
Chapter 1

Barry W. Boehm and Kevin J. Sullivan. Software Economics. White Paper, 1999.

Boehm and Sullivan stress the importance of understanding the relationships

between software development decisions and business decisions. The goal is

maximal value creation. Technical software decisions should be based on value

creation; therefore, software engineers, designers, and managers should base deci-

sions on value maximization objectives. Boehm and Sullivan assert that software

engineers are usually not involved in and do not understand enterprise-level

value creation objectives, and that senior management often does not understand

success criteria for software development or how investments at the technical level

can contribute to value creation. It is in our enlightened self-interest to increase

our understanding of and ability to deal with the economic aspects of software

and its development.

Dennis M. Buede. The Engineering Design of Systems: Models and Methods.

New York: John Wiley & Sons, 2000. This book provides an excellent discussion

of systems engineering, with good emphasis on requirements, the design process,

modeling, architecture development, and decision analysis. Buede emphasizes

that requirements are the cornerstone of the systems engineering process. Case

studies and problems are provided.

W. Edwards Deming. Out of the Crisis. Cambridge, MA: Massachusetts Institute

of Technology, Center for Advanced Engineering Study, 1986. Dr. Deming is the

father of quality in Japan and did much for the United States as we reluctantly gave

more attention to it. Deming’s 14 points provide a theory of management. His seven

deadly diseases afflict most companies and stand in the way of progress. Deming’s

thesis is that American management does not enable and empower its work force,

which is “only doing its best.” Deming asserts that American management does not

understand variation (faults of the system [common causes] and faults from fleet-

ing events [special causes]). It’s vital for every manager to capture the essence of

Deming’s perspective (see the reference to Mary Walton’s book later in this section).

Donald C. Gause and Gerald M. Weinberg. Exploring Requirements: Quality

Before Design. New York: Dorset House Publishing, 1989. This book is one of

the classics concerning requirements elicitation. Gause and Weinberg provide a

large collection of ideas and approaches based on their consulting experience in

discovering what is desired in systems. They believe that meeting the following

three conditions helps to ensure a successful project: (1) achieving a consistent



understanding of the requirements among all participants, (2) achieving team-

work, and (3) knowing how to work effectively as a team (that is, developing the

necessary skill and tools to define requirements).

Tom Gilb. Principles of Software Engineering Management. Wokingham, UK:

Addison-Wesley, 1988. Gilb has made many significant contributions to the in-

dustry over the years, including his work concerning inspections, requirements-

driven management, evolutionary delivery, and impact estimation. His book is

an easily readable, comprehensive discussion of software engineering principles

and is recommended as a good foundation for practitioner study. See Gilb’s Web

site for current activities and publications (http://www.Result-Planning.com).

Jeffrey O. Grady. System Requirements Analysis. New York: McGraw-Hill, 1993.

Grady has devoted his career to requirements and related topics, and he teaches

courses and develops tutorials. He is a founding member of the National Council

on Systems Engineering (NCOSE; now the International NCOSE). This book pro-

vides a systems approach and thorough explanations of requirements analysis,

traceability specifications, requirements integration, requirements verification,

and explanations of techniques including structured analysis, structured decom-

position, and architecture synthesis.

Ivy F. Hooks and Kristin A. Farry. Customer-Centered Products: Creating Suc-

cessful Products Through Smart Requirements Management. New York: AMA-

COM, 2001. This book is a guide to how good requirements are possible when

managers are involved in guiding the requirements process. It provides advice and

insights based on years of experience and many suggestions for how to perform

requirements-related activities. Hooks and Farry emphasize the importance of

managers allocating resources, defining and enforcing processes, educating per-

sonnel, and measuring the impact of requirements on final product quality. This

is recommended reading for project managers.

Capers Jones. “Software Project Management in the 21st Century.” American

Programmer 1998:11(2):24–30. Jones notes that manual software estimating

methods fail for large systems because of their complexity. He advocates using

automated project management and software cost-estimating tools, noting that

integrated management tool suites that share common interfaces and common

data repositories will probably be developed within a few years. He suggests that a

Web-based software cost estimation and planning service and a benchmarking

service are likely. He indicates that the most visible and important gap in software



project management capabilities concerns data and information and that there is

a growing need to be able to deal with long-range estimating and measurement at

the enterprise or corporate level.

Capers Jones. What It Means To Be “Best in Class” for Software. Burlington, MA:

Software Productivity Research, Inc. Vers. 5. February 10, 1998. This rigorous

and analytical report lists 15 key software performance goals that, if achieved, indi-

cate that best-in-class status is within your grasp. The report provides qualitative

and quantitative results from the top 5% of the projects of the top 10% of the

clients of Software Productivity Research, Inc. (SPR). Also, quality targets for the

five levels of the Software Engineering Institute CMM are suggested. The report

surveys process improvement strategies and tactics that excellent software produc-

ers have utilized. The report is available from SPR at capers@spr.com.

Dean Leffingwell and Don Widrig. Managing Software Requirements: A Unified

Approach. Reading, MA: Addison-Wesley, 2000. This book emphasizes the team

skills that are required for the requirements process. Leffingwell and Widrig share

their many years of experience and describe proven techniques for understanding

needs, organizing requirements information, and managing the scope of a project.

James N. Martin. Systems Engineering Guidebook: A Process for Developing

Systems and Products. Boca Raton, FL: CRC Press, 1996. This book is a compre-

hensive guide to the systems engineering process, application tasks, methodologies,

tools, documentation, terminology, system hierarchy, synthesis of functional and

performance requirements into the product architecture, integration, verification,

metrics, defects and defect types, and programmatic application. Martin describes

the systems engineering process as a multidisciplinary effort. The system life cycle

and life cycle model are described, and the role of the systems engineering process

champion is explained. An extensive set of figures and tables that describe all

aspects of systems engineering is provided.

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capability

Maturity Model for Software. Version 1.1. Pittsburgh, PA: Software Engineering

Institute, Carnegie-Mellon University, 1993. Also available at http://www.sei.

cmu.edu/publications/documents/93.reports/93.tr.024.html. The CMM for Soft-

ware (SW-CMM) has been the industry model for software process improvement

for more than a decade. It has provided a standard that has allowed projects and

organizations to evaluate their practices, provide a basis for improvement actions,

develop improvement plans, and measure improvements. This book is highly rec-

ommended for projects and organizations.



Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice

Guide. New York: John Wiley & Sons, 1997. This book provides a set of basic,

intermediate, and advanced guidelines consistent with SW-CMM levels to facili-

tate gaining requirements engineering process maturity, and it explains in detail

how to apply these guidelines in practice. Sommerville and Sawyer define require-

ments elicitation as follows: The system requirements are discovered (emphasis

added) through consultation with stakeholders, from system documents, domain

knowledge, and market studies. Their Chapter 4 explains how to apply 13 guide-

lines to perform requirements elicitation.

Mary Walton. The Deming Management Method. New York: Putnam Pub-

lishing, 1986. This is a good summary and explanation of Dr. Deming’s teach-

ings, with a foreword by the master. Walton describes Deming’s 14 points, the seven

deadly diseases, and the parable of the red beads. Walton describes Deming’s

beliefs that management is the primary cause of the results in organizations. The

“workers” (everyone else) are powerless, lacking the environment to be effective.

Managers should be challenged to recognize the distinction between a stable sys-

tem and an unstable one and to be able to recognize and address special causes.

The conditions necessary to achieve teamwork are described. This is recom-

mended reading for anyone who seeks a good foundation for a quality improve-

ment ethic.

Bill Wiley. Essential System Requirements: A Practical Guide to Event-Driven

Methods. Reading, MA: Addison-Wesley, 2000. Wiley provides an event-driven

strategy for software development that he believes provides an intuitive, effective

partitioning of the user domain and the proposed system. Events jump-start the

identification and specification of system requirements with early user involvement

and improved user communication. When combined with a spiral, incremental

approach that dovetails with an “architected” rapid application development strat-

egy, event-driven methods accelerate the delivery process. Wiley provides a func-

tion point example.

Chapter 2

Frank Carr, Kim Hurtado, Charles Lancaster, Charles Markert, and Paul

Tucker. Partnering in Construction: A Practical Guide to Project Success.

Chicago, IL: American Bar Association Publishing, 1999. This book is an excel-

lent guide for implementing the partnering process. Carr and colleagues are pro-



fessional facilitators with extensive experience in actual partnering efforts. They

provide a practical approach that includes samples of the products of partnering

workshops. Lessons learned and case studies from their experience are provided.

A glossary of related terms is included.

Michael Cusumano and Richard Selby. Microsoft Secrets: How the World’s

Most Powerful Software Company Creates Technology, Shapes Markets, and

Manages People. New York: Free Press, 1995. Cusumano and Selby performed

almost two years of on-site research at Microsoft headquarters. The book is an

objective, analytical, and thorough profile of an important company. It focuses

on the relationship between business strategies and software development. It

explains Microsoft’s management model, organizational culture, technologies,

and software development approach.

Richard Harwell. “System Engineering Is More Than Just a Process.” In:

Martin, James N., ed. Systems Engineering Guidebook. Boca Raton, FL: CRC

Press, 1996: 249–255. Harwell’s work advocates several of the effective require-

ments practices recommended in this book, noting that many companies over-

look them. As a result, those companies realize no apparent benefit from the

system engineering process. Harwell emphasizes that today’s customer and the

development team must work together to achieve a successful development

process.

Capers Jones. Assessment and Control of Software Risks. Englewood Cliffs, NJ:

Prentice Hall, 1994. Jones cataloged 63 specific risks that affect software projects.

He provides a description of each risk, severity, frequency, occurrence, root

causes, cost impact, methods of prevention, methods of control, product sup-

port, and the effectiveness of known therapies. Jones discusses the risk of creep-

ing requirements, inaccurate sizing of deliverables, and crowded office

conditions, to name a few examples. His book is a valuable reference. As Jones

maintains, problems don’t go away by themselves, and his comprehensive treat-

ment provides valuable insights. He provides a list of tools that he believes is an

approximate 5% sample of thousands of commercially available tools.

Charles Markert. Partnering: Unleashing the Power of Teamwork. 1998. Avail-

able at markert@erols.com. This marketing briefing describes partnering; its

attributes, characteristics, and benefits; and why one would participate in part-

nering. It also provides a process for partnering: preparation, a partnering work-

shop, what it means to “walk the talk,” getting feedback, and celebration. Keys to



the partnering process are presented, and lessons learned from partnering expe-

riences are presented.

Gerald M. Weinberg, James Bach, and Naomi Karten, eds. Amplifying Your

Effectiveness. New York: Dorset House, 2000. The editors and a group of soft-

ware consultants present ideas on how software engineers and managers can

amplify their professional effectiveness—as individuals, as members of teams,

and as members of organizations. The contributed essays are organized in the

categories of empowering the individual, improving interpersonal interactions,

mastering projects, and changing the organization. A theme is that we’re more

likely to enhance effectiveness if we start by looking within and asking ourselves

what we might do better or differently. There are a lot of insights here, and they

are presented in a fresh, unique way.

Karl E. Wiegers. Software Requirements. Redmond, WA: Microsoft Press, 1999.

This is an excellent, easily readable book that offers practical advice on how to

manage and participate in the requirements engineering process. Commitment

is viewed in this book as “finding the voice of the customer.” Engaging the partic-

ipants in the project is considered critical to success. Wiegers’s experience at

Eastman Kodak and as an independent consultant indicates that customers don’t

know what they really need, and neither do the developers.7

Chapter 3

Warren Bennis and Patricia Ward Biederman. Genius: The Secrets of Creative

Collaboration. Reading, MA: Perseus Books, 1997. This is a book about great

teams. I found the “take-home lessons” at the end of the book to be apt descrip-

tions of the most successful teams with which I have been associated. One of the

great teams described in this book is The Skunk Works, a term that has become

synonymous with secret, groundbreaking technological work. Another is The

Manhattan Project, the story of the building of the atomic bomb. “None of us is

as smart as all of us” is a valuable lesson.

Tom DeMarco and Timothy Lister. Peopleware: Productive Projects and Teams.

2nd ed. New York: Dorset House Publishing, 1999. This book is a classic that

presents the human dimension concerning technical development projects.

DeMarco and Lister have collected data since 1977 concerning development

projects and their results and have more than 500 project histories in their data-



base. A premise is that the large number of failures of projects of all sizes is not

the result of failure of technology, but rather human issues such as project man-

agement, communications, high turnover, and lack of motivation contribute to

project failure. This second edition provides the text of the first and adds eight

new chapters. Readers will discern a host of insights that will contribute to more

effective teams and project management. Management’s challenge is to create a

culture that allows people to work effectively. This book is an important read for

any project manager.

Roger Fisher and William Ury. Getting to Yes. New York: Penguin Books, 1991.

Reaching agreement on a specification is a process of negotiating the interests of

several parties. This book emphasizes that reaching agreement is more important

than risking inflexibility. Negotiation skills to achieve win-win agreements speed

up the process and benefit everyone. Fisher and Ury emphasize that it’s more

important to understand the other party’s underlying interests than to focus on a

specific position.

Luke Hohmann. Journey of the Software Professional: A Sociology of Software

Development. Upper Saddle River, NJ: Prentice Hall PTR, 1997. This is a book

of practical advice for developers and managers who are serious about enhancing

their own effectiveness and the effectiveness of their teams. It addresses many

of the human or “soft” issues that are so critical in building systems successfully.

It provides suggestions for career development, training, development teams,

interpersonal relations, communications, and organizational structures, among

others.

Watts S. Humphrey. Introduction to the Team Software Process. Reading, MA:

Addison-Wesley, 2000. Humphrey is a superb writer, and this book shares his

tremendous insights into what makes software teams work effectively. Although

it builds on the personal software process, it’s a valuable resource for anyone

seeking to improve team effectiveness. Humphrey provides some practical strate-

gies for facilitating teamwork, such as

• Eliminating work that gets in the way of improving the product

• Effectively applying work habits and processes

• Systematically tracking project progress

• Creating an environment that fosters unbridled enthusiasm

• Using milestone scheduling to keep schedules aggressive but not unrealistic

• Aligning personal growth goals with the necessary work

• Promoting beneficial attitudes such as a continuous improvement ethic



Humphrey’s final chapter, Teamwork, is insightful. This book is a valuable read

for any project manager.

Dean Leffingwell. Calculating Your Return on Investment from More Effective

Requirements Management. (Available at http://www.rational.com/products/

whitepapers/300.jsp.) This reference provides an easy-to-use way to calculate sav-

ings from requirements-related efforts. It may be helpful to you if your manager

requests data concerning the value of efforts involving the requirements process.

Mark C. Paulk. The “Soft Side” of Software Process Improvement. Pittsburgh,

PA: Software Engineering Institute, Carnegie Mellon University, 1999. Paulk is

the leading author of the Capability Maturity Model for Software (SW-CMM)

and has deep sensitivity to the people-related aspects of the industry. Among

many valuable insights addressed in his briefing are (1) the best people outper-

form the worst by approximately 10:1; (2) the best performer is 2.5 times more

productive than the median performer; (3) CMM levels 4 and 5 organizations

tend to have required training in team building, negotiation skills, interpersonal

skills, domain knowledge, management skills, and technical skills; (4) people tend

to be overly optimistic about what they can do; and (5) managers tend to ignore

possible events that are very unlikely or very remote, regardless of their conse-

quenses. Paulk provides several charts concerning the People CMM. Perhaps most

germane to this chapter is that the range in the performance of teams can be 200:1

and that united teams are extraordinarily powerful.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. 4th ed.

New York: McGraw Hill, 1997. Pressman is an extremely knowledgeable, inter-

nationally known consultant and author who has extensive practical experience

as an industry practitioner and manager. He specializes in helping organizations

establish effective practices, and he developed an assessment method that helps

clients assess their current state of engineering practice. Pressman’s Web site pro-

vides extensive resources, including 30 templates for engineering documents. See

http://www.rspa.com.

Chapter 4

Barry Boehm. WinWin Spiral Model & Groupware Support System. 1998

Available at http://sunset.usc.edu/research/WINWIN/index.html. Dr. Boehm is

Director of the University of Southern California Center for Software Engi-



neering. The Center is under contract to the Defense Advanced Research Projects

Agency via the Air Force Research Laboratory (formerly known as Rome

Laboratories). It plans to develop (in collaboration with The Aerospace Corp-

oration) a robust version of the WinWin System and to apply it to the domain of

satellite ground stations.

Barry Boehm, Alexander Egyed, Julie Kwan, Dan Port, Archita Shah, and Ray

Madachy. “Using the WinWin Spiral Model: A Case Study.” IEEE Computer

1998:31 33–44. This University of Southern California Center for Software

Engineering research project has three primary elements: (1) Theory W, a man-

agement theory and approach that says making winners of the system’s key stake-

holders is a necessary and sufficient condition for project success; (2) the

WinWin Spiral Model, which extends the spiral software development model by

adding Theory W activities to the front of each cycle; and (3) WinWin, a group-

ware tool that makes it easier for distributed stakeholders to negotiate mutually

satisfactory system specifications. The authors found in this work that the most

important outcome of product definition is not a rigorous specification but a

team of stakeholders with enough trust and shared vision to adapt effectively to

unexpected changes. The researchers believe that the approach will transition

well to industry use.

Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs,

Inspections, and Technical Reviews. 3rd ed. Chicago: Scott, Foresman and Co.,

1990. This book provides a variety of examples of peer reviews and is a good

source for organizations that want to consider alternative approaches.

Donald C. Gause and Gerald M. Weinberg. Are Your Lights On? How to Know

What the Problem REALLY Is. 2nd ed. New York: Dorset House Publishing,

1989. As the title suggests, this book is interesting and light reading but offers

valuable insights concerning real needs. The authors’ perspective is that cus-

tomers need assistance in defining their real requirements. A good requirements

process will (1) identify the real problem, (2) determine the problem’s “owner,”

(3) identify its root cause, and (4) determine whether to solve it. This is recom-

mended reading for requirements engineers and their customers.

Tom Gilb and Dorothy Graham. Software Inspection. Reading, MA: Addison-

Wesley, 1993. This book is about inspections of any work product, not just soft-

ware. The authors’ approach is very rigorous and therefore requires more

training and is more expensive than normal peer reviews. However, it results in

more defects being removed earlier, thus saving costs later in the development



cycle. This book is invaluable for an organization that is committed to using

inspections of work products—a proven method with good payback. Note that

Rob Sabourin offers an economical inspections training and implementation

approach. Contact him at rsabourin@amibug.com.

Rita Hadden. “How Scalable Are CMM Key Practices?” CROSSTALK 1998: vol.

11(4) 18–23. Hadden provides process improvement consulting services for

organizations of all sizes. She notes that many practitioners are convinced that

models such as the SW-CMM are not practical for small organizations because

the cost of applying the recommended practices outweighs benefits. Her experi-

ence with more than 50 small projects does not support this view. The article

describes using a disciplined, repeatable approach for projects of short duration.

She concludes that CMM key practices are scalable.

Ivy Hooks. Guide for Managing and Writing Requirements. 1994. Available at

ivyh@complianceautomation.com. This is a concise, well-written guidebook

based on extensive experience by a practicing requirements engineer and consul-

tant. It addresses scoping a project, managing requirements, how systems are

organized, and levels of requirements, writing good requirements, requirements

attributes, and specifications.

Ivy Hooks. Managing Requirements. 1994. This white paper is available at the

Compliance Automation Web site http://www.complianceautomation.com/. It

provides a good analysis of how failure to invest in the requirements process

affects projects, and it describes major problems based on Hooks’s experience.

Also, it describes some of the characteristics of good requirements.

Ivy Hooks. Writing Good Requirements: A One-Day Tutorial. McLean, VA,

1997 Compliance Automation, Inc. Sponsored by the Washington metropolitan

area chapter of the International Council on Systems Engineering, June 1997. This

is an example of the types of briefings and courses that can be provided to facili-

tate a project or an organization in dealing with the requirements process. The

pearl here is to ensure that you have a requirements process and that you take

advantage of industry best practices in executing it. Don’t find your own way and

learn the errors of your ways at considerable financial, personal, project, and orga-

nizational costs.

Pradip Kar and Michelle Bailey. Characteristics of Good Requirements. 1996.

Available at http://www.complianceautomation.com/. This document provides a



valuable, readily available discussion of the characteristics of individual and

aggregate requirements (note that characteristics of individual requirements are

applicable to aggregates too). Kar and Bailey emphasize that writing good

requirements is difficult, requires careful thinking and analysis, but is not magi-

cal. Time spent up front, carefully defining and articulating the requirements, is

essential to ensuring a high-quality product. This is recommended reading for

requirements engineers.

Joachim Karlsson and Kevin Ryan. “A Cost-Value Approach for Prioritizing

Requirements.” IEEE Software 14(5) 1997: 67–74. This is an excellent article that

explains a method for prioritizing requirements (see the summary of their

method provided in this chapter). Karlsson and Ryan provide a process for using

the cost-value approach, utilizing the Analytic Hierarchy Process (AHP), which is

also explained in their article.

Geri Schneider and Jason P. Winters. Applying Use Cases: A Practical Guide.

Reading, MA: Addison-Wesley, 1998. This is a practical guide to developing and

using use cases. Schneider and Winters provide examples from their experience

and provide a case study that offers insight into common errors. An illustration

of the UML notation for diagramming use cases is provided. Of particular use to

requirements engineers is a “how-to” discussion on applying use cases to identify

requirements.

I. Sommerville, P. Sawyer, and S. Viller. “Viewpoints for Requirements Elicita-

tion: A Practical Approach.” In: Proceedings of the 1998 International Con-

ference on Requirements Engineering (ICRE’98), April 6–10, 1998, Colorado

Springs, CO. New York: IEEE Computer Society, 1998: 74–81. Sommerville and

colleagues introduce an approach called PREview to organize requirements

derived from radically different sources. They show how concerns that are key

business drivers of the requirements elicitation process may be used to elicit and

validate system requirements. They note that PREview has been designed to

allow incremental requirements elicitation (see Figure 4-12 for a high-level view

of the PREview process).

Gerald M. Weinberg. The Secrets of Consulting. New York: Dorset House

Publishing, 1986. Weinberg defines consulting as the art of influencing people at

their request. As noted by Virginia Satir in the foreword, this book actually

advises people on how they can take charge of their own growth. The author pro-

vides a light-hearted view of the role of a consultant, sharing valuable insights



about people. A fundamental tenet is that we all need to follow a personal learn-

ing program. Several sources for readings and other experiences are provided.

Karl Wiegers. “First Things First: Prioritizing Requirements.” Software

Development Magazine 1999: 7(10):24–30. This is a good explanation of why

requirements need to be prioritized and a helpful description of how to do it.

Wiegers provides a Microsoft Excel requirements prioritization spreadsheet and

other requirements tools that can be downloaded from his Web site, http://www.

processimpact.com.

Karl Wiegers. “Habits of Effective Analysts.” Software Development Magazine

2000: 8(10):62–65. See also http://www.swd.mgazine.com. Wiegers provides

thoughtful and provocative insights concerning the role of the requirements engi-

neer (also called the requirements analyst, business analyst, systems analyst, or

requirements manager), patterned after Steven Covey’s acclaimed book The Seven

Habits of Highly Effective People (Fireside, 1989). He emphasizes that requirements

engineering has its own skill set and body of knowledge, which is given scant

attention in most computer science educational curricula and even by most sys-

tems and software engineering organizations. Many organizations expect devel-

opers or project managers to handle this vital function on their own. A competent

requirements engineer must combine communication, facilitation, and interper-

sonal skills with technical and business domain knowledge. Even a dynamite

developer or a systems-savvy user needs suitable preparation before acting in this

role. Wiegers recommends that every organization should develop an experienced

cadre of requirements analysts, even though requirements engineering may not

be a full-time function on every project. This article is recommended reading for

all PMs and task leaders.

Chapter 5

The CMMI project is a collaborative effort sponsored by the U.S. DoD Office of

the Secretary of Defense/Acquisition, Technology, and Logistics and the National

Defense Industrial Association (NDIA), with participation by government,

industry, and the SEI. The project’s objective is to develop a product suite that

provides industry and government with a set of integrated products to support

process and product improvement. The intent is to preserve government and

industry investment in PI and to enhance the use of multiple models. The proj-

ect’s outputs will be integrated models, assessment methods, and training mate-



rials. The DoD’s concerns were to stop proliferation of CMMs and to standardize

one model. Work continues at a frantic pace on this project. However, because

industry has a lot of effort and money invested in the SW-CMM (and to a lesser

extent, the SE-CMM), implementation may not proceed as quickly as some

anticipate. See http://www.sei.cmu.edu/cmm/cmms/cmms.integration.html.

Peter DeGrace and Leslie Hulet Stahl. Wicked Problems, Righteous Solutions.

Englewood Cliffs, NJ: Yourdon Press, 1990. The authors look at the assumptions

and expectations associated with life cycle models such as waterfall, incremental,

spiral, and “all at once.” They analyze the pros and cons of prototyping. They

enable one to look at “wicked” software problems with a different perspective.

Their view is that we are lucky as developers to get 90% of the most important

requirements at the outset of a project (p. 69).

EIA. ANSI/EIA 632, Processes for Engineering a System. Arlington, VA: EIA,

1998. EIA 632 came about because the U.S. DoD determined in 1994 that MIL-

STD-499B would not be released as a military standard. EIA’s Committee on

Systems Engineering (the EIA G-47 Committee) agreed to undertake the task of

“demilitarizing” 499B and releasing it as an industry standard. The intent was to

revise the military version in accordance with commercial practices to broaden

the suitability of the standard for other government agencies and commercial

industry. EIA 632 provides a comprehensive, structured, disciplined approach for

all life cycle phases. The systems engineering process is applied iteratively

throughout the system life cycle. Key aspects of industry’s initiatives are captured

to identify and integrate requirements better and to implement multidisciplinary

teamwork, including potential suppliers, early in establishing the requirements.

Other key aspects include establishing clear measurements of system responsive-

ness, encouraging innovation in products and practices, and focusing on process

control rather than inspection. Also, risk management is encouraged.

EIA. EIA/IS 731, Systems Engineering Capability. Arlington, VA: EIA, 1998. The

EIA G-47 Committee initiated an effort to merge the INCOSE SECAM and the

EPIC SE-CMM in 1996. EIA interim standard (IS) 731, Version 1.0, was released

on January 20, 1998. It contained two parts: Part 1 was the Systems Engineering

Capability Model (SECM), and Part 2 was the SECM Appraisal Method. The

purpose of this standard is to support the development and improvement of sys-

tem engineering. Attention to this standard has become overcome by events



because of the CMMI initiative, being driven by the U.S. DoD and being worked

by the NDIA by representatives of EIA and the SEI.

Enterprise Process Improvement Collaboration (EPIC). A Systems Engineer-

ing Capability Maturity Model. Version 1.1. Pittsburgh, PA: SEI, Carnegie-

Mellon University, 1995. To download a copy, visit http://www.sei.cmu.edu/

publications/documents/95.reports/95.mm.003.html. Following the development

of the SW-CMM, some systems engineers determined that they would create a

similar model for systems engineering. Version 1.0 of the SE-CMM was piloted

in 1994, and Version 1.1 was released on November 1, 1995. This model is extremely

useful. It contains 18 PAs, each with base practices. An SE-CMM Appraisal

Method (SAM) was also developed. SAM Version 1.1 is dated March 1996. It

too was developed by the SE-CMM collaboration members, primarily systems

engineers from major companies. See http://www.sei.cmu.edu/publications/

documents/94.reports/94.hb.005.html.

J. Davidson Frame. Managing Projects in Organizations. Rev. ed. San Fran-

cisco, CA: Jossey-Bass Publishers, 1995. Frame provides a practical, hands-on

approach with attention to behavioral aspects. He emphasizes the importance of

ensuring that the project is based on a clear need and specifying what the project

should accomplish. He addresses the importance of requirements in the context

of real needs.

Litton PRC. Phoenix Software Process Improvement Reference Guide. 3rd ed.

McLean, Virginia: Litton PRC, April 1996. This is a desk guide for developers that

summarizes the corporate PI program. Such a book facilitates PI by providing a

readily available source of policies, processes, resources available, schedule of PI

activities, training courses, metrics, acronyms, work breakdown structure for the

PI program, and examples of formats to be used (for example, for a project PI

plan). It begins with a discussion of senior management sponsorship and oversight

of the PI efforts and addresses many mechanisms that have been put in place to

maintain the momentum of the PI program. It’s recommended that organizations

consider providing a similar volume, whether in hard copy, on-line, or both.

Steve McConnell. Code Complete. Redmond, WA: Microsoft Press, 1993. This is

a practical handbook for software construction. McConnell’s focus in this book

is to advance the common practice of software development to the leading edge.

He provides research and programming experience to facilitate development

of high-quality software. McConnell provides a chapter entitled Where to Go



for More Information, with descriptions of some of the industry’s best books,

articles, and organizations. This is recommended reading for any software devel-

oper. Although the book predates the Web and client-server technology, most

developers I know continue to value the practical and useful advice provided

here.

Steve McConnell. “The Power of Process.” IEEE Computer 1998 31(3) pp.

100–102. Also available at http://www.construx.com/stevemcc/articles/art09.htm.

This is a concise, straightforward, clear discussion of the value of using a process.

Examples of cutting time-to-market and reducing costs and defects by factors of

three to ten are provided from actual organizations. McConnell challenges the

view that process is rigid, restrictive, and inefficient. This article is valuable read-

ing for managers of systems and software projects.

Suzanne Robertson and James Robertson. Mastering the Requirements

Process. Harlow, UK: Addison-Wesley, 1999. The heart of this book is the Volere

Requirements Process Model, a detailed guide. An excellent requirements specifi-

cation template is available on-line at http://www.atlsysguild.com/GuildSite/Robs/

Template.html. Several examples of requirements are provided.

U.S. DoD, Fort Belvior, VA: Defense Standardization Program Office. Com-

municating Requirements. SD-16. 1998. Available at http://www.dsp.dla.mil.

This handbook provides a comprehensive discussion of the requirements process

within the DoD, with emphasis on clear, performance-based statements of

requirements. The handbook recognizes that a single approach cannot accom-

modate the varying array of materiel acquisitions. It provides a requirements

process, describes the evolution of requirements, provides descriptions of the

requirements documents (such as the mission needs statement, operational

requirements document, functional description, statement of work [SOW], and

system specification), explains the requirements generation flow, describes the

analysis supporting requirements determination, provides examples of statements

of objectives, presents an acquisition case study, and provides a sample SOW.

Gerald Weinberg. Becoming a Technical Leader: An Organic Problem-Solving

Approach. New York: Dorset House, 1986. This is a very readable book that

provides good advice based on experience. Weinberg addresses different leader-

ship styles and focuses on the problem-solving style as the one generally utilized

by successful technical leaders. This is a recommended desk guide for technical

leaders. See also http://www.geraldmweinberg.com/.



Chapter 6

James L. Adams. Conceptual Blockbusting: A Guide to Better Ideas. 3rd ed.

Reading, MA: Perseus Books, 1986. A stimulus to creative thinking and flexibil-

ity, this book is filled with exercises and thoughtful problems that stretch one’s

mind. It is a great supplement to software design books, aiding algorithm devel-

opment and the process of partitioning a system into pieces.

Felix Bachmann, Len Bass, Gary Chastek, Patrick Donohoe, and Fabio Peruzzi.

The Architecture Based Design Method. Technical report CMU/SEI-2000-TR-

001, ESC-TR-2000-001. Pittsburg, PA: SEI, 2000. The ABD method fulfills func-

tional, quality, and business requirements at a level of abstraction that allows

for variation in producing products. The method provides a series of steps to

organize functions, to identify synchronization points for independent threads

of control, and to allocate functions to processors. See http://www.sei.cmu.edu/

publications/documents/00.reports/00tr001.html.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.

Reading, MA: Addison-Wesley, 1998. Drawing on their experience building and

evaluating architectures, Bass and colleagues introduce the concepts and practices

concerning how a system is designed and how the system’s components inter-

act with each other. Several case studies undertaken with the SEI are provided to

illustrate real-world constraints and opportunities. The authors discuss methods

for analyzing architectures for quality attributes and provide a good discussion of

architecture reviews.

Derek Hatley, Peter Hruschka, and Imtiaz Pirbhai. Process for System Archi-

tecture and Requirements Engineering. New York: Dorset House, 2000. This book

is really about concepts and systems development, especially those involving mul-

tiple disciplines. It provides a framework for modeling systems, an architectural

model, and a requirements model. The requirements model consists of three sub-

models (the entity model, process model, and control model) and their supporting

specifications. There is a good explanation of the role of the system architect/

system engineer (pp. 200–201). The authors use case studies of a hospital’s patient-

monitoring system and of a multidisciplinary groundwater analysis system to illus-

trate their principles. An appendix describes misconceptions of the Hatley/Pirbhai

methods.

Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Archi-

tecture. Reading, MA: Addison-Wesley, 2000. This book is another in Addison-



Wesley’s Object Technology Series. It provides practical guidelines and techniques

for producing quality designs, focusing on four views—conceptual, module,

execution, and code. Part III presents four architectures developed by the authors

at Siemens Corporate Research in Princeton, New Jersey. Hofmeister and col-

leagues provide examples of what goes into the architecture, the engineering

concerns addressed, and how notation is used to describe it. Design trade-offs

made by the different architects to solve architectural issues are presented.

W. H. Inmon, John A. Zachman, and Jonathan G. Geiger. Data Stores, Data

Warehousing, and the Zachman Framework: Managing Enterprise Knowledge.

New York: McGraw Hill, 1997. One of the keys to success for modern corpora-

tions is access to the right information at the right time at the right place in the

right form. The Zachman Framework was formally published in 1987 to describe

an architecture for capturing the aspects of an information system. The Zachman

Framework is a model that major organizations can use to view and communi-

cate their enterprise information infrastructure. One of the major applications of

the Zachman Framework is to help companies to migrate from legacy systems. It

helps companies attain knowledge so that they can be more responsive to change

and better poised to compete.

Ivar Jacobson, Martin Griss, and Patrick Jonsson. Software Reuse: Architecture

Process and Organization for Business Success. New York: ACM Press, 1997.

The authors’ vision is that this book will facilitate the practice of object-oriented

component-based software engineering. Their belief is that systematic, large-

scale reuse, coupled with object technology, is the only way to improve radically

the process of software development. Substantial degrees of reuse can be achieved

only by radically changing traditional software architectures and development

processes. Jacobson and colleagues emphasize that object technology does not

yield reuse automatically. An explicit reuse agenda and a systematic approach to

design and process are required to achieve a high level of reuse. They provide a

framework called the Reuse-Driven Software Engineering Business (RSEB). The

work is based on Jacobson’s use case-driven architecture and process modeling.

An appendix addresses the use of the Unified Modeling Language in the RSEB.

Paul Kaminski. Reducing Life Cycle Costs for New and Fielded Systems. Office

of the Deputy Undersecretary of Defense for Aquisition Reform. December 4,

1995. This is a memorandum for the secretaries of the military department and

others that describes the DoD policy and strategy to develop and field affordable



weapons systems. It includes the CAIV Working Group paper that describes the

CAIV approach. See also http://www.acq.osd.mil/ar/.

Rick Kazman and S. Jeromy Carriere. “Playing Detective: Reconstructing

Software Architecture from Available Evidence.” Automated Software Engi-

neering, 1999;6:107–138. New systems development efforts are often constrained

by existing legacy applications. Analysts need to be able to extract information

from existing systems to use to develop architectures. This paper presents Dali—an

open, lightweight workbench18—that aids an analyst in extracting, manipulating,

and interpreting architectural information. Kazman and Carriere emphasize that

no tool is right for all jobs and that no extraction technique is useful without user

interaction.

Henry Petroski. To Engineer Is Human. New York: St. Martin’s Press, 1992.

Petroski provides insights into engineering failures. He believes that understand-

ing failure is central to understanding engineering, because engineering design

has as its objective the obviation of failure. This is an interesting and important

construct in the context of systems and software engineering.

Eberhardt Rechtin and Mark W. Maier. The Art of System Architecting. New

York: CRC Press, 1997. Rechtin and Maier provide a table with almost 200

heuristics for systems-level architecting, providing access to the underpinnings

of principal design guidelines. For example, “a system will develop and evolve

much more rapidly if there are stable intermediate forms than if there are not.”

They note that software is rapidly becoming the centerpiece of complex system

design, in the sense that an increasing fraction of system performance and com-

plexity is captured in software. Rechtin and Maier discuss both the architecting

of software and the impact of software on system architecting.

Eberhardt Rechtin. Systems Architecting of Organizations: Why Eagles Can’t

Swim. New York: CRC Press, 1999. Rechtin addresses this book to the challenge of

maintaining organizational survival and excellence while adjusting to the new world

of global communications, transportation, economics, and multinational security.

He identifies factors that can lead to excellence in one field or period of time, but

to potential weaknesses in another, and offers insights to address these factors.

Software Engineering Institute. The Architecture Tradeoff Analysis Method.

1999. Available at http://www.sei.cmu.edu/activities/ata/ATAM/tsld004.htm. The

purpose of the Architecture Tradeoff Analysis Method is to assess the consequences



of architectural decision alternatives in light of quality attribute requirements.

The Chief Information Officers (CIO) Council. Federal Enterprise Archi-

tectural Framework. Version 1.1. September 1999. Available at http://www.

itpolicy.gsa.gov/mke/archplus/archhome.htm. This framework was developed

beginning in April 1998 to promote shared development for common U.S. gov-

ernment processes, interoperability and sharing of information among govern-

ment agencies and other entities. The Clinger-Cohen Act of 1996 assigned CIOs

with the responsibility to develop IT architectures. The framework consists of

approaches, models, and definitions for communicating the overall organization

and relationships of architecture components required for developing and main-

taining a Federal Enterprise Architecture. It utilizes the National Institute of

Standards and Technology Enterprise Architecture Model.

The Open Group. The Open Group’s Architectural Framework (TOGAF).

Available at http://www.opengroup.org/public/arch/. TOGAF is a tool for defin-

ing an IT architecture. TOGAF was developed by The Open Group’s own mem-

bers, working within the TOGAF Program. The original development of TOGAF

in 1995 was based on the Technical Architecture Framework for Information

Management (TAFIM), developed by the U.S. DoD. The DoD gave The Open

Group explicit permission and encouragement to create TOGAF by building on

the TAFIM, which itself was the result of many years of development effort and

many millions of dollars of U.S. government investment. Starting from this foun-

dation, the members of The Open Group’s TOGAF Program developed succes-

sive versions of TOGAF in subsequent years and published each version on The

Open Group’s public Web site. If you are new to the field of IT architecture

and/or TOGAF, you may find it worthwhile to read the set of frequently asked

questions at this Web site. Here you will find answers to questions such as what is

an architectural framework and what are the benefits to an organization by using

TOGAF.

Chapter 7

Michael Brassard and Diane Ritter. The Memory Jogger II: A Pocket Guide of

Tools for Continuous Improvement & Effective Planning. Salem, NH: GOAL/

QPC, 1994. Also available at http://www.goalqpc.com. This pocket-size book is

useful for process engineers and others involved in QI. It provides concise sum-

maries of quality tools including the Gantt chart, control chart, flowchart, activ-



ity network diagram, check sheet, force field analysis, prioritization matrices, run

chart, and scatter diagram. A tool selector chart that organizes the tools accord-

ing to typical improvement situations is provided.

Jo Condrill and Bennie Bough. 101 Ways to Improve Your Communication

Skills. Alexandria, VA: Goal Minds, 1998. This book provides straightforward

techniques to facilitate communication. It discusses mind mapping—a system of

recording thoughts so that we employ both left-brain and right-brain thinking

(p. 35). Condrill and Bough provide advice for speaking and writing, with appro-

priate emphasis on behavioral topics. They also provide a great list of sources for

further reading (pp. 106–107).

Larry Constantine. Constantine on Peopleware. Englewood Cliffs, NJ: Prentice-

Hall, 1995. Constantine provides insightful ideas concerning human issues in soft-

ware development, including quality and productivity, teamwork, group dynamics,

project management and organizational issues, interface design, human-machine

interaction, cognition, and psychology. The book includes 30 articles. Among the

topics discussed are group development (decisions, roles, space, time manage-

ment), cowboys and cowgirls (teams and mavericks), work organization (seven

different models), tools and methods (computer-aided software engineering,

modeling, human-computer interface, methods), process improvements (visibility,

reuse, just in time, quality), software usability (consistency/conventions, complex-

ity, scope creep, languages, usability, objects), and brave new software (interfaces,

wizards, future faces).

Michael Doyle and David Straus. How to Make Meetings Work. East Ruther-

ford, NJ: Berkeley Publishing, 1993. Doyle and Straus observe that most organi-

zations spend between 7% and 15% of their personnel budgets on meetings (this

does not include time spent preparing for meetings or attending training pro-

grams or conferences). Time spent attending a meeting is time taken away from

other opportunities! Doyle and Straus provide a set of tools and techniques to

make groups more effective. They advocate the interaction method, which rests

on four well-defined roles: the facilitator, the recorder, the group member, and

the chairperson. They describe each of these roles and assert that 7 to 15 people is

the ideal size for a problem-solving, decision-making meeting. Everyone should

know what to expect before coming to a meeting. Doyle and Straus discuss how

to make a presentation.



Roger Fisher and Scott Brown. Getting Together: Building Relationships As We

Negotiate. New York: Penguin Books, 1988. Fisher and Brown provide a set of

steps that address initiating, negotiating, and sustaining enduring relationships.

A strong message is that each of us can make any relationship better if we make

the choice to do so.

Milo O. Frank. How to Run a Successful Meeting in Half the Time. New York:

Simon and Schuster, 1989. Frank provides suggestions for all aspects of meet-

ings, offering ideas that will certainly be valuable if applied. We know from our

experience that we waste a lot of time in meetings. Why not review these sug-

gestions and make some improvements? Although this book is out of print, it is

easily available through second-hand bookshops and the popular electronic

booksellers. Meetings can be energizing, productive, and satisfying. Learn how to

make them this way, and apply these suggestions to your daily work.

Steven Gaffney. The Fish Isn’t Sick . . . The Water Is Dirty. Training seminar.

Available at http://www.stevengaffney.com. This proactive one-day seminar

teaches one how to clean up the communication water and establish honest,

effective communication with anyone. Gaffney provides a process that has

worked every time I’ve taken the opportunity to use it. He emphasizes the value

of acknowledging the other people involved in our lives.

Charles Handy. Gods of Management: The Changing Work of Organizations.

New York: Oxford University Press, 1996. This is an American edition of a book

the author wrote in 1978 in England. It provides an insightful view of leadership

styles and corporate cultures.

Watts S. Humphrey. Why Don’t They Practice What We Preach? 1998. Available

at http://www.sei.cmu.edu/publications/articles/sources/practice.preach/index.

html. I recommend this article to you for insights concerning why technical people

do not use improved methods, even when there is clear evidence that the meth-

ods help and there is strong pressure to use them. This seems to be true regardless

of the engineer’s experience and training. Engineers tend to revert to their estab-

lished ad hoc and informal practices. Only when they are convinced that a

method works by seeing results will they even try a new method. Today’s organi-

zations have few role models that consistently demonstrate effective work habits

and disciplines. This factor accounts for some of the reasons that industry results

have not improved in spite of dramatic improvements in practices, methods,

techniques, and tools. Practitioners are advised to read and reflect on Humphrey’s



insights so that we can develop ways to overcome our failure to take advantage of

improvements. McConnell’s After the Gold Rush: Creating a True Profession of

Software Engineering is full of ideas and suggestions to help with this situation.

McConnell notes in his epilogue that common development problems won’t be

avoided without our support.8

Otto Kroeger and Janet M. Thuesen (contributor). Type Talk at Work: How the

16 Personality Types Determine Your Success on the Job. New York: Dell

Publishing, 1993. The authors explain how managers, executives, and workers

can evaluate personality types and achieve improved job effectiveness. They pro-

vide suggestions for how to deal with individuals who are opposite of your type.

Six Sigma Qualtec. QI Story: Tools and Techniques, A Guidebook to Problem

Solving. 3rd ed. Tempe, AZ: Six Sigma Qualtec, 1999. This tiny reference book

provides a concise and helpful description of the concepts of total quality man-

agement and an overview of the seven-step QI story. It also includes summaries

of QI tools and techniques such as brainstorming, multivoting, the Pareto chart,

the Ishikawa (fishbone) diagram, countermeasures (solutions), cost-benefit analy-

sis, barriers-and-aids analysis, graphs, histograms, process flowcharts, and con-

trol charts. Available from Six Sigma Qualtec, 480-586-2600.

Douglas Stone, Bruce Patton, and Sheila Heen. Difficult Conversations: How to

Discuss What Matters Most. New York: Penguin Books, 1999. It’s natural to

avoid conversations that cause anxiety and frustration. This book provides an

approach for having difficult conversations with less stress and more success. We

all bring erroneous but deeply ingrained assumptions into our daily activities.

This book provides valuable insights for anyone who works with others.

Gerald M. Weinberg. Quality Software Management: Congruent Action. Vol. 3.

New York: Dorset House, 1994. This book deals with the ability to act appropri-

ately in difficult interpersonal situations—an essential ability for successful soft-

ware development managers. Weinberg uses simple but effective models to explain

human behavior, and he uses examples from the software engineering industry

to put these models in contexts familiar to software developers. He draws on his

40 years of work in the industry to discuss various styles of coping (especially

under stress), selection of managers, the importance of self-esteem, how to trans-

form incongruent behavior into effective actions, addictive behaviors, and how to

create and manage productive teams. He addresses the important question of why

people do things wrong when they know how to do them right.



Neal Whitten. Becoming an Indispensable Employee in a Disposable World.

Amsterdam: Pfeiffer & Company, 1995. The author emphasizes the value of

capitalizing on key personal traits, such as self-esteem and communication, not-

ing that we mirror our self-expectations! He provides a step-by-step process to

becoming a self-directed employee. He also addresses balancing our professional

and personal lives. Recommended reading for everyone.

Chapter 8

Barbara A. Bicknell and Kris D. Bicknell. The Road Map to Repeatable Success:

Using QFD to Implement Change. Boca Raton, FL: CRC Press, 1995. The

authors are associated with Bicknell Consulting, Inc., and have extensive experi-

ence applying the QFD methodology. Their book is a very comprehensive treat-

ment of QFD, explaining not only how QFD can be applied to all levels of the

organization, but also providing detailed guidance concerning how to create a

QFD matrix, analyze it, and develop an integrated plan using it. They provide a

nine-step approach to developing and using a QFD approach. A useful chapter

concerning how to develop a pilot QFD program is provided. Several case studies

and examples are provided.

Ian Graham. Requirements Engineering and Rapid Development: An Object-

Oriented Approach. Reading, MA: Addison-Wesley, 1998. Graham has respon-

sibility for software methods at Chase Manhattan Bank and believes that

development should be done quickly and effectively. He provides practical advice

concerning object modeling techniques. His approach complies with the prin-

ciples of the Dynamic Systems Development Method that was developed by a

consortium of 17 users in England. This method does not include or recommend

techniques. See J. Stapleton, Dynamic Systems Development Method: The Method

in Practice, Harlow, UK: Addison-Wesley, 1997.

IFPUG. Function Point Counting Manual. Current release. Westerville, OH.

The use of function points as a measure of the functional size of information sys-

tems has grown rapidly. Function points are a more objective measure of soft-

ware development than lines of code from the customer’s point of view because

of the characteristics of particular software languages. Recent releases of this

manual have provided a consensus view of the rules of function point counting

(IFPUG standard). The manual provides a discussion of the objectives and bene-



fits of FPA, an overview of FPA, and function point counting procedures. Examples

are provided to explain function point counting practices, concepts, rules, and

procedures. Complementary IFPUG documentation is available, including an

IFPUG brochure (with membership application), Guidelines for Software Measure-

ment, Application of Measurement Information, Quick Reference Counting Guide,

Function Point Analysis Case Studies, and IFPUG glossary. A list of instructors

providing certified training courses is also available.

Michael Jackson. Software Requirements & Specifications. Wokingham, UK:

Addison-Wesley, 1995. Jackson describes a large set of methods, including data

flow diagrams, entity relationship span, frame diagrams, graphic notations, tree

diagrams, and the top-down approach. He shares a set of principles and preju-

dices based on his 30 years in software development. His other books include

Principles of Program Design (Academic Press, 1975) and System Development

(Prentice Hall International, 1983).

Capers Jones. Estimating Software Costs. New York: McGraw Hill, 1998. This is

a very thorough treatment of this subject. Jones worked for IBM and is founder

and chairman of Artemis-SPR, Inc. (see http://www.spr.com). He has been col-

lecting historical data and designing and building software cost estimating tools

since 1971. Jones’s awareness that there are hundreds of factors that determine

the outcome of a project and his extensive database enable him to advise others

concerning the factors that are the most critical.

Capers Jones. Positive and Negative Factors That Influence Software Pro-

ductivity. Version 2.0. Burlington, MA: Software Productivity Research, Inc.,

1998. This is an extremely insightful paper. Jones notes that software productiv-

ity is complex, with at least 100 known factors that can influence the outcome of

software projects. The conclusions are derived from 2,000 software projects

examined between 1993 and 1998. The requirements activity comprises an aver-

age of 8.42% of the total effort. Jones provides lists of factors that exert both pos-

itive and negative impacts on software productivity. The cumulative results of

negative factors are much larger than those of the positive factors. This means

that it is easier to make mistakes and degrade productivity than it is to get things

right and improve productivity. Jones also provides data concerning the impact

of positive and negative factors on maintenance productivity. He addresses “best

in class” and “worst in class” companies. The most common pattern noted for

both systems and software domains is projects and companies in which the tech-

nical work of building software (design and coding) is reasonably good, but proj-



ect management factors and quality control factors are fairly weak.

James Martin. Rapid Application Development. New York: Macmillan Publish-

ing, 1991. Martin provides a comprehensive treatment of RAD. He describes a

requirements planning phase called joint requirements planning (JRP). JRP uti-

lizes a workshop to examine goals, problems, critical success factors, and strategic

opportunities to determine system objectives, departments and locations served,

determination and prioritization of system functions, process flow, and a list of

unresolved issues. The basic idea of JRP and JAD techniques is to select key end

users and to conduct workshops that progress through a structured set of steps

for planning and designing a system. This book is recommended reading for

individuals considering the use of RAD techniques. Martin also provides an

excellent discussion of metrics, tools, methodology, people, and management, as

well as techniques including prototyping, data modeling, and others.

Mark C. Paulk. A Comparison of ISO 9001 and the Capability Maturity Model

for Software. Technical report CMU/SEI 94-TR-12. Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University, July 1994. This report pro-

vides a detailed mapping between International Standard Organization (ISO) 9001

and the Capability Maturity Model (CMM). Paulk concludes that there is a

strong correlation between ISO 9001 and the CMM, although some issues in ISO

9001 are not covered in the CMM, and some issues in the CMM are not

addressed in ISO 9001. He believes that the biggest difference between the two

standards is the emphasis of the CMM on continuous process improvement. ISO

9001 addresses the minimum criteria for an acceptable quality system. Both doc-

uments emphasize processes that are documented and are practiced as docu-

mented. However, Paulk concludes that a CMM level 1 organization could be

certified as compliant with ISO 9001. If an organization is following the spirit

of 9001, it seems probable the organization would be near or above CMM level 2.

A CMM level 2 organization would have little difficulty in obtaining ISO 9001

certification.

Jack B. Revelle, John W. Moran, and Charles Cox. The QFD Handbook. New

York: John Wiley & Sons, 1997. QFD uses a number of matrices that translate

customer requirements into engineering or design requirements. Revelle and

colleagues apply QFD to several areas such as ISO 9000, service design, and soft-

ware design. A disk that supplies the QFD Pathway software tool package is pack-

aged with the book.



Linda Rosenberg. Writing High Quality Requirement Specifications. Tutorial

presented at the 12th International Software Quality Week (QW’99). San Jose,

CA. May 24–28, 1999. The requirements specification establishes the basis for all

of the project’s engineering, management, and quality assurance functions. If the

quality of the requirements specification is poor, it can create risks in all areas of

the project. The tutorial addresses effective development of quality requirement

specifications and provides ideas and methods that can be incorporated into the

project plan. These produce a return on documentation effort and improved

comprehension. See http://www.soft.com/QualWeek/QW99/qw99.abs.html.

John Terninko. Step-by-Step QFD: Customer-Driven Product Design 2nd ed.

Boca Raton, FL: St. Lucie Press, 1997. This is an excellent book that describes

why to use QFD as a technique and provides a step-by-step guide for how to use

it. The author provides suggested workshops and sample worksheets. An essen-

tial point is noted on page 3: “Once customer needs are understood . . .” In other

words, one must know the real requirements prior to taking advantage of the

QFD technique. Assuming use of the real requirements as the base, one can

achieve reduced development time by a factor of 2 or 3 (that is, 1/2 to 1/3). The

author notes that implementing QFD for new product designs requires a sub-

stantial initial investment of resources. Unfortunately, the book does not provide

a system development or software development example. Rather, the examples of

the application of QFD are limited to manufacturing. The book does discuss the

origin and application of TRIZ, a Russian acronym that translates to Theory of

Inventive Problem Solving (TIPS).

Jefffrey L. Whitten, Lonnie D. Bentley, and Kevin C. Dittman. Systems Analysis

and Design Methods. 5th ed. Boston, MA: McGraw-Hill, 2000. This popular

textbook provides a comprehensive discussion of most information systems

development topics. I particularly like the insight that classic, structured, and

“modern” techniques are (or should be) mutually supportive, not mutually

exclusive. The definitions of terms in the index help clarify an understanding of

topics. The volume incorporates an adaptation of Zachman’s Framework for

Information Systems Architecture (color mappings to data, processes, geography,

interfaces, and objects) so that in reviewing the figures, one can discern which is

which. For each chapter Whitten and colleagues provide a set of suggested read-

ings that seem to be well thought through.

Neal Whitten. “Meet Minimum Requirements: Anything More Is Too Much.”

PM Network (September 1998), p. 19. See also http://www.pmi.org. Whitten



advocates committing to a project plan that includes only essential function, with

a “closet plan” for nonessential function. Deliberately practicing meeting mini-

mum requirements helps an organization or company be first-to-market, earn

increasing credibility from its clients, and strongly posture its enterprise for

taking on new business opportunities. USA. Phone: (610) 356-4600. Fax: (610)

356-4647.

Chapter 9

Barry W. Boehm. Software Engineering Economics. Englewood Cliffs, NJ: Pren-

tice Hall, 1981. Boehm’s book is a classic that identifies the factors most strongly

influencing software costs and provides methods to determine the estimated costs

of a software project. He presents the Constructive Cost Model and provides case

study examples of its use. The book has an excellent section concerning people-

related reasons for variability in software estimation (pp. 666–676).

Elfriede Dustin, Jeff Rashka, and John Paul. Automated Software Testing:

Introduction, Management, and Performance. Boston, MA: Addison-Wesley,

1999. This book is a comprehensive, step-by-step guide to the most effective

tools, techniques, and methods for automated testing. The Automated Test

Lifecycle Methodology (ATLM) is a structured process for designing and execut-

ing testing that parallels the rapid application development methodology. The

book provides guidance on all aspects of the testing process. A compact disk

comes with the book that contains ATLM graphics in PDF, JPEG, EPS, and TIFF

formats. There is extensive discussion of requirements-related testing topics.

Jeffrey O. Grady. System Validation and Verification. Boca Raton, FL: CRC

Press, 1997. This book covers all aspects of V&V. Grady has extensive experience

and provides practical methods for each aspect of the topics. The book is exten-

sively illustrated with helpful explanatory figures.

Theodore F. Hammer, Leonore L. Huffman, and Linda Rosenberg. “Doing

Requirements Right the First Time.” CrossTalk, 1998:20–25. Hammer et al.

address three critical aspects of requirements: definition, verification, and man-

agement. Project data collected from the National Aeronautics and Space

Administration’s Goddard Space Flight Center by the Software Assurance Tech-

nology Center (SATC) are used to demonstrate key concepts and to explain how

to apply them to any project. SATC’s Automated Requirements Measurement



tool is used, and seven measures are developed (lines of text, imperatives, contin-

uances, directives, weak phases, incomplete, and options). These metrics provide

insight into the completeness of the test program and an understanding of the

characteristics of the verification program.

James D. Palmer. “Traceability.” In: R. H. Thayer and M. Dortman, eds. Software

Requirements Engineering. Los Alamitos, CA: IEEE Computer Society Press,

1997: 364–374. Palmer shows that traceability gives essential assistance in under-

standing the relationships that exist within and across requirements, design, and

implementation. He points out that traceability is often misunderstood, frequently

misapplied, and seldom performed correctly. This work is recommended reading

for requirements engineers.

William Perry. Effective Methods for SoftwareTesting. New York: John Wiley &

Sons, 1995. Perry provides extremely helpful guidance concerning verification

and testing activities that need to accompany the problem definition and require-

ments analysis activities in a development effort. He emphasizes that failure to do

this will result in much higher testing costs later in the project. He provides a

detailed discussion of requirements phase testing, including recommendations for

test tools (Walk-Through and Risk Matrix) and an extensive listing of application

risks. Because testing during the requirements phase is a new concept to many

development teams, Perry provides a requirements phase test process.

Delores R. Wallace and Laura M. Ippolito. “Verifying and Validating Software

Requirements Specifications.” In: Richard H. Thayer and Merlin Dortman,

eds. Software Requirements Engineering. 2nd ed. Los Alamitos, CA: IEEE

Computer Society Press, 1997: 389–404. Wallace and Ippolito describe V&V

activities and emphasize that V&V is a powerful tool for improving intermediate

products such as requirements specifications, design descriptions, test cases, and

test procedures. They provide descriptions of 28 test techniques and suggest

strategies for choosing among them. A rich set of references is provided.

Chapter 10

Mark C. Paulk, Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, and

Marilyn Bush. Key Practices of the Capability Maturity Model. Version 1.1.

Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon University,

1993. Also available at http://www.sei.cmu.edu/publications/documents/93.



reports/93.tr.025.html. Many don’t realize that the SW-CMM, version 1.1, is only

64 pages in length. Key Practices of the CMM, version 1.1, is much more extensive

and describes the practices for each of the 18 key process areas. These are orga-

nized according to a set of common features: commitment to perform, ability to

perform, activities performed, measurement and analysis, and verifying imple-

mentation. I have been applying these practices to projects and organizations for

12 years and have found them very helpful in improving the development

process.

Daniel P. Petrozzo. The Fast Forward MBA in Technology Management. New

York: John Wiley & Sons, 1998. This book is one from the Fast Forward MBA

Series. Its aim is to facilitate the use of technology in an organization. Petrozzo

provides examples of companies taking advantage of leading technologies and

describes how to manage technology. An interesting section is provided concern-

ing changing requirements. Two pitfalls identified by Petrozzo are (1) too large of

an initial implementation and (2) dependence on outside providers of software,

hardware, and expertise.

Preston G. Smith and Donald G. Reinertsen. Developing Products in Half the

Time. 2nd ed. New York: John Wiley & Sons, 1998. This book provides useful

concepts, methods, and metrics for reducing the time required to develop prod-

ucts. In this new edition, Smith and Reinertsen have drawn on their experience in

working with clients to provide practical tools to accelerate the development

process. For example, they stress the value of partnering in off-site workshops to

create specifications jointly.

Ian Sommerville. Software Engineering. 5th ed. Reading, MA: Addison-Wesley,

1995. Sommerville is concerned that although there has been tremendous

progress in software engineering, there has been a relatively slow diffusion of this

progress into industrial practice. He perceives a need to transfer proven practices

into everyday use. An extensive treatment of requirements and specifications is

provided, with emphasis on a requirements engineering process. An emphasis on

prototyping as being useful in validating the systems requirements is provided.

Ronald Starbuck. “How to Control Software Changes.” Software Testing and

Quality Engineering (STQE) Magazine 1/6 1999:18–21. Starbuck provides a high-

level change control process, describes the factors for how change requests are eval-

uated and explains the role of a CCB. He considers the business environment and

the people involved and stresses the need for sponsorship. CCB infrastructure sup-



port includes policy (guiding principles), process (a flowchart), procedures

(explaining how to accomplish the process steps), and authorization (agreement

on what you are or are not empowered to do or not to do). The configuration man-

agement plan (CMP) defines how to use the process and procedures in the specific

lifecycle situation, indicating who uses configuration management, what work

products they use it on, and when they use it. An excellent, easily tailorable model

for a CMP is IEEE Standard for Software Configuration Management Plans (IEEE

Std 828, 1990).

Gerald M. Weinberg. “Just Say No! Improving the Requirements Process.”

American Programmer (10) 1995:19–23. Weinberg’s view is that for many orga-

nizations, the principal barrier to higher quality is an inadequate requirements

process. He suggests a four-step process: (1) measure the true cost and value of

requirements, (2) gain control of the requirements inputs, (3) gain control of the

requirements outputs, and (4) gain control of the requirements process itself.

Chapter 11

ABT Corporation. Core Competencies for Project Managers. 2000. Available at

http://www.tsepm.com/may00/art5.htm. The authors assert that core competen-

cies of PMs should be divided into soft and hard skills. The soft skills (based on

years of feedback from customers) include visible leadership, flexibility, sound

business judgment, trustworthiness, possession of several effective communica-

tion styles, ability to act as a coach and mentor, active listening skills, ability to set

and to manage expectations, ability to provide constructive project negotiations,

ability to facilitate issue and conflict resolution, and ability to provide organiza-

tional and leadership skills. The hard skills include project definition, planning,

and estimating and providing a control process.

Eliyahu M. Goldratt. Critical Chain. Great Barrington, MA: The North River

Press, 1997. This is a business novel that introduces you to Goldratt’s thinking

processes. It is thought provoking and stimulating.

Eliyahu M. Goldratt and Jeff Cox. The Goal. 2nd rev. ed. Great Barrington, MA:

The North River Press, 1992. This is also a business novel considered by many to

be a very important business book. It introduces the Theory of Constraints and

emphasizes eliminating bottlenecks.



Robert Grady. Practical Software Metrics for Project Management and Process

Improvement. Englewood Cliffs, NJ: Prentice Hall, 1992. This second book by

Grady extends the concepts and examples in his first book based on the design

and implementation of a software metrics program at Hewlett Packard. Grady

states that if you are a PM or if you are involved in process improvement, this

book is for you. Grady believes that the SEI CMM is a model that will help prod-

ucts move toward continuous process improvement—a key to our future. He

also believes that a lot depends on what we believe we can do. He recommends

that we use the techniques and ideas in the CMM, apply them to our projects,

and use them to set continuous improvement goals for our project teams. He

believes that we will be surprised at what it is possible to accomplish.

Robert Grady and D. Caswell. Software Metrics: Establishing a Companywide

Program. Englewood Cliffs, NJ: Prentice Hall, 1987. This book provides the his-

tory, mechanics, and lessons learned from the example of the Hewlett Packard

company’s creation, design, development, and implementation of a successful soft-

ware metrics program. Hewlett Packard, through its Software Metrics Council,

determined to collect size, effort, schedule, and defects data initially. Grady and

Caswell emphasize that the greatest benefits of collecting metrics are experienced

by PMs through better understanding of the process that their team is following

and through measurable indicators of project status.

Capers Jones. Software Quality in 2000: What Works and What Doesn’t.

January 18, 2000. Briefing available from Software Productivity Research, Inc.,

at http://www.spr.com. This is a comprehensive briefing based on the database

of software projects maintained by Software Productivity Research, Inc., that

includes 600 companies, 30 government and military groups, roughly 9,000 total

projects, and data from 24 countries. Jones identifies practices that provide good-,

mixed-, and minimal-quality results, thus suggesting approaches that provide the

best return on the cost and effort invested.

Craig Kaplan, Ralph Clark, and Victor Tang. Secrets of Software Quality. New

York: McGraw-Hill, 1995. Kaplan and colleagues report 40 innovations from

IBM that address culture, leadership, process, and tools. There are many excellent

suggestions for use in a forward-looking organization. A quality maturity assess-

ment method that is based on the 1994 Malcolm Baldrige Quality Award criteria

is provided.



Steve McConnell. Software Project Survival Guide, Redmond, WA: Microsoft

Press, 1998. This is my favorite reference for providing advice, suggestions, and

practical help for a systems or software project. McConnell provides a project

survival test that gives insight into requirements, planning, project control, risk

management, and personnel issues. He then proceeds to provide useful sugges-

tions and survival checks in each area. One can’t help being helped by this book.

See also http://www.construx.com/stevemcc/.

Fergus O’Connell. How to Run Successful Projects II—The Silver Bullet. 2nd

ed. New York: Prentice Hall, 1996. O’Connell is a principal of ETP, The

Structured Project Management Company, in Ireland. He presents a straightfor-

ward approach for project management consisting of ten steps, with emphasis on

project planning and tracking and use of an automated project-tracking tool

such as Microsoft Project. He presented this approach in the first edition of his

book and then tried it with the companies with which he was consulting—it

worked! Hence the unfortunate subtitle The Silver Bullet. O’Connell uses a PSI

indicator to evaluate the status and probability of success of a project. This is

highly recommended reading for every PM and anyone with management

responsibilities. See http://www.etpint.com/.

Lawrence H. Putnam and Ware Myers. Measures for Excellence: Reliable

Software on Time, Within Budget. Upper Saddle River, NJ: Yourdon Press,

1992. Putnam and Myers emphasize the life cycle model and provide a simple

software estimating system. They provide a glossary of more than 100 terms used

in quantitative software management. They explain how conceptual work like

software development has been found to progress according to a mathematical

curve known as the Rayleigh distribution. This formula helps to understand what

happens when you compress a schedule, estimate new projects, and add people

to a late project, as well as to be able to project the number of defects remaining

in a work product. Study of this book facilitates understanding of reliability.

Walker Royce. Software Project Management: A Unified Framework. Reading,

MA: Addison-Wesley, 1998. An excellent read. “Key Points” are provided at the

beginning of each chapter, summarizing the main themes. Royce gives attention

to project economics, including improving processes and team effectiveness. He

provides a management process framework, with emphasis on iterative process

planning. He suggests seven core metrics and describes tailoring of processes

(including an example of a small-scale project versus a large-scale project). Useful



appendixes include The COCOMO Cost Estimation Model, Change Metrics,

CCPDS-R Case Study, and Process Improvement and Mapping to the CMM.

Rob Thomsett. Third Wave Project Management. Upper Saddle River, NJ:

Yourdon Press, 1993. This is a useful handbook that encourages use of updated

management ideas and techniques for project initiation, planning, estimation,

and risk assessment. Thomsett believes that the emergence of new development

techniques such as joint requirements planning, joint application design, and

rapid application development require a more dynamic and real-time project

management approach than is typically used. They require a new focus on team

formation, structure, and management, based on pressures for increased produc-

tivity, fewer people, and more client-oriented service.

Bruce F. Webster. Pitfalls of Object-Oriented Development. New York: M&T

Books, 1995. This is a superb book that describes pitfalls, not only for OO devel-

opment but for development in general. Webster candidly shares his wealth of

experience, describing each pitfall and noting symptoms, consequences, detec-

tion, extraction, and prevention for each one. This is a valuable read for any

developer or manager.

Ed Weller. “Practical Applications of Statistical Process Control.” In:

Proceedings of the 10th International Conference on Software Quality. This is

an excellent article that explains how to use SPC to improve project success.

Applying quantitative methods and SPC to development projects can provide a

positive cost-benefit return. Quantitative analysis of inspection and test data is

used to analyze product quality during test and to predict postship product qual-

ity for a major release. The processes used, decisions made using the project’s

data, and the results obtained are described. Weller advises that the following

questions be asked about any metric or analysis technique: (1) Is it useful, and

does it provide information that helps make decisions? (2) Is it usable, and can

we reasonably collect the data and do the analysis?

Neal Whitten. Managing Software Development Projects: Formula for Success.

2nd ed. New York: John Wiley & Sons, 1995. Whitten’s focus is on practical,

easy-to-implement solutions to common problems he has found in consulting

with organizations. Formerly with IBM, Whitten has managed a variety of proj-

ects. Among the areas addressed are personnel, quality, project scheduling and

tracking, product requirements, and product quality and usability. Managers will

find many helpful lessons.



Chapter 12

Frederick P. Brooks, Jr. The Mythical Man-Month. Anniversary ed. Reading, MA:

Addison-Wesley, 1995. This is probably the most cited software project manage-

ment book of all time. In the first edition of this book (1975), Brooks drew on his

experience as the project manager for the IBM/360 computer family and then for

OS/360 to provide propositions concerning software engineering and program-

ming. One assertion was that the man-month is mythical as a measure of produc-

tivity. In his twentieth anniversary edition (1995) of this book, Brooks notes that he

was struck by how few of the propositions have been critiqued, proved, or dis-

proved by ongoing software engineering research and experience! Chapter 16

reprints “No Silver Bullet: Essence and Accidents of Software Engineering,” a 1986

paper that was reprinted in 1987 in IEEE Computer magazine. This paper predicted

that the next decade would not see any single development in either technology or

management technique that by itself would provide even one order of magnitude

of improvement in productivity, reliability, or simplicity. Brooks’s position 20 years

later is still that software development is difficult.

Alan M. Davis. Software Requirements: Objects, Functions, and States. Rev.

Upper Saddle River, NJ: Prentice Hall PTR, 1993. This book provides a good

discussion of “what is a requirement?” It also provides a survey of techniques,

including object-oriented problem analysis, function-oriented problem analysis

using data flow diagrams, and state-oriented problem analysis. It has a detailed

discussion of the attributes of a software requirements specification and a very

exhaustive (772 sources) annotated bibliography as of 1993.

James A. Highsmith III. Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems. New York: Dorset House, 1999. As

characterized by Ken Orr, the message of this book is that large information sys-

tems don’t have to take so long to develop, they don’t have to cost so much, and

they don’t have to fail. This is hard to disagree with. The recommended solution

is a radical form of incremental development. Recommended techniques include

using customer focus groups, versioning, time-boxed management, and active

prototyping in combination. The book is advertised to provide a framework to

build independent subprojects in small, short-term pieces. Adaptive cycles are

mission driven, component based, iterative, time boxed,8 risk driven, and change

tolerant. Highsmith advocates the optimization paradox, basically denying that

process improvement (for example) could have any beneficial effect (p. 187).

Another theme of the book that is also hard to disagree with is that collaboration



enables organizations to generate emergent results (p. 126). Highsmith asserts

that “active partnerships are required” (p. 158). He believes that inspections

(encompassing reviews, inspections, and walkthroughs) have the most consis-

tently proven track record of all software engineering techniques implemented

since 1980. Chapter 7, Why Even Good Managers Cause Projects to Fail, is

insightful.

Watts S. Humphrey. Introduction to the Personal Software Process. Reading,

MA: Addison-Wesley, 1997. This excellent book provides the background and

approach for implementing the Personal Software Process (PSP). The PSP is a

methodology based on process improvement principles that enables developers

to develop high-quality products consistently and efficiently. The PSP is offered

in a course that teaches developers to measure and to manage the quality of their

work using defect density, defect removal rate, and yield versus productivity to

analyze size, time in phase, defects, and schedule measures. Experience has

shown that a serious commitment to the PSP is required, that management sup-

port is essential, and that transition to practice must be actively managed.

Humphrey’s earlier book, A Discipline for Software Engineering, also addresses

the PSP. See also the article by Ferguson and colleagues titled “Results of

Applying the Personal Software Process.”

Watts S. Humphrey. Managing Technical People: Innovation, Teamwork, and

the Software Process. Reading, MA: Addison-Wesley, 1997. Humphrey had

nearly 50 years of experience working with technical people when he wrote this

book. As he notes, history is a marvelous teacher as long as we are willing to learn.

The key is to understand and to respect people and to follow sound management

principles, applying them with a healthy sprinkling of common sense. This book

adds several chapters to Humphrey’s earlier book, Managing for Innovation:

Leading Technical People, including one concerning the process improvement

strategy and describing its power. Topics include respect for the individual, moti-

vating technical and professional people professional discipline, developing tech-

nical talent, managing innovative teams, and managing change.

Ravi Kalakota and Marcia Robinson. e-Business: Roadmap for Success.

Reading, MA: Addison-Wesley, 1999. This book facilitates understanding how

electronic business (e-business) impacts current business strategies, applications,

and models. Kalakota and Robinson have extensive experience in e-commerce

and e-business. A thesis is that technology is now a cause and driver in forming

business strategy and that e-commerce is enabling organizations to listen to their



customers and to become the cheapest, the most familiar, or the best. An interest-

ing concept is customer relationship management—an integrated sales, market-

ing, and service strategy that depends on coordinated actions.

Mitch Lubars, Colin Potts, and Charles Richter. “A Review of the State of the

Practice in Requirements Modeling.” In: Proceedings of IEEE International

Symposium on Requirements Engineering. Los Alamitos, CA: IEEE Computer

Society Press, 1993: 2–14. The authors conclude that it is not easy to make spe-

cific recommendations concerning how to improve requirements practices. They

observe from other studies that accurate problem domain knowledge is critical

to the success of a project, and requirements volatility causes major difficulties

during development. Lubars and colleagues encountered several cases of cus-

tomer-generated (“stated”) requirements documents that were hundreds of

pages long: “But verbosity does not imply clarity of understanding.” Many cus-

tomer-specific projects employ several domain specialists. Their survey indicated

that no companies really know how to assign and to modify priorities or how to

communicate those priorities effectively to project members. They observed sev-

eral times that a “small” change to the requirements caused a large change to the

design. The customer/developer partnership is preferred to foster interaction

and to promote consensus. Few projects used any particular requirements

method. In no case did the researchers find a coherent relationship between

requirements analysis and project planning. Requirements engineers did not

know how their project managers estimated costs or scheduled milestones. An

important finding is that software professionals are notoriously undercapitalized

relative to professionals in other engineering or manufacturing fields.

Steve McConnell. After the Gold Rush: Creating a True Profession of Software

Engineering. Redmond, WA: Microsoft Press, 1999. McConnell’s easy-to-read

style prevails in this excellent analysis of the status of software engineering today

and what should be done. He puts the state of current practices into context and

notes that each of us has a choice: to stay with “code-and-fix development prac-

tices” or to venture boldly toward a true profession. McConnell made his choice

years ago, as is evident from his many important contributions, ministering as he

does in a practical manner to the needs and welfare of our industry and

humankind. It’s time for each of us to read this book, digest it, and join him.

Steve McConnell. Rapid Development. Redmond, WA: Microsoft Press, 1996.

This is another of McConnell’s great books—a testimony to why process

improvement is never finished! McConnell takes the view that rapid develop-



ment is not a “glitzy methodology,” but rather the use of good practices, time,

and effort to achieve an effective development process. He advocates: (1) choos-

ing effective practices rather than ineffective ones, and (2) choosing practices

that are oriented specifically toward achieving your schedule objectives. After a

discussion of the major topics in development (including partnering),

McConnell proceeds to discuss 43 best practices. This is recommended reading

for anyone involved in the development process.

Fergus O’Connell. How to Run Successful High-Tech Project-Based Organi-

zations. Boston, MA: Artech House, 1999. In this book, O’Connell leverages his six

years of success of his company, ETP (Eyes on the Prize), Inc., in helping to change

the behavior of the people running projects and organizations. He applies his

structured project management approach to organizations. The focus is on causing

people to do the things that create results in customer satisfaction, reduced time-

to-market, gaining market edge, increased revenue, and increased profits.

Peter Senge, Art Kleiner, Charlotte Roberts, Richard Ross, George Roth, and

Bryan Smith. The Dance of Change. New York: Doubleday, 1999. This book is

full of ideas concerning organizational change. It provides a vision of growth and

prosperity based on the concept of the learning organization. It is a valuable

resource for a leader seeking new possibilities.

Paul A. Strassmann. The Squandered Computer: Evaluating the Business

Alignment of Information Technologies. New Canaan, CT: The Information

Economics Press, 1997. Strassmann believes that U.S. companies are excessively

overspending on computers and that there is no demonstrable relationship

between computer spending and corporate profits. He points out that overhead

costs of U.S. firms have grown faster than revenues or profits, and he feels that

computers have not increased worker productivity. He asserts that 31% of com-

puter projects are canceled and that 53% overrun their budgets. Strassmann

believes that the computer trade press has a tendency to popularize examples of

excellence in computer usage that disregard financial results. He believes that the

cyclical investment pattern for computers is as much a reflection in shifts in orga-

nizational power as the result of technological innovation. He provides 152 rec-

ommendations for what to do (pp. 389–400). This book is clearly not

representative of everyday thinking, and for that reason it is provocative and

challenges us to evaluate our “typical” approach.



R. H. Thayer and M. Dorfman, eds. Software Requirements Engineering. 2nd

ed. Los Alamitos, CA: IEEE Computer Society Press, 1997. This is a valuable

resource that includes a collection of informative articles on topics including

what is a requirement; system and software engineering requirements elicitation

techniques, including use cases; requirements methodologies and tools; trace-

ability; requirements and quality management; and life cycle models. Two

Institute of Electronic and Electrical Engineers standards (IEEE Recommended

Practice for Software Requirements Specifications and “Guide for Developing

System Requirements Specifications”) and a comprehensive software require-

ments engineering glossary are provided.

Gerald M. Weinberg. Quality Software Management. Vol. 4. Anticipating

Change. New York: Dorset House Publishing, 1997. This is the fourth and last

volume in a series by Weinberg titled Quality Software Management. Weinberg’s

focus in this book is on how to create a supportive environment. His tenet is that

management creates the environment in which the development work is per-

formed. Without improving management, spending on methodologies, tools,

application packages, and even training won’t help. Based on my own experience,

it’s hard to disagree with this view. There are two chapters that specifically focus

on requirements principles and process.

Karl E. Wiegers. Creating a Software Engineering Culture. New York: Dorset

House Publishing, 1996. This book provides lots of suggestions and ideas based

on Wiegers’ experience at Eastman Kodak Company. He provides practical

approaches to support process improvement and development efforts, and he

identifies culture builders and culture killers that are important to consider.


