
971

C H A P T E R 2 5

DTSDIAG

A few times over the years I’ve faced dire situations that tempted me to
return to my former faith. Times of trial and despair are hard on any-

one, and my former faith provided just the right crutch to avoid facing
reality and ascribe something that was truly unjust or wrong to some

higher purpose. But each time I’ve faced this down—each time I’ve
withstood the temptation—I’ve found myself stronger and better able to

handle the storms of life than before. Freeing oneself from a mental
dependence on errant faith is a lot like giving up an addiction—there

are powerful temptations to lapse back into the former habits,
but the momentary dulling of the senses that comes from falling

off the wagon is never worth the high cost.
—H. W. Kenton

I will close out this book by introducing you to a diagnostic application that
you may find useful in your own work. It’s based on SQL Server’s DTS tech-
nology and makes use of the DTS object model. It demonstrates the kind of
power an application can wield by bringing together the technologies on
which SQL Server is based. If you haven’t yet read Chapter 20 on DTS, you
might want to before proceeding.

The name of the application is DTSDIAG. Its purpose in life is to collect
diagnostic data from SQL Server. It can simultaneously collect Perfmon/Sys-
mon counters; a SQLDIAG report; the application, system, and security
event logs; a Profiler trace; and the output of a blocking detection script (as
defined in Microsoft Knowledge Base articles 251004, “INF: How to Moni-
tor SQL Server 7.0 Blocking,” and 271509, “INF: How to Monitor SQL
Server 2000 Blocking”).

Henderson_book.fm Page 971 Thursday, September 25, 2003 5:23 AM

972 Chapter 25 DTSDIAG

DTSDIAG consists of a standalone Visual Basic application, four DTS
packages, and some miscellaneous command line tools and scripts that it ex-
ecutes to gather the desired diagnostic data. The VB app allows you to spec-
ify the version of SQL Server to connect to, as well as the authentication
information to use. Once the collection process has been started by clicking
the Start button in the app, you can stop it by clicking the Stop button.

I’ve often found the need for a tool such as this when diagnosing SQL
Server issues. Many times, expecting someone to collect Perfmon, Profiler,
and the other types of diagnostics that I typically like to look at when inves-
tigating an issue turns out to be too much to ask. Often, the person I’m try-
ing to assist simply can’t get all the diagnostic collections going at once.
Sometimes they can collect the right diagnostics, but they collect them at
the wrong times or at different times. DTSDIAG alleviates this by allowing
me to configure which diagnostics I need before sending the tool out to a
target machine. I set up the types of data I want to collect in an INI file,
then have the DTSDIAG executable and support files copied onto the tar-
get machine and executed. The only data supplied at the collection site is
the name of the server/instance (and version) to connect to and the support-
ing authentication information. This makes the diagnostic collection process
as foolproof as possible while still allowing it to be configured as necessary.

So, now that you know what the app does, let’s have a look at its source
code. I’ve already mentioned that diagnostic collection is started/stopped
via the Start/Stop button in the DTSDIAG application. Here’s the VB code
attached to that button (Listing 25.1).

Listing 25.1

Private Sub btStartStop_Click()
If Not bRunning Then
 bRunning = True
 btStartStop.Caption = "Stop"
 ExecutePackage "dtsdiag_template.dts", "dtsdiag.dts",
 App.Path + "\dtsdiag.log"

Else
 btStartStop.Enabled = False
 ExecutePackage "dtsdiag_shutdown_template.dts",
 "dtsdiag_shutdown.dts", App.Path + "\dtsdiag_shutdown.log"
 ExecutePackage "dtsdiag_cleanup_template.dts",
 "dtsdiag_cleanup.dts", App.Path + "\dtsdiag_cleanup.log"
 bRunning = False

Henderson_book.fm Page 972 Thursday, September 25, 2003 5:23 AM

DTSDIAG 973

 btStartStop.Caption = "Start"
 btStartStop.Enabled = True
End If
End Sub

We use the same button for starting and stopping collection and merely
change the button’s caption based on what state we’re in. When we start
collection, we call a subroutine named ExecutePackage in order to run the
dtsdiag_template.dts package. ExecutePackage saves dtsdiag_template.dts
as dtsdiag.dts (I’ll explain why in a moment) and runs it.

When we stop collecting, we run two packages: dtsdiag_shutdown_
template.dts and dtsdiag_cleanup_template.dts. As with dtsdiag_template.dts,
these packages are saved as new packages without the _template suffix and
executed.

Certain diagnostics such as the SQLDIAG report and the system event
logs can be collected when DTSDIAG is started up or when it is shut down
or at both occasions. Whether and when these diagnostics are collected is
specified in the DTSDIAG.INI file. The dtsdiag_shutdown_template.dts
package exists to collect diagnostics that have been configured for collection
during shutdown. The dtsdiag_cleanup_template.dts package exists to re-
move the stored procedures and other remnants from the collection process
once DTSDIAG is stopped. It also checks for the existence of KILL.EXE, a
utility from the Windows NT 4/2000 Resource Kit that can terminate other
processes, and attempts to kill instances of osql, the utility DTSDIAG uses
to collect much of its diagnostic data.

DTSDIAG’s configuration file, DTSDIAG.INI, has a very simple for-
mat, as shown in Listing 25.2.

Listing 25.2

[DTSDIAG]
SQLDiag=1
SQLDiagStartup=0
SQLDiagShutdown=1
EventLogs=1
EventLogsStartup=0
EventLogsShutdown=1
Profiler=1
ProfilerEvents=76,75,92,94,93,95,16,22,21,33,67,55,79,80,61,69,25,
59,60,27,58,14,15,81,17,10,11,35,36,37,19,50,12,13

Henderson_book.fm Page 973 Thursday, September 25, 2003 5:23 AM

974 Chapter 25 DTSDIAG

Perfmon=1
BlockingScript=1
BlockerLatch=0
BlockerFast=1
MaxTraceFileSize=100
MaxPerfmonLogSize=256
PerfmonPollingInterval=5
ProfilerPollingInterval=5
BlockingPollingInterval=120
Counter0=\MSSQL$%s:Buffer Manager\Buffer cache hit ratio
Counter1=\MSSQL$%s:Buffer Manager\Buffer cache hit ratio base
Counter2=\MSSQL$%s:Buffer Manager\Page lookups/sec
...

The format of the file should be pretty self-explanatory. Each type of di-
agnostic has its own Boolean switch. For example, if the Profiler value is set
to 1, we attempt to collect a Profiler trace; otherwise, we don’t.

Some of the settings in the file serve as options for the collection pro-
cess. For example, ProfilerEvents contains a comma-delimited list of events
(see sp_trace_setevent in Books Online for the master event number list) to
capture in the Profiler trace. The CounterN entries contain the list of Perf-
mon/Sysmon counters to collect. The BlockerLatch and BlockerFast op-
tions contain parameter switches for the blocking detection script (again, as
outlined in Knowledge Base articles 251004 and 271509).

The key routine in DTSDIAG.EXE is the ExecutePackage method.
Let’s look at the code (Listing 25.3), then I’ll walk you through what it does
and how it does it.

Listing 25.3

Private Sub ExecutePackage(SrcName As String, TargName As String,
 LogName As String)
 Dim oPkg As DTS.Package
 Dim oTask As DTS.Task
 Dim oCreateProcessTask As DTS.CreateProcessTask
 Set oPkg = New DTS.Package
 oPkg.LoadFromStorageFile SrcName, ""
 oPkg.LogFileName = LogName

 For Each oTask In oPkg.Tasks

Henderson_book.fm Page 974 Thursday, September 25, 2003 5:23 AM

DTSDIAG 975

 If 0 <> InStr(1, oTask.Name, "CreateProcess",
 vbTextCompare) Then
 Set oCreateProcessTask = oTask.CustomTask
 oCreateProcessTask.ProcessCommandLine =
 TranslateVars(oCreateProcessTask.ProcessCommandLine)
 End If
 Next

 Dim oFs
 Set oFs = CreateObject("Scripting.FileSystemObject")

 If oFs.FileExists(TargName) Then
 Kill TargName 'Delete in advance so the file won't grow
 'ad infinitum
 End If

 Set oFs = Nothing

 oPkg.SaveToStorageFile TargName
 oPkg.Execute
 oPkg.UnInitialize
 Set oPkg = Nothing
End Sub

The routine begins by instantiating a DTS Package object. Although
Package2 is the newer interface (introduced with SQL Server 2000), coding
to the Package interface allows us to run on SQL Server 7.0.

Once the Package object is created, we load the specified package from
its structured storage file. Each of the packages DTSDIAG uses is stored in
COM’s Structured Storage File format.

We next iterate through the tasks defined in the package and locate
each Execute Process task by searching for CreateProcess in the task’s
name. We access each Execute Process task by assigning the CustomTask
property of the generic task object in the Package.Tasks collection to the
previously dimmed DTS.CreateProcessTask variable.

In case you’re wondering, we iterate through the Execute Process tasks in
each package in order to translate certain placeholders in the ProcessCom-
mandLine property before executing the package. Because we need to exe-
cute complex scripts and retrieve their variable output in order to collect
diagnostic data via DTSDIAG, we can’t use a typical Execute SQL task to run

Henderson_book.fm Page 975 Thursday, September 25, 2003 5:23 AM

976 Chapter 25 DTSDIAG

much of the T-SQL DTSDIAG runs. Instead, we must shell to OSQL.EXE.
Obviously, we want our calls to osql to be configurable—for example, we want
to be able to specify the server and instance to connect to, the options for
some of the diagnostic stored procedures we run, and so on. We could have
used one of the custom task objects we built earlier in the book to make this a
snap, but that would have required the custom task to be installed on the tar-
get machine when packages that contained it were executed. Because I didn’t
want to require COM objects to be registered before diagnostics could be
collected, DTSDIAG doesn’t use any custom tasks. Instead, it uses regular
Execute Process tasks and placeholders in the ProcessCommandLine prop-
erty in a manner similar to the ExecuteSQLScript and ExecuteScript custom
tasks we built earlier in the book. Our VB code iterates through these tasks
and replaces the placeholders with their appropriate values prior to executing
a package.

Note the call to the TranslateVars function. TranslateVars is responsible
for translating the variables in each ProcessCommandLine into their appro-
priate values. It’s actually more complex than ExecutePackage, and we’ll
tour it in just a moment.

Once the ProcessCommandLine property for each Execute Process
task has been properly translated, we write the translated package to the
target package name and execute it. When the package finishes executing,
we clean up the package object and return.

As I mentioned, the TranslateVars routine translates the placeholders in
each Execute Process task’s ProcessCommandLine property into their appro-
priate values. This means that, for example, it translates %server_instance%
into the server and instance to which we want to connect. Similarly, it trans-
lates %auth_string% into the appropriate authentication string to be passed
on the osql command line.

Some of the values we need to translate come from the DTSDIAG.INI
configuration file. Therefore, our code contains a Declare Function DLL
import for the GetPrivateProfileString API function, which is the Win32
function used to retrieve values from an INI file. Listing 25.4 shows the
source code for TranslateVars and the GetPrivateProfileString import.

Listing 25.4

Private Declare Function GetPrivateProfileString Lib "KERNEL32" _
 Alias "GetPrivateProfileStringA" (ByVal AppName As String, _
 ByVal KeyName As String, ByVal keydefault As String, _
 ByVal ReturnString As String, ByVal NumBytes As Long, _
 ByVal FileName As String) As Long

Henderson_book.fm Page 976 Thursday, September 25, 2003 5:23 AM

DTSDIAG 977

Private Function TranslateVars(CmdLine As String) As String

 Dim strServer As String
 Dim strInstance As String
 Dim strProfilerParms As String
 Dim strBlockerParms As String
 Dim iBlockerPollingIntervalSeconds As Integer
 Dim iBlockerPollingIntervalMinutes As Integer
 Dim strWork As String

 ' Defaults for INI values
 strProfilerParms = ""
 strBlockerParms = ""
 iBlockerPollingIntervalSeconds = 0
 iBlockerPollingIntervalMinutes = 0

 Const BUFFSIZE = 1024

 strWork = Space(BUFFSIZE)

 ' Get Profiler Parms

 ' Events
 Res = GetPrivateProfileString("DTSDIAG", "ProfilerEvents", "", _
 strWork, BUFFSIZE, App.Path + "\dtsdiag.ini")

 If (0 <> Res) Then
 strProfilerParms = ", @Events=" + Chr(39) + Mid(strWork, 1, _
 Res) + Chr(39)
 End If

 ' MaxTraceFileSize
 strWork = Space(BUFFSIZE)
 Res = GetPrivateProfileString("DTSDIAG", "MaxTraceFileSize", "", _
 strWork, BUFFSIZE, App.Path + "\dtsdiag.ini")

 If (0 <> Res) Then
 strProfilerParms = strProfilerParms + ", @MaxFileSize=" + _
 Mid(strWork, 1, Res)
 End If

 ' Get Blocker Parms

Henderson_book.fm Page 977 Thursday, September 25, 2003 5:23 AM

978 Chapter 25 DTSDIAG

 ' BlockerLatch
 strWork = Space(BUFFSIZE)
 Res = GetPrivateProfileString("DTSDIAG", "BlockerLatch", "", _
 strWork, BUFFSIZE, App.Path + "\dtsdiag.ini")

 If (0 <> Res) Then
 strBlockerParms = "@latch=" + Mid(strWork, 1, Res)
 End If

 ' BlockerFast
 strWork = Space(BUFFSIZE)
 Res = GetPrivateProfileString("DTSDIAG", "BlockerFast", "", _
 strWork, BUFFSIZE, App.Path + "\dtsdiag.ini")

 If (0 <> Res) Then
 strBlockerParms = strBlockerParms + ", @fast=" + _
 Mid(strWork, 1, Res)
 End If

 ' BlockingPollingInterval
 strWork = Space(BUFFSIZE)
 Res = GetPrivateProfileString("DTSDIAG", _
 "BlockingPollingInterval", "", _
 strWork, BUFFSIZE, App.Path + "\dtsdiag.ini")

 If (0 <> Res) Then
 iBlockerPollingIntervalSeconds = Val(Mid(strWork, 1, Res))

 ' Since we are plugging the time part, max is 59
 If iBlockerPollingIntervalSeconds > 59 Then
 iBlockerPollingIntervalMinutes = _
 iBlockerPollingIntervalSeconds / 60
 iBlockerPollingIntervalSeconds = _
 iBlockerPollingIntervalSeconds Mod 60
 End If
 End If

 ' Extract server and instance from ServerInstance TextBox
 Dim iPos As Integer

 iPos = InStr(1, tbServerInstance.Text, "\")

 If 0 <> iPos Then
 strServer = Mid(tbServerInstance.Text, 1, iPos - 1)
 strInstance = Mid(tbServerInstance.Text, iPos + 1)

Henderson_book.fm Page 978 Thursday, September 25, 2003 5:23 AM

DTSDIAG 979

 Else
 strServer = tbServerInstance.Text
 strInstance = ""
 End If

 ' Replace tokens
 CmdLine = Replace(CmdLine, "%auth_string%", strAuth)
 CmdLine = Replace(CmdLine, "%ver%", strVer)
 CmdLine = Replace(CmdLine, "%server_instance%", _
 tbServerInstance.Text)
 If taVersion.SelectedItem.Index = 1 Then
 CmdLine = Replace(CmdLine, "%trace_output%", App.Path & _
 "\output\" & "sp_trace.trc")
 Else 'Omit file extension for 80
 CmdLine = Replace(CmdLine, "%trace_output%", App.Path & _
 "\output\" & "sp_trace")
 End If
 CmdLine = Replace(CmdLine, "%server%", strServer)
 CmdLine = Replace(CmdLine, "%instance%", strInstance)
 CmdLine = Replace(CmdLine, "%profilerparms%", strProfilerParms)
 CmdLine = Replace(CmdLine, "%blockerparms%", strBlockerParms)
 CmdLine = Replace(CmdLine, "%bis%", _
 Str(iBlockerPollingIntervalSeconds))
 CmdLine = Replace(CmdLine, "%bim%", _
 Str(iBlockerPollingIntervalMinutes))

 TranslateVars = CmdLine
End Function

Once all the required configuration values are retrieved from DTS-
DIAG.INI, TranslateVars uses the VB Replace function to translate each to-
ken into its appropriate value. It finishes by returning the translated process
command line as its function result.

You may be wondering why we don’t just use a Dynamic Properties task
inside the relevant DTS packages since these INI values ultimately end up
inside packages. After all, a Dynamic Properties task can retrieve values di-
rectly from an INI file without requiring any type of Automation code.
Rather than coding an external app that modifies packages on the fly using
COM Automation, wouldn’t it be simpler just to use a Dynamic Properties
task inside each package where we need to read INI configuration values?
The answer is that we do use one when possible. However, many of the con-
figuration values we need to supply must be inserted into the middle of task

Henderson_book.fm Page 979 Thursday, September 25, 2003 5:23 AM

980 Chapter 25 DTSDIAG

property values, so they can’t readily be supplied by a Dynamic Properties
task. Using a Dynamic Properties task to assign an INI configuration value
to a property is tenable only when you are assigning the entire property. As-
signing only a portion of the property requires a script or external Automa-
tion code.

So, now that we’ve toured the VB source code for DTSDIAG, let’s talk
about the DTS packages it uses. Open dtsdiag_template.dts (in the CH25\
dtsdiag subfolder on the CD accompanying this book) in the DTS Designer
so that we can discuss a few of its high points.

The package begins by creating a folder under the startup folder named
OUTPUT. If the folder already exists, it is deleted and recreated. This
folder will contain all the files collected by DTSDIAG. Output files from
tasks we execute to get set up for the collection process (e.g., creating
stored procedures) will have ## prefixed to their names. This allows them to
be easily distinguished from the actual diagnostic files we’re interested in.
Normally you can delete these ## files after the collection process is com-
plete. You’ll need them only if there is some problem with DTSDIAG.

Note the use of a Dynamic Properties task to load configuration values
from DTSDIAG.INI. As I mentioned earlier, we load as many configuration
values as we can using a Dynamic Properties task. Each type of diagnostic has
a global variable associated with it that controls whether it gets collected. For
example, the global variable sqldiag controls whether SQLDIAG.EXE is exe-
cuted. The Dynamic Properties task sets the sqldiag global variable by read-
ing DTSDIAG.INI and retrieving the value of the SQLDiag key.

The Blocker, Profiler, and SQLDIAG processes within the package be-
gin by calling osql to create the stored procedures they will call to collect the
required data. The blocker process creates two stored procedures: one
named sp_code_runner, a stored procedure capable of running other proce-
dures or T-SQL code on a schedule or until a logical condition becomes true,
and one named either sp_blocker_pss70 or sp_blocker_pss80 (depending on
the version of SQL Server you’re connecting to), the blocking detection
stored procedures provided in the Knowledge Base articles I mentioned ear-
lier. Because the sp_blockerXXXX procedures belong to Microsoft, I have
not included them on the CD accompanying this book. You will have to ac-
cess the aforementioned Knowledge Base articles at http://www.mi-
crosoft.com and download them yourself if you want to use DTSDIAG to
run them. Alternatively, you can supply your own blocking detection proce-
dure(s)—there’s nothing requiring the use of the Microsoft stored proce-
dures in DTSDIAG.

Note that we don’t execute SQLDIAG.EXE directly from our DTS
package. SQLDIAG.EXE must be run on its host SQL Server; running it

Henderson_book.fm Page 980 Thursday, September 25, 2003 5:23 AM

DTSDIAG 981

directly from the package would require that the package be run on the
server, something you might not want to do. Instead, we call a stored proce-
dure that shells to SQLDIAG.EXE on the server via xp_cmdshell. This al-
lows you to collect a SQLDIAG report without physically being on the SQL
Server machine. Note that this technique requires additional steps on a
SQL Server 2000 cluster (see Knowledge Base article 233332).

The Perfmon task executes a custom utility I’ve written in C++ (also in-
cluded on the CD) that collects a specified set of Perfmon counters and
writes them to a Perfmon BLG-format log. PMC is similar to the LogMan
utility included with Windows XP and later (see Knowledge Base article
303133) but works on Windows 9x and later as well. Note that, because of a
header file change Microsoft made with the introduction of Windows XP,
you will need the version of PDH.DLL (the Performance Data Helper li-
brary, the engine behind Perfmon/Sysmon) that ships with Windows 2000
in order to use PMC on Windows XP or later. For your convenience, I’ve in-
cluded this file in the dtsdiag folder on the CD accompanying this book. If
you decide to run PMC on Windows XP or later (as opposed to running
LogMan), I recommend that you use the version of the PDH.DLL I’ve in-
cluded with DTSDIAG. You shouldn’t replace the version of PDH.DLL
that comes with the operating system with the one I’ve included. Just leave
it in the DTSDIAG startup folder, and PMC will find it when it starts.

PMC reads the INI file name passed into it as a parameter (DTS-
DIAG.INI, in this case), locates INI values named CounterN, and adds
each one to a Perfmon BLG log. If it finds the string “%s” in a counter
name, it translates this to the name of the specified SQL Server instance
(optionally passed on its command line) before adding it to the Perfmon
log. If no instance name is specified, but PMC encounters “%s” in a counter
name, it assumes the default SQL Server instance is being specified and re-
places the entire “MSSQL$%s” string with “SQLServer” in order to add the
counter for the default instance.

The event logs are collected using the elogdmp.exe utility included with
the Windows 2000 Resource Kit. Again, since this utility belongs to Mi-
crosoft, I haven’t included it on the CD accompanying this book. You can
actually use any event log dumper utility you want (e.g., dumpel.exe from
the Windows NT 4 Resource Kit will also work)—you just need to configure
the event log Execute Process tasks accordingly.

Note that the event logs are collected via an Execute Package task,
which starts a separate package that collects all three of them in parallel.
This is done because event logs are one of those tasks that can be collected
at startup or shutdown or both. So, in order to allow for event log collection
from dtsdiag_template.dts as well as dtsdiag_shutdown_template.dts, we’ve

Henderson_book.fm Page 981 Thursday, September 25, 2003 5:23 AM

982 Chapter 25 DTSDIAG

put the event log collection tasks off in their own package, which we exe-
cute as appropriate during startup or shutdown.

A final aspect of DTSDIAG that’s worth exploring is the way we use Ac-
tiveX script workflow associations to enable/disable certain execution paths
within packages. You’ll recall that we discussed this technique earlier in the
book. In DTSDIAG we use it, for example, to disable the Profiler task path
when the DTSDIAG.INI Profiler value is set to 0 (false). Listing 25.5 pre-
sents the ActiveX script that’s associated with the Create Profiler Proc Exe-
cute Process task.

Listing 25.5

Function Main()
 If DTSGlobalVariables("profiler") Then
 Main = DTSStepScriptResult_ExecuteTask
 Else
 Main = DTSStepScriptResult_DontExecuteTask
 End If
End Function

The global variable profiler is assigned by the Dynamic Properties task
at the start of package processing. If this variable is nonzero, we execute the
Profiler task path, otherwise, we skip it.

For tasks that can be executed at startup, shutdown, or both, we have to
check a second global variable to determine whether to execute them. List-
ing 25.6 shows the ActiveX script associated with the SQLDIAG task line.

Listing 25.6

Function Main()
 If (DTSGlobalVariables("sqldiag")) And _
 (DTSGlobalVariables("sqldiagstartup")) Then
 Main = DTSStepScriptResult_ExecuteTask
 Else
 Main = DTSStepScriptResult_DontExecuteTask
 End If
End Function

Henderson_book.fm Page 982 Thursday, September 25, 2003 5:23 AM

DTSDIAG 983

So, we check not only the global variable sqldiag but also sqldiagstartup
(or sqldiagshutdown) to be sure that we’re supposed to collect the SQLDIAG
report when this particular step is executed. In the dtsdiag_template.dts, we
check sqldiagstartup; in dtsdiag_shutdown_template.dts, we check sqldiag-
shutdown.

That’s DTSDIAG in a nutshell. You can run the utility to experiment
with it further and load its various packages into the DTS Designer to see
how they’re constructed. You can play with the VB code to explore control-
ling DTS packages via Automation. The source code and support files for
DTSDIAG are located in the CH25\dtsdiag subfolder on the CD accompa-
nying this book.

A natural evolution to the DTSDIAG concept is the notion of loading
the collected data into SQL Server for analysis. I will leave that as a reader
exercise but will provide a few hints for the adventurous. The event log and
SQLDIAG reports are plain text files and, with some massaging, can be eas-
ily imported into SQL Server tables. The blocking script output can also be
processed as text and imported into a set of SQL Server tables, although it’s
a little more challenging because of the variability in the output format. A
Profiler trace can be read as a rowset using the fn_trace_gettable T-SQL
function, so importing it into a table is a snap. A Perfmon BLG log can be
converted to a CSV format using the Relog tool included with Windows XP
and later (see Knowledge Base article 303133), which can then be imported
into SQL Server using DTS. Once you have all the data in a SQL Server da-
tabase, you can dream up all sorts of sophisticated analysis for it. The trick is
in coalescing the data in the first place.

Henderson_book.fm Page 983 Thursday, September 25, 2003 5:23 AM

Henderson_book.fm Page 984 Thursday, September 25, 2003 5:23 AM

