—@| @

é GeneralTechniques.fm Page 10 Sunday, July 16, 2000 8:28 PM

10

PRAXIS 4 GENERAL TECHNIQUES

modate. Moreover, when elements are removed from a Vector, each element with
an index greater than the index being removed is shifted downward to have an
index one smaller than the value it had previously.

Unlike arrays, you call a method on a Vector to determine its size. The Vector
class implements a size method, which returns the number of elements contained
in the Vector. The size method might not return the result you expect, however.
Because the size method returns the number of elements contained in a Vector,
removing an element changes its size. On the other hand, an array is fixed in size.
Its length is the same regardless of how many array indexes have been assigned
values.

A Vector is implemented in terms of an array. That is, when you create a Vector
the class creates an array of elements of type java.lang.Object to manage the
items you store in the Vector. When a Vector grows, its entire array must be
reallocated and copied. In addition, when an item is removed from a Vector, its
underlying array is compacted. These attributes of the Vector class, coupled with
its array implementation, can create performance problems if Vectors are not
used properly. See PRAXIS 41 for a detailed analysis of the performance character-
istics of arrays and Vectors.

Finally, a Vector may contain only object references and not primitive types.
Arrays, by contrast, may contain either object references or primitive types. This
restriction is because the Vector class uses an array of type java.lang.0Object
as its supporting data structure. For example, compiling the following code:

import java.util.Vector;
import java.awt.Button;
class VecArray

{
public static void main(String args[])
{
int i = 1;
int[] ia = new int[10];
ia[@] = i; //0K
Button[] ba = new Button[10];
ba[@] = new Button(""); //0K
Vector v = new Vector(10);
v.add(new Button("")); / /0K
v.add(i); //ERROR
v.add(new Integer(i)); //0K
}
}

ik



