory
is not the cause of the problem, but rather a symptom. The server is running out of
“something else,” where that something could be network bandwidth, I/0, CPU,
or any number of other possibilities. If a server running out of memory is correlated
with a higher demand being placed on that machine, that condition may indeed be
a memory shortage.

7.5.3 1/0 Controller-Bound Systems

On most disk systems, the data may be accessed by only a single I/O controller.
If this controller becomes saturated, few remedies exist. Splitting up the load onto
multiple storage systems using different controllers is the first thing to try, but that
can’t happen beyond the limit of one disk/SSD/RAID system per controller. If a
controller with one device becomes saturated, the only option is to upgrade to a
faster controller. However, this upgrade is a solution only if the storage device on the
other end of the bus can support the faster speed. If a SCSI-2 controller is saturated
talking to a single SCSI-2 disk, upgrading the controller isn’t enough, because the
disk will still speak SCSI-2 and the faster controller won’t make a difference. In this
case, the disk must be upgraded as well.

Christenson

Christenson-Textures-07 August 22, 2002 18:4

190 Finding and Removing Bottlenecks

The use of system NVRAM can help mask controller saturation, but disks and
controllers aren’t that expensive, so upgrading shouldn’t impose any special bur-
den. It’s generally a good idea to buy a high-end SSD or RAID system that comes
with the highest-speed interface supported by the device, even if one has to buy
a new controller to match. Even if the bandwidth isn’t needed now, it would be a
tragedy to purchase an ultra-fast storage system that must be completely replaced
at a later date solely because its controller runs out of bandwidth before the storage
system does. Only the very highest-end storage devices (SSDs and the most powerful
RAID systems) can saturate the fastest controllers on the market by themselves in
typical email environments. If this event comes to pass, the only solution is to divide
the load over multiple disk systems on separate controllers, either with multiple
mount points or by using software RAID to create a single storage image out of
multiple devices by striping them together.

Because email data access patterns tend to be small and random, one can usually
place several, or even many, disks on a single controller with confidence. In an
environment where only a single large file will be read at a time, two or three disks
per controller might be the maximum supportable. For email servers, it’s usually
safe to put several disk drives on the same SCSI bus—perhaps as many as six on
a SCSI-2 chain, or even a dozen on high-speed controllers. It’s still a good idea,
though, to dedicate controllers to email tasks. Controllers can become saturated on
email servers, especially if solid state disks or high-performance storage systems are
employed.

7.5.4 Disk-Bound Systems

Conceptually, upgrading disk systems is fairly easy. Get faster disks, get faster con-
trollers, and get more disks. The problem is predicting how much of an improvement
one might expect from a given upgrade.

If the system is truly spindle bound, and the load is parallelizable such that
adding more disks is practical, this route is almost always the best way to go. When
a straightforward upgrade path exists, there’s no more likely or predictable way to
improve a system’s I/O than by increasing the number of disks. The problem is that
a straightforward path for this sort of upgrade isn’t always obvious. As an example,
assume we have one state-of-the-art disk on its own controller storing sendmail’s
message queue, and the system has recently started to slow down. There are two
ways to effectively add a second disk to a sendmail system. First, we could add
the disk as its own filesystem and use multiple queues to divide the load between
the disks. This upgrade will work, but will become more difficult to maintain and

Christenson

Christenson-Textures-07 August 22, 2002 18:4

7.5. Removing Bottlenecks 191

potentially unreliable if it is repeated too many times. Second, we could perform
a more hardware-centric solution, upgrading to either create a hardware RAID
system, install a software RAID system to stripe the two disks together, or add
NVRAM to accelerate the disk’s performance. With any of these solutions, upgrad-
ing the filesystem might also become necessary. None of these steps is a trivial task,
and there’s no way to be nearly as certain about the ultimate effect on performance
with the addition of so many variables.

Obviously, we can’t add disks without considering the potential effect on the
1/O controller, and sometimes limits restrict the number of controllers that can be
made available in a system. While we rarely push the limits of controller throughput
with a small number of disks because email operations are so small and random, it’s
possible to add enough disks on a system such that we run out of chassis space in
which to install controller cards.

Any time a system has I/O problems, it would be a mistake to quickly dismiss
the potential benefits of running a high-performance filesystem. This solution is
usually cheap and effective, and where available can offer the best bang for the
buck in terms of speed improvement. If I am asked to specify the hardware for an
email server, in situations where I have complete latitude in terms of the hardware
vendors, I know I can get fast disks, controllers, RAID systems, and processors for
any operating system. The deciding factor for the platform then usually amounts
to which high-performance filesystems are supported. This consideration is that
important.

If a RAID system is already in use, performance might potentially be improved
by rethinking its setup. If the storage system is running out of steam using RAID 5,
but has plenty of disk space, perhaps going to RAID 0+1 will give the box some more
life. If it is having problems with write bandwidth, lowering the number of disks
per RAID group, and thus having a larger percentage of the disk space devoted
to parity may help. Losing unused space is certainly preferable to buying a new
storage system. Changing the configuration of the storage system is especially worth
consideration if it wasn’t set up by someone who really understood performance
tuning. The vendor could very easily have given some advice that wasn’t optimal
for email applications.

If a RAID system has been set up suboptimally, it may also be possible to
improve its performance via upgrading. Vendors often provide upgrade solutions
to their RAID systems that can improve their throughput, both in terms of hard-
ware components and the software that manages the system. Also, to save money, the
system might have originally included insufficient NVRAM or read cache; perfor-
mance might improve dramatically if more, or any, is installed.

Christenson Christenson-Textures-07 August 22, 2002 18:4

192 Finding and Removing Bottlenecks

7.5.5 Network-Bound Systems

Two networks are considered: the network(s) under one’s control, typically one or
more LANS, and the network connection(s) to the Internet, which are usually much
more difficult and expensive to upgrade. If the problem lies with the latter, one can
do little except to upgrade the server or add an off-site Spillover MX host to ride
out the times when network contention causes email to back up. Unfortunately, this
tactic doesn’t really solve the problem, but merely mitigates it. Further, it’s fairly
costly in terms of server hardware, maintenance, and potential rack space at a
better-connected site. When the problem lies with an internal network, the solution
is usually much more tractable.

Reducing the number of other servers contending for time on a cramped net-
work and going to a switched topology are the first things to try if the email server
resides on a shared network. If the network is already switched, upgrading speeds
and NICs will be necessary, and one will want to make sure the switch itself isn’t
overloaded.

7.6 Summary

o If an email server sometimes runs out of memory, it may not be memory
bound. Swapping can be a symptom that the system has run out of
“something else,” which has caused processes to back up on the server. This
problem eventually leads to memory exhaustion.

e [/O-bound email servers are a common occurrence. Generally, fixing this
problem requires adding disks, upgrading storage systems, or upgrading
filesystems.

e Often, if a system is network bound, it will be impractical to upgrade the
network in the short term. Instead, the email server may need to be upgraded
to support deep queues and many concurrent processes.

e When a server becomes saturated, very often the best option is to just let it
“work its way out of a jam,” rather than trying to find some way to reduce its
load. If a server can’t handle the load being thrown at it, the demand for its
services won’t decrease in the short term. The email will keep coming.

e Many tools are useful for determining why a server might run slowly.

e Email applications tend to log a lot of information. This logged information is
valuable for assisting in performance tuning, but the logging process itself
consumes resources.

