
MULTITHREADING Praxis 55

191

 commands = null;
 }
 //Now we have commands for the robot.
 int size = cmds.length;
 for (int i=0; i<size; i++)
 processCommand(cmds[i]); //Move the robot.
 }
}

The only line of code changed is the line at //1—the if (commands == null) is
changed to a while loop. According to this code, each thread that is awakened
retests the condition it is waiting on before proceeding. Each thread checks to see
whether the commands variable is still non-null before accessing it. This is to be
sure that a thread that was awakened earlier did not change the value of this
variable.

Notice that the InterruptedException thrown by the wait method is ignored. It
is typically a bad idea to ignore an exception. (For more on this topic, see Praxis
17.) However, this case can be an exception to that rule. You can choose to ignore
the exception when the thread is interrupted because with a spin lock, the code
will retest the condition. If the condition is not satisfied, the thread will reenter the
wait state by calling wait. If an InterruptedException signals an error in your
design, you should not ignore this exception.

Spin locks are a simple and cheap way to ensure proper behavior and execution of
code that waits on condition variables. However, if you forget to use them, then
your code might work some of the time, but when the timing of the threads is just
so, your code will fail. Code that fails occasionally represents some of the more
difficult bugs to track down. The utilization of spin locks removes this potential
bug.

Praxis 55: Use wait and notifyAll instead of polling loops

Before the advent of more advanced communication mechanisms, programmers
relied on other techniques to communicate between different parts of a system.
One commonly used technique was the polling loop.

A polling loop consists of code in one thread that sits in a loop and continually
tests a particular condition. The condition the polling thread waits on is ultimately
changed by another thread. When the condition is satisfied, the code performs
some task. If the condition is not satisfied, the code might sleep for a brief amount

Multithreading.fm Page 191 Sunday, July 16, 2000 8:38 PM

