
29

C H A P T E R 2

Peer
Architectures

ith a clearer grasp of what the p2p concept means, we can now take on the task
of classifying peer architectures. This analysis is fairly abstract and non-

specific, at least to begin with, because any subsequent discussions of specific
technologies and implementations must build on a common groundwork.

As a first step, we must define the fundamental terms and the basic p2p models.
Including a summary of primary characteristics in this overview proves useful when
comparing the functionality of different technologies, and also when we look in Part
III at the future development of p2p applications.

We also need to discuss protocols, the “glue” that holds networks together. Later
chapters dissect particular protocols in considerable detail, so this discussion is not
made dependent on any particular implementation. It provides a familiar context in
which to place the later specifics. In addition, it can serve as a map to help identify any
omissions or simplifications in the protocol design of a particular implementation,
which could otherwise be obscured in the mass of technical detail.

Finally, because the focus of the book is mainly from the end user perspective,
and thus on application implementations where the p2p software is entirely or mostly
administered by the user, this chapter is the appropriate place to summarize some of
the peer implementations that aren’t covered in other chapters. The final section
therefore mentions a selection of common peer networking technologies native to
different operating systems. These technologies often form the underlying transport
layer in host systems that application p2p implementations depend on, yet transcend
with their own protocols.

W

PeerToPeer.book Page 29 Monday, May 20, 2002 12:57 PM

30 PEER ARCHITECTURES

CHAPTER 2 AT A GLANCE

This chapter introduces the architectural models and fundamental terms used in peer-
to-peer networking.

From Model to Reality starts with a summary of the conceptual models for p2p,
before delving further into detailed terms.

• The Protocol Types section analyzes the basics of protocol to introduce
some terms and concepts used later to describe particular implementations.
Network Purpose adds a perspective often overlooked, that of suitability to
a particular purpose.

Architectural Models provides an overview of the main types of p2p technologies
based on their architecture.

• The models covered are Atomistic P2P, User-Centric P2P and Data-
Centric P2P. The Leveraged P2P section discusses how distributed
implementations might incorporate and blend aspects from these p2p
models to improve functionality and performance.

Specific Architectures is mainly a background to Part II and gives an overview of some
p2p possibilities not included elsewhere in this book.

• Native Networking describes common solutions already built into
operating systems, while Other Application Groups zips through some p2p
and p2p-related technologies not covered elsewhere.

PeerToPeer.book Page 30 Monday, May 20, 2002 12:57 PM

FROM MODEL TO REALITY 31

FROM MODEL TO REALITY

First of all, let’s summarize into a concise structure the conceptual models of p2p that
were introduced in the historical overview in Chapter 1.

Of the many possible ways to structure the information about different
conceptual models for information exchange using computers, Table 2.1 takes the
perspective of client-server analysis. All the main client-server models are included to
give context, while the shaded section in the middle of the table encompasses the
established and accepted p2p architectures discussed in this book.

As used in the table, the term “index” means collections of logical links to
distributed resources or data, while “directory” refers to collections of logical links to
users. Not all applications or networks make this distinction between the two terms
and services, but it is a useful one. In either case, this logical addressing is usually
independent of the underlying addressing scheme for the network (for instance, the
Internet). The latter just functions as a transport layer for the specific p2p protocols.

Although distributed resource sharing, or what might be called the computation-
centric model, is often included as a p2p technology, its exchange model actually says
nothing about the presence of any p2p architecture. A distributed computation-
centric implementation might indeed include p2p characteristics from any of the
table’s preceding three p2p models, likely data-centric. Quite often, however, node
communication is only with the central server that owns the data and distributes the
tasks. Next-generation Web or a fully deployed .NET infrastructure, both still in the
future, might also include many aspects of p2p but are unlikely as a whole to build on
any one p2p architectural model.

The Table 2.1 summary also gives a chronological overview of popular trends in
communication modes, even though the actual development and use of each listed
technology is nowhere as linear and simple as the popularized “paradigm shifts”
would suggest. In the earliest dumb-terminal systems, for example, the mainframe
servers could be interconnected in an atomistic p2p model, refuting the impression
that this model came later. Yet it’s still true that the PC p2p model did.

Bit 2.1 Sharing distributed resources doesn’t necessarily make it p2p.

The defining issues should instead be how these resources or network nodes
communicate, and who owns and controls both them and the data.

PeerToPeer.book Page 31 Monday, May 20, 2002 12:57 PM

32 PEER ARCHITECTURES

The original vision of the World Wide Web by its “creator” Tim Berners-Lee and
others was a predominantly data-centric p2p one—a globally hyperlinked content
space where no single server had precedence over any other. This vision implied
extensive co-authoring and open collaboration by all users. However, much to the
disappointment of the first visionaries, the Web instead evolved to have
overwhelmingly static and server-centric content, locked to the visitors. There came to
be few actual content providers compared to the many users. With users constrained
to the role of passive consumers, and little peer communication between them,
functionality development of Web browsers focused mainly on snazzy presentation
features, not user utility, nor for that matter many of the more basic navigational and
collaborative improvements proposed from the very start.

Nevertheless, the importance and use of open p2p models has returned on a new
level, user-to-user rather than machine-to-machine, making the developmental
chronology implied by the previous table reasonably accurate in that sense.

TABLE 2.1 Conceptual models for information exchange
Conceptual model Client-side Server-side

Centralized processing
(or “dumb terminal
systems”)

Display on many (local)
dumb clients (terminals)

Data storage, processing,
indexing, policies on one
server “mainframe”

Client-server (such as
corporate NT domain
networks)

Processing and display
on many smart clients
(such as LAN PCs)

Data storage, processing,
indexing, policies on one
main server

Web server and browser
(current paradigm)

Limited processing,
display on many clients
on WAN or Internet

Data storage and limited
processing on many
(distributed) servers

Atomistic P2P Peer-to-peer models:
The client-server
distinction blurs in all
these peer models. Data
storage, processing, and
display on many peers.

No separate servers

User-centric P2P Directory services on one
or few servers

Data-centric P2P Indexing services on one
or few servers

Computation-centric or
distributed process

Processing on many
distributed clients

Administration, storage,
indexing, and display on
one or few servers

Next-generation Web
(and perhaps .NET)

Data, processing, co-
authoring, and display
on many clients

Many kinds of
distributed services on
many servers

PeerToPeer.book Page 32 Monday, May 20, 2002 12:57 PM

FROM MODEL TO REALITY 33

PROTOCOL TYPES

Protocol forms the “glue” that holds a network together by defining how nodes
communicate with each other to achieve network functionality. We therefore need to
examine the terms and concepts that are later used to describe how particular
implementations function.

Protocols are specified at many different levels, but we can define some common
characteristics concerning how a protocol is implemented. For example, we can
consider the kind of modality focus of the communication:

• Message-based protocol, where the focus is on sending and receiving
discrete, packaged and addressed messages. How the messages are carried
between two parties is delegated to an autonomous agent, which is like a
conversation with messages exchanged by courier, carrier pigeon, or mail.

• Connection-based protocol, where the focus is on establishing connections
over which messages can be sent. This situation is more like a telephone
conversation, where a dial-up connection allows “raw” messages
(unpackaged and unaddressed) to be exchanged in real time.

Another, related aspect is the relative timing of messages:

• Asynchronous conversation, in which one side need not wait for the other
side’s response before sending another message.

• Synchronous conversation, where explicit or implicit dependencies exist
between a message and its response. Additionally, there are often internal
timing constraints between parts of the same message.

A third aspect is state, as applied to the network used for message transport:

• Stateless network, which treats all messages the same with no reference to
previous messages. The same message will be processed and interpreted the
same way every time it is sent.

• State-aware network, which exhibits dependencies. Processing one message
can influence how a future message will be handled. Memory of past events
is preserved—the same message can give different results at different times.

The current Internet TCP/IP connectivity model is connection-based, asynchronous,
and inherently stateless. However, many message-based Internet applications
introduce various ad hoc mechanisms and protocols to track state.

PeerToPeer.book Page 33 Monday, May 20, 2002 12:57 PM

34 PEER ARCHITECTURES

Constraints of Internet Transport

Internet messages are packaged, addressed, and sent as a number of packets
determined by underlying transport layers. The packets are routed by independent
routers with locally determined priorities and paths. The “sockets” one sometimes
sees reference to are logical abstractions of virtual endpoint connections between, for
example, server and client, but have no correlation with how messages really travel
between them. Figure 2.1 is a simple illustration of that concept.

There is little concern at higher or application levels for how the data transfer is
accomplished. The requirement is only that all packets are received within a
“reasonable” time, or can be requested again if missing so that the message can
ultimately be reconstructed. Hence TCP/IP is characterized as a reliable transport, in
that it implements handshaking to track and acknowledge packets received.

This pervasive and asynchronous nature of packet transport is not a problem
unless dealing with various forms of “streaming” content, where packets must be
received in a particular order. The severe timing constraints of “real-time” content
mean that any missing packets can’t easily be requested again. Generally speaking,
implementing streaming media over the Internet requires both an acceptance of a
buffering delay at the receiver and some tolerance for missing packets. Therefore,
streaming connections rely on UDP (User Datagram Protocol) as transport, which
doesn’t try to guarantee packet reception in return for less overhead to manage.

Internet-based p2p applications must usually accept at least the constraint of the
asynchronous and stateless nature of the underlying TCP/IP packet routing. They

FIGURE 2.1 Simple illustration of how data transfer between Internet routers is
accomplished by asynchronous forwarding of individual packets along
whatever path each router at that moment deems suitable

Packet routing in the Internet

Data is split into
numbered packets which
all contain sender and
destination information

Packets are received
and reassembled at
destination.
Missing packets are
requested again.

Routers receive and
send packets
individually

Packets are
routed in a case
by case manner

There is no way
to predict a

packet’s path

PeerToPeer.book Page 34 Monday, May 20, 2002 12:57 PM

FROM MODEL TO REALITY 35

must also build on the current IP addressing model, even if they subsequently
construct other directory services with different scope and resolution.

Conversational Modes

The current Internet paradigm, especially the Web, has for some time been
predominantly unidirectional in its information flow—from content server to
consumer client. This aspect has hampered the development of support at all levels for
arbitrary conversations.

In the strict sense, most current Internet applications don’t easily support real
conversations, only requests for predetermined, static content at some more or less
permanent address on the network. This is reflected in, for example, Web browser
design, which for the sake of efficiency caches content locally but can have problems
dealing with sites that generate dynamic content.

That’s not to say it’s impossible, or even necessarily hard, to support flexible
conversations in the existing protocols—p2p applications are a case in point—only
that the majority of deployed Internet applications tend to be very rigid and limited in
this respect, or to ignore the conversational aspect altogether.

It’s mainly for this reason that the deployment of application talking to
application is still rare and limited in its scope. The vision of autonomous agents
deployed to roam the Web, capable of gathering and filtering information according
to rules relevant to the interests defined by the user, has long been a compelling one,
yet remains largely unfulfilled. To achieve this, not only must bidirectional
conversations be a natural mode in the infrastructure protocols, but the information
must be accessible in a common structure or metastructure, and the various agents
and servers fully interoperable.

Next-generation Web applications do promise a far greater degree of
bidirectional conversation support, partly because of proposed extensions to the
underlying Web transport protocols, and partly because of a whole range of services
geared to distributed authoring and management of content, as exemplified by DAV
(Distributed Authoring and Versioning). The other part of the equation is that newer

Bit 2.2 P2P innately supports natural, bidirectional conversational modes.

You could use this criterion as a quick litmus test to determine whether a particular
technology lived up to its market meme of being p2p.

PeerToPeer.book Page 35 Monday, May 20, 2002 12:57 PM

36 PEER ARCHITECTURES

content protocols such as eXtensible Markup Language (XML) are designed to meet
the linked requirements of common structure, configurable functionality, and ease of
extensibility for particular, perhaps unforeseen needs.

Until then, various protocol overlays in the form of existing p2p technologies
allow users to retrofit at least some functionality that easily and transparently can
support real conversations between nodes in all modes. Some of this is evident in the
discussions of architecture models later in this chapter, and in Part II where practical
implementations are examined in detail.

Protocols and infrastructure are only one part of the story. The technology must
also have an aim, a reason for its design that manifests in the implementation.

NETWORK PURPOSE

Each implementation of a p2p network has a stated purpose or intent at some level.
Usually, this implicit or explicit goal was made early in the design process and so to a
great extent determines both just how and for what you can use it.

A given implementation might be admirable in many critical aspects, yet
unsuited to the purpose you intend. Many current p2p architectures are relatively
specialized. Some focus areas for current p2p implementations include

• Messaging

• File sharing and data sharing

• Content publishing

• Content retrieval (including search and distribution)

• Distributed storage

• Distributed network services

• Distributed processing (and presentation)

• Decentralized collaboration

• Content management/control

• General resource sharing

In addition, the prospective user must evaluate the impact of specific design decisions
concerning scalability, security, reliability, storage model, and so on.

PeerToPeer.book Page 36 Monday, May 20, 2002 12:57 PM

FROM MODEL TO REALITY 37

Actor Conversations

The network purpose also includes the dimension of actors, and it is common (and
natural) to use the idiom of “conversation” when describing network interactions
between peers. Looking at this idiom, we can more clearly see some useful ways of
talking about the process of communicating over a p2p network, and some of the
essential components of such architecture.

We see three communication situations in p2p network conversations.

• Person to person (P-P)

• Person to application (P-A)

• Application to application (A-A)

Peer applications such as messaging are of P-P type, while file-sharing nodes that
automatically fulfill typed-in requests by remote users are basically P-A. Both P-A and
A-A will likely grow in importance as we get better at designing automata that can
interface with people in “normal” conversational contexts, and with each other to
manage routine transactions for particular content or services on the network.

We’ve seen the same trend in telephony P-A, especially recently in the maturing
field of advanced voice recognition services, where human operators are rapidly
vanishing and becoming only instances of last resort for fulfilling user requests. Web-
based customer care centers have also seen rapid deployment as cost-saving ways to
allow customers to fulfill their own requests and manage their own accounts. Online
Internet booking, shopping, and banking are other P-A technologies that have seen
significant investments and deployment, albeit occasionally with mixed results.
Online government, so far usually in the somewhat limited sense of requesting
information, retrieving forms, and filing tax returns, is yet another P-A area.

It’s been stated, probably correctly, that the real transformation of the Internet
will occur first when A-A conversations become commonplace. This transformation
would be at least as great a shift in communication patterns as when telephony (and
especially cellular phones), e-mail, or instant messaging became popular.

Bit 2.3 A-A conversational modes are the next emergent technology.

Except in very limited or rare cases, there are few examples yet of automated agency
that can interact with other agents to fulfill more complex user-delegated tasks.

PeerToPeer.book Page 37 Monday, May 20, 2002 12:57 PM

38 PEER ARCHITECTURES

Extensive use of A-A would probably imply an equally extensive deployment of
P-A, where people communicate with the local client interfaces to the user
applications implementing the delegated user authority—see the following section.

Anyone interested in seeing where both P-A and A-A implementations of p2p
might lead should look more closely at the open, overtly protocol-based
implementations discussed later in Part II, and at the speculations in Part III.

Properties and Components

Looking at conversation properties in general lets us identify some essential p2p
properties and components more clearly. Defining these basic terms is important for
later discussions.

• Identity. This property simply serves to uniquely identify any user, client,
service, or resource, and is fundamental to any p2p context. The practical
implementation of a network’s identity namespace critically determines or
limits the scope of application of the p2p network. Another critical identity
issue deals with identifying and tracking individual messages.

• Presence. As a property, presence defines the arbitrary coming and going of
actors in a dynamic conversation. As a component, it represents the
mechanism by which users, applications, services, or resources can manage
and communicate information about their current state. Note that
“presence” can go beyond the simple state model to convey all manner of
context-specific information for a particular conversation.

• Roster. One most often identifies roster as a list of frequently contacted
identities. The corresponding component provides short-list entry points
into a chosen peer community but is often underestimated in terms of its
potential automation utility to the user—see “agency”. In particular,
applications and services can make use of a roster to intelligently share
resources, filter conversations, and determine appropriate levels of trust
automatically, without the user’s constant attention and intervention.

• Agency. With relationships to both identity and roster, agency defines the
ability for an application to act as an autonomous client. This can mean
initiating, managing, coordinating, and filtering conversations that the user
would be interested in or has set up rules for—e-mail filtering rule sets are
but a simple precursor to agency. In some cases, the agent might act with
vested formal authority on behalf of the user, probably leveraged with one
or another form of digital signature or certificate.

PeerToPeer.book Page 38 Monday, May 20, 2002 12:57 PM

FROM MODEL TO REALITY 39

• Browsing. As yet comparatively rare in p2p implementations, the ability to
browse available peers, services, applications, resources, and relationships
is an important but underrated feature that is only marginally supported in
the current paradigm of searching the network or central user/resource
database. We find its best known implementation in the form of the
browser built into Microsoft Network Neighborhood.

• Architecture. In this context, architecture mainly denotes how messages are
managed and passed between endpoints in a conversation. One dimension
for describing this term is to locate the process somewhere on the scale of
client-server to atomistic peer. Another is degree of distribution of services
and storage. The relevance of any description depends on the p2p context.

• Protocol. Current p2p implementations rest on the packet protocol layer of
TCP/IP, sometimes UDP/IP, overlaid with more sophisticated application
and session protocols to create the virtual network that defines a particular
implementation space. Ideally, the implementation should be fairly
agnostic about this layering process and be able to transparently translate
across different protocols as required.

This list of components is used in the later implementation chapters in Part II to
provide a baseline table for a summary comparison between the different
implementation architectures.

Although neither exhaustive nor the only way to examine functionality, these
items are a useful way to highlight significant differences between implementations.
Maintaining a focus on these primary characteristics helps a user evaluate critical
features and discount non-essentials in a given implementation’s feature list.

The relative importance of each characteristic is largely dependent on intended
purpose and scope of the application, but some general conclusions are still possible.
One is the overall importance of identity. This might seem trivial—surely you need
some form of identity to communicate—yet some implementations totally lack any
concept of user identity. In such cases, the implementation works because the purpose
doesn’t require any defined identity. Others allow arbitrary, even multiple, user-
selectable names that are unique only within a particular context.

Even with a well-defined identity, the question remains as to what exactly that
identity is tied to—message, person, role, digital signature, software, computer
component—each has advantages in certain contexts, and clear limitations in others,
particularly in the degree of addressability, security, or portability each offers.

PeerToPeer.book Page 39 Monday, May 20, 2002 12:57 PM

40 PEER ARCHITECTURES

Another conclusion is that some characteristics, such as presence, are often
undervalued in p2p designs. This view applies even to basic online status, let alone to
more advanced concepts of presence which might be applicable to a wider context
involving autonomous agencies acting on the behalf of a user.

Autonomous agency remains very much in the realm of speculation and vision,
but is an enticing goal in the face of the ever-mounting floods of unfiltered and
unsorted information that confront a human user on the Internet or at work. Such
prospects are dealt with in more detail in Part III.

We next examine the primary architecture models of p2p.

ARCHITECTURAL MODELS

The three architectural models for p2p considered here are

• Atomistic

• User-centric

• Data-centric

The last two are similar in that they usually rely on centralized servers to mediate
connectivity based on directories of users or resources and data.

Each model is examined to show its main and distinctive characteristics.

ATOMISTIC P2P

In the atomistic model (AP2P), all nodes are equally server and client. There is no
central administration or connection arbiter, although such might be implemented as
distributed services within the network. For purists, this model is the original and only
“true” p2p architecture.

Each node in the atomistic model is autonomous and fully manages its own
resources and connectivity. Figure 2.2 shows the schematic connectivity model.

Bit 2.4 Presence is a crucial issue in human-usable p2p applications.

Qualitatively speaking, human users find a well-supported implementation of simple
presence as the single most valuable and useful feature in a p2p client.

PeerToPeer.book Page 40 Monday, May 20, 2002 12:57 PM

ARCHITECTURAL MODELS 41

The atomistic model contains a fundamental bootstrap problem: how to join.
The prospective member must somehow first determine which other nodes in the
network it can establish connections with. Without a central server, no easy way of
determining resource or user availability is apparent in advance.

Two traditional answers are seen to this peer-discovery situation:

• Use a broadcast protocol to send a query to join and await a response.

• Attempt to connect to suitable “known” node addresses that will either
accept new nodes or provide further node addresses to try.

When the client has physical connectivity to the p2p network infrastructure, for
example in a LAN, it’s feasible to use the broadcast method, effectively calling into the
dark, “Hello, I’m here. Who’s available out there?” The implemented protocol
determines how this message is framed to be detected by other client nodes and how
these nodes should respond. The query can be a request to join a designated group.

Multiplayer games often use this method to establish gaming sessions over a
local network. Ad hoc sessions are created when several clients detect each other on
the basis of broadcast messages plus a matching selection of game, scenario, and other
criteria. In these cases, one system becomes the host server for the session.

While broadcast methods can sometimes be used on a larger, general network
such as the Internet, the likelihood of successfully reaching active p2p nodes is then
much smaller. More practical is to probe known addresses or address blocks for
responding clients. The new client can attempt to connect directly to known addresses

FIGURE 2.2 An atomistic p2p network is constructed from an arbitrary number of
nodes. Each typically maintains contact with several others, although
virtual direct connectivity can be established between any two.

Atomistic P2P
Active

connections
Potential

connections

?
New node must
discover at least
one known active
node to join

All nodes are
equally client
and server

PeerToPeer.book Page 41 Monday, May 20, 2002 12:57 PM

42 PEER ARCHITECTURES

and through one such node create a response list of other nodes. Alternatively, it can
first connect to a published “service provider” node that maintains dynamic lists of
active nodes within their horizon. The client downloads this list and proceeds to work
through it, attempting to establish a predetermined number of connections.

Once a successful connection is established to at least one node, a client (or other
software) can listen to messages passing through the network and build its own list of
active nodes for later connection attempts. Furthermore, if the client is configured to
accept incoming connections, the user might find that much of the subsequent
connectivity is maintained by “incoming” requests from other nodes.

While the formal lack of central administration in AP2P can cause a significant
and frustrating threshold to joining the network, it also means that the network is
essentially self-maintaining and resilient within the bounds of its capacity. AP2P is
therefore the preferred architecture for systems that wish to ensure maximum
availability and persistence of distributed data, despite the acknowledged
vulnerability in the common practice of distributing nodelists externally.

One or more trusted nodes (or Web sites, or IRC channels) with guaranteed
access might in some networks be effectively declared a service provider, mainly to
alleviate peer discovery. A fixed address, perhaps of last resort, is then often part of
the client distribution and available at first start-up. The fundamental all-nodes-are-
equal paradigm is essentially unchanged, except with regard to node discovery.

Lately, some Internet p2p networks are for various reasons moving towards an
extension of the service provider concept: a formal two-tier variation of the atomistic
model. Particular nodes are then elevated to “super-peer” status because of their
proven capacity, connectivity, and reliability. This process is made easier by automatic
history and reputation tracking. Reliable or trusted super-nodes can act as list
repositories, primary connection nodes, and sometimes search hubs. They provide a
sort of backbone network in much the same way that backbone servers came to do for
the Internet in general.

Later implementation chapters detail some of the discovery strategies in relation
to the specific design goals and security concerns in each case.

Bit 2.5 Up-to-date nodelists are a valuable resource in AP2P.

Considerable effort can be invested in atomistic networks to compile and distribute
suitable and updated “seed” lists for new nodes, even using external channels.

PeerToPeer.book Page 42 Monday, May 20, 2002 12:57 PM

ARCHITECTURAL MODELS 43

USER-CENTRIC P2P

The user-centric p2p (UCP2P) model adds to the basic atomistic one a form of central
server mediation. In its simplest form, the server component adds a directory based on
(usually permanent) unique user identity to simplify how nodes can find each other.
Identities tied to client or other entities are also possible, if sometimes less intuitive.
Strictly speaking, one should probably refer to “directory-centric” for proper scope,
but the term “user-centric” is the one most commonly used.

The directory provides persistent logical links that uniquely (and possibly within
a specific context) identify each node, and a translation mechanism to enable direct
connection by the user over the underlying network infrastructure. In an Internet
context, this translates to the current IP numbers corresponding to the registered and
available active nodes. Figure 2.3 shows a simple geometry of this model. In reality,
the ongoing direct connections between individual clients would be a much richer
web-like structure than this figure suggests.

Clients register with the directory service to announce their availability to the
network. Some form of periodic update to this status is tracked so that the server
knows when a node is no longer available—either “pings” sent from the client at
regular intervals, which is sometimes referred to as its “heartbeat”, or responses to
service queries. Users might select a specific transponder status such as “busy” or
“extended away” that will be reported to the server, thereby distinguishing between
simple node availability and a more nuanced user-selected availability.

FIGURE 2.3 Simple illustration of either user-centric or data-centric p2p. Even
though clients usually connect using the traditional infrastructure, the
user sees a different, peer-oriented namespace with new services
unavailable in the underlying physical network.

Server-centric UCP2P/DCP2P
Central server (or cluster)

mediates p2p connection by
providing addressing and
(content) search services

With addressing
resolved, clients can

connect directly

Static and
dynamic

clients/users

Clients log in
to a central

server

PeerToPeer.book Page 43 Monday, May 20, 2002 12:57 PM

44 PEER ARCHITECTURES

A user can scan/search the directory for other users who meet particular criteria,
and from the listing they can determine the current connection address. With a known
address, the user can then establish a direct client-to-client connection. The target
node registered itself as active and known to be online, so it usually responds right
away. Depending on the scope of the server mediation, the connection with the
directory server might remain, either to exchange supplementary information or to
track current p2p transfer status.

User-centric p2p has proven to be the most popular architecture. The most
publicized implementation is surely Napster file sharing. This popularity is despite the
fact that the UCP2P model has a far greater deployment in the older instant messaging
technologies: Miribilis ICQ (“I seek you”, now owned by AOL), AOL Instant
Messaging (AIM), and MSN Messenger, to name the best known. Napster as a public
representative of UCP2P is doubly ironic, because the primary interest of the users in
the system is not to find users, but to find particular content on some remote
computer. One would therefore have expected an explicitly data-centric focus, where
the MP3-tracks constitute the permanent index of content—after all, to all practical
intents, users are mutually anonymous in the system, often away, and their identities
(which are arbitrarily user-chosen at sign-up) need not be tracked at all. On the other
hand, UCP2P makes the current transition attempts from a free service to a registered
subscriber service much easier from the technical point of view.

One issue of concern with UCP2P networks is this reliance on central directories,
which introduces specific vulnerabilities and raises privacy issues. A user directory can
track user behavior and generate personal profiles. Such profiles can be worth
considerable sums of money to the compiler if sold to advertisers. They also invoke
the specter of user monitoring by various overt or covert agencies.

If we take the example of instant messaging, these solutions also illustrate
another downside of centralized server solutions: closed, proprietary standards
deliberately kept incompatible by the companies that control them. Independent
services like Jabber attempt to work around the barriers by providing modular
support for the different standards and so allow users access from a single client. It
remains to be seen whether this strategy will become more than just experimental.

Ownership and control of directory services is perceived as increasingly
important in the business community the larger the aggregate UCP2P user base grows.
This conjecture is proven by how Napster clones were bought up by commercial
interests even as they were being closed down for alleged music piracy.

All these issues are discussed later in more detail in both the general (Chapter 4)
and the application-particular (Chapter 6) contexts.

PeerToPeer.book Page 44 Monday, May 20, 2002 12:57 PM

ARCHITECTURAL MODELS 45

DATA-CENTRIC P2P

Data-centric p2p (DCP2P) is very similar to the user-centric model, and it can thus be
illustrated by the same figure used earlier (Figure 2.3). The distinction made in DCP2P
is that the central server maintains an index over available resources, not individual
users. The index is a collection of logical links that map the resources to registered
nodes in the same way that UCP2P maps identified users.

Again, the term should really be “index-centric” or “resource-centric”, but
prevailing usage prefers “data-centric”. However, just as a UCP2P directory can
indirectly access content (think Napster), it’s possible to indirectly access individuals
from a properly structured DCP2P resource index. In this respect at least, UCP2P and
DCP2P can be seen as interchangeable and the choice somewhat arbitrary.

When clients register with the DCP2P server, they mainly provide a list of
currently available resources on that node. Although this is usually assumed to be
data content of one kind or another—that is, files or documents—nothing requires it
must be. Resources can include more abstract entities, such as client-managed
services, storage, gateway interfaces, and other intangibles.

Users can in DCP2P architecture search for and access data (or content) held on
other nodes. With data in primary focus, it’s understandable that different forms of
content management solutions turn mainly to DCP2P. It is the area of greatest
excitement and promise for p2p in business, as opposed to private use.

Access in DCP2P tends to be more governed by rules than in UCP2P, especially
in corporate contexts. Not everyone is allowed to access everything, at any time.
Exclusion/admittance policy requires more “intelligence” in server index and client
management, so this kind of architecture is still very much under development,
targeting enterprise solutions. Furthermore, security issues are paramount because of
the deep access into registered nodes—both in terms of data and functionality, and the
often sensitive nature of the content.

LEVERAGED P2P

When dealing with the last two entries in Table 2.1, computation-centric and next-
generation Web models, I would like to use the term “leveraged p2p” (LP2P), insofar
as such implementations are to be considered in purely peer-to-peer contexts. Each
can be combined with the other, and also with elements from the previous three p2p
architectures. They might also be fully incorporated into these respective p2p contexts
to achieve synergies that can dramatically improve network performance. However, it
didn’t feel appropriate to include deeper discussions of these models in this book.

PeerToPeer.book Page 45 Monday, May 20, 2002 12:57 PM

46 PEER ARCHITECTURES

Take for example distributed processing. Traditional DP implementations tend
to be highly server-centric, as shown in Figure 2.4, because the primary interest has
been for a single owner of large amounts of raw data to process it using distributed
and otherwise idle resources. Owners of idle capacity, say a PC on a network, install
client software and register with the server. They then let the client autonomously
request and process data for the server owner, but generally have no insight or control
of the process, or the data. The best known example is the SETI@home Project, which
tries to analyze the vast reams of data available from radio telescopes in order to
detect evidence of intelligent life in the universe.

The thorny issue of data ownership and potential rights to processed results in a
public DP setting arose with a comparable distributed effort to identify genes in
human DNA. Ostentatiously hosted by a university for cancer research, any results
gleaned turned out to be patentable and exclusively owned by a private company.
When this fact was made public, many users left that DP network in disgust.

Using DP in a proper p2p context is comparatively rare as yet. In fact, the usual
definition of “large processing tasks segmented into component blocks, delivered to a
number of machines where these blocks are processed, and reassembled by a central
machine” is pretty clear about the strict hierarchy model.

One potential network-specific application of DP based on p2p is distributed
indexing, where nodes in a DCP2P network assume responsibility for a portion of the
total indexing task and work together in fulfilling search requests. Various distributed
search schemes are possible, index-based or instance-compiled on varying scope.

FIGURE 2.4 Simple illustration of traditional distributed processing. Typically little
or no communication occurs between nodes. Data is owned by the
central server(s), and tasks are sent out to nodes that sent back results.

Traditional Distributed Processing

Static and dynamic
users with idle

resources to run
DP client

Central server owns and
distributes data for
processing and collects
results from the nodes

Clients register
with a central
server (or cluster)

There is seldom any
direct endpoint

connectivity

PeerToPeer.book Page 46 Monday, May 20, 2002 12:57 PM

SPECIFIC ARCHITECTURES 47

A combination of DP and the new Web, sometimes called “Web Mk2”, offers
other prospects. In the p2p context, one can envision autonomous, roaming Web
agents opportunistically using p2p nodes as temporary hosts as they go about their
assigned information-gathering tasks—a kind of benign Internet “worm”. These and
other visions of future potential are dealt with in Part III.

SPECIFIC ARCHITECTURES

This section describes how some common p2p-capable implementations, especially
those built into operating systems, have applied one or another of the general
architectural models. We examine how closely each implementation adheres to a
given model, and of particular interest is to note how each has tried to solve issues
relating to user convenience, reliability, scale, and so on.

These examples are intended as illustrative of concept, not as exhaustive
analysis, and they mainly provide a general backdrop to the detailed analysis of more
recent technologies in Part II. Although capable of creating legitimate and often
perfectly adequate p2p solutions in the LAN context, they aren’t in themselves
necessarily practical solutions for deploying peer networks today. Modern p2p
solutions are based on open source applications that create virtual networks and can
run on any network-aware system, which gives numerous advantages compared to
proprietary solutions that depend on particular operating systems.

Before looking at the p2p solutions that can build on any operating system, the
following section takes up native networking abilities in the main operating systems
encountered by individual users today. I discuss “OS-bundled” networking in this
limited way, because it falls somewhat outside the intended scope of this book.

NATIVE NETWORKING

By “native networking” we understand the inherent ability to connect to a network
(of peers) using only those components already present in the respective operating
system, possibly with further installation of some non-default ones.

Such networking ability enables “instant” peer networking on the machine level,
at least for messaging and resource sharing across the network. In today’s systems,
this native capability almost always means Internet connectivity, in addition to
transport support for local networks. Native networking is distinguished from the
application-level p2p networking that is the main focus of this book, and it is often
neglected in discussions of p2p technologies.

PeerToPeer.book Page 47 Monday, May 20, 2002 12:57 PM

48 PEER ARCHITECTURES

Application-level solutions communicate on top of the established machine-level
networking, but can be independent of the latter’s addressing and peer or non-peer
ability, and are therefore seen as complementary enhancements.

Unix to Unix

As mentioned in Chapter 1, the first computer networking was between mainframes.
It quickly evolved to communication between Unix machines, which early had a basic
peer protocol called UUCP (Unix to Unix Copy Protocol).

Because UUCP is a standard copy process between all Unix machines that can be
applied to any content, it was also used to transport messages. Many newsgroup
servers still rely on UUCP to transport messages to and from other systems. Although
ancient and not especially efficient, its main merit is that it’s always available,
whatever the Unix system. Early chat, e-mail and the newsgroups (on Usenet) were
built on top of this protocol. Unix defined the interoperable standards for all e-mail
support, mailbox format, and applications—and were inherited by Linux.

Reference to Unix characteristics common to a variety of implementations of
either Unix or derivatives like Linux is commonly denoted by writing “*nix”.

Peer Networking in MS Windows

One of the better design decisions in 32-bit MS Windows was the integration of
generic networking components. Once the hardware, protocol, and workgroup
configurations are properly set up, basic peer networking is essentially plug-and-play,
whatever the mix of Windows platforms—95, 98, ME, NT, 2000, or XP.

Network components however are not default in Windows (prior to XP) but are
installed and configured whenever hardware or software that requires them are added
to the system. Installing for example a network interface card or a modem not only
requests the appropriate device driver, but also sets up the corresponding client and
protocol layers to handle network abstraction. Figure 2.5 illustrates the model used,
with reference to the OSI protocol layers.

The supported network protocols are not just Microsoft’s enhanced version of
network BIOS, NetBEUI, for Microsoft Networking, but also for Novell NetWare
(IPX/ISX) and Internet-compatible networking (TCP/IP). Others can be added.
Network support is largely transparent to the user.

The default configuration prior to Windows XP relies on the proprietary
NetBEUI protocol, although it is relatively painless to reconfigure it to TCP/IP from
the Network Properties dialogs—XP defaults to TCP/IP. The advantage of NetBEUI

PeerToPeer.book Page 48 Monday, May 20, 2002 12:57 PM

SPECIFIC ARCHITECTURES 49

in the small local network is that it doesn’t require any setup apart from uniquely
naming each machine and assigning it to a common workgroup. Once connected,
machines will “see” each other using the integrated network browser. The integrated
network browser makes access of remote files and resources transparent, and to the
user as easy as accessing local files and resources.

As each machine’s resources (such as hard disk partitions or printers) are locally
declared shared, they can be accessed by other machines in the workgroup. There is
no built-in central administration. Resources and access are controlled locally for
each machine by the respective user (in Windows NT, by the local Administrator
account). In the corporate or home LAN case, all the machines tend to be physically
administered from external notes and lists managed by one person.

It’s straightforward to use machines running some flavor of 32-bit Windows as
p2p nodes in a NetBEUI-type LAN with up to perhaps 10 or 15 PC workstations.
Beyond that scale, the complexities of consistently administering names, shares, and
permissions easily get unmanageable.

FIGURE 2.5 Microsoft Networking models the network as three layers and two
bindings, here compared to the OSI model. The user must configure one
or more appropriate binding paths Client-Protocol-NIC for each
application and network used.

Bit 2.6 Workgroup networking in Windows is an atomistic p2p architecture.

The primary focus of Windows native networking is resource and file sharing, with
shares managed by the individual machine’s administrator/user.

Microsoft Networking model OSI Reference Model

Physical dataflow on
network

Application
“Client”
layer

Protocol
layer

Network
interface

Application

Presentation

Session

Transport

Network

Data link

Physical

Bindings between clients
and protocols

Bindings between
protocols and interfaces
(NICs)

PeerToPeer.book Page 49 Monday, May 20, 2002 12:57 PM

50 PEER ARCHITECTURES

Microsoft later implemented a scalable server-centric model for Windows
Networking based on NT Server, where resource and access control is handled by a
designated Primary Domain Controller (PDC) in the LAN. Users must then first log in
to the PDC using their local client before gaining access to the network. Using
Microsoft domains adds considerable complexity, but also the kind of power and
centralized control that larger corporate networks usually need. This kind of domain-
centric network scales tolerably well to thousands of nodes.

The default NetBEUI protocol is furthermore constrained to a small physical
LAN, because it only handles network data frames with explicit hardware addressing.
The price NetBEUI pays for its simplicity is the inability to cross network boundaries.
To route across virtual networks, you need support for software addressing, such as in
TCP/IP’s packet addressing. Hence, for maximum flexibility, Windows systems
should be configured for TCP/IP. Given the continued Internet focus of Microsoft,
TCP/IP might become the only networking option in future versions of Windows.

With TCP/IP as the protocol, it’s possible and often desirable to install support
for point-to-point tunneling protocol (PPTP), which is an encryption-protected virtual
private network (VPN) connection between NT servers, or between a Windows client
and a server. This protocol is primarily intended to provide secure access to corporate
networks from external, dial-up users. It however could also be used to construct a
virtual, distributed, and private p2p LAN of up to 256 connections per node.

Home LANs have become more common in later years: several machines in a
p2p network sharing an Internet connection, possibly through a cable router. A better
understanding of p2p principles even in Windows can greatly enhance the utility of
such home clusters by allowing different approaches to how data and resources are
deployed, and perhaps shared from outside the home as well.

For the purposes of this book, it’s assumed that most readers have Internet
connectivity with either some flavor of Windows or Linux, or a Mac, on which system
they intend to install application-level p2p solutions.

Peer Networking in Apple Macintosh

Apple’s Macintosh early included peer network capability in their operating system.
Native support for ubiquitous 10/100 Base-T Ethernet makes physical network
connection easy.

The Mac supports either proprietary AppleTalk or open TCP/IP protocols, and
can natively build peer networks. Stringing together some Macs with AppleTalk is the
easiest route, but easy comes at the price of the power and sophistication that more

PeerToPeer.book Page 50 Monday, May 20, 2002 12:57 PM

SPECIFIC ARCHITECTURES 51

complex protocols give. AppleTalk is in addition known as a “chatty” broadcast
protocol that doesn’t scale very well to larger networks.

The early dominance of Mac systems in corporate and educational environments
has waned over the years, although they are still fairly common in the latter. The
proprietary architecture, solutions, and protocols have always been an impediment to
broad interoperability with other platforms, networked or not.

A number of solutions exist to interconnect Macs and PCs to the respective
proprietary protocol networks, but TCP/IP is usually the protocol of choice. As with
Windows, Mac p2p applications install on top of the current transport. The newer OS
X is a Unix derivative, so it supports many *nix tools and applications—with broader
support for p2p than older Macs.

OS/2 Peer Networks

IBM’s OS/2 is no longer a current operating system for the average user, although not
so many years ago, OS/2 Warp was billed as the next dominant desktop OS. It might
have taken a significant share of the market too, if IBM hadn’t so abruptly dropped
support for it and instead begun to bundle Windows.

OS/2 is worth mentioning because it lives on in some corporate networks and
among a core group of enthusiasts. Even today, some still maintain its suitability for
office use, with words much like this:

If you want a consistent, friendly interface that has the power to run the office,
run your old DOS/Windows programs, and connect to the outside world (all
simultaneously), then OS/2 Warp Connect is worth a look.

The last OS/2 Warp versions, Connect and v4, were true 32-bit, multitasking and
network-aware operating systems roughly comparable to Windows NT or Linux.
Warp consumes less resources than NT, more like Windows 95, and can run most
Windows programs intended for the early 32-bit extensions. For our purposes, the
question is how well OS/2 supports peer networking.

Network software setup for OS2/Warp is similar to the Mac in its ease of use.
Finding a working NIC driver can sometimes be problematic, given the lack of vendor
OS/2 support for newer hardware, but the rest is an easy walk. Other platforms may
match up to Warp in any one area, yet IBM covered its bases much better overall.

IBM's proprietary networking protocol, OS/2 Peer, is limited to sharing
resources among machines running Warp Connect. However, TCP/IP is also
supported, albeit an older version that’s less easy to configure. Protocols are session

PeerToPeer.book Page 51 Monday, May 20, 2002 12:57 PM

52 PEER ARCHITECTURES

specific, so you can log on to OS/2 Peer, IBM LAN Server, Novell NetWare, Microsoft
LAN Manager, Windows for Workgroups, and TCP/IP networks simultaneously.

The OS/2 desktop has three network-related folders: OS/2 Peer, Network, and
UPM Services (the latter for user and password maintenance). The OS/2 Peer folder
contains all of the good stuff, the most important being Sharing and Connecting,
Network Messaging, Clipboard and DDE, Information, and Peer Workstation Logon/
Logoff—as explained in Table 2.2.

Linux Networking

A Linux installation is inherently a full-featured server in the Internet networking
model, natively supports TCP/IP, and also includes all the associated client software.
Linux is based on Unix, which to all intents and purposes is the Internet.

Linux exists in a variety of branches and distributions, all similar and generally
interoperable, but with different configurations and purposes. Full-scale Linux
installations are admittedly not easy to master, but they do have all the power and
options for networking you could possibly want. A network of machines running
Linux can therefore easily function as both client-server and p2p node using the full
array of software developed for the Internet.

This kind of system, partly due to the more “experimentally involved” attitude
of the typical Linux user, readily participates in many p2p contexts, locally and over
the Internet. One such common context is to return e-mail to the p2p model, because
Linux machines can, and often do, each run the server software for sending and
receiving e-mail in a variety of protocols, messaging, and sharing files or other
content. That way Linux users easily turn their machines into p2p endpoints for a
broad range of services. Similar functionality is available in Windows and other
systems by adding comparable third-party software, but Linux support is native.

TABLE 2.2 Main OS/2 Peer Networking components
Component Function

Sharing and Connecting A program that enables you to connect to the
resources of other users, and declare which of your
resources are available to other users, and to what
degree.

Network Messaging OS/2 Peer's internal e-mail system.

Peer Workstation Logon / Logoff Logon and logoff service for network access.

PeerToPeer.book Page 52 Monday, May 20, 2002 12:57 PM

SPECIFIC ARCHITECTURES 53

QNX Networking

QNX is a mature distributed *nix-like operating system, generally found in but by no
means restricted to embedded real-time systems. For several decades, QNX
development has sort of paralleled Linux, and can on a PC generally emulate or run
much Linux software.

QNX has native networking at several levels, including support for distributed
processes and modules, and it of course supports the ubiquitous TCP/IP. It’s however
rare to find QNX on a desktop PC outside of special developer contexts.

OTHER APPLICATION GROUPS

This chapter ends with a brief tour of application-level solutions that might or might
not be strictly p2p, but are related in concept at some level.

Peer Servers

As a kind of catch-all, the term “peer servers” can be used to designate various forms
of Internet or LAN servers that maintain p2p connectivity with each other, while
serving a host of clients in a traditional client-server role.

Most of the discussions about p2p networking are equally applicable to the
server-to-server p2p role, even though little is said about this role in this book. This is
in part because the main focus is on the end-user perspective, and not so much on
software such as traditional servers that are not administered by the user.

Nevertheless, it’s also true that the node application in p2p technologies is quite
clearly a “peer server” because all the nodes participate in this role. The server role
becomes more explicit in cases like Mojo Nation and Freenet (see Chapters 8 and 9,
respectively), where the node software does have a clear client-server role towards
separate client software (at the user endpoint) running on the same machine.

Internet Relay Chat gets a brief mention here only because its relay servers
function p2p with each other. The IRC client-to-client chat transactions almost
exclusively go through the servers, so these relationships are not p2p. Nevertheless,
IRC one-to-one chat and many-to-many (or chatroom) discussions can be a method
to discover potential peers for other direct p2p connectivity. IRC support is therefore
a common extra component in many atomistic p2p technologies. A multi-transport
chat client such as Jabber (see Chapter 6) is especially useful in such contexts because
it supports several other p2p messaging and file transfer protocols in addition to IRC
chat and its own open client and services protocol.

PeerToPeer.book Page 53 Monday, May 20, 2002 12:57 PM

54 PEER ARCHITECTURES

HailStorm

At the time of writing, Microsoft’s new and controversial p2p entry, dubbed
HailStorm, is barely past prototype status. Although details will surely change over
time, Hailstorm and its associated services appear clear enough in principle that
mention of this implementation should be made.

Launched as the first real .NET (pronounced and sometimes written as “dot-
NET”) initiative in March 2001, it is described as a set of user-centric Web services
that will “turn the Web inside out”. The concept assumes some aspects of the
traditional client-server relationship. HailStorm defines a basic network framework
around which third-party developers are invited to write applications that rely on user
identification. The approach has been described by Microsoft in this way:

Instead of having an application be your gateway to the data, in HailStorm, the
user is the gateway to the data.

Unusually for Microsoft, the framework rests on a set of open standards, XML and
Simple Object Access Protocol (SOAP), rather than proprietary protocols. It remains
to be seen, however, whether these assimilated open standards will in future be
extended in proprietary ways. HailStorm’s security protocol, based on Kerberos, has
already been extended by Microsoft, with unclear consequences for continuing its
open and interoperable characteristics.

While officially described as an open p2p system, closer inspection shows that
HailStorm sits in an uneasy balance between the centralized closed server and the
open p2p models. Depending on how the final implementation designs play,
Hailstorm could turn out to be the largest client-server architecture ever devised, with
rather minimal peer focus overall.

The core concept depends on a user-centric, or strictly speaking an
authentication-centric server model. This has the audacious goal of centrally
validating any and all Internet user identities in the world! It would (by way of the
Passport service) mediate and authorize valid user access not only to all distributed
Web services, but also to locally installed software. The thought is that software
registration management will be yet another service sold by Microsoft.

It should be noted that the concept of “personal identity” that HailStorm deals
with is not just a simple who am I, but is at minimum a three-tier structure that
uniquely specifies the individual, the application that the individual is running, and
the location where that software is running. This information is encrypted into
Kerberos application requests sent to a Passport server for authentication checks.

PeerToPeer.book Page 54 Monday, May 20, 2002 12:57 PM

SPECIFIC ARCHITECTURES 55

Passport defines identity, security and description models common to all
services. As currently deployed, Passport identity is keyed to the user’s e-mail address,
whether existing or created on the Passport server just for authentication purposes.
The official motivation for this massive central control is that all the proposed .NET
services, especially commercial and banking, are defined as tied to a unique user
identity that has to be administered globally. Microsoft is promoting Passport as a
one-stop service for identifying people at online outlets.

An example of large-scale, public use of the Passport service for user
authentication is the multi-user game Asheron’s Call, a Microsoft Zone gaming site
that in December 2001 began using the new identity verification system. Users that
log in are shunted to a Passport server to verify their identity before being allowed
into the game. It’s not clear whether continued participation depends on Passport
tracking user presence, but that feature is mentioned in other Passport contexts.
Windows Messenger (WM) relies on presence tracking with Passport authentication.

Central Authentication

Crucial to the Passport concept, as its name implies, is that the distributed services
and software honor the identification protocol. Significant is the list of standard
functions, such as myAddress (electronic and geographic address), myProfile
(personal information), myBuddies (contacts roster), myInbox (e-mail), myCalendar
(agenda), and myWallet (e-cash), to name the first offering.

Needless to say, not everyone is comfortable with the idea of one company (with
a less-than-reassuring track record for online reliability and interoperability) totally in
control of individual and corporate public identity at this global level. One worry is
that all identity credential transactions, and hence by extension most commercial
transactions, would require participation of central Passport server(s).

Early criticism of the system can be summed up in the sentence:

HailStorm is the business idea of getting you to give up your identity to
Microsoft, who will then rent it back to you for a small monthly fee.

Undeniably, there is at least one obvious ulterior motive for implementation of
Passport: central identity validation for the new pay-by-use, personal-rental model for
software-as-service that the company is adopting to replace the previous user licensing
model of software-as-product. Deploying the infrastructure for a single global identity
for each individual makes it much easier to manage registration and payment.

PeerToPeer.book Page 55 Monday, May 20, 2002 12:57 PM

56 PEER ARCHITECTURES

Significantly, the HailStorm infrastructure moves the revenue model from selling
or licensing proprietary products on a proprietary platform, to pay-per-use fees culled
from anyone running anything on any Internet-connected platform. HailStorm is a
very “egalitarian” commercial venture in this respect—it asks both developers and
users to pay for access, though the nature and size of these fees are far from worked
out. Assume some form of periodic subscription or pay-by-use.

Privacy groups and others have meanwhile complained the service lacks
adequate safety measures for securing sensitive consumer information, charges that
Microsoft denied, despite the discovery in October 2001 of a security flaw in the
Wallet part of the Passport system that could have exposed confidential user financial
data to intruders. Glitches in the transition of the Gaming Zone site in December
2001 reawakened public skepticism.

Nevertheless, momentum is growing for Passport as more companies sign on
and switch to a Passport-mediated log-in, use the MS bCentral portal service, or build
new applications that lean on Passport services. Needless to say, Microsoft’s
applications for Internet communication, for example, Exchange Server or the IM
client Windows Messaging, all tie into the Passport authentication scheme—
sometimes as an option, sometimes as a necessary component.

Open Access

The distributed aspect of HailStorm is described as “open access”, meaning that in
principle any minimally connected device that is compliant with the XML Web SOAP
framework can access applicable HailStorm services. No Microsoft runtime or tool is
required to call them.

This concept seems clear enough at the client level, but less so at the server level.
There, Microsoft has only vaguely stated that servers running on non-Microsoft
operating systems like Linux or Solaris will be able to “participate” in HailStorm; the
degree of actual integration has not been specified any further. In September 2001,
Microsoft opened the gates by announcing that .NET will allow third-party identity
providers to compete with Passport. This move is promising, albeit surprising at this
early stage of deployment because the detailed strategy of the company can only be
the subject of speculation. It however is strengthening the utility of HailStorm (which,
by the way, has been renamed “.NET MyServices”).

A good place to start if looking for more overview material on the many aspects
of .NET and HailStorm is a Belgian site at I.T. Works (www.itworks.be/webservices/
info.html). Another, more technical resource is DevX (www.devx.com).

In the next chapter, we leave the overview for more practical matters.

PeerToPeer.book Page 56 Monday, May 20, 2002 12:57 PM

