
Praxis 52 MULTITHREADING

184

class SomeClass implements Runnable
{
 public int sumArrays(ArrayWithLockOrder a1,
 ArrayWithLockOrder a2)
 {
 int value = 0;
 ArrayWithLockOrder first = a1; //Keep a local copy of array
 ArrayWithLockOrder last = a2; //references.
 int size = a1.array().length;
 if (size == a2.array().length)
 {
 if (a1.lockOrder() > a2.lockOrder()) //Determine and set the
 { //lock order of the
 first = a2; //objects.
 last = a1;
 }
 synchronized(first) { //Lock the objects in correct order.
 synchronized(last) {
 int[] arr1 = a1.array();
 int[] arr2 = a2.array();
 for (int i=0; i<size; i++)
 value += arr1[i] + arr2[i];
 }
 }
 }
 return value;
 }
 public void run() {
 //...
 }
}

The ArrayWithLockOrder class is provided as a wrapper to the arrays used in the
first example. This class increments the static num_locks variable each time a
new object of the class is created. A separate lock_order instance variable is set
to the current value of the num_locks static variable. This ensures that each
object of this class has a unique value for the lock_order variable. The
lock_order instance variable serves as the indicator for the order that this object
should be locked in relation to other objects of this class.

Note that the manipulation of the static num_locks variable is done from within
a synchronized statement. This is required because each instance of an object
shares its static variables. Therefore, if two threads create an object of the
ArrayWithLockOrder class concurrently, the static num_locks variable could
be corrupted if the code manipulating it is not synchronized. Synchronizing this
code ensures that each object of the ArrayWithLockOrder class has a unique
value for its lock_order variable.

Multithreading.fm Page 184 Sunday, July 16, 2000 8:37 PM

