
Praxis 55 MULTITHREADING

192

of time and then test the condition again. For example, consider the following
code that uses polling to wait until data has been provided in a pipe:

class ReadFromPipe extends Thread
{
 private Pipe pipe;

 //...
 public void run()
 {
 int data;
 while(true)
 {
 synchronized(pipe) {
 while((data = pipe.getData()) == 0)
 {
 //No data, so sleep for a while and try again.
 try {
 sleep(200);
 }
 catch(InterruptedException e){} //Exception is ignored
 } //purposefully.
 //Process data
 }
 }
 }
}

An object of the ReadFromPipe class runs on a separate thread and performs poll-
ing. The run method contains an infinite loop that continually queries the Pipe
class to see if any data is available to be read. If there is no data, the thread sleeps
for 200 milliseconds and then queries again.

This code works, but it is inefficient because the polling loop takes up processor
cycles. When there is no data in the pipe, this thread still requires processor cycles
to query the pipe for data.

A more efficient implementation uses the wait method with notify or notify-
All. Proper use of these methods eliminates the need to waste processor cycles on
polling. For example, the previous code rewritten to avoid polling and use wait
and notifyAll looks like this:

class ReadFromPipe extends Thread
{
 private Pipe pipe;
 //...

Multithreading.fm Page 192 Sunday, July 16, 2000 8:38 PM

