2.2 Discrete-Time Signals 13

Some special sequences serve as the building blocks for a general class of discrete-time
signals [9]. The unit sample or “impulse” is denoted by

é[n] = 1, n=20

=0, n # 0.

The unit step is given by
uln] = 1, n>0
=0, n<~o

and can be obtained by summing the unit sample: u[n] = ZZ:_OO 8[k]. Likewise, the unit
sample can be obtained by differencing the unit step with itself shifted one sample to the right,
i.e., forming the first backward difference: §[n] = u[n] — u[n — 1]. The exponential sequence
is given by

x[n] = Aa”

where if A and « are real, then x[n] is real. Moreover, if 0 < @ < 1 and A > 0, then the
sequence x[n] is positive and decreasing with increasing n. If —1 < o < 0, then the sequence
values alternate in sign. The sinusoidal sequence is given by

x[n] = Acos(wn + ¢)

with frequency w, amplitude A, and phase offset ¢p. Observe that the discrete-time sinusoidal
signal is periodic in the time variable n with period N only if N = integer = 27k /w.
The complex exponential sequence with complex gain A = |A|e/? is written as

x[n] = Ael"
|A|ej¢ej‘””

|A| cos(wn + @) + jlA|sin(wn + ¢).

An interesting property, which is a consequence of being discrete, is that the complex exponential
sequence is periodic in the frequency variable @ with period 27, i.e., Ae/ @2 = Agion,
This periodicity in @ also holds for the sinusoidal sequence. Therefore, in discrete time we
need to consider frequencies only in the range 0 < w < 2. The complex exponential and the
above four real sequences serve as building blocks to discrete-time speech signals throughout
the text.

! This is in contrast to its continuous-time counterpart x,(f) = A cos(S2f + ¢) that is always periodic with
period = 27 /2. Here the uppercase frequency variable €2 is used for continuous time rather than the lower
case w for discrete time. This notation will be used throughout the text.



