
Praxis 54 MULTITHREADING

190

7. The loadCommands method calls the notifyAll method.

8. Both Robot threads are unblocked and attempt to reacquire the RobotCon-

troller object lock.

9. Because only one thread can acquire the lock, assume the lock is obtained by
the first Robot thread. The second Robot thread does not acquire the lock un-
til the first Robot thread releases it.

10. The first Robot thread processes the commands for the robot, sets the com-

mands variable to null, and releases the lock.

11. The second Robot thread acquires the lock and attempts to process the com-
mands for the robot.

12. Because the commands variable is null, the code fails with a NullPointer-
Exception.

The problem with this code is that it failed to recheck the value of the commands
variable before proceeding. Because all threads are awakened on a call to noti-
fyAll, they all eventually reacquire the object lock in an undetermined order (see
Praxis 53). When they reacquire the lock and begin execution, they start at the
line of code immediately following the call to the wait method. When a thread is
awakened, it must recheck the condition on which it was waiting. This is because
it might not be the first thread to run and the condition could have changed.

In the previous example, the first thread that runs changes the value of the condi-
tion variable. The first thread sets the commands field to null. Because the code
does not recheck the value of the commands variable, the second thread fails.
Whenever code is waiting on a particular condition, it should do so inside of a
loop or a spin lock. The correct implementation of the run method of the Robot
class is as follows:

public void run() {
 byte[] cmds;
 while(true) {
 synchronized(controller) {
 while (commands == null) { //1
 try {
 controller.wait(); }
 catch(InterruptedException e){} //Exception is ignored
 } //purposefully.
 cmds = new byte[commands.length];
 for (int i=0; i<commands.length; i++)
 cmds[i] = commands[i];

Multithreading.fm Page 190 Sunday, July 16, 2000 8:38 PM

