
Praxis 49 MULTITHREADING

174

 public synchronized void method1()
 {
 //Access ia1 and ia2
 }
 public synchronized void method2()
 {
 //Access ia1 and ia2
 }
 public synchronized void method3()
 {
 //Access da1 and da2
 }
 public synchronized void method4()
 {
 //Access da1 and da2
 }
 //...
}

This class is certainly thread safe. Each method must be declared synchronized
in order to ensure the arrays are not corrupted by multiple threads accessing this
object concurrently. For example, because method1 and method2 both access and
potentially alter the arrays ia1 and ia2, access to them must be synchronized. The
same is true of method3 and method4.

Notice, however, that although method1 and method2 must be synchronized with
each other, they do not need to be synchronized with either method3 or method4.
This is because method1 and method2 do not operate on data that method3 and
method4 operate on. This is similarly true for method3 and method4 with regard
to method1 and method2.

Unfortunately, this is how instance methods are sometimes synchronized in
classes. However, synchronization in Java is not very granular. Synchronization
provides you with only one lock per object. In the previous code, if you create an
object of class Test and call method1 on the main thread and method3 on a sec-
ondary thread, you pay an unnecessary performance penalty. These methods
synchronize with one another even though there is no need for them to do so.
Remember that when a method is declared synchronized, the lock obtained is
the lock for the object on which the method is invoked. Therefore, both methods
attempt to get the same lock.

To fix the problem in the previous code you need multiple locks per object.
Because Java does not provide this, you must furnish your own mechanism. One
way to accomplish this is to create objects as instance data that serve only to pro-

Multithreading.fm Page 174 Sunday, July 16, 2000 8:36 PM

