

Digital
Certificates

RDF

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Plugins

Components

JavaJavaScript

AppDevMozilla-17 Page 704 Thursday, December 4, 2003 6:39 PM

705

C H A P T E R

Keyboard

Desktop
themes

GUI
toolkits

W3C
standards

Mouse

RDF

Overlay
database

XBL
definitions

Fonts

Default
CSS

DTDs

Skins

JavaScriptcript

UR
L

17

Deployment

AppDevMozilla-17 Page 705 Thursday, December 4, 2003 6:39 PM

706 Deployment Chap. 17

This chapter describes how to distribute your application to the world from a
Web site. Doing so is one use of Mozilla’s XPInstall (Cross Platform Install)
system.

Most Mozilla applications are built to be used. Before one can be used, it
must be installed on some computer. Installation is part of the general prob-
lem of deployment. Mozilla supports a variety of deployment strategies. This
chapter notes all those strategies but focuses on automatic deployment of
applications from a URL served up by an ordinary Web server.

Deploying software from a remote server has been a glamorous idea ever
since Java applets first appeared, and now is part of Microsoft’s .NET strategy.
Such an approach makes reaching the user or customer easy, reduces the cost
of distribution to nearly nothing, and naturally fits with traditional client-
server architectures. As the speed of the Internet increases, the arguments for
locally managed applications weaken in favor of service providers, especially
in business. Even when the application is a standalone one, a flow of patches,
revisions, and news items can preserve a vital communication channel with
the users.

Mozilla contains a portable installation system called XPInstall. There is
no need for tools outside Mozilla like InstallShield or

rpm(1)

; XPInstall is all
you need. XPInstall can be user activated from any running Mozilla applica-
tion, like a browser, or it can accompany a batch-oriented standalone execut-
able.

Deployment doesn’t have the same glamour as throwing together a
bunch of windows for a demo—deployment is supposed to just work. That sup-
posedly simple goal, however, is a major test of your ability to be organized. If
your deployment system is well organized, the world will give you silence, but
may use your application. If your deployment system has any flaws at all, your
application will probably sink without a trace.

Central to deployment is the idea of a bundle. A

bundle

 is just a collection
of files and scripts that make up an application. RPMs, tarballs, and execut-
able archives are all examples of bundles. By talking about bundles, this chap-
ter avoids clashing with other terms like

package

,

application

, and

installer

,
which all have their own meanings within Mozilla. In Mozilla, bundles are
XPI (

.xpi

 suffix) files or executables. XPI is an acronym for Cross(X) Platform
Install. XPI files are just ZIP files, with a few extra conventions imposed.

The other side of deployment is installation. In this chapter, installation
means copying pieces of the bundle to the local computer. It is possible to bun-
dle an application so that it can be installed on any operating system that
Mozilla supports. Because operating systems have their differences, installa-
tion sometimes has to dip down into platform-specific details. Nevertheless, at
least 90% of bundle preparation can be done in a portable way.

In the case of remote deployment, XPInstall retrieves XPI files like
Java’s JVM retrieves applet JAR files. Unlike JAR files, XPI files are not held
within a “sandbox.” They can install to any part of the platform or to any part
of the underlying operating system. Both the platform and the operating sys-

AppDevMozilla-17 Page 706 Thursday, December 4, 2003 6:39 PM

17.1 Overview of Install Strategies 707

tem can be damaged if a bundle is poorly organized. The safest and most com-
mon strategy is to install only into the chrome area.

Mozilla’s Platform source code is not required to make a deployable
application, but if a complex install strategy is chosen, then access to a work-
ing Mozilla compilation environment becomes more important.

The NPA diagram at the start of this chapter shows the impact that
XPInstall has on the Mozilla Platform. From the diagram, XPInstall can be
used to install all the various files that a running platform instance relies on.
In fact, the whole NPA diagram could be highlighted because XPInstall can be
used to replace even dynamic link libraries and executables—everything.
Such broad-brush changes are a rare event, however. Two things are entirely
missing from the diagram: application files and XPInstall itself. Application
files, like XUL, CSS, RDF, and JavaScript files, are separate from the platform
proper but are the most commonly installed files. XPInstall is a small world
unto itself, which is why it doesn’t appear. It is best seen as a specialized
download tool like an FTP client or WinAMP.

XPInstall both uses and provides familiar technologies. The deployment
process is scripted with JavaScript, and there are specialist objects available
that assist. XPInstall presents a series of interactive windows to the user. A
few XUL tags aim to do the same thing.

This chapter begins with a quick review of all the install options. It fol-
lows that with a description of remote install and finishes with a run-down of
the technologies involved.

17.1 O

VERVIEW

OF

 I

NSTALL

 S

TRATEGIES

Every option you can imagine is available for installing Mozilla-based applica-
tions. The options considered here are

no install

,

manual install

,

piggy-back
install

,

native install

, and

custom install

.

Remote installs

, the main subject of
this chapter, have a separate and extensive discussion of their own.

The simplest way to access a Mozilla-based application is with

no install

at all. In this case, the users already have the Mozilla Platform on their com-
puters. Your application is served over the Web as a series of XUL files and
their various inclusions, such as overlays, stylesheets, and scripts. To serve
XUL documents from a Web site, just make sure that the Web server sets the
MIME type for

.xul

 files to be

application/vnd.mozilla.xul+xml

If suitable digital security is in place, such an application can have as much
access to the local computer as any chrome-based application.

The Web is still slow, so some attention to performance helps. XUL docu-
ments, scripts, and stylesheets are cached in the browser cache just as all Web
documents are, so if cache space is available, that is a start. Correct cache set-
tings in the client browser and on the server can reduce to near-zero the over-

AppDevMozilla-17 Page 707 Thursday, December 4, 2003 6:39 PM

708 Deployment Chap. 17

head of downloading. On the client, the XUL cache should be enabled, and
Quick Launch functionality should be turned on for the Windows platform.
FastLoad raises the platform into memory at operating system boot time, just
like Internet Explorer. FastLoad is enabled when Mozilla or Netscape is first
installed; it is a simple preference. XUL applications can also be deployed as
JAR files, which further assists with performance. The URL of a file stored in
a JAR file has the form

jar:{url}!{path}

where

{url}

 is the location of the JAR archive, and

{path}

 is the location of
a given file within it. If the JAR file

example.jar

 is stored at the top of the
chrome and contains the file

test/sample.xul

, then the full path name for

sample.xul

 would be

jar:resource:/chrome/example.jar!test/sample.xul

As discussed in Chapter 12, Overlays and Chrome, the

resource:

 URL
scheme is a scheme that points to the top of the platform install area, and

chrome:

 URLs are typically mapped to

resource:

 URLs.
If the

-chrome

 command-line option or an application-specific command-
line option is used (like

-jsconsole

), a XUL application may be started so
that no hint of browser-like functionality appears. Such an application looks
the same as any native executable.

If an install system seems like a good idea, then the options are as follows.
If a local install is required, then the most primitive solution is to do it

manually.

Manual installation

 requires access to the file system and operating
system shell of the target platform.

There are good reasons for doing a manual application installation. For
developers, it is a quick way to test work that is in progress. For system
administrators, manual installation steps can be rolled up into existing
deployment tools and processes. For systems integrators, the resources used
by manual installations are the COTS (common-off-the-shelf) interfaces
needed to combine applications into larger, integrated systems.

The different kinds of manual installations are

platform install

,

compo-
nent install

,

application install

, and

security install

. Platform install means
installing the Mozilla Platform itself. This always requires an operating-
system–specific executable and is called a

native install

 here. After that is
done, other types of manual installations are possible.

Manual component install adds new XPCOM components and interfaces
to the installed platform. These components are then available to all applica-
tions installed. To install new components and interfaces:

1. Create a Mozilla module

. A module is an implementation of one or
more components and one or more interfaces, so this is a programming
task. The module will be either a JavaScript

.js

 file or a compiled lan-
guage like C or C++.

AppDevMozilla-17 Page 708 Thursday, December 4, 2003 6:39 PM

17.1 Overview of Install Strategies 709

2. Create components

. To do this, turn the module into executable code.
Nothing needs to be done for a

.js

 file. C/C++ implementations need to
be compiled into a dynamic link library using the Mozilla build environ-
ment.

3. Create interfaces

. An interface is specified in an

.idl

 file, which the
component creator must write. Run the XPIDL

.idl

 file through the

xpidlgen

 tool to produce an

.xpt

 type library file.

xpidlgen

 is part of
the build environment of Mozilla, so interface creation requires that you
build the Mozilla source, or find a build with debug turned on.

4. Copy the

.js

 and

.xpt

 file to the

components

 directory under the
platform install directory

. Alternately, copy the dynamic link library
there. Ensure that copied files are readable (and executable if libraries).

5. Run the tool

regxpcom

 from the Mozilla install directory

. This tool
is supplied with the platform. It generates manifests in files called

com-
preg.dat

 and

xpti.dat

.

6. Restart the platform

, which then benefits from the new

.dat

 files. The
component and its interfaces can now be used from scripts.

The Mozilla source code contains an example component called

nsSam-
ple

 with an example interface called

nsISample

. See the source code direc-
tory

xpcom/sample

.
Manual application install adds new XUL-related files to the chrome.

Such files are divided into packages. To add packages to the chrome, follow
these steps:

1. Create a package

. A package is a set of files layed out using the stan-
dard chrome directory structure of content, skins, and locales. Such files
may be bundled into a JAR archive or left as a simple hierarchy of folders
and files.

2. Create and add

contents.rdf

 files to the package

. A package is not
really a package without these files. There should be one for the content
directory, one for each skin, and one for each locale.

3. Copy the package or folder hierarchy to the chrome directory

.

4. Update the file

installed-chrome.txt

, located in the chrome direc-
tory. At most one line should appear for each of the content, locale, and
skin subparts of the package.

5. Delete the

chrome/overlayinfo

 directory

, if this package has been
installed before (you are updating it). This will cause the overlay system
to be recalculated.

6. Restart the platform

.

All of these steps are illustrated with the NoteTaker examples in the first
five chapters of this book. Chapter 12, Overlays and Chrome, discusses the
mechanics of the chrome registry, which is the user of these files.

AppDevMozilla-17 Page 709 Thursday, December 4, 2003 6:39 PM

710 Deployment Chap. 17

Lines added to

installed-chrome.txt should be of the form

skin,install,url,{url}/
locale,install,url,{url}/
content,install,url,{url}/

where {url} must refer to a local directory and should generally be a jar: or
a resource: URL. The resource: scheme points to the very top of the
Mozilla installation area—the parent directory of the chrome directory. Locale
URLs must include a locale name, like en-US; skin URLs must include a
theme name, like modern.

A security install may be required for applications installed outside the
chrome. Such applications can be installed on a local disk, or served from a
Web site, and still run in a secure environment. If this secure environment is
to be available without user effort, custom configuration files must be added to
the platform. Such files must be created manually but can be installed either
by hand or in an automated way.

To create these files, start by creating a new user profile using the Mozilla
Profile Manager. Copy all files in that profile to one side so that the originals
are preserved. Next, install the application in its final location. Run the appli-
cation using that profile, with no special preferences or other changes. Every
time the platform asks you to grant security access (perhaps to a digitally
signed file or to a form submission), agree. Every time the platform offers to
remember such a decision, confirm that it should. When all security aspects
have been run through, shut down the application and copy any files in the pro-
file that have changed from the originals. These are the files that need to be
manually installed into the user profile on all computers to which they are
deployed. Alternately, these can be installed into the default user profile.

Both piggy-back and native installs require use and modification of the
Mozilla build environment. The build environment is not addressed in this
book, but a few remarks are worth making.

A piggy-back install is a normal distribution of Mozilla modified to
include extra application files. Such a distribution has two strengths: It con-
tains an absolutely standard version of the platform (and Mozilla application
suite), and it collects all required install tasks together into one familiar bun-
dle. When the platform is installed, the additional applications are automati-
cally available.

To make this work, the Mozilla build system must be altered. Fortu-
nately, some of that system is data-driven. A small start is to look at example
files under the directory xpinstall/packager. At least three changes are
required:

1. The manifest that lists all the files to put into the final bundle must be
updated. Files like packages-unix should be changed to do this.

2. The configuration of the interactive wizard that installs the platform
must be updated. This configuration exists in files with .it suffixes.

AppDevMozilla-17 Page 710 Thursday, December 4, 2003 6:39 PM

17.1 Overview of Install Strategies 711

3. The additional application files must be made available so that they can
be included. Somehow they must appear in the dist (distribution) direc-
tory created by the build process at the top of the source tree. That direc-
tory is where the results of the make process are collected together. Hand-
copying the required files is at best a temporary hack, but it can work.

If these first steps are done correctly, then a full compile of the product will
produce a modified installation, but with one caveat. That caveat is that the
build system has many subtlies and so no quick changes are immune from prob-
lems. Extensive study is likely before all this will work in a polished manner.

A native install involves a core part of the XPInstall subsystem. This core
part is a small piece of platform-specific code. That code does not use XPCOM
or any of the facilities of the Mozilla Platform; it is an independent program
with its own support for TCP/IP, FTP, and HTTP. To do anything with this code
requires familiarity with the Mozilla source code. It can be used three ways:

☞ In a full install, this XPInstall code is part of a large archive holding all
the platform and application, which on Microsoft Windows is also an
auto-install binary.

☞ In a so-called stub install, the distribution file is small (a stub) and con-
tains this XPInstall code and a little configuration information. When the
installation is started, the code connects to the Internet and downloads
the platform components selected by the user.

☞ In an application install, this XPInstall code is used as a specialist
installer for a particular application, separate from the core platform.
This use is as close as XPInstall gets to acting like InstallShield or the
rpm system. This use is not yet common and is really a variation on a full
install.

The Netscape Client Customization Kit can slightly customize a native
install, provided it is based on a Netscape 7.0 release. This tool is available at
http://devedge.netscape.com. It has a very restrictive license, which makes it
nearly useless for Open Source purposes, or even for commercial purposes.

XPInstall’s native code also has some portable features. It contains a
JavaScript interpreter, some XUL-like GUI code, some objects, and some oper-
ating system access. Together these are enough to extract the contents from
one or more XPI bundles and to place them in the operating system’s file sys-
tem. This portion of XPInstall deploys both the platform and applications in
the style of InstallShield.

The remote install case that is examined in this chapter uses this same
native infrastructure. Not only is that infrastructure available in an installa-
tion binary, but it is also available inside the running Mozilla Platform. A hook
in the browser object model allows an XPI file to be passed to this special
native code, causing installation to commence.

AppDevMozilla-17 Page 711 Thursday, December 4, 2003 6:39 PM

712 Deployment Chap. 17

Finally, a Mozilla application can ignore the XPInstall system altogether.
That is a custom install. XUL and XPCOM technology is sufficiently powerful
that all steps required to install an application can be done from the chrome. If
you really need your own installation system, then there is nothing stopping
you from creating one. The XUL tags described under the topic “Install Tech-
nologies” allow a dialog window that acts like an installation wizard to be eas-
ily created.

Netscape’s Smart Update feature is an application built on top of XPIn-
stall.

17.2 STEPS TOWARD REMOTE DEPLOYMENT

Overall, remote installation is an information distribution method that follows
the publishing model of the traditional media. To build an application bundle
for remote deployment via the Web is to be a publisher.

To deploy an application remotely, several things must happen. The
application programmer, in the role of a release engineer, must prepare a little
and write two scripts. The end user must agree to install the application. The
platform itself must act on the instructions provided.

Remote deployment relies on the use of a URL. Mozilla’s remote deploy-
ment system can use a file: URL just as easily as an http: URL. Therefore,
all the remarks made here can also be applied to a deployment that starts and
ends on the local file system.

17.2.1 What the Programmer Does

Here are the tasks that the programmer needs to complete so that an applica-
tion can be deployed remotely by the user. The deployment system can be
developed in parallel with other application development tasks.

17.2.1.1 Assigning Names and Versions The first step of deployment is to
give the application names. Several names are needed for XPInstall to work.
These names include a text name, a package name, a registry application
name, and a version. Platform-specific names are also required. On Microsoft
Windows, a Windows registry key is useful. Macintosh Aliases and Microsoft
Windows Shortcuts might also be required. It is sensible for all these names,
except for versions, to have the same root. A root is just a word that other
words grow from. Other marks, like mastheads, brands, and command-line
names aren’t an explicit part of XPInstall. XPInstall does not support a graph-
ical representation of the application, such as an icon.

The text name is a Unicode string that appears in the dialog boxes that
XPInstall presents to the user. Because it is Unicode, it can contain © or ® or
™ symbols, among others. XPInstall presents this string in Latin left-to-right
order, which is restrictive for some languages. An example text name is

AppDevMozilla-17 Page 712 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 713

Frederick's Amazing Shopping Spree System, Gold Version

The package name is the name of the chrome package that the applica-
tion will be installed under (assuming that it is to go into the chrome). It is an
8-bit extended ASCII name and, for absolute portability, should be 8 charac-
ters or less and alphabetic (UNIX: 14 characters or less). Because it is used as
a folder (file system directory) name, it shouldn’t contain any punctuation,
except perhaps the underscore. There isn’t any need to include a version num-
ber (e.g., netscape7) in the package name, unless two different versions are
to be installed at the same time. If the application is not installed under the
chrome, then an install directory name has much the same rules as a package
name. An example package name is

fredshop

The registry application name is a name that the Mozilla Platform uses
to manage the application on the local host. It is used for version manage-
ment, installation, and uninstallation. Mozilla’s registries are described later
in “Install Technologies.” A registry name looks like a UNIX path, except that
it can include Unicode characters. It is encoded in UTF8 inside the registry.
Most registry application names follow a syntax convention like this:

/Application Publisher/short-name/subproduct

The Application Publisher part might be corporate or technical. A
corporate version might just state Alpha Trading Company. A technical ver-
sion might be a domain name in a similar convention to Java packages, like
“mozilla.org”. The short-name part is the application’s name and usually is
similar to the package name (e.g., Navigator). The subproduct part is
optional and is used where the application is a suite of tools—one such tool
might be a subpart of the larger application. An example from Mozilla is

/mozilla.org/Mozilla/JavaScript Debugger/Venkman Chrome

This example shows subproducts nested two levels deep. Venkman Chrome is a
subproduct of the JavaScript Debugger, which is a subpart of Mozilla-the-
application.

If the leading / is left off, then the path is considered to be a subpath and
will be prefixed by /mozilla.org/Mozilla/ (or by /Netscape/ for
Netscape versions of the platform).

In fact, the registry application name can be any path delimited by for-
ward slash characters; there isn’t any implicit meaning to the first or subse-
quent parts. The name does not need to match a directory name; it is just a
hierarchical key in the style of Windows Registry keys. It has a length limit of
about 2,000 characters. An example is

/Fred's Pyramid Company/Amazing Shopping Spree System/Gold Version

Mozilla application versions have a fixed format, which is a four-part
number. A version can be expressed as four 32-bit integers or as a string of

AppDevMozilla-17 Page 713 Thursday, December 4, 2003 6:39 PM

714 Deployment Chap. 17

period-separated integers. The string should be easily convertible to four inte-
gers—it should not have a “beta” suffix or other junk. The string version has
the format:

"{major}.{minor}.{revision}.{build}"

☞ The major number starts from 0 and should change only when the appli-
cation’s designer significantly changes the application’s design.

☞ The minor number starts from 0 and indicates feature additions to the
base application. Applications based on earlier minor numbers should be
able to interoperate with this version.

☞ The revision number starts from 0 and indicates bug fixes and trivial
changes at most. Except for these fixes, earlier versions should operate
identically.

☞ The build number is used to track a specific attempt at generating the
application from its source. It comes from the build process and is a
unique key of some sort.

An example version string is

"1.0.2.20021018"

Many unenforced conventions apply to these numbers. Some of these
conventions follow:

☞ The build number uniquely identifies a single compilation or packaging
pass. It might be a sequence number or a date. A 32-bit integer is big
enough to hold a decimal number consisting of digits from the sequence
full year-month-day-hour, until at least year 2200. An example for 9
A.M., 28 February 2003 is 2003022809. This is the system that Mozilla
uses.

☞ The Linux kernel and some other products use even minor numbers to
indicate a stable release, and odd minor numbers to indicate an in-
progress work. Mozilla does not use this system. Minor numbers always
indicate user releases.

☞ If the major number is zero, the product is considered to be under funda-
mental construction. No user should expect such an application to work
with any previous version, no matter how minor. Any such compatibility
is just a lucky convenience.

17.2.1.2 Organizing the World Naming an application is easy. Organizing
one is harder.

It is in the application developer’s best interest to ensure that when the
user deploys the application, that user has a good experience. This is because
when users choose to deploy, they also choose to trust the Web site that offers
the application. That trust must be maintained, or a bad reputation will be the
only result.

AppDevMozilla-17 Page 714 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 715

Therefore, the second step for deployment is a release review. For the
deployment strategy to work cleanly, the release engineer must have a clear
understanding of what is being deployed and where. That means capturing
some configuration information. The README document supplied with the
Mozilla browser suite is an example of this information, but such thinking
should go further. Three sets of information need to be captured: a baseline, a
footprint, and a target.

A baseline is a reference point for the origin of an application bundle. It
can be as simple as a CD burn of all the source files in the application or as
organized as a CVS tag that includes a fully automated build and bundling
system. If you can’t re-create an application’s bundle reliably, you can’t test
the deployment system properly or offer patches later. If your application is
based on an Open Source license, then you are required by that license to pro-
duce a baseline (“the source”) and to make it available to everyone.

For simple applications, just copy the source to a backup before each
release.

A footprint represents the impact an installed application has on the end
user’s computer. It is a list of all the files on the destination computer that are
affected by the application installed. The purpose of a footprint is to nail down
every place on the user’s computer that might be modified by the installing or
running application. When user number 52,345 rings up for help with a
messed-up PC, the footprint describes the boundaries of the problem space.

Examples of common footprint items are the Windows Registry, desktop
shortcuts, .ini or .rc files, environment variables, global MIME types, and
boot scripts. Inside Mozilla, running applications might also affect preferences
files, security settings, and local MIME types. Applications might add compo-
nents to the Mozilla components directory, add special-purpose binary utili-
ties, or modify shell scripts used to start the platform.

If a bundle deploys files outside the platform install area, then those files
should not automatically be put under C:\Program Files (Windows) or
under /usr (UNIX). That is a very irritating practice for IT people who must
configuration-manage their systems. Instead, ensure that the application can
be entirely installed under a single folder of the user’s choosing. Never put
files in /etc or C:\Windows or C:\Winnt unless it is impossible to avoid
doing so.

For simple applications, the footprint should go no further than the
chrome directory and Mozilla registries. If users elect to save application-
generated files elsewhere, that is their business.

Finally, a target is a description of the computing environment for which
the application is designed. Such a description includes hardware, operating
system, existing applications, specific files or configurations, required disk
space—everything. A target description is the basis of a README file that the
user might see. It is also used to identify checks that installation scripts need
to do.

AppDevMozilla-17 Page 715 Thursday, December 4, 2003 6:39 PM

716 Deployment Chap. 17

For simple, portable applications, a target consists of no more than a
minimum version of the Mozilla Platform.

These three documents keep the application deployment process orderly
and sane. You don’t want the wrong software on the wrong computer compli-
cating the wrong operating system files.

17.2.1.3 Scripts To automate application deployment, you must write up to
two scripts.

The first script runs in an ordinary HTML Web page or in a XUL docu-
ment. No special security arrangements are necessary. This script works only
when the page is viewed with Mozilla technology. The rest of the page holds an
invitation to the user to grab the application. The second script, called
install.js, runs inside the XPInstall part of the platform, where it is iso-
lated from the Web and from XPCOM.

Both scripts benefit from JavaScript host objects. The objects noted in the
following overview are covered in full in “Install Technologies.”

The first script is a so-called trigger script; it starts the application
deployment. Two objects are available, and a third must be created from pure
JavaScript. The two objects available are the window.InstallTrigger
object and the InstallVersion object, which is also available as win-
dow.InstallVersion.

The InstallTrigger object contains diagnostic methods, plus the
install() method, which starts the download of XPI files and eventually
calls one or more copies of the second script, install.js. The diagnostic
methods can be used to do some basic version checks and to tell whether
XPInstall is enabled.

The InstallVersion object is a convenience object that can compare
two application versions and report which is greater and which of the four ver-
sion numbers are different.

The third object, which the application programmer must make, has this
form:

var xpi_container = {
 "Test app part 1" : "URL1",
 "Test app part 2" : "URL2",
 ...
}

This object represents all the XPI files that together make up an applica-
tion and is passed to the InstallTrigger.install() method. The preced-
ing example object contains two properties, and so represents two XPI files.
Any number of properties greater than zero is allowed. Because both proper-
ties have names that are literal strings, they can only be read using array
notation like this:

var url = xpi_container["Test app part 1"];

AppDevMozilla-17 Page 716 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 717

Each property name is a text name for that application component, and
the user will see it. Each property value is a URL (relative or absolute), which
must be an XPI file. The URL may have a parameter string appended. That
parameter string starts with ?, which is the same as parameters in an HTTP
GET request. The remainder of the parameter string can follow HTTP GET
syntax, or it can be any string (although that is a poor design choice). An
example URL is

/downloads/apps/mozilla/shopcart/main.xpi?java=yes;flash=no

This URL is a relative URL, so Mozilla will add http: and a domain. In
this example, the trigger code has detected the presence of Java and the absence
of the Flash plugin and has passed that information to the second script
install.js via parameters java and flash. The parameter portion of an XPI
URL is passed directly to the install.js script without further processing.

All these objects are combined into a function that is usually called from
an onclick handler on a link or a button. Listing 17.1 is a skeleton of such a
function that shows most of the functionality it might contain.

Listing 17.1 Skeleton for a full-featured XPInstall trigger script.
function deploy()
{
 if (!is_moz_browser()) { return false; }
 if (!window.InstallTrigger.enabled() { return false; }
 if (!is_target()) { return false; }
 if (!is_app_version_ok() } { return false; }

 var error_flag = false;
 function error_handler(url, err) { error_flag = true; };

 calculate_params();
 var xpi_container = { ... };

 with (window.InstallTrigger)
 install(xpi_container, error_handler);

 return !error_flag;
}

Most of the functions used in this script need to be filled out for each appli-
cation. The initial series of tests aborts the deployment if anything is wrong,
including problems with the user’s computer and problems with applications
already installed. The error_handler() function is simplistic and can be
made more complex if necessary. The calculate_params() function prepares
whatever information needs to be passed to the second script. That information
is used in the creation of the xpi_container object. Finally, install() is
called to make the whole thing go. Of course, nothing happens if JavaScript is
disabled, or if the preference xpinstall.enabled is set to false.

AppDevMozilla-17 Page 717 Thursday, December 4, 2003 6:39 PM

718 Deployment Chap. 17

Testing the user’s computer to see if it matches the target is a challeng-
ing task. The browser environment is limited to Web Safe scripts, and the
XPInstall environment cannot access XPCOM components. Tests may need to
be split over both places. If complex testing is needed, then write a separate
application devoted to platform testing and ask the user to install that first.
That application can then be used in trigger scripts from then on.

The second script to be written is always called install.js. Each XPI
archive must contain one of these scripts. This second script is responsible for
putting each file in the XPI archive in the correct spot in the local file system.
The file-copying work is not done directly in the script. Instead, the script pro-
vides the XPInstall system with a series of file placement instructions. When
all the instructions are scheduled, XPInstall is told to go ahead and do them
all. When that happens, XPInstall automatically executes, records, and logs its
actions; handles errors; and saves information for a future uninstall. At any
point before the go-ahead is given, the install.js script can abort the
installation. install.js can hack on the operating system a little as well.

The environment that install.js runs in is very restrictive. It runs in
a separate JavaScript interpreter context and has its own global object, which
is not an HTML or XUL window object. Only a few objects exist with which the
script can work. Their names are

Install InstallVersion File FileSpecObject WinProfile WinReg

The Install object is the global object for the JavaScript context, so its
methods can be called directly as though they were functions. It is the central
object and has factory methods that can be used to create objects of the other
types.

The Install object has useful properties. The platform property states
the operating system. The arguments property contains any parameters, and
the url property contains the full XPI URL.

The Install object also has useful methods: initInstall(), which
primes XPInstall so that it is ready to accept instructions; cancelInstall(),
which aborts everything; performInstall(), which runs the install accord-
ing to instructions; and uninstall(), which removes applications. There are
also useful diagnostic features.

The File and FileSpecObject objects are separate from any XPCOM
file concepts—they are separate and different implementations with similar
features. They can be used to manipulate files and directories anywhere on the
local computer. Some special names that allow this to be done portably are
available. The File object can also perform a few tests on the operating sys-
tem and other miscellany.

The WinProfile and WinReg objects are Microsoft Windows specific.
WinProfile provides read/write access to an .INI configuration file, and
WinReg provides read/write access to the Windows Registry.

Depending on its contents, the install.js script might require that the
platform be restarted; it also might require that the platform reassess the

AppDevMozilla-17 Page 718 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 719

chrome or plugins when that restart happens. None of these side effects
affects the processing of the script itself. As for the trigger script, install.js
has a standard pattern of use. Listing 17.2 shows this pattern.

Listing 17.2 Skeleton for a full-featured XPInstall install.js script.
var TEXT_NAME = "Test Application Release 3.2";
var REG_NAME = "/Test Company/Test Application";
var VERSION = "3.2.0.1999";
var params;
var rv = SUCCESS;

function prepare()
{
 if (!(params = parse_args())) return INVALID_ARGUMENTS;
 if (is_target() != SUCCESS) return getLastError();

 initInstall(TEXT_NAME, REG_NAME, VERSION);

 /* -- as many functions like this as required -- */
 if (schedule_folders()!= SUCCESS) return getLastError();
 if (schedule_files() != SUCCESS) return getLastError();
 if (modify_os() != SUCCESS) return getLastError();
 if (run_any_programs() != SUCCESS)return getLastError();
 if (register_chrome() != SUCCESS) return getLastError();

 return SUCCESS;
}

rv = prepare();
(rv == SUCCESS) ? performInstall() : cancelInstall(rv);

The script relies on error codes that the Install object maintains and
returns when something goes wrong. The first step is to ensure that any argu-
ments passed from the trigger script are in good order, and that the user’s
computer is suitable for install. If that is all okay, then initInstall()
primes XPInstall to receive install instructions. Each function that follows
does part of the work required to set up the installation. When these functions
are called, few errors result because each installation instruction is only
recorded, not performed. Finally, if all goes well, everything is run at once with
performInstall(). Not shown are logging messages that can be recorded to
a file with the logComment() method, or progress reports that can be sent to
the user with alert() or confirm(). prompt() is not available as a method.

The simplest version of this skeleton, useful for testing, is shown in List-
ing 17.3.

Listing 17.3 Complete install.js script for a simple chrome application.
var TEXT_NAME = "Test Application Release 3.2";
var REG_NAME = "/Test Company/Test Application";
var VERSION = "3.2.0.1999";

AppDevMozilla-17 Page 719 Thursday, December 4, 2003 6:39 PM

720 Deployment Chap. 17

var rv = SUCCESS;

function schedule_folders()
{
 var tree = getFolder("Chrome"); // Special keyword
 setPackageFolder(tree);
 addDirectory("chrome"); // topmost directory
}

function prepare()
{
 initInstall(TEXT_NAME, REG_NAME, VERSION);
 if (schedule_folders()!= SUCCESS) return getLastError();
 return SUCCESS;
}

rv = prepare();
(rv == SUCCESS) ? performInstall() : cancelInstall(rv);

This example cuts down the prepare() function so that it is nearly triv-
ial and adds an implementation of the schedule_folders() function. That
implementation contains the critical step of matching a directory hierarchy in
the XPI file against a directory hierarchy on the local file system. The hierar-
chy in the file will be copied to that file system.

The mechanics of this process are as follows. The special keyword
Chrome, one of only a few such keywords, is used to pick out the chrome
folder in the platform’s install area. This keyword is independent of operat-
ing system, but other keywords exist that are operating system specific. That
folder is made of the target directory (effectively the current directory).
Finally, the folder named “chrome” in the XPI file is singled out to be copied.
In fact, only the children of that XPI folder (and all their descendants) will
be copied.

In Listing 17.3, all files in the XPI bundle (except install.js) have as
their topmost directory the name chrome. That part of the path could be
replaced with X or Part1 or any other text string because it is just a place-
holder. Everything will still work, provided that the addDirectory() call is
changed to match.

If the XPI file is layed out using “chrome” as the placeholder, then good
choices of file names within it are

chrome/content/TestApp/TestApp.xul
chrome/locale/en-US/TestApp/master.dtd
chrome/skin/classic/TestApp/global.css

Folders in the file system are matched against folders in the XPI bundle,
and this can be repeated several times in the one bundle. An XPI bundle can
contain several trees with different topmost directories. For example, if an XPI
contained three installable subtrees, each subtree can be matched to a differ-
ent location on the local disk. Such an XPI file might contain

AppDevMozilla-17 Page 720 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 721

install.js
subtree1/file1
subtree1/file2
subtree2/file3
subtree2/file4
subtree3/file5
subtree3/file6

Each subtree of two files can be placed in a different location by the one
install script.

Finally, if an application is to be uninstalled, then the uninstall()
method can also be used between initInstall() and performInstall().
It schedules an instruction that will uninstall an application based on histori-
cal information in the Mozilla registry. That uninstall will also occur when the
other scheduled instructions are executed.

17.2.1.4 XPI Files An XPI file has the format of an ordinary ZIP file. Use
WinZip, pkzip, or similar programs on Microsoft Windows; use zip(1), not
gzip(1), on UNIX. Path names in ZIP files are always relative paths.

Such a file has one content requirement: It must contain at the top level
an install.js file. It is common practice that the rest of the content direc-
tory structure matches the directory structure of the platform’s installation
area. If the XPI file directory structure doesn’t match that area, then the
install.js script will be more complicated.

It is possible to sign an XPI file digitally. Digital signing is done with the
Netscape SignTool tool, as for all digitally signed files in Mozilla, but there is
one restriction. The digital signature must be the first item in the XPI ZIP file.
The digital signature is a file with path META-INF/{signature}, where
{signature} is a file name indicating an encrypted signature of a type that
Mozilla supports. Be aware that tools like WinZip use sorted views that can
confuse the apparent order—display the ZIP file in “original order” to be sure
or use unzip(1) or pkunzip. For more about SignTool and digital signing,
consult http://devedge.netscape.com.

Figure 17.1 shows the contents of the XPI bundle for the Chatzilla
instant messaging client. It is a ZIP file. This bundle is typically installed
when the Classic Mozilla application suite is installed. That installation is
done locally by Mozilla’s native install system. The file could equally be
installed from a remote location using the remote install part of the platform.

The topmost directory, named bin in this case, collects together all the
files into one subtree. There are versions of this XPI for each operating sys-
tem platform; for example, the UNIX version replaces .ICO files with .XBM
files. On all platforms the chatzilla.jar file inside the bundle contains
all the chrome files for the Chatzilla application. This JAR file can be seen
in the chrome area of any installed copy of the Mozilla application suite.
The chatzilla-service.js file is a new XPCOM component that is deliv-
ered with the application. That component registers command-line options

AppDevMozilla-17 Page 721 Thursday, December 4, 2003 6:39 PM

722 Deployment Chap. 17

(-chat) and a URL scheme (irc://) with the platform that integrates
Chatzilla with the rest of the platform.

17.2.1.5 Shorthand for No-Content XPI If the XPI file only implements a
skin or a locale, then the scripting process can be shortened. No install.js
script is needed in that case. In the trigger script, call installChrome()
instead of install(). Because installing skins or locales cannot fail (unless
disk space is very low), the trigger script is reduced to a single line.

In this case, files inside the XPI file are copied directly into the chrome
directory. Those inside files should be JAR files.

17.2.1.6 Shorthand for MIME Types If the XPI file is served up by a Web
server so that it has MIME type

application/x-xpinstall

then the XPInstall system will handle that file automatically. In that case,
there is no need for a script placed on an event handler in the application code.
Any install.js script provided inside the XPI file will still be run.

The application programmer also has the option of avoiding the XPIn-
stall system entirely. The XUL tags described in “Install Technologies” allow a
dialog box that acts like an installation wizard to be created easily.

17.2.2 What the User Does

The user chooses whether to deploy the application. The experience he has
with the install process is shown in the following sequence of figures. The first
thing he sees is a document separate from the to-be-installed application, as
shown in Figure 17.2.

This is an HTML page, but it could be a XUL document, in which case
the trigger script might be less obvious than a button. In this example, one
application consisting of three XPI bundles is specified by the trigger script.
Next, the user sees a dialog box as in Figure 17.3.

Fig. 17.1 Chatzilla XPI file for Microsoft Windows.

AppDevMozilla-17 Page 722 Thursday, December 4, 2003 6:39 PM

17.2 Steps Toward Remote Deployment 723

This dialog box reports the goods to be received. If the user chooses Can-
cel, everything is aborted. If the user agrees, the installation starts immedi-
ately and may complete with no further opportunities to back out. After this
picking list, a progress dialog box is displayed, as shown in Figure 17.4.

The listed bundles are downloaded in order. The contained install.js
files are run as soon as their XPI bundle is available. Unless they contain spe-
cific code, these scripts finish without user interaction. If prompts are dis-
played by the code in the script, they look just like ordinary JavaScript
prompts, as Figure 17.5 shows.

After the install.js scripts have run, the outcome is either a canceled,
a failed, or a completed installation. The user next sees a summary of the pro-
cessing, as in Figure 17.6.

If the installation process requires that the application be restarted, then
a final dialog box will advise the user of this.

Fig. 17.2 Step 1 of remote deployment: an HTML page.

Fig. 17.3 Step 2 of remote deployment: picking list display.

Fig. 17.4 Step 3 of remote deployment: application bundle download.

AppDevMozilla-17 Page 723 Thursday, December 4, 2003 6:39 PM

724 Deployment Chap. 17

17.2.3 What the Platform Does

During remote deployment, the platform manages the process, receives
instructions from the install.js script, does all the actions specified, and
keeps a record of everything done. The following steps are performed:

1. Start the XPInstall system when InstallTrigger.install() or
InstallTrigger.installChrome() is called. Present and manage
the windows that the user sees.

2. Maintain a list of XPI archives to download. Download them to the oper-
ating system’s temporary files directory. Don’t use the Mozilla cache.

3. If the first item in a downloaded archive is a digital signature (detected
by path name), then verify the signature. Fail only if verification against
the right certificate is possible and fails; in that case, cease the download.
Otherwise, continue.

4. Run each install.js file one at a time. There is no coordination
between different install.js files other than their initial order. If one
XPI file needs to know if an earlier one finished successfully, then appli-
cation code must be written that separately tracks progress. That code
might create a “touch file” or use Microsoft Windows registry keys as
counters to track progress.

5. During the execution of an install.js file, record the information in
steps 6 to 11.

6. Record any logged messages, plus some automatically produced text, in
the file chrome/install.log.

7. Record in a Mozilla registry all the things that would need to be undone
if the application were uninstalled.

Fig. 17.5 Step 4 of remote deployment: optional user interaction.

Fig. 17.6 Step 5 of remote deployment: results.

AppDevMozilla-17 Page 724 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 725

8. Record in a Mozilla registry that this application and its version now
exist.

9. Record in chrome/installed-chrome.txt the results of all calls to
registerChrome().

10. Record if the chrome or components need to be reassessed by the plat-
form.

11. Record if a reboot is required.
12. Next, proceed to the scheduled instructions for the install.
13. Unpack whatever files are required. If file names or path names in the

XPI bundle don’t match those supplied in the script, do nothing and move
to the next instruction.

14. Perform other operating system manipulations as instructed. If the
instructions aren’t possible or aren’t sensible, report an error and do
nothing, and then move on to the next instruction.

15. When the user restarts the platform, go through normal post-installation
initialization: recalculate chrome overlays, XPCOM components, and
available locales and skins.

That is the whole of the remote installation process. Version checking is
entirely up to the application programmer and the install.js file.

The XPInstall system occasionally must reach out to the rest of the plat-
form to get its job done. An example is the use of alert dialog boxes. If this is
necessary, then scripts running elsewhere in the platform will be blocked until
XPInstall has finished with the resources it needed. Usually any such block-
age is brief and of little consequence.

17.3 INSTALL TECHNOLOGIES

The remainder of this chapter describes the pieces of technology used or
usable for remote installation.

17.3.1 File Uses and Formats

The platform’s installation uses several different kinds of data files. There are
three main uses for these files, and they are written in several different file
formats. The three uses are registries, manifests, and logs.

☞ Registries are read/write files that the platform uses as simple databases
that can be updated. Configuration, application, and version information
is stored in registries.

☞ Manifests are read-only files. They act as bills-of-lading or picking lists;
in other words, they describe what’s provided. Mozilla uses manifests to
list available XPCOM components, plugins, chrome files, overlays, and

AppDevMozilla-17 Page 725 Thursday, December 4, 2003 6:39 PM

726 Deployment Chap. 17

some aspects of the build process. Manifests can sometimes be generated
from other information.

☞ Logs are write-only files that can be independently examined. Mozilla
creates logs for the initial platform install and for subsequent remote
application installs. Extensive extra logging is possible if the platform
used was compiled with --enable-debug.

Formats used for these files include the Mozilla registry format
(described next), Microsoft Windows .ini format, and RDF and plain text.
Table 17.1 lists all these formats and their uses.

17.3.2 Mozilla Registries

A Mozilla registry is a file that is similar in format to the Microsoft Windows
registry. There is very little direct access to the registry, but a peek inside
clears up some mysteries about the platform.

A Mozilla registry consists of a hierarchy of keys, each of which can have
a set of attribute-value pairs. The keys can be named using a hierarchical
description, which is effectively a path. At the top of the hierarchy is a root key
named /, and several special names point to important parts of the hierarchy.
These are equivalent to Microsoft’s HKEY_ names. Mozilla uses UTF8-encoded
Unicode strings for the names in a registry path.

Unlike the Windows registry, the Mozilla registry uses forward slashes
(/) to delimit steps in a key’s fully qualified path. There are other differences
as well.

Table 17.1 Installation documents used by the platform

File type File names using this type Use

Mozilla registry mozver.dat, mozregistry.dat,
registry, registry.dat, appreg,
global.regs, versions.regs, “Mozilla
Registry,” “Mozilla Versions”

Registry of platform and application
names and versions, uninstall
information, plugins, and created
user profiles

Microsoft
Windows .ini

pluginreg.dat, pluginreg, xpti.dat,
compreg.dat

manifest.ini, master.ini, talkback.ini

Manifest of current plugins, current
components, and XPConnect type
libraries
Configuration files for Talkback-
enabled releases

XML RDF overlays.rdf, contents.rdf, various
other per-profile files

Manifests of overlays and of JAR
archive content

Line-formatted
plain text

installed-chrome.txt, chromelist.txt Manifests of chrome files that need
to be considered for overlays,
themes, and locales

Free format
text

install.log, install_status.log Log files for native and remote
installation

AppDevMozilla-17 Page 726 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 727

☞ Mozilla does not, as yet, have a tool equivalent to regedit or
regedit32.

☞ Interfaces to registries are not yet fully exposed to application program-
mers.

☞ Registries are cross-platform and appear on UNIX, MacOS, and other
platforms.

☞ The platform maintains more than one registry per platform installation.

All Mozilla registries have the same top-level structure. Each registry
consists of exactly one root (named /) with four immediate children:

"/Users/"
"/Common/"
"/Version Registry/"
"/Private Arenas/"

If special compilation options are turned on, then a fifth child exists:
“/Current User/”. This fifth child is not present in the default builds. A key
held under one of the four names might have a full path like so:

"/Version Registry/mozilla.org/Mozilla/XPCom/bin"

This key does not look like an application registry name by accident—that is
exactly what the string after “/Version Registry” is.

A Mozilla registry is effectively the boot information for the platform. A
running platform instance seeks information from the registry after the oper-
ating system launches that instance. The most confusing aspect of registries is
that there are several, and each one holds a different subset of the informa-
tion. Table 17.2 attempts to clarify this.

The “chrome registry” is not a file in Mozilla registry format. It is a term
that covers the RDF-driven configuration of the chrome, including the over-
lays database and supporting text files like installed-chrome.txt. See
Chapter 12, Overlays and Chrome, for more on it.

The Mozilla registry cannot be accessed from an install.js script,
unless a separate executable is run. It can be accessed from an ordinary appli-
cation script using this XPCOM pair:

@mozilla.org/registry;1 nsIRegistry

This interface provides read/write methods and methods that can be
used to traverse the tree of registry keys. The interface provides no obvious
way to dump out the whole hierarchy from the root. A dirty trick, which has
worked in the past, is to use the magic number 32 (hex 0x20) as an nsRegis-
tryKey argument. That is the number of the root key. Be aware that neither
the root nor its immediate children (the four well-known children) have any
attribute-value pairs stored against them. Do not look for such pairs; only look
for pairs further down the tree.

AppDevMozilla-17 Page 727 Thursday, December 4, 2003 6:39 PM

728 Deployment Chap. 17

17.3.3 XUL Wizards

Occasionally an application needs to guide the user through a complicated
procedure. Deploying software is one such procedure. A traditional way to
manage the complexity is to provide a window or dialog box that assists the
user step by step. Such a dialog box is sometimes called a wizard.

XUL supplies a <wizard> tag to assist with complex processes like
installation. <wizard> is like a fancy combination of a <deck> and a <dia-
log> tag. Each <wizard> tag holds one or more <wizardpage> tags. Each of
the <wizardpage> tags holds any XUL content.

Like the <dialog> tag, the <wizard> tag represents a whole window
and is used in place of a <window> tag. Like cards in a deck, the set of <wiz-
ardpage> tags are laid on top of each other. The <wizard> tag supplies Next,
Back, Cancel, and Finish buttons that let the user navigate between the
pages, just as the tab labels in a <tabbox> provide navigation between tabs.
Both <wizard> and <wizardpage> tags are based on XBL bindings stored in
the file wizard.xml in toolkit.jar in the chrome.

Table 17.2 Mozilla registries maintained by the platform

Everyday
name

Single
user O/S
has

Multiuser
O/S has

File names
used

Keys
populated Use

Versions
registry

One One per O/S
user

mozver.dat,
“Mozilla
Versions”,
Versions.regs

Versions
Private
arenas

Global registry of
version information
for all platform
installations,
including Netscape
Global registry of
uninstall
information for all
platform
installations,
including Netscape

Global
registry

One One per O/S
user

mozregis-
try.dat,
“Mozilla
Registry”,
registry,
Global.regs

None No current use

Application
registry

One One per O/S
user

appreg,
registry.dat

Common Registry of all user
profiles and of all
available plugins
and Java support

Component
registry

One per
platform
installation

One per
platform
installation

compon-
ent.reg ,
“Component
Registry”

Common Registry of all
XPCOM
components
available

AppDevMozilla-17 Page 728 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 729

In toolkit.jar in the chrome, there are also a number of files prefixed
with “wizard.” These files add value to the basic <wizard> tag, particularly
in the form of the WizardManager JavaScript object. If your application needs
several wizards, it is worth examining this code for its value as a time-saver. It
allows you to create a central object that holds all the scripting logic that ties
the wizard GUI to your application. It is therefore an orderly way to proceed.

Figure 17.7 shows a window based on the <wizard> tag. This window is
used in the Mozilla Email client to create a new News or Email account.

None of this markup is used or usable from the normal remote install
system discussed in this chapter. It can be used only for custom installs, in the
chrome, or in remotely hosted applications.

17.3.3.1 <wizard> The <wizard> tag provides some content, navigation
logic, and event processing for the window it manages. The minimum the
application programmer needs to do is supply the remaining content as a set
of <wizardpage> tags (which usually consists of form elements and explana-
tory text) and scripts to validate and act on the choices the user makes. The
<wizard> tag supports the following special attributes:

title pagestep firstpage lastpage onwizardnext onwizardback
onwizardcancel onwizardfinish

☞ title specifies the string that will appear in the top part of the window,
after the words “Welcome to the.”

☞ pagestep specifies how many pages to jump when the Back or Next but-
tons are pressed. The default is 1 (one).

☞ firstpage is set to true by the wizard when the first page is being dis-
played.

☞ lastpage is set to true by the wizard when the last page is being dis-
played.

Fig. 17.7 Email account creation system based on the <wizard> tag.

AppDevMozilla-17 Page 729 Thursday, December 4, 2003 6:39 PM

730 Deployment Chap. 17

The remaining attributes are event handlers and fire when the Next,
Back, Cancel, and Finish buttons are clicked. These event handlers all have
sensible default actions. Like <dialog> and <window>, the width, height,
screenX, and screenY attributes do nothing for the <wizard> tag. <wiz-
ard> automatically sets width="500px", height="380px".

In addition to attributes, the XBL definition for <wizard> has methods
and properties that allow scripts to mimic the user’s actions. Figure 17.8
shows the content that the <wizard> tag provides for free.

17.3.3.2 <wizardpage> The <wizardpage> tag is a simple boxlike tag. It is
operated on extensively by its parent <wizard> tag and is of little use by itself.
Put any XUL content inside it, but beware of messing up the simple navigation
strategy of the wizard—it is better to add more pages than complicate an exist-
ing page. <wizardpage> supports the following special attributes:

pageid next onpagehide onpageshow onpagerewound onpageadvanced

☞ pageid is an identifier for the page separate from id. It is used by the
logic internal to the <wizard> tag and should always be supplied.

☞ next provides a way of disrupting the normal page order of the wizard. It
holds a pageid identifier. If it is set, the wizard will abandon its simple
strategy of stepping forward and backward through the pages. Instead, it
will rely on the next attribute for all navigation. If this is to work, the
attribute must be set by assigning to the next property of the DOM object
for the <wizardpage> tag, not by directly adding it to the <wizard-
page> tag. After this is done, all wizard navigation relies on all <wiz-
ardpage> tags having a next attribute.

The remaining four attributes are event handlers. They fire when the
page appears and disappears, and when the user goes forward a page and

Fig. 17.8 Bare-bones wizard based on the <wizard> tag.

AppDevMozilla-17 Page 730 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 731

backward a page. They have no default implementations. <wizardpage> is
trivial at best.

17.3.4 Web-Side Objects

The XPInstall remote install system provides the application programmer
with two objects usable in ordinary HTML and XUL documents: Install-
Trigger and InstallVersion. InstallTrigger and InstallVersion
are properties of the global (window) object; InstallVersion objects can also
be made from the InstallTrigger.getVersion() method.

17.3.4.1 InstallTrigger Table 17.3 describes the InstallTrigger
object.

17.3.4.2 InstallVersion Table 17.4 describes the InstallVersion
object. Note that extra constants are available but that the meaning is the
same.

Table 17.3 The XPInstall InstallTrigger Object

Constant, property or method
signature Use

SKIN (1), LOCALE (2), CONTENT (4),
PACKAGE (7)

bitmask flags for installChrome()

MAJOR_DIFF(4), MINOR_DIFF(3),
REL_DIFF(2), BLD_DIFF(1), EQUAL(0),
NOT_FOUND(-5)

Constants returned by compareVersion()
indicating where two versions differ; values of
opposite sign are also possible, except for 5

Boolean enabled() True if XPInstall is enabled in preferences

Boolean install(Object xpi_list,
function(url, err))

True if a list of XPI bundles installs correctly;
the function argument will be called for each XPI
URL that fails to install; see “Scripts”

Boolean installChrome(Number flags,
String url, String name)

Same as install(), except flags is a bitwise OR
that says what the content is, and install.js is not
run; name is the application’s text name

Number compareVersion(String name,
String version)
Number compareVersion(String name,
InstallVersion version)
Number compareVersion(String name,
Number major, Number minor, Number
release, Number build)

Compare the version of the application with
registry name “name” against the supplied
version; returns positive constants if the
supplied version is greater

InstallVersion getVersion(String name) Return the version of the supplied application
registry name, or null

AppDevMozilla-17 Page 731 Thursday, December 4, 2003 6:39 PM

732 Deployment Chap. 17

The InstallVersion object is also available to the install.js script-
ing environment.

17.3.5 XPInstall-Side Objects

The following objects are available to install.js scripts:

Install InstallVersion FileSpecObject File WinProfile WinReg

The InstallVersion object is described in “Web-Side Objects”; the others
are described here.

17.3.5.1 Install The Install object is the global object within the
install.js scripting environment. That object’s methods may be called
directly or prefixed with Install. Install is equivalent to the window prop-
erty in a Web page.

The Install object is a factory object and can produce all the other
objects that exist. It holds all the arguments passed in from the install trigger
script. It provides access to a global error number similar to errno in C/C++

Table 17.4 The XPInstall installversion object

Constant, property, or method signature Use

MAJOR_DIFF(4), MINOR_DIFF(3),
REL_DIFF(2), BLD_DIFF(1), EQUAL(0),
BLD_DIFF_MINUS(-1), REL_DIFF_MINUS(-2),
MINOR_DIFF_MINUS(-3),
MAJOR_DIFF_MINUS(-4), NOT_FOUND(-5)

Constants returned by compareTo() indi-
cating where two versions differ

major Holds the major version

minor Holds the minor version

release Holds the release version

build Holds the build version

void init() Initializes this object to version “0.0.0.0”

void init(String version) Initializes this object to the version num-
ber supplied

String toString() Returns a string representation of the
version held, or null

Number compareTo(String version)
Number compareTo(InstallVersion version)
Number compareTo(Number major, Number
minor, Number release, Number build)

Compares the held version against the
supplied version; returns positive con-
stants if the supplied version is greater

AppDevMozilla-17 Page 732 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 733

and has a concept of the current directory during the installation. It can do
very basic logging, user interaction, and execution of native programs.

Tables 17.5,17.6, and 17.7 describe this object. All the properties of the
Install object are read-only.

Table 17.5 The XPInstall Install object

Constant, property, or method
signature

Action
deferred
until
install? Use

SKIN (1), LOCALE (2), CONTENT (4),
PACKAGE (7), DELAYED_CHROME(16)

Bitmask values for flags property
and for registerChrome(); use of
DELAYED_CHROME delays regis-
tration until the platform next
starts up

Number buildID The build version of this installation
of the platform (e.g., 2002060411)

Error constants (see Table 17.6)

String platform Holds the operating system type and
version, which closely follow the
style of window.navigator.userAgent

String jarfile Full path name of the copy of the
XPI file on the local computer

String archive Same as jarfile

String arguments Holds any string after ? in the XPI
file’s URL, or null

String url The full XPI URL passed to install()
or installChrome()

Number flags Flags passed to InstallTrigger’s
installChrome(), or zero

Number _finalStatus Value returned back to the remote
install progress dialog box

Boolean _installedFiles False after cancelInstall() is called

File File Reference to a File object

Object Install Self-reference to the global Install
object

AppDevMozilla-17 Page 733 Thursday, December 4, 2003 6:39 PM

734 Deployment Chap. 17

Number addDirectory(String XPItree)
Number addDirectory(String name, String
XPItree, FileSpecObject OSpath, String
localPath)
Number addDirectory(String name, String
version, String XPItree, FileSpecObject
OSpath, String localPath)
Number addDirectory(String name,
InstallVersion version, String XPItree,
FileSpecObject OSpath, String localPath)

✓ Copy the supplied XPItree path to
the local file system; install under
the current application or the one
with registry name name, if sup-
plied; always install under the latest
version, or, if a version is supplied,
use it to check if any existing appli-
cation is newer; don’t install if this
check says it is newer; if no destina-
tion is supplied, install the contents
of XPItree under the current direc-
tory; if OSpath and localPath are
supplied, concatenate them and
store XPItree under the result;
return any errors

Number addFile(String XPIfile)
Number addFile(String name, String ver-
sion, String XPIfile, FileSpecObject Ospath,
String localPath, [Boolean force])
Number addFile(String name, InstallVer-
sion version, String XPIfile, FileSpecObject
OSpath, String localPath, [Boolean force])

✓ Copy the XPIfile in the XPI archive
to the local file system; install under
the current directory, current appli-
cation, and current version if no
other details are supplied; if an
application registry name is sup-
plied in name, use that instead of
the current application; if a version
is supplied, don’t install if an exist-
ing application is more recent than
the version; if OSpath and localPath
are supplied, concatenate them and
install the file under the resulting
folder; if force is supplied and set to
true, don’t do version tests—always
install in that case; return any
errors

Null alert(String value) Display a modal dialog window
showing value until the user
acknowledges it

void cancelInstall()
void cancelInstall(Number reason)

Don’t perform any of the scheduled
instructions; if a reason is suppled,
set it as the error code, otherwise,
set to INSTALL_CANCELLED

Boolean confirm(String value) Display a modal dialog window
showing value until the user accepts
or rejects it; Return false if it is
rejected

Table 17.5 The XPInstall Install object (Continued)

Constant, property, or method
signature

Action
deferred
until
install? Use

AppDevMozilla-17 Page 734 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 735

Number execute(String XPIpath, String
args, Boolean blocking)
Number execute(String XPIpath, String
args);
Number execute(String XPIpath);

✓ Execute the program at path XPI-
path in the XPI archive; Optionally
supply it with operating system–
specific arguments; Optionally sup-
ply it with blocking set to true,
which pauses the install until the
executed program is finished; The
default for blocking is false

Number gestalt(String selector) On the Macintosh only, reports the
value of selector according to the
Gestalt Manager; Otherwise, return
null; Also see text accompanying
below this table

FileSpecObject getComponentFolder(String
name)
FileSpecObject getComponentFolder(String
name, String subpath)

Return the folder for the application
with registry name name; return
the folder of the subpart of that
application if subpath is present;
otherwise, return null

FileSpecObject getFolder(String keyword)
FileSpecObject getFolder(String keyword,
String subpath)
FileSpecObject getFolder(FileSpecObject
folder, String subpath)

Return the folder matching the sup-
plied keyword or a subfolder of that
folder if subpart is supplied: if sub-
part is a JAR file name rather than
a folder, then step into the root vir-
tual folder of the JAR file; alter-
nately, specialize an existing folder
to one of its subfolders; return null
on failure

Number getLastError() Return the last error status code
encountered, which could also be
SUCCESS

WinProfile getWinProfile(FileSpecObject
folder, String filename)

Return a WinProfile object for the
supplied .INI file; returns null if the
operating system is not Microsoft
Windows

WinReg getWinRegistry() Return a WinReg object

Number initInstall(String text_name,
String reg_name, String version)
Number initInstall(String text_name,
String reg_name, InstallVersion version);

Begin the scheduling process for this
install; set the current application to
text name text_name, registry name
reg_name, and current version to
version; return any errors

Table 17.5 The XPInstall Install object (Continued)

Constant, property, or method
signature

Action
deferred
until
install? Use

AppDevMozilla-17 Page 735 Thursday, December 4, 2003 6:39 PM

736 Deployment Chap. 17

Object loadResources(String XPIpath) Return a JavaScript object modeled
on a properties (stringbundle) file in
the XPI archive; that properties file
has XPI relative path name XPI-
path; each property in the file
appears as a property on the Java-
Script object; returns null on failure

Null logComment(String text) ✓ Write the text, plus some format-
ting, to the install.log file

patch() ✓ This method allows a single file to
be updated based on a byte-by-byte
delta (a series or diff of changes); not
recommended for applications; use
addFile() instead

Number performInstall() Execute all the scheduled install
tasks and return an error status

Number registerChrome(Number flags,
FileSpecObject folder)
Number registerChrome(Number flags,
FileSpecObject folder, String rdfpath)

✓ Tell the platform that these chrome
files should be reexamined for over-
lays, locales, and skins; flags says
what kind of thing is being regis-
tered (see below), folder is the loca-
tion of the files to consider, rdfpath
is an optional subpath (including file
name) from folder that says where
to find the contents.rdf file for over-
lays

Number refreshPlugins()
Number refreshPlugins(Boolean
reloadPages)

✓ Make the platform recalculate the
available plugins and then reload all
windows depending on them; if
reloadPages is false, reload is
skipped

void resetError()
void resetError(Number error)

Set the last error encountered to
zero or to error if it is supplied

Number setPackageFolder(FileSpecObject
folder)

✓ Change the current directory to the
supplied folder

Number uninstall(String name) ✓ Schedule the given application reg-
istry name for uninstall; returns an
error code

Table 17.5 The XPInstall Install object (Continued)

Constant, property, or method
signature

Action
deferred
until
install? Use

AppDevMozilla-17 Page 736 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 737

The following notes expand on aspects of Table 17.5.
It is important to realize that error values returned from scheduling

methods only report problems with the scheduling process. They do not report
problems with the execution of the scheduled instruction. Even if no error is
received during scheduling, the instruction can still fail when it is executed
during installation.

Error values are usually negative integers. Values between -200 and
-299 are reserved for the platform; values smaller than -5550 are Macintosh
specific; 0 is SUCCESS, and 999 is REBOOT_NEEDED. All values produced by the
platform have matching property names that hold constants. Table 17.6 lists
these names.

A list of valid selectors for the gestalt() method and their meanings
and values can be viewed at www.rgaros.nl/gestalt/index.html.

The special folder keywords submitted as arguments to getFolder()
are listed in Table 17.7.

The “Program” keyword matches the top of the platform installation
area. The “file:///” keyword matches the top of the local file system. To see
the value of a specific keyword on a specific computer, use this line of code:

alert(getFolder(keyword).toString());

17.3.5.2 FileSpecObject The FileSpecObject is a value-like object that
is passed between the methods of other objects in the XPInstall system. It is
rare that this object type is manipulated directly. It is never created with new
from JavaScript. The FileSpecObject has only one useful property:

String toString()

This method returns a nonportable path for the folder that the
FileSpecObject represents.

17.3.5.3 File The Install object is in part responsible for the overall
matching and installing of files, folders, and subtrees of files. By comparison,
the File object is responsible for inspecting and manipulating one file or
folder closely. Some of the Install object’s methods schedule tasks to be done
when the install gets going. All of the File object’s methods schedule tasks for
later execution.

Only one File object is ever needed, and that object is available as a
property named File on the global object. All methods on this object are
therefore accessible just by calling:

File.method_name(args);

Table 17.8 describes the File object.

AppDevMozilla-17 Page 737 Thursday, December 4, 2003 6:39 PM

738 Deployment Chap. 17

Ta
b

le
 1

7.
6

M
oz

ill
a

pl
at

fo
rm

 p
ro

pe
rt

y
na

m
es

N
am

e
N

am
e

N
am

e

A
C

C
E

S
S

_D
E

N
IE

D
IN

S
U

F
F

IC
IE

N
T

_D
IS

K
_S

P
A

C
E

R
E

A
D

_O
N

LY

A
L

R
E

A
D

Y
_E

X
IS

T
S

IN
V

A
L

ID
_A

R
G

U
M

E
N

T
S

R
E

B
O

O
T

_N
E

E
D

E
D

A
P

P
L

E
_S

IN
G

L
E

_E
R

R
IS

_D
IR

E
C

T
O

R
Y

S
C

R
IP

T
_E

R
R

O
R

B
A

D
_P

A
C

K
A

G
E

_N
A

M
E

IS
_F

IL
E

S
O

U
R

C
E

_D
O

E
S

_N
O

T
_E

X
IS

T

C
A

N
T

_R
E

A
D

_A
R

C
H

IV
E

K
E

Y
_A

C
C

E
S

S
_D

E
N

IE
D

S
O

U
R

C
E

_I
S

_D
IR

E
C

T
O

R
Y

C
H

R
O

M
E

_R
E

G
IS

T
R

Y
_E

R
R

O
R

K
E

Y
_D

O
E

S
_N

O
T

_E
X

IS
T

S
O

U
R

C
E

_I
S

_F
IL

E

D
O

E
S

_N
O

T
_E

X
IS

T
M

A
L

F
O

R
M

E
D

_I
N

S
T

A
L

L
S

U
C

C
E

S
S

D
O

W
N

L
O

A
D

_E
R

R
O

R
N

E
T

W
O

R
K

_F
IL

E
_I

S
_I

N
_U

S
E

U
N

A
B

L
E

_T
O

_L
O

A
D

_L
IB

R
A

R
Y

E
X

T
R

A
C

T
IO

N
_F

A
IL

E
D

N
O

_I
N

S
T

A
L

L
_S

C
R

IP
T

U
N

A
B

L
E

_T
O

_L
O

C
A

T
E

_L
IB

_F
U

N
C

T
IO

N

F
IL

E
N

A
M

E
_A

L
R

E
A

D
Y

_U
S

E
D

N
O

_S
U

C
H

_C
O

M
P

O
N

E
N

T
U

N
E

X
P

E
C

T
E

D
_E

R
R

O
R

G
E

S
T

A
LT

_I
N

V
A

L
ID

_A
R

G
U

M
E

N
T

P
A

C
K

A
G

E
_F

O
L

D
E

R
_N

O
T

_S
E

T
U

N
IN

S
T

A
L

L
_F

A
IL

E
D

G
E

S
T

A
LT

_U
N

K
N

O
W

N
_E

R
R

P
A

T
C

H
_B

A
D

_C
H

E
C

K
S

U
M

_R
E

S
U

LT
U

S
E

R
_C

A
N

C
E

L
L

E
D

IN
S

T
A

L
L

_C
A

N
C

E
L

L
E

D
P

A
T

C
H

_B
A

D
_C

H
E

C
K

S
U

M
_T

A
R

G
E

T
V

A
L

U
E

_D
O

E
S

_N
O

T
_E

X
IS

T

IN
S

T
A

L
L

_N
O

T
_S

T
A

R
T

E
D

P
A

T
C

H
_B

A
D

_D
IF

F

AppDevMozilla-17 Page 738 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 739

Table 17.7 Keyword identifiers for Install.getFolder()

Cross-platform Microsoft Windows Macintosh UNIX

“Plugins” “Win System” “Mac System” “Unix Local”

“Program” “Windows” “Mac Desktop” “Unix Lib”

“Temporary” “Mac Trash”

“Profile” “Mac Startup”

“Preferences” “Mac Shutdown”

“OS Drive” “Mac Apple Menu”

“file:///” “Mac Control Panel”

“Components” “Mac Extension”

“Chrome” “Mac Fonts”

“Mac Preferences”

“Mac Documents”

Table 17.8 The XPInstall File object

Constant, property, or method
signature

Action
deferred

until
install
starts? Use

Number copy(FileSpecObject src,
FileSpecObject target)

✓ Copies a file or folder to a new
destination.

Number dirCreate(FileSpecObject local) ✓ Creates the local directory given by
local.

FileSpecObject
dirGetParent(FileSpecObject dir)

Returns the parent directory of dir, or
null.

Number dirRemove(FileSpecObject
local)

✓ Removes the local directory given by
local.

Number dirRename(FileSpecObject
local)

✓ Removes the local directory given by
local.

Number
diskSpaceAvailable(FileSpecObject
local)

Returns the disk space available on
the volume/drive holding the file or
folder local. Returns bytes.

Number execute(FileSpecObject file [,
String args [, Boolean blocking]])

✓ Runs the executable given by file, with
optional arguments args. If blocking is
also supplied and set to true, the
install will halt until the program
finishes. blocking is false by default.

AppDevMozilla-17 Page 739 Thursday, December 4, 2003 6:39 PM

740 Deployment Chap. 17

Boolean exists(FileSpecObject local) Returns true if the local file or folder
named local exists.

Boolean isDirectory(FileSpecObject
local)

Returns true if the thing named local
is a local folder (file system directory).

Boolean isFile(FileSpecObject local) Returns true if the thing named local
is a local file, and not a folder.

Boolean isWritable(FileSpecObject
local)

Returns true if the local folder or file
named local is writable.

Number macAlias(FileSpecObject src,
String filename, FileSpecObject target)
Number macAlias(FileSpecObject src,
String filename, FileSpecObject target,
String alias)

✓ Creates a Macintosh Alias in the
folder target, based on the file file
name that resides in the folder src. If
alias is supplied as an argument,
make that the text of the new alias.

Number modDate(FileSpecObject local) Returns when local was last changed
in milliseconds. This time is
calculated differently for each
platform.

Boolean
modDateChanged(FileSpecObject local,
number modDate)

Returns true if the file local has
changed since the date modDate (from
modDate()).

Number move(FileSpecObject src,
FileSpecObject target)

✓ Moves the file src to the folder target.
Cannot move Microsoft Windows
directories.

String nativeVersion(FileSpecObject
local)

Gets Microsoft Windows version
information about the file local (e.g.,
DLL version), or return null.

Number remove(FileSpecObject local) ✓ Removes the file or folder local.

Number rename(FileSpecObject local,
String name)

✓ Renames the file or folder local to
name.

Number size(FileSpecObject local) Returns the size in bytes of the file
local.

String
windowsGetShortName(FileSpecObject
local)

For Microsoft Windows only, gets the
8.3 (non-LFN) file name for the
supplied file; otherwise, returns null.

Table 17.8 The XPInstall File object (Continued)

Constant, property, or method
signature

Action
deferred

until
install
starts? Use

AppDevMozilla-17 Page 740 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 741

17.3.5.4 WinProfile The WinProfile object, manufactured by the
Install.getWinProfile() method, can perform operations on a Microsoft
Windows specific .INI file, such as C:\WINDOWS\WIN.INI. It contains two
methods only:

String getString(String section, String key)
String writeString(String section, String key, String value)

Since an .INI file is in extended ASCII format, Unicode information can-
not be put in such a file.

17.3.5.5 WinReg The WinReg ob jec t , manufactured by the
Install.GetWinRegistry() method, provides access to the Windows regis-
try. Operations on the registry happen immediately; they are not deferred.

The WinReg object holds the current registry root key. By default the cur-
rent root key is HKEY_CLASSES_ROOT.

Path names for Windows registry keys are delimited by backslashes (\).
Backslashes in JavaScript strings must be stated doubly (\\) if they are to be
treated as normal characters.

Table 17.9 describes the WinReg object. Some of the methods listed return
data, but many of the methods merely return a status code. When a status code
is returned, null means that the Mozilla Platform couldn’t assemble the regis-
try change correctly. This usually means problems were encountered with the
arguments supplied. If a non-null-value is returned, that value comes from the

Number
windowsRegisterServer(FileSpecObject
local)

✓ For Microsoft Windows only, registers
the file local as a server.

Number
windowsShortcut(FileSpecObject local,
FileSpecObject target, String linkname,
FileSpecObject dir, String params,
FileSpecObject icondb, Number index)

✓ For Microsoft Windows only, creates a
shortcut for file local. Puts the
shortcut in directory target. Gives the
shortcut the name linkname, plus an
.lnk extension. Makes the working
directory of the shortcut dir. Gives the
shortcut parameters params. Uses the
indexth icon in the file at path icondb
for the shortcut’s desktop icon.

String windowsVersion(FileSpecObject
local)

Gets Microsoft Windows version
information about the file local, or
return null.

Table 17.8 The XPInstall File object (Continued)

Constant, property, or method
signature

Action
deferred

until
install
starts? Use

AppDevMozilla-17 Page 741 Thursday, December 4, 2003 6:39 PM

742 Deployment Chap. 17

actual registry operation. Even when the return value is ordinary data, a null
value means failure of the method, again most likely the result of argument
problems. In summary, always check return values for null.

Table 17.9 The XPInstall WinReg object

Constant, property, or method signature Use

HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE, HKEY_USERS

Predefined constants for well-known root
keys.

Number createKey(String subkey, String
name)

Creates the subkey subkey with the class
name name. name may be a zero-length
string.

Number deleteKey(String subkey) Deletes the subkey named subkey.

Number deleteValue(String subkey, String
name)

Deletes the attribute-value pair of subkey
whose name is name.

String enumKeys(String subkey, Number
index)

Returns the indexth subkey for the key
named subkey. Returns a zero-length string
for non-existent subkeys.

String enumValueNames(String subkey,
Number index)

Returns the indexth attribute name for the
key named subkey.

Number getValueNumber(String subkey,
String attr)

Returns the DWORD value of the attr
attribute of the subkey key.

String getValueString(String subkey, String
attr)

Returns the String value of the attr attribute
of the subkey key.

Number getValue(String subkey, String attr) Returns the DWORD value of the attr
attribute of the subkey key.

Boolean isKeyWritable(String subkey) Returns true if the subkey key is writable.

Boolean keyExists(String subkey) Returns true if the subkey key exists.

void setRootKey(String key) Sets the root key to one of the predefined
roots listed in the first row of this table.
Returns null on failure.

Number setValueNumber(String subkey,
String attr, Number val)

Sets the attr attribute of the subkey key to
the val value. Returns null on failure.

Number setValueString(String subkey,
String attr, String str)

Sets the attr attribute of the subkey key to
the str value. Returns null on failure.

Boolean valueExists(String subkey, String
attr)

Returns true if the subkey key has an attr
attribute.

AppDevMozilla-17 Page 742 Thursday, December 4, 2003 6:39 PM

17.3 Install Technologies 743

17.3.6 XPCOM Objects

The XPInstall system does not make XPCOM interfaces available to
install.js scripts.

There are, however, a number of components and interfaces available
outside of the XPInstall environment that duplicate the XPInstall functional-
ity. If a custom deployment system is required, or deployment-like design is
needed, then these components and objects are perhaps worth exploring.

This XPCOM pair provides access to the Mozilla registry, although it is
not complete or completely flexible:

@mozilla.org/registry;1 nsIRegistry

This interface treats the different registry files as though they were all one
file. The registry is also expressed as an RDF data source. At the time of this
writing, that RDF data source is not available for use. Its XPCOM pair is fore-
cast to be

@mozilla.org/registry-viewer;1 nsIRDFDataSource

A different registry interface is provided by the so-called chrome registry.
This interface allows the platform to recalculate its view of the chrome. That
includes refreshing overlay, skin, and locale information. It can also install
chrome packages, skins, and locales. The XPCOM pair providing this function-
ality is

@mozilla.org/chrome/chrome-registry;1 nsIXULChromeRegistry;1

Of particular interest to Microsoft Windows developers are two pairs of
XPCOM items:

@mozilla.org/winhooks;1 nsIWindowsRegistry
@mozilla.org/winhooks;1 nsIWindowsHooks

These interfaces provide much of the low-level access to Microsoft Windows
that the platform-specific operations need.

Separate from these registration-like interfaces are the many file and
network manipulation interfaces that are covered in Chapter 16, XPCOM
Objects, including interfaces that can unpack a ZIP archive.

All that remains is some observations about XPInstall’s own objects. The
Web-side objects InstallTrigger and InstallVersion have no useful
XPIDL interface definitions. They do happen to have Contract IDs registered
with XPCOM, along with the XPInstall infrastructure itself:

@mozilla.org/xpinstall/installtrigger;1
@mozilla.org/xpinstall/installversion;1
@mozilla.rg/xpinstall;1

There is no point in using these Contract IDs from a script since no use-
ful interfaces are available. The objects available in the install.js scripting
environment are not exposed to XPCOM either. In fact, in that second case,
not even Contract IDs exist for those objects.

AppDevMozilla-17 Page 743 Thursday, December 4, 2003 6:39 PM

744 Deployment Chap. 17

17.4 HANDS ON: BUNDLING UP NOTETAKER

This “Hands On” session bundles up the already working NoteTaker tool into
an XPI file that can be installed using XPInstall. In theory, the tool could run
directly from a remote Web server, but merging local content with server-
based overlays is a messy approach that defies common sense. In practical
terms, it may not even work. We’ll stick with a downloadable installation.

Although the running code for the tool is complete, several small bits and
pieces must be added. Our strategy for bringing them all together is the sum
of the issues brought to light in this chapter. That means

☞ Determine any names for the tool.
☞ Determine the content of release documents.
☞ Determine the content of the final tool.
☞ Create download pages, installation scripts, and support files.
☞ Create a final XPI file.

Let’s run through these tasks.

17.4.1 Release Preparation

First we pick suitable names for our tool:

☞ Text name. We choose “NoteTaker Web Notes”. We save the advertis-
ing and promotional hype for the Web page that will offer the tool.

☞ Package name. Throughout this book we’ve been using “notetaker”,
which we’ll stick to. That’s more than the eight characters that very old
Microsoft Windows computers support, but perhaps that’s a small loss
only.

☞ Registry application name. That’s “/Nigel McFarlane/Note-
Taker”. If this tool were absorbed into the main Mozilla Browser devel-
opment stream, then the name might be merely “NoteTaker”, which
would be appended to something like “/mozilla.org/Browser/”. In
that case, the full name would be “/mozilla.org/Browser/Note-
Taker”. There’s no such affiliation at this time.

☞ Version number. There’s a shortage of real-world testing for the tool so
far, but it appears to work. Call it version 0.9. That version is 0.9.0.0
when stated in full. Many enhancements and modifications are possible,
but they would bump the version over 1.0, probably.

We also review the software to be delivered.

☞ Baseline. Whatever is discussed in this book is the basis of this release
of the tool. I keep a copy of all code relevant to each chapter in a directory

AppDevMozilla-17 Page 744 Thursday, December 4, 2003 6:39 PM

17.4 Hands On: Bundling Up NoteTaker 745

under that chapter and do incremental backups daily and full backups
weekly and monthly. Since I’m finished on the 30th, tonight’s monthly
backup will freeze everything. My baseline will be source files for this
book (edition 1, author’s final draft), plus the final installable XPI file
plus a backup date. That backup will also contain any test files and test
data, which is handy.

☞ Footprint. The footprint for the NoteTaker tool is very small. It has only
three items: the chrome directory hierarchy; the Mozilla registries; and
the notetaker.rdf file in the current user profile.

☞ Target. The target for the software has several parts. Because of recent
changes to XPCOM objects (file-based streams), this release requires
platform version 1.4 final, minimum. It is tested on the Classic Browser
only, not on the Mozilla Browser. The application is portable, so the oper-
ating system doesn’t matter that much; however, there are bound to be a
few constraints we haven’t identified yet. The platform version and Clas-
sic Mozilla application suite will be the whole target, and we note that
future versions are not automatically supported.

That’s all the logistics required.

17.4.2 Creating Support Files and Scripts

The NoteTaker 0.9 release requires files above and beyond the application
code.

We’ll include a README.txt file for developers exploring the source code.
We’ll make one up based on the information in the last topic.

We’ll need a contents.rdf file for the notetaker/contents directory
and to register the NoteTaker package. We’ll use the one specified in Chapter
2, XUL Layout, and include the enhancements made in Chapter 12, Overlays
and Chrome.

We want to show a trivial example of locale support. For that we’ll need a
contents.rdf file and a DTD file for a sample locale. We’ll use the con-
tents.rdf file from Chapter 3, Static Content, and make up a trivial DTD
file—one that has no effect.

We also want to show a trivial example of skin installation. For that we’ll
need a contents.rdf file and a CSS file for a sample skin (theme). We’ll use
the contents.rdf file from Chapter 4, First Widgets and Themes, and make
up a trivial style sheet—one that has no effect.

Finally we’ll need the installation support. That amounts to an HTML
file and two scripts. The NoteTaker tool is small and almost entirely reliant on
the platform and the Classic Browser application. We expect the install scripts
to be lightweight rather then complex.

Because the HTML file might be displayed in any Web browser, it had
better be highly portable as shown in Listing 17.4.

AppDevMozilla-17 Page 745 Thursday, December 4, 2003 6:39 PM

746 Deployment Chap. 17

Listing 17.4 Download Web page for the NoteTaker tool.
<html>
 <head>
 <script src="deploy.js"/>
 <body>
 <h1>NoteTaker Download</h1>
 <p>The NoteTaker tool adds Web Notes to your Mozilla-based Web

browser. Web Notes are placed on top of displayed Web pages.
They hold information that you record for your own purposes.

 </p>
 <p>Only the Classic Browser, version 1.4, is supported. It is part of

the established Mozilla Web application suite. The standalone
Mozilla Browser is not yet supported.

 </p>
 <p>Download here:
 NoteTaker tool

0.9
 </p>
 </body>
</html>

The deploy() function follows the outline of Listing 17.1. In this case,
the full script is shown in Listing 17.5. Bullet-proof browser detection is a
lengthy matter; this code covers most common alternatives only.

Listing 17.5 XPInstall trigger script for the NoteTaker bundle.
function download(e) {
 if (! deploy())
 alert("NoteTaker 0.9 requires Classic Mozilla 1.4");
 e.preventDefault();
}

function is_moz_browser() {
 return (
 window.navigator &&
 window.navigator.userAgent &&
 window.navigator.userAgent.search(/^Mozilla\/5\.0/) != -1
);
}

function is_target() {
 var agent = window.navigator.userAgent;
 return (
 agent.search(/rv:1\.4/) != -1 && // matches
 agent.search(/Phoenix/) == -1 && // no match
 agent.search(/Firebird/) == -1 // no match
);
}

function is_app_version_ok() {
 var it = window.InstallTrigger;

AppDevMozilla-17 Page 746 Thursday, December 4, 2003 6:39 PM

17.4 Hands On: Bundling Up NoteTaker 747

 var result = it.compareVersion(
 "Nigel McFarlane/NoteTaker", "0.9.0.0");

 return (result == it.NOT_FOUND ||
 Math.abs(result) <= it.REL_DIFF);
}

function deploy()
{
 if (!is_moz_browser()) { return false; }
 if (!window.InstallTrigger.enabled() { return false; }
 if (!is_target()) { return false; }
 if (!is_app_version_ok() } { return false; }

 var xpi_container =
 { "NoteTaker Web Notes" : "notetaker.xpi" };

 with (window.InstallTrigger)
 install(xpi_container, null);
 return true;
}

There are no parameters required, so that part of the skeleton in Listing
17.1 is gone. If the user attempts to install to the wrong platform or the wrong
application, we complain. There is no error handler for the install() func-
tion because there is nothing we could do to rectify a failure. In a large organi-
zation, we might display an HTML page that allows a problem report to be
filed. We’ll rely instead on the install.js file issuing a useful user-oriented
complaint.

The three detection functions are simple. Any browser whose userAgent
starts with “Mozilla/5.0” is likely to be a mozilla.org browser. If the user-
Agent contains “Firebird” or “Phoenix”, then it’s the Mozilla Browser, not
the Classic Browser, which we don’t support. The is_app_version_ok()
test is lenient; it allows, for example, the installation of version 0.9.1.0 on
top of 0.9.0.0. This is a guarantee from the developer that going backward in
a release version is minor enough to be safe. That might be required if a new
release proves more defective than anticipated.

The final piece of the install system is the script install.js. Listing
17.6 is most of that script, based on Listing 17.2.

Listing 17.6 install.js script for the NoteTaker tool.
var TEXT_NAME = "NoteTaker Web Notes";
var REG_NAME = "/Nigel McFarlane/NoteTaker";
var VERSION = "0.9.0.0";
var rv = SUCCESS;

function prepare()
{
 initInstall(TEXT_NAME, REG_NAME, VERSION);

AppDevMozilla-17 Page 747 Thursday, December 4, 2003 6:39 PM

748 Deployment Chap. 17

 if (schedule_files() != SUCCESS) return getLastError();
 if (register_chrome() != SUCCESS) return getLastError();

 return SUCCESS;
}

rv = prepare();
if (rv == SUCCESS) {
 performInstall();
}
else {
 alert("Installation failed. (Error = " + rv + ")");
 cancelInstall(rv);
}

As for the install trigger script, the install.js script is simplified
from the skeleton of Listing 17.2. There are no parameters to check. We
assume that the install trigger script proceeds with the download only if
platform conditions are right. Because the NoteTaker tool is a browser
enhancement, we don’t have desktop menu items or icons or shortcuts to
add. NoteTaker is such a small tool that checking available disk space is
pointless. Because the tool is written entirely in JavaScript, we don’t have
any executables or binary libraries to manage either. All we need to do is
place the contents of the .XPI file correctly and to advise the platform that
new chrome content exists.

To do those few steps, we need to know the contents of the XPI. Looking
ahead to “Final Bundling,” we see that the XPI content is

install.js
notetaker.jar
extras/README.txt
extras/notetaker.rdf

The whole application resides in the notetaker.jar archive. Files in the
extras virtual directory won’t ever be used at run time. The README.txt file is
there for curious programmers to find and read; the notetaker.rdf file is
the initial copy of the user’s note database. It needs to be copied into the cur-
rent user profile.

Listing 17.7 shows the two missing functions from Listing 17.6. They
perform the required manipulation of the XPI file and of the chrome registry.

Listing 17.7 Deploying files and registering chrome from install.js.
function schedule_files()
{
 addFile(TEXT_NAME, VERSION, "notetaker.jar",
 getFolder("Chrome"), "notetaker.jar", true);

 addFile(TEXT_NAME, VERSION, "extras/notetaker.rdf",
 getFolder("Profile"), "notetaker.rdf", true);

AppDevMozilla-17 Page 748 Thursday, December 4, 2003 6:39 PM

17.4 Hands On: Bundling Up NoteTaker 749

 return SUCCESS;
}

function register_chrome()
{
 var jar_root = getFolder("Chrome", "notetaker.jar");

 registerChrome(PACKAGE | DELAYED_CHROME,
 jar_root, "content/notetaker/");
 registerChrome(SKIN | DELAYED_CHROME,
 jar_root, "skin/modern/notetaker/");
 registerChrome(LOCALE | DELAYED_CHROME,
 jar_root, "locale/en-US/notetaker/");
 return SUCCESS;
}

The second addFile() function call shows how any file path in an XPI
file can be matched to any path on the local file system. The getFolder() call
in the function register_chrome() shows how the top of the folder hierar-
chy inside the JAR file can be returned as an object. Both schedule_files()
and register_chrome() complete without touching the notetaker.xpi
file. Their addFile() and registerChrome() calls are scheduled for later
execution when performInstall() is called.

That is the whole of the install.js script.

17.4.3 Final Bundling

Having located or created all the required files, the notetaker XPI file can
finally be assembled. It must contain at least the install.js file (because it
is more than a skin or a locale), so a start is to create a ZIP archive containing
that one file.

The NoteTaker tool should be the main contents of the XPI file. It is a
neat and efficient arrangement to have the NoteTaker package in a single
JAR archive in the chrome. Such a file is faster to read from disk because it
is small. It is also easy to manage if the number of installed packages is
high. We’ll do that, and we’ll put that JAR archive inside the XPI install
archive for delivery. Unfortunately, JAR archives are very fiddly to set up for
two reasons.

In all chapters to date, the NoteTaker tool has resided under the folder
resource:/chrome/notetaker as a set of discrete files and subfolders. If
we delivered the package arranged this way, we could create the required XPI
file simply by zipping up a working NoteTaker folder, with an install.js file
added. A JAR archive, however, has its directory structure arranged differ-
ently to support fast access. Our installed NoteTaker packages look nothing
like the hierarchy that a JAR file requires:

Chrome test package JAR archive
notetaker/content <---> content/notetaker

AppDevMozilla-17 Page 749 Thursday, December 4, 2003 6:39 PM

750 Deployment Chap. 17

notetaker/locale/en-US <---> locale/en-US/notetaker
notetaker/skin/modern <---> skin/moder/notetaker

The only solution to this set of differences is to make a copy of the test
files from the chrome and rearrange them in a temporary folder hierarchy that
reflects the JAR convention. A systematic solution is to write a Perl, WSH, or
shell script that automates the rearrangement process. That second hierarchy
can then be zipped up; the JAR file results.

A second wrinkle with JAR files is that the order of the files in the
archive matters if the archive is large. The most time-critical files should be
near the start of the archive, where less effort is required to find them. To
achieve this, put the package files in a hierarchy matching the JAR convention
as before. Create a text file that lists the files in the order required, and pass
that list to a suitable command-line zip tool like pkzip (Microsoft Windows) or
zip(1) (UNIX). It’s possible to create the JAR file correctly by adding files
and folders to it a piece at a time from the desktop, but that is quite a tedious
process.

Figure 17.9 shows a JAR file for the NoteTaker package that has some
trivial ordering. The content part of the package is put first because it is used
the most. In fact, the skin and locale files in this package are just placeholder
files that illustrate where such things might be put. For such a small applica-
tion, this ordering is probably of no benefit.

We now have two files for the final XPI: install.js and note-
taker.jar. To these we can add a README file and the beginning note-
taker.rdf file. The final XPI file (in which ordering is not important unless
digital signatures are present) appears in Figure 17.10.

Nothing more is required except to upload the HTML page with the
download link and the XPI file to a Web site. That concludes the NoteTaker
running example in this book.

Fig. 17.9 JAR archive holding the NoteTaker package.

AppDevMozilla-17 Page 750 Thursday, December 4, 2003 6:39 PM

17.5 Debug Corner: Logging and Testing 751

17.5 DEBUG CORNER: LOGGING AND TESTING

The logComment() method of the Install object is the only way to produce
diagnostic messages from the install.js file, unless alert() is considered.
Messages are logged to the install.log file, which is stored in the top direc-
tory of the platform install area.

A common source of problems in the install process is poor matching
between hierarchical path names in the XPI file and hierarchical path names
on the local file system. If the two are not stated correctly, or do not match cor-
rectly, then zero files might be copied by that step of the installation process.
This can easily be detected by examining the install.log installation log
and by checking the file system.

If nothing (or the wrong thing) is happening, a good debugging strategy
is to simplify the installation process. Remove any digital signatures, and then
remove any code that performs version checks and balances. Start with an XPI
file whose contents need only to be copied into the chrome. Concentrate on
ensuring that the archive’s subtrees of files are installing to their correct loca-
tions. If there is no fancy version checking done, then the same XPI file can be
installed over and over again harmlessly—there is no need to uninstall
between installs. In simple cases, it is also safe to delete custom portions of the
chrome by hand. Don’t ever delete any of the standard JAR files that come
with the platform.

If overlays are included in the application, beware of corrupting the over-
lay database. If any of the overlays have syntax error or incompatibility prob-
lems, the platform or an initial window may fail to start, and the installation
will be useless. To fix this, delete the overlayinfo database, the installed
files, the chrome.rdf file, and the line items added to installed-
chrome.txt. Then restart.

In general, it is recommended that any install testing be done on a sepa-
rate installation of the platform to that used for everyday purposes. That sepa-
rate installation can be a “crash and burn” area where experiments can be
freely undertaken. On Microsoft Windows, a separate computer is even better
because there is only one central Mozilla and Window registry per host. It is

Fig. 17.10 XPI archive holding the full NoteTaker distribution.

AppDevMozilla-17 Page 751 Thursday, December 4, 2003 6:39 PM

752 Deployment Chap. 17

also possible to corrupt the Windows registry from an XPInstall script if you
try hard enough.

17.6 SUMMARY

The XPInstall subsystem of the Mozilla Platform has many faces and can be
exploited in many ways. Application programmers who don’t want to learn
how to build and package the platform itself use only a few of these faces.

The most attractive of the XPInstall technologies is remote install.
Remote install holds the promise of delivering to users and customers service-
provision software that has a low cost of distribution and the possibility of
ongoing updates.

The mostly portable XPInstall system highly complements the other por-
table aspects of Mozilla applications. Rather than dividing the world into
Visual Basic, AppleScript, and Perl, Mozilla-based applications can be uni-
formly deployed and used across most popular operating system platforms.

Application programmers can veer toward custom installs or native
installs once their applications gain some maturity and a user base. The
XPCOM system provides enough features that a separate installation system
can be written on top of the platform if required. The only part of the platform
that is difficult to reproduce without C/C++ code is the native installer stubs
that first boot the platform into being.

With XPInstall covered, this book’s overview of Mozilla technologies is
complete. Today the Mozilla Platform is a feature-rich and practical develop-
ment environment. It is a highly visible and substantial Open Source project,
and its future is certainly bright. Good luck with your Mozilla work.

AppDevMozilla-17 Page 752 Thursday, December 4, 2003 6:39 PM

