

CHAPTER 6 VERIFICATION PROCESS

154

The verification algorithm will reject this method, because it can’t be sure of a
constant stack height. If it permitted this method to execute, the stack would grow
by 1 each time. Eventually, the program might overflow the stack. Because you
don’t want that to happen, the verification algorithm rejects this code.

6.5.4 Example 4: Dealing with Subclasses

One more complication: it isn’t necessary for two stack pictures to be identical
when two different flows of control come to the same place. Here’s a (somewhat
contrived) example. The example depends on three classes:

abstract class Person {

abstract void printName();

}

class Programmer extends Person {

void printName() { /* Implementation goes here */ }

}

class Author extends Person {

void printName() { /* Implementation goes here */ }

}

The code we wish to verify is

.method public static print(ZLProgrammer;LAuthor;)V

iload_0 ; Is the boolean false?

ifeq false ; If not,

true: aload_1 ; then push the programmer

goto print

false: aload_2 ; Otherwise, push the author

print: invokevirtual Person/printName ()V

; Call printName on the Person

; This works whether it’s an

; Author or a Programmer,

; since each is a Person

done: return

.end method

This method takes three arguments: a

boolean

 control, a

Programmer

, and an

Author

. If the control is

true

 then it prints the name of the

Programmer

. Other-
wise, it prints the name of the

Author

. The program arrives at

print

 with either

26 | ENGEL.ch06 Page 154 Friday, May 19, 2000 2:33 PM

Tyrrell Albaugh

Tyrrell Albaugh

