—@| @

170

é Multithreading.fm Page 170 Sunday, July 16, 2000 8:36 PM

PRAXIS 48 MULTITHREADING

0 new #2 <(Class java.lang.Object>
//Create an object of type java.lang.Object
//and push a reference to it(Tlock).

3 dup //DupTlicate the top stack value and push 1it.

4 invokespecial #3 <Method java.lang.Object()>
//Pop the object reference(lock), and invoke
//its constructor.

7 astore_1l //Pop the object reference(lock) and store
//it at index 1 of the Tlocal variable table.

Creating a zero element array does not require a constructor call like the creation
of Object does. It therefore executes faster. In addition, byte arrays that contain
elements are often represented more compactly in the JVM than int arrays.

Either option results in code that is thread safe. Remember that synchronizing on
an instance method or object reference obtains a completely different lock than
code that synchronizes on a static method or class literal. Simply because two
methods are declared synchronized does not necessarily mean they are thread
safe. You must be careful to recognize and distinguish between the different locks
obtained with synchronization.

PRAXIS 48: Use private data with an accessor method instead
of public or protected data

The purpose of writing code with synchronized methods is to protect data from
corruption. To properly protect data, you must ensure that it is declared and
accessed correctly. Failure to correctly protect data allows users of your class to
bypass whatever synchronization mechanisms you have in place.

For example, consider the following class that contains two methods that operate
on an array. The array is declared as instance data of the class. Both methods are
declared synchronized to ensure that data is not added and subtracted from the
array concurrently. Is this class thread safe?

class Test implements Runnable

{
public int[] intArray = new int[10];

public synchronized void addToArray(int[] ar)
{

int len = intArray.length;

if (len == ar.length)

{

ﬁ%

ik



