Software Production Metrics

hen selecting metrics for control of a system, it is essential to focus on -
WSimplicity and relevance to the system goal. Metrics should ideally be Choosmg
self-generating and should provide leading or predictive indication of the sys-  Metrics
tem performance rather than lagging or reactive performance |[Reinertsen
1997, pp. 197-217].

In the case of the software production system, it is important that the pro- .
duction metrics reflect and support the financial metrics from Chapter 2. Agile
Production metrics must be driven from economics. If the process control ~ Software
metrics do not directly relate to the economics and financial goals of the sys-  Production

tem, then they are not appropriate. Metrics

The quantity of the system input (ideas) relates to the Investment. The
Inventory level within the system can demonstrate the current location of the
Investment and its progress towards becoming Throughput. The production
quantity coming out of the system will directly relate to Throughput. The lead
time from input to output will show how long Investment was committed
within the system. All of these metrics meet the criteria of being both simple
and relevant. They allow the flow of value through the system to be tracked
and the value of working code delivered to be recorded.

Inventory-based metrics can also be self-generating based on the stage
of transformation of the idea into working code. Records of the transforma-
tion as electronic documents can be sourced from the version or document
control system.

Inventory-based metrics are predictive. Inventory at the input to the sys-
tem can be used, based on historical production rate data, to predict the flow
through the system.

Tracking Inventory and its flow through the software production system
provides metrics that meet all the ideal characteristics for a control system.

49



Traditional
Software
Production
Metrics

Agile Management
for Software
Engineering

50

Traditional methods of controlling software production systems have focused
on the use of effort-based metrics. The old bell wether has been the line of
code (LOC). Almost everyone in the software business will tell you that lines
of code is a useless metric. The problem with LOC is that it is an effort-based
metric. It is meaningless for measuring the delivery of software value, the out-
put from the system. However, for want of a better metric, lines of code
remained popular for a long time.

Another favorite metric is the level-of-effort estimate, generally an esti-
mate in man-hours for the development of a certain piece of requested func-
tionality. The effort expended in hours is then compared with the estimate
and adjusted periodically.

Traditional software metrics relate to the Operating Expense (OE) metric
from Chapter 2. Traditional software metrics are compatible and perhaps
heavily influenced by traditional cost accounting methods. They are focused
on cost. Focusing on managing OE is suboptimal in achieving the system goal
of more profit now and in the future, with a healthy ROI. It is more important
to focus on Throughput and Inventory. Hence, traditional metrics do not meet
the criteria for relevance.

Nor do they meet the criteria for simplicity. Brooks [1995] and others
have pointed out that the business of software production is nonlinear. As
software production is a complex system with feedback loops, it exhibits non-
linear behavior, that is, the effort expended in the system to produce lines of
working code is not proportional to the quantity or quality of the output from
the system. Hence, tracking effort-based metrics requires the translation
through an unknown nonlinear equation in order to communicate client-
valued functionality.

Effort-based metrics are not always self-generating. Every developer who
has filled in a time sheet can tell you that the time sheet did not self-generate.

Effort-based metrics are not very useful as predictive indicators because
of the nonlinear nature of software development and inaccuracy in estima-
tion. The estimate is unlikely to represent the final outcome. Hence, the actu-
al results must be gathered historically. When a developer fills a time sheet,
it is an historical record rather than a predictive estimate. Hence, time sheets
and effort recoding are lagging indicators.

Traditional software development metrics of lines of code written or
time expended do not meet any of the ideal characteristics for system con-
trol metrics.



The Inventory in the system of software production must be measured
through measures of client-valued functionality. The client of the client-
valued functionality is the business owner, or customer, who is paying for
the software. The ideas captured as functional requirements or a market-
ing feature list represent the raw material for the software production sys-
tem. Requirements represent the ideas being transformed into executable
code. These are often referred to as the functional requirements.

Nonfunctional Requirements and Inventory

Are nonfunctional or architectural requirements, for example, perfor-
mance characteristics, of interest, and should they be tracked?

Nonfunctional requirements should be defined with a minimum require-
ment. This minimum requirement represents the level below which the func-
tional requirements are not viable in the market. In other words, the function-
al requirements have no Throughput value unless a minimum level of non-
functional specification is met. Hence, the base level of nonfunctional require-
ments does not require individual tracking. If the base level of performance
cannot be met, the functional requirement would not be considered as deliv-
ered or complete. As functional requirements are being tracked, it is inferred
that base level nonfunctional requirements are being tracked along with them.

It is therefore vital to skillfully manage the development of nonfunction-
al requirements. Excess work on nonfunctional requirements will increase
OE, increase lead time, and decrease T.

However, there are preferred levels of nonfunctional performance that
could be considered market differentiating, and these have a Throughput
value. As they have a Throughput value and extra effort must be undertaken
to achieve the additional performance, they should be tracked as Inventory
through the system. The idea for the market differentiating performance is the
input to the system, and working code that delivers the performance is the
output. Architectural features for these ideas should be created and tracked
as Inventory in the system.

Software Production Is Development Rather Than Research

There may be product or service concepts that are exceptionally new and
are dominated by nonfunctional requirements, for example, on-demand, inter-
active video streaming broadcast over the Internet. Such projects are probably
more rightly classified as research activity and should not be tracked with a
management system such as the one described. This system of management is
intended for development projects that are mostly infomatic in nature and can
be thought of as software production rather than algorithmic research.

Tasks Are Not Inventory

Tasks represent effort that must be expended. They are essentially an
internal organization of activity in the software production system. Tasks are

Measuring
Inventory in
the Software
Production
System

Software Production
Metrics

51



Expressions
of Inventory

Measuring
Production

Quantity

Figure 5-1
Inventory in the
software production
system.

Agile Management
for Software
Engineering

52

not a system input and hence do not represent Inventory. Tasks are actions
performed inside the system to move input through the system and gen-
erate output. A task list might be an essential project management tool,
but it is of no interest to the client. It does not help the customer for the
output of the system assess how much value has been delivered. The
client does not value a task such as, “Assess the use of the Vitria" mes-
sage bus for loosely coupled asynchronous messaging of distributed com-
ponents.” There is no direct correlation between development system
tasks and delivery of value. Tasks are interesting only to the internal sys-
tem. They do not represent the Inventory in the system or the output from
the system.

Inventory can be expressed in different ways depending on the software engi-
neering lifecycle method being used. This will be examined in depth in
Section 2. In general, a unit of inventory is an idea for a client-valued function
described in a format suitable for use by software developers. In UDP, a unit
of inventory is a Use Case. In Extreme Programming, it is a Story Point. In
FDD, it is a Feature from the Feature List. In traditional SDLC structured
methods, the Function Point is the unit of inventory.

Chapter 2 established that Throughput is the most important metric.
Production Quantity is the output from the system of production that
directly relates to the financial metrics of Throughput. Hence, the produc-
tion system must track Production Quantity—the output of client-valued
functions as working code. In Figure 5-1 production Quantity (Q) is gener-
ated by the system of software production from units of Inventory (V) at a
rate (R).

Because the system of software production is treated as a continuous
process producing a stream of software, it is more interesting to monitor the
derivative of Q, the Production Rate (R). R is the quantity of functional
requirements, expressed in the same units as the Inventory (V) delivered out

of the system in a given period of time.
% %

Develop H Test H Working Code }—>‘ Delivery ‘

Inventory (V) = Approved Ideas Awaiting Development
Functions in Active Development +
Completed Functions (not yet delivered)

Error Reports




Tracking Inventory with a Cumulative Flow Diagram

The inventory throughout the system can be conveniently tracked using
a cumulative flow diagram'—a technique borrowed from Lean Production.

In Figure 5-2, the height between the deployment line and the require-
ments line displays the total inventory in the system. Different software
development methods produce different patterns of cumulative flow. The pat-
tern could be thought of as a method signature. Cumulative flow method sig-
natures for each type of software development method will be discussed in
Section 2. The pattern shown in Figure 5-2 represents a very Agile process
with new material being fed into the system each week and little more than a
week of inventory queuing at each step in the system.

There is a derivative measure of Inventory (V) which is important to calcula-
tions of OE—Lead Time (LT). Lead Time measures the length of time that
Inventory stays in the system. Lead Time is how long it takes a unit of V to
pass through the system from input to output. This is sometimes known as
cycle time or queue time plus service time.

Lead Time

@ Requirements
| Analysis

O Design

o Coding

m Testing

@ Deployment

Client-Valued Functions

1 2 3 4 5 6
Time (Weeks)

Figure 5-2
Cumulative flow of system inventory.

'Donald Reinertsen introduced the idea of using cumulative flow diagrams for design activ-
ities in Managing the Design Factory, p. 50.

Software Production
Metrics

53



OE per Unit

Summary

Agile Management
for Software
Engineering

54

Lead Time relates to the financial metrics from Chapter 2 because there
is investment sunk in the inventory of ideas. The investment must be financed.
The faster ideas can be turned into working code and delivered to a customer,
the quicker inventory can be released. Releasing inventory faster has the effect
of reducing the overall inventory in the system. Lead Time (LT) and Inventory
(V) are related. This relationship is directly proportional as long as the pro-
duction rate of the system remains constant. This is known as Little’s Law.

LT has direct relevance to business. It determines how long it will be before
the potential value added, stored in the inventory will be released as Throughput.
The value of the Throughput may be affected by LT The customer may be willing
to pay more for shorter LT and hence, T is increased with shorter LT.

The cost to transform a single unit of inventory through the system is the OE
per unit or the Average Cost Per Function (ACPF). This must be determined by
examining the global production quantity for a given period of the whole sys-
tem and dividing it into the OE for operating the system for a period of time.

QOuarter

For example, if OE per quarter is $1,350,000 and production is 30 units
per month, as shown in Figure 5-2, ACPF will be $15,000.

S1,350,000
90

Care must be taken to determine the cost to process inventory through indi-
vidual steps in the system. If the system has been balanced using a Drum-Buffer-
Rope subordination to the system constraint, for example, System Test in Figure
3-1, then there will be idle capacity in many steps in the system. Figure 3-1
showed that steps such as Coding had a capacity of 50 units per month. After sub-
ordination there will be 20 units of spare capacity. As all OE is a fixed cost, then
production can be increased in nonbottleneck steps without incurring additional
OE. Hence, the cost accounting concept of a cost per unit in a local process step
is dangerous and misleading. The cost accounting approach shows reduced cost
per unit when nonbottleneck capacity is used to increase local production. The
local cost per unit is also called “efficiency,” which was discussed in Chapter 2.

ACPF = $15,000 =

The only valid and useful cost metric for software production is ACPF; the
purpose of which is purely estimation of future OE.

The software production system must measure the inventory level (V) at each
step in the process, including the input. The total inventory held in the sys-
tem is directly related to the Investment (I) metric from Chapter 1. The rate of
delivery of production, the Production Rate, (R), for the whole system is
directly related to financial metric Throughput (T). The cost (OE) of moving a
single unit of inventory through the system is the Average Cost per Function
(ACPF). This can be determined by the OE for a given period of time divided
by the Production Quantity (Q), for the same period. Hence, Q, V, and ACPF
are the equivalent production metrics to the financial metrics T, I, and OE.



