mySAP Toolbag for Performance Tuning and Stress Testing
Iterative Testing

CREATING AN ITERATIVE TESTING CHECKLIST

Use the following list to get you thinking of different ways to leverage your investment in repeatable testing:

· Check to see if execution times change the average load placed on your system. Many tools drive very repeatable loads, but other don’t – verify that your execution time, whether 15 minutes or 4 hours, results in substantially the same kind of average load. Use this to perhaps shorten the time necessary to execute your test runs.

· Similarly, use any differences that may be yielded from the activities described above to your advantage (i.e. the load placed on a system when SAPGUI sessions are started is characteristically high, but can be used to test the performance of your system under varying user logon loads, not to mention ratifying various logon load balancing schemes).

· By analyzing your monitoring data, you can prove that the user load reached its expected point, e.g. you met your user count metric. You might also ramp up the user count, though, to conduct system configuration smoke testing.

· Rather than smoke testing, go the opposite route and conduct single-user load testing instead. In this way, you can begin to put together metrics that reflects the ratio of single to multiple users for your particular configuration – this allows you to more intelligently extrapolate the impact a planned change has on the system, without having to go through the trouble of running many users. Simply make the change, execute the single-user test again, and measure the delta between the two results.

· At a certain user load, note the number of concurrent processes hosted by the system (SM50 or SM66). Determine a ratio (i.e. 500 active users with 30 second average think times running XYZ mix of transactions equates to 15-18 average concurrent processes). Like the user count exercise, this allows you a starting point for both smoke testing (where you simply run out of work processes!) and single-user testing.

· Play around with different transaction speeds or think times. Need to add 500 additional users to your existing 500-user stress test? Try halving the average think time instead, and then compare the results to another test run where you actually double the number of users. This should give you performance data that helps you determine the percentage of “drop off” between the load borne in each case. And it might very well save you virtual or physical user license fees once you get a handle on the numbers!

· Change the ramp-up speed of you end-users, to determine if you can get away with a smaller ramp-up period and therefore reduce the overall time it takes to execute a stress test run.
· Make tweaks to your client driver infrastructure – the number of servers, number of CPUs, amount of RAM, underlying network and disk systems, and so on can all impact how well a stress test places a load on an SAP system being tested.

· In the same manner, tweaking and tuning the test application software settings itself can make it possible to drive more work with fewer resources.

· Test application “packages” (used for defining the environment from where a script is launched) can be iteratively tested. Inconsistencies in terms of options enabled (e.g., the ability to see real-time the steps executing within a script) or configuration details (e.g., whether results logging, or the myriad of details pertaining to this, is enabled) change basic throughput numbers – no longer will you hit your expected 400 orders/hour, for example, if you enable every monitoring bell and whistle. Why? Simply because changing these kinds of configuration settings in a test tool affected how quickly a test run executes.

· Test your various scripting approaches, looking for methods and practices that are most repeatable or predictable. Inconsistency within your scripts or test cases must be avoided – perhaps the randomization techniques you’ve employed are simply “too random,” resulting in wide discrepancies between test runs. Verify this, and then verify your “fixes” in the same manner (in this particular case, perhaps a pseudorandom technique is better suited).

· Once you’ve baselined your SAP system, take the opportunity to test the impact that an underlying hardware or firmware change has on throughput and response times. The most common areas are in tweaking the disk subsystem (changing RAID configurations, adding more disks, changing disk controller caching algorithms, and so on), followed by adding or upgrading CPUs, RAM, and network infrastructure.

· In the same way as above, test the impact that Operating System updates or upgrades has on your system. Moving from HP-UX 10x to 11, or Windows 2000 AS to Windows Server 2003 provide an opportunity to get more work done on the same hardware platform. Characterize exactly “how much” through iterative testing. Even minor changes, like kernel upgrades, service packs, or security patches, can have a significant impact on performance – understand the impact before you ever move such a change into Production.
· Test and baseline different combinations of input data, to get a feel for the real load than each type of data and its requisite business processes places on your system. This allows you to move beyond the theoretical maxims (such as the rules-of-thumb surrounding certain functional areas and whether they are high, medium, or low-impact). Such basic testing fundamentally changes the workload – understand how these changes equate to system performance.

· Help you functional testing colleagues by testing different functionally-oriented tweaks via a full-blown load test. This will provide yet another layer of risk mitigation to business processes undergoing changes, especially key business processes affecting revenue or customer satisfaction.

· The front-end client used in testing (did you change something? - For example, you can change general settings, local cache sizes, the placement of this cache on your local system, trace modes (including the level of detail, and whether errors and warnings are tracked), and the visual design (e.g., high contrast is much better for collecting screen shots). In addition, the size of the fonts displayed and even the number of colors used can be customized, the latter of which is especially useful when you execute the SAPGUI real-time (rather than virtually) and wish to minimize the load placed on your client drivers. And with the ability to throttle the SAPGUI in terms of EnjoySAP-initiated interface details, testing the throughput associated with slow network links is still warranted today.

· Inconsistency in terms of the workload generated, from a logged-in user or business process perspective, to the scripts executed within a particular package or test case. Are the scripts launched at the same time within the context of a test run? Do the user counts or some other workload metric differ?
· Data inconsistencies, leading to execution inconsistencies (e.g., customers or materials associated with particular company codes may invoke differing behind-the-scenes checks or other processing:, underscoring the fact that not all company codes are created equal). Get a handle on the one you must test, as well as the ones to be avoided otherwise.
· Getting back to execution and monitoring, it’s worth repeating that inconsistent execution/monitoring processes results in less than accurate measurements test to test. Are you launching the test in the same way every time? Are you waiting until a prescribed time, or ramp-up period, to begin the “body” of the test?
· It’s important to note that test results outside of an established variance may still embody some of the inconsistency problems just described. Perhaps the variance you have decided upon is simply too wide, or you have made some changes to the test tool configuration, test drivers, data mix, business processes, or underlying workload and failed to capture these changes in your documentation.
· Test the impact that various noise-script methods have on your testing efforts, so as to determine the most realistic (or perhaps simply the easiest) method for generating background noise in one of your test runs.

· Add additional business processes to the mix, creating a more comprehensive or holistic enterprise solution. Your testing will become that much closer to real-world.

· Finally, extend your current business processes from their logical inception to final conclusion. This is especially useful if a particular workload actually represents multiple systems of record. Iterative testing lets you factor in more of the “beginning” or “ending” of a particular business process, making it both more realistic and easier to quantify (given that the body of the business process has presumably been scripted, and is therefore well understood form a performance perspective).
Throughout your iterative testing, keep in mind the idea of “stop, analyze, and resume” as explained in Chapter 14:

· “Stop” implies a definite end to the current test run. Scripts are stopped gracefully or otherwise, data collection routines or processes are stopped as well, and all of the supporting performance data relative to the run are collected.

· “Analyze,” though not all data in it’s entirety. However, a basic postanalysis of the test run should be conducted simply to prove that the test run itself was executed and monitored in a valid manner, and that “good” data were collected from the run. Skipping this analysis—a step I believe to be crucial—only leads to re-running test cases at the last minute (e.g., at the end of the day, or end of the week!), test cases which down the road may take an enormous amount of time to set up and prepare for again.

· “Resume” suggests it’s now appropriate to move on to the next test case or test run, though only after taking the proper steps as usual to ensure that the stage is set for another good test run, of course.

