

Class
libraries

XPIDL
definitions

JSlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

JJJJJJJJJJJJJJJJJJJJa aJavaJa aJa aSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc pppppppppppppppppppppppp

RDFlib

RDF
Components

AppDevMozilla-11 Page 360 Thursday, December 4, 2003 6:34 PM

361

C H A P T E R

11

RDF

XBL
definitions

Keyboard

Desktop
themes

Fonts

Default
CSS

W3C
standards

DTDs

Skins

Mouse

SJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScri tJavaScriptJa aSc ptJa aSc ppppppppppppppppppppppppiiiii ti ti ti ti ti ti ti ti ti ti ti ti ti ti tcri tcriptc ptc pppppppppppppppppppppppp

TemplatesOverlays

Overlay
database

DOM

Widgets

GUI
toolkits

RDF

AppDevMozilla-11 Page 361 Thursday, December 4, 2003 6:34 PM

362 RDF Chap. 11

This chapter explains the basics of RDF—a significant information format
used by the Mozilla platform. RDF is a W3C XML standard. It is one of the
more unusual technologies in Mozilla, but correctly applied it is both powerful
and convenient.

Few applications can do useful work without externally supplied infor-
mation, and Mozilla applications are no different. RDF is a good way to supply
small amounts of reusable information. The Mozilla platform can process that
RDF information. The Mozilla platform is also partially built out of RDF infor-
mation. The everyday operation of most Mozilla-based applications depends
on RDF building blocks.

This chapter explains the underlying concepts, syntax, and a little about
platform support. That is quite a lot by itself. This chapter is mostly RDF
introduction, just as Chapter 5, Scripting, introduced JavaScript. Chapters 12,
Overlays and Chrome; Chapter 14, Templates; and Chapter 16, XPCOM
Objects, expand greatly on applications of RDF.

Most computer technologies can be picked up with a few glances. That
strategy doesn’t work if you meet something that is a bit new and unusual.
In such a case, you need to slow down and absorb the material more system-
atically. RDF is such a technology. It is also a gateway to all the fancier fea-
tures of Mozilla. Pull up a comfy chair, pour your drink of choice, and
discover this technology carefully. RDF can be fascinating, expressive, and
thought-provoking.

What is RDF? Well, there are many kinds of information. One arbitrary
set of information categories might be

content

,

data

,

and

facts

. Each is pro-
cessed in a different way. Content-like information tends to be processed as a
whole: Display this HTML page; play that music. Datalike information tends
to be processed piecewise: Add this record to a database; sort this list of
objects. Factlike information is less commonly seen. Facts are statement-like
data items. Facts are used by ordinary humans in their daily lives, by special-
ist academics, and by technologists called knowledge engineers. Some every-
day examples of facts are

I went to the shop.

The moon is made of green cheese.

Tom, Dick, and Harry are brothers.

This function is never used.

Every person must find their own path through life.

It is not important whether these facts are true when tested against the
real world. It is not important where they came from or whether anyone
agrees with them. The important thing is that it is possible to write them
down in some useful and general way (in this case, in English). Writing facts
down moves them from your head to a formal specification where they can be
used. It is only

after

 they are captured that you might reflect on their impor-

AppDevMozilla-11 Page 362 Thursday, December 4, 2003 6:34 PM

 RDF 363

tance or correctness. The modeling in the “Hands On” session in this chapter
shows one way that facts can be scrutinized.

The world, including computer technology, is soaked with factlike infor-
mation. Nearly all of it is expressed in ways that are not specifically designed
for fact processing. Generalist programmers rarely deal with specialist fact-
processing systems, even though their code is full of implied facts. That
implied information is merely used to get other things done. RDF, on the other
hand, is an explicit fact-writing system.

A very primitive, trivial, and non-RDF example of a factlike system is the
Classic Mozilla bookmarks file, stored in the user profile. Here is a snippet of
that file:

<A HREF="http://www.mozilla.org/"
 ADD_DATE="961099870"
 LAST_VISIT="1055733093"
 ICON="http://www.mozilla.org/images/mozilla-16.png"
 LAST_CHARSET="ISO-8859-1">
 The Mozilla Organization

This code states information about a URL: the date added; the date last
visited. These XML attributes can be seen as plain data or as facts about a
URL. Although facts can be expressed in plain XML (or ancient semi-HTML,
as shown), there is no hint in those syntaxes what a standard form of expres-
sion should be. RDF exists to provide that formality. The bookmarks file is not
written in RDF because of backwards-compatibility issues.

In this bookmark example, many industries call the stated information

metadata

. The term metadata is supposed to help our minds separate the data
a URL

represents

(content) from the data that is

about

a URL (a description).
Unfortunately, if a programmer writes code to process the bookmark file, the
only interesting information is the so-called metadata—the substance of that
file, which is its content. To the programmer, the metadata is therefore the
data to be worked on. This is a very confusing state of affairs when trying to
learn RDF. One person’s metadata is another’s data.

In short, the term

metadata

 is overused. To a programmer, the only thing
in RDF that should be considered metadata is type information. Everything
else is just plain data or, preferably, plain facts. No facts are special; no facts
have any special “meta” status.

RDF has its own terminology. For example, here is a fact expressed in
RDF:

<Description about="file:///local/writing/" open="true"/>

In simple terms, this line says that the folder

/local/writing

 is open.
A more precise RDF interpretation is: “There exists a subject (or resource)
named

file:///local/writing

, and it has a predicate (or property) named

open

, whose object (or value) is the anonymous literal string

"true"

. That is
rather awkward language, and we need to explore what it all means.

AppDevMozilla-11 Page 363 Thursday, December 4, 2003 6:34 PM

364 RDF Chap. 11

Finally, RDF is not a visual language. Mozilla cannot lay it out as for
HTML or XUL. If display is required, RDF must be hooked up to XUL. RDF
itself is silently processed inside the platform. Some of this internal processing
happens automatically without any programmer effort. The concept of a

data
source

 is central to all that processing.
The NPA diagram at the start of this chapter shows that RDF support

extends from the very front to the very back of Mozilla’s architecture. At the
back are the precious XPCOM components that the application developer can
use for power manipulation of RDF content. A convenient set of scripts also
exists to make this job easier. Those scripts are called RDFlib here, but they
are really part of the JSLib library. RDF technology acts like a bridge between
front and back ends of the platform. This is because there is direct support for
RDF in both XUL and in the scriptable AOM objects. The two ends are auto-
matically connected. The template and overlay systems, both of which manip-
ulate XUL, also depend on RDF.

Unfortunately, Mozilla is only version 1 and RDF processing could be
faster. Don’t use RDF for data with millions of records; it is not a database.
Performance is more than adequate for small data sets.

11.1 M

OZILLA

 U

SES

OF

 RDF

Here is a taste of what RDF can be used for.
Classic Mozilla uses RDF extensively in the construction of the Classic

application suite. Some of those uses involve RDF files stored in the file sys-
tem, and some do not. Uses that do create RDF files are

☞

User choices for window arrangement and position

☞

Content of the Mozilla Sidebar

☞

Manifest files for JAR archives, chrome packages, skins, and locales

☞

Overlay database for application overlays

☞

Search types for the Smart Browsing Navigator feature

☞

Searching and Viewing states in the DOM Inspector

☞

The Download Manager

☞

MIME types

In addition to these uses, Netscape 7 creates and uses many custom RDF
files. Enhancements to the Classic Browser, such as those at

www.mozdev.org

,
might also manipulate RDF files.

RDF is a data model as well as a file format. Mozilla’s platform infra-
structure uses RDF facts in a number of places, without necessarily reading
any RDF documents. This infrastructure might convert a non-RDF source into
RDF for internal processing. Some places where the RDF model is important
are

AppDevMozilla-11 Page 364 Thursday, December 4, 2003 6:34 PM

11.2 Learning Strategies for RDF 365

☞

The XUL Overlay system described in Chapter 12, Overlays and Chrome

☞

The XUL Template system described in Chapter 14, Templates

☞

Directories and files in the local file system

☞

Bookmarks

☞

Web page navigation history

☞

Downloadable Character Set support

☞

The Mozilla registry

☞

The What’s Related feature of the Sidebar

☞

Currently open windows

☞

The address book

☞

Email folders

☞

Email folder messages

☞

Email SMTP message delivery

☞

Email and Newsgroup accounts

☞

Sounds to play when email arrives

RDF is not used for any of the following tasks: permanent storage of
Internet connections and subscriptions; databases of newsgroups and of news-
group headers; databases of email folders and of email items; or the platform’s
Web document cache.

11.2 L

EARNING

 S

TRATEGIES

FOR

 RDF

Learning RDF is like flying. It’s tricky to get off the ground, but once you’re
away, it’s great. Why should this be so, and what can be done to make it eas-
ier? Here are some thoughts.

XML syntax is quite verbose. By the time your eye and brain absorb all
the text and punctuation in an example RDF file, it’s hard to focus on the big-
ger picture. Even the W3C RDF standards people have acknowledged this
problem. Use an informal syntax at design time, and only use the official RDF
syntax during code and test. This chapter uses informal syntax everywhere
except in real code.

RDF itself is frequently confused with its applications. The nature of
RDF is one thing; a purpose to which RDF is put is another thing entirely.
Reading about content management when trying to learn RDF is of no use.
That’s like trying to understand a database server by learning an accounting
package. It’s best to learn the fundamental technology first.

Well-known explanations of RDF are aimed at many different audiences.
When reading someone else’s explanation, ask yourself: Was that explanation
suited to me? Don’t frustrate yourself with an explanation that doesn’t suit
your purpose or your mindset.

AppDevMozilla-11 Page 365 Thursday, December 4, 2003 6:34 PM

366 RDF Chap. 11

RDF in its full glory is also quite big, even though it only has about ten
tags. It is equal to several XML standards all at once. RDF runs all the way
from simple data to schemas and meta-schemas. That is too much to absorb in
one quick reading. To experiment with RDF, practice with very simple tasks to
start with. Gain confidence with the basics before trying to compete with Ein-
stein. It’s just like any big technology—don’t get run over.

Finally, RDF presents an unusual learning trap for those who need abso-
lute certainty. The concepts behind RDF are very open-ended. The RDF philos-
ophy goes on forever with many subtleties and twists. Questions about the
meaning of advanced features in RDF have few real answers. Take it at face
value, and just use it.

Even given all that, RDF is no big deal. There are tougher XML stan-
dards, like OWL. If you have any Prolog or AI training, then RDF will be triv-
ial to pick up.

11.3 A T

UTORIAL

ON

 F

ACTS

The basic piece of syntax in XML and RDF is the element, which is frequently
expressed as a tag. The basic concept unique to RDF is the fact. A fact does
equal one element, but only sometimes equals one tag. What is a fact, and
what can you do with one? That is first up. Experts on deductive predicate
logic need only glance though this material.

A programmer can glimpse the world of facts through familiar technolo-
gies that are a little factlike. Two examples are SQL and

make

. Manipulating
records (rows) in a relational database via SQL’s INSERT, DELETE, and par-
ticularly SELECT is a little factlike. Retrieving rows with a query is like
retrieving facts. Alternatively, stating file dependencies in a

make(1)

 makefile
and letting

make

 deduce what is old and needs re-compilation is a little fact-
like. A makefile dependency rule is like a fact about files or targets. Another
example of a configuration file that is factlike is the rather unreadable UNIX

sendmail.cf

 configuration file.
What these systems have in common is that the preserved data items are

stated independently and are multivalued—each fact has several parts (col-
umns/targets/patterns in the respective examples). Working with a fact means
working with some processing engine, like a database server,

make

 program,
or email routing system. That processing engine presents or crunches facts for
you.

11.3.1 Facts Versus Data Structures

Facts are used to describe or model data. Programmers typically model data
using data structures. Programmers who are also designers might also model
data using tools like data dictionaries or UML diagrams.

AppDevMozilla-11 Page 366 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 367

Perhaps the easiest way to see how facts differ from traditional data is to
write one down. Suppose a boy is at the beach with a dog and a ball. Those
four real-world objects (boy, beach, dog, ball) can be stored together as a data
structure, or as a fact. Consider first traditional data structures. In Java-
Script, this information could be stored as an object:

{ boy:"Tom", dog:"Spot", ball:"tennis", beach:"Waikiki" }

This is also near the syntax for a suitable C/C++

struct

. Alternately, this
information could be stored in a JavaScript array:

["Tom", "Spot", "tennis", "Waikiki"]

Fortunately, all the data items consist of strings, which suit the array
concept. This syntax can also be used for a C/C++ array. Perl, on the other
hand, has lists:

("Tom", "Spot", "tennis", "Waikiki",)

In general, there are many ways to write the same bits of data, and each
way has its benefits and restrictions. Using an

object

 or

class

 implies that all
the data items (object properties) share the same owner and have a type each.
Using an

array

 implies that the data items are numbered and of the same
type. Using a

list

 implies that the items are ordered. Programmers choose
whichever is best for a given problem.

This information can also be written as a fact, using a

tuple

. A tuple is a
group of

N

 items, where

N

 is any whole number. The number of items is usu-
ally fixed per tuple, so a tuple can’t grow or shrink. The word tuple comes from
the ordered set of terms: single, double, triple, quadruple, quin

tuple

, sex

tuple

,
sep

tuple

, oc

tuple

, and so on. Few computer languages support tuples directly
(SQL’s INSERT is one), so mathematical notation is used as syntax. There are
many different mathematical notations. For example, one briefly used in the
RDF standards is

< Tom, Spot, tennis, Waikiki >

That notation, and many others that are similar, can be easily confused
with XML tag names. We use

<- Tom, Spot, tennis, Waikiki ->

Each of the four words in the tuple is called a

term

. Later on, these
“crow’s feet” brackets will remind you that certain tuples should have three
terms only. No quotes are required because this is not a programming lan-
guage. The terms in a tuple are ordered (like a list) but not numbered (unlike
an array) and do not have fixed types (unlike a

struct

 or class). The meaning
of a tuple is just this: These terms are associated with each other. How they
are associated is not important in the general case.

The use of angle brackets < and > hints at the big difference between
tuples and other data structures. That difference is that a tuple is a declaration
and a statement, like an XML tag or a class definition. The data structure

AppDevMozilla-11 Page 367 Thursday, December 4, 2003 6:34 PM

368 RDF Chap. 11

examples are merely expressions. An expression can be calculated and put into
a variable. You can’t put a statement into a variable. A statement just exists.

When a tuple statement is processed, it simply makes the matching fact
true. If a tuple for a fact exists, the fact is said to be true. If the tuple doesn’t
exist, the fact is said to be false. This truth value is not stored anywhere; it is
calculated as required. This arrangement lets the programmer imagine that
all possible facts can exist. This is convenient for computer programming
because you can process what you’ve got and conclude that everything else is
untrue (false).

The example tuple we created makes this fact true: “Tom, Spot, tennis,
and Waikiki are associated with each other.” It is true because we’ve managed
to write it down. Note that the tuple we’ve created contains most, but not all,
of the original statement. For example, it doesn’t state that Tom and Spot were
at Waikiki at the same time. It is normal for any information-gathering exer-
cise to capture the most important details first.

This example tuple has four terms in it. It could have any number of
terms. To keep the example simple, we’ll now reduce it to just a boy, his dog,
and a ball—three terms. Where they happen to be (at a beach or otherwise) is
no longer important.

Suppose that this simpler example needed to be captured more completely.
A standard modeling approach is to start by identifying the nouns. From there,
objects, classes, entities, tables, or types can be inferred. This can also be done
for facts. A JavaScript example using objects is shown in Listing 11.1.

Listing 11.1

Objects modeling boy and dog example.

var boy = { Pid:1, name:"Tom", Did:null, Bid:null };
var dog = { Did:2, name:"Spot", Pid:null, Bid:null };
var ball = { Bid:5, type:"tennis", color:"green" };

boy.Did = dog; // connect the objects up
boy.Bid = ball;
dog.Pid = boy;
dog.Bid = ball;

Pid, Did, and Bid are short for Person-id, Dog-id, and Ball-id, respec-
tively. These ids are used to make each person unique—there might be two dif-
ferent dogs, or Tom might have five green tennis balls. In addition to the base
objects, some effort is made to link the data. Both Tom and Spot are concerned
with the same ball; Spot is Tom’s dog, Tom is Spot’s person.

This modeling can be repeated using tuples, as shown in Listing 11.2.

Listing 11.2 Tuples modeling boy and dog example.
<- 1, Tom, 2, 5 ->
<- 2, Spot, 1, 5 ->
<- 5, tennis, green ->

AppDevMozilla-11 Page 368 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 369

As for relational data, links (relationships) between nouns are repre-
sented with a pair of identical values. Here we use numbers as identifiers
instead of the object references used in Listing 11.1. In Listing 11.2, there is a
pair of 1s, a pair of 2s, and two pairs of 5s (the 5 in the third tuple is matched
twice). Tuples obviously have a compact notation that is simpler to write than
3GL code. That is one of their benefits. Basic tuples have a naming problem
though—there are no variable names to give hints as to what each tuple is
about. So the tuple syntax is sometimes harder to read. Nevertheless, both
relational databases and facts are based on the tuple concept.

These two modeling attempts, object-based and fact-based, have their
uses, but overall they are not very good. The starting scenario is: “Tom and his
dog Spot play with a ball.” The results of the two modeling attempts are shown
in Table 11.1.

Table 11.1 cheats a bit because the purpose of each tuple and object is
assumed. The problem with both of these models is that priority is given to the
things in the scenario (the nouns). The relationships between the things are a
far distant second. Both models have lost a lot of relationship information. It
is not captured that Tom owns Spot, or that Spot plays with the ball.

The traditional solution to this loss is to add more objects, or more tables,
or more whatever. In the world of facts, the solution is to make every existing
relationship a term in a tuple. Such a tuple is called a predicate.

11.3.2 Predicates and Triples

A special group of tuples are called predicates. Since all tuples are facts, pred-
icates are also facts. Predicates contain terms holding relationship informa-
tion as well as terms holding simple data items. The naïve way to add this
relationship information is shown in Listing 11.3, which updates Listing 11.2.

Table 11.1 Example information held by object and tuple models

Object model Tuple model

There is an object for Tom. There is a tuple for Tom.

There is an object for Spot. There is a tuple for Spot.

There is an object for a green tennis ball. There is a tuple for a green tennis ball.

Tom uses-a Spot. Tom, 1, 2, and 5 are associated.

Spot uses-a Tom. Spot, 1, 2, and 5 are associated.

Tom uses-a green tennis ball. Green tennis ball and 5 are associated.

Spot uses-a green tennis ball.

(More information can be deduced.) (More information can be deduced.)

AppDevMozilla-11 Page 369 Thursday, December 4, 2003 6:34 PM

370 RDF Chap. 11

Listing 11.3 Addition of relationships to boy and dog tuples.
<- 1, Tom, owner, 2, plays-with, 5 ->
<- 2, Spot, owned-by, 1, plays-with, 5 ->
<- 5, tennis, green ->

In this example the relationships have the same status as the other
information. It is almost possible to read the first tuple as though it were a
sentence: “Id one (Tom) is owner of id two (Spot) and plays with id five (a
ball).” Clearly there is more specific and complete information here than in
either of the attempts in Table 11.1. This process is similar to database entity-
relationship modeling.

Here is some technical jargon: Tuples containing relationship information
are called predicates because one or more terms in the tuple predicates a rela-
tionship between two other terms in the tuple. The relationship term by itself is
also called a predicate because it is responsible for the predication effect. This is
confusing unless you work out the context in which “predicate” is used. Either it
refers to a whole tuple, or just to a particular term in a tuple. Here we try to use
it only for the particular term. We use tuple, triple, or fact for the set of terms.

Listing 11.3 is still not ideal because some tuples have more than one
relationship term. If a tuple contains more than one predicate term, then the
processing of facts is not simple. Some repair of this example is therefore
needed. Listing 11.4 splits the tuples up so that there is at most one predicate
term per tuple.

Listing 11.4 Single predicate boy and dog tuples.
<- 1, Tom, owner, 2 ->
<- 1, Tom, plays-with, 5 ->
<- 2, Spot, owned-by, 1 ->
<- 2, Spot, plays-with, 5 ->
<- 5, tennis, green ->

At the cost of a little duplication, the predicates are now separated, and
the tuples are perhaps even simpler to read. In database design, an equivalent
process is called normalization. In software design, it is called factoring. In all
cases, it is a divide-and-conquer information-reduction strategy. This refine-
ment process is not complete, however. More can be done. These tuples can be
cleaned up so that every tuple has exactly three items (N = 3). Listing 11.5
does this cleanup.

Listing 11.5 Predicate triples for boy and dog example.
<- 1, is-named, Tom ->
<- 1, owner, 2 ->
<- 1, plays-with, 5 ->
<- 2, is-named, Spot ->
<- 2, owned-by, 1 ->

AppDevMozilla-11 Page 370 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 371

<- 2, plays-with, 5 ->
<- 5, type-of, tennis ->
<- 5, color-of, green ->

All these tuples are now triples. Triples with a predicate item are a well-
understood starting point for all factlike systems. Using predicate triples is
like using first normal form for a database schema (“every table has a unique
key …”) or identifying nonvalue classes in an OO design (“All classes with
identity…”). When thinking about facts, start with predicate triples (“A fact
has three terms …”), not with general tuples.

Note that it is easy to get carried away with predicates and relationships.
The last two triples in Listing 11.4 have very weak relationships. Tennis and
green are more like simple descriptive properties than first-class data items
like persons and dogs. Just as you can have too much normalization or too
many trivial objects, you can have too many trivial facts. If trivial facts are the
interesting part of your problem, however, then use them freely.

Because triples are so widely used, their three data items have formal
names. The relationship-like item is called the predicate, as before. The first
data item is called the subject, and the third data item is called the object. This
use of the term “object” derives from the grammar of spoken language not
from technology engineering. The answer to the question “Which of these three
is a triple about?” is a matter of personal philosophy. The most common
answer is that it is about the subject. In Listing 11.5, the predicate data items
have been chosen so that the subject always comes first. That is a convention
you should always follow.

Finally, facts that are predicates can be written in a number different
ways. For example, in the Prolog computer language, they can be written:

predicate(subject, object)
plays-with(1,5)

Alternately, in Lisp or Scheme, they can be written:

(predicate subject object)
(plays-with 1 5)

Predicates can also be written in English:

subject predicate object
1 plays with 5

And, of course, using RDF, predicates can be written in XML. One of several
options is to use a single tag:

<Description about="subject" predicate="object"/>
<Description about="1" plays-with="5"/>

To write down a predicate in convenient shorthand, the informal tuple
notation of this chapter can also be used, or the punctuation can be stripped
away, leaving the simple N-Triple syntax used by some RDF experts:

AppDevMozilla-11 Page 371 Thursday, December 4, 2003 6:34 PM

372 RDF Chap. 11

 tuple: <- subject, predicate, object ->
N-Triple: subject predicate object

If you prefer to stick to real-language syntax, then the simplest and
clearest notations are those of Prolog and Lisp, which have been used for
decades for fact-based processing. The alternative is RDF itself.

11.3.3 Three Ways to Organize Facts

So far, all that has been achieved in this tutorial is to identify what a good for-
mat for a fact is. How are you to store such facts in a computer? There are sev-
eral ways to do so.

The first way to store facts is as a set of independent items. In relational
technology that means as separate rows in a three-column table; in object
technology, as a collection of items, say in a Bag or Set; and in plain data struc-
ture technology, as a simple list. Listing 11.5 is a written version of such a sim-
ple set.

Such a simple approach is very flexible. More facts can be added at any
time. Facts can be deleted. There is no internal structure to maintain. Such a
solution is like an ordinary bucket (a pail). You can pour facts into and out of
the bucket as you please.

One of the chief benefits of using a bucket is that fact sets can be trivially
merged. You can pour facts into the bucket from several sources. The result is
just one big collection of facts. When facts are poured out of the bucket, all facts
appear together, regardless of origin. This is just a simple union of two sets.

The second way to store facts is to recognize that there are links between
them that create an overall structure. This structure can be stored as a tradi-
tional data structure, with pointers or references between the tuples. Because
the links are quite general, the structure is a graph, rather than a simple tree
or list. Recall that a graph is the most general way to represent data. Graphs
have edges (lines) and vertices (junction points or nodes), and that’s all. Both
edges and vertices might be labeled. Such a graph can also be displayed visu-
ally. Figure 11.1 shows the links between facts from Listing 11.5.

1 plays-with 5

1 is-named Tom

2 owned-by 11 owner 2

2 is-named Spot

2 plays-with 5

5 color-of green

5 type-of tennis

Fig. 11.1 Graph of boy-dog tuple links.

AppDevMozilla-11 Page 372 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 373

This is a rather complex diagram for a system consisting of only a boy, a
dog, and a ball. In fact, this diagram is six lines short; there should be three
more “1” lines and three more “2” lines, for a total of 18 lines. A simplification
strategy is to add intersection points by breaking out the ids from the tuples.
Figure 11.2 shows this improved diagram, which reduces the total line count
from 18 to 12.

The strategy of breaking out items from the tuples seems to have
worked a little, so let us continue it. All of the items can be broken out, not
just those with identifiers. Furthermore, it can be seen that some tuples are
opposites (owner and owned-by, in this example). Such duplication can be
removed by giving a line a direction. Follow an arrow one way for one predi-
cate; follow it the reverse way for the opposite predicate. Figure 11.3 shows
these improvements.

As a final improvement, note that every predicate has exactly one arrow
in and one arrow out. The predicate might as well be used as a label for the
arrow that passes through it, and save some boxes. That last step is done in
Figure 11.4, which also slightly reorganizes the left side of the diagram.

1 plays-with 5

1 is-named Tom

2 owned-by 11 owner 2

2 is-named Spot

2 plays-with 5

5 color-of green

5 type-of tennis

1

5

2

Fig. 11.2 Reduced graph of boy-dog tuple links.

plays-with

is-named

owner

is-named

plays-with

color-of

type-of

1

5

2

Tom

Spot

tennis

green

Fig. 11.3 Much reduced graph of boy-dog tuple links.

AppDevMozilla-11 Page 373 Thursday, December 4, 2003 6:34 PM

374 RDF Chap. 11

The predicate relationships in Figure 11.4 are very clear. There are
peripheral predicates that merely add information to a given identifier (is-
named, type-of, colour-of), and more critical predicates (plays-with,
owner) that say something about the relationships between the identifiers
under scrutiny. The decision to use an identifier for each real-world thing
being modeled (decided in Listings 11.1 and 11.2), and to focus on the identi-
fier in the diagram (done in Figure 11.2) have both paid off. Those identifiers
have turned out to be vital for diagramming purposes.

The graph in Figure 11.4 follows the official RDF graph notation. Circles
or ellipses are used for identifiers, and squares are used for literal values. A
better system for identifier and predicate names is needed, though. We can use
URLs as identifiers. That will come shortly.

The benefit of a graph representation of RDF data is that scripts can nav-
igate intelligently through the set of facts, using or ignoring each connection,
as the need determines.

There is a third way to organize facts, which is often used in Mozilla RDF
documents. Drop all the facts onto a kitchen table randomly. Now take a nee-
dle and thread and run the thread through any terms that are relevant to a
given topic. If you need to know about that topic, just pick the thread up and
those terms and their related facts are lifted out from the full set. Continuing
the boy and dog example, Figure 11.5 shows an imaginary line that connects
all the number identifiers.

There is no syntax in RDF for implementing such lines. Instead, this effect
is achieved with special RDF tags called containers. Since RDF can only repre-
sent facts, containers are made out of facts. Any term of a fact can appear in one
or more containers, although the subject term is the common choice. The other
fact terms are stored as usual. Figure 11.6 is the same as Figure 11.5, except
that it shows the container expressed in the same way as the other facts.

The term holding the word Container is the start point for the container.
The only thing that distinguishes a container from other facts is the way predi-
cates are named. Each fact that represents one contained item is automatically
given a number as a name. Unlike the numbers the example has used as place-
holders for subject and object identifiers, the numbered predicates used by a
container really are expressed using numbers in the RDF syntax.

plays-with

is-named

ow
ner

plays-with

color-of

type-of
1

5

2

Tom

Spot

tennis

green
is-named

Fig. 11.4 RDF graph of boy-dog tuple links.

AppDevMozilla-11 Page 374 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 375

Containers are simple structural mechanisms. They also support query-
ing a fact set. An application programmer can use a container as a partial
index, or as an iterator, or as a relational view. A given RDF document can
have unlimited containers.

To summarize, facts can be stored as a simple set of triples or as a com-
plex graph that revolves around identifiers. In between is the partial structure
of a container, which is like drawing a travel route on a map. A set of facts is
called a fact store. Complex fact stores are called knowledge bases, just as a
data collection is a database. Simple RDF documents are fact stores; RDF doc-
uments that include RDF schema tags are knowledge bases.

11.3.4 Facts About Facts

Facts can describe other facts. Knowing this is sometimes useful, but only for
special applications. Most of the time it’s better to ignore it. Some of the more
standard effects are described here. If your brain is full by now, skip this sec-
tion, take a break, and resume with the next section. Otherwise, onward.

plays-with

is-named

ow
ner

plays-with

color-of

type-of
1

5

2

Tom

Spot

tennis

green
is-named

Fig. 11.5 RDF graph showing like terms connected by a line.

plays-with

is-named
ow

ner

plays-with

color-of

type-of
1

5

2

Tom

Spot

tennis

green
is-named

Container

#1 #2
#3

Fig. 11.6 RDF graph showing like terms connected by a container.

AppDevMozilla-11 Page 375 Thursday, December 4, 2003 6:34 PM

376 RDF Chap. 11

In the boy and dog example, many extra facts that could be stated explic-
itly are implied by the stated facts. Some of these extra facts are the result of
design observations, and some are almost automatically true. The following
examples are based on this single fact:

<- 1, is-named, Tom ->

One set of design observations that yields extra facts is type information.
A programmer developing a fact set can choose to add types. For example,
these facts might follow from the preceding single fact:

<- 1, is-type, integer ->
<- Tom, is-type, string ->

These facts give a type to the subject and object data items in the earlier
fact. These facts provide extended information about another fact. They are
equivalent to a data dictionary or a schema. Unlike database and OO design,
these facts are not separate in any sense to other “plain” facts. They can be
stored with any other facts. Such facts might be used by a Mozilla/RDF appli-
cation that is a data modeling tool, which needs to manipulate schemas.

To repeat the remarks at the start of this chapter, many industries call
this stated information metadata. The term metadata is supposed to help our
minds separate the data the URL represents from the data that is about the
URL, as in the example. Unfortunately, if a programmer writes code to process
a file of so-called metadata, the only interesting information is the metadata
itself—the contents of that file. To the programmer, the metadata is the data.
This is a very confusing state of affairs, not only because one person’s meta-
data is another person’s data but also because RDF is about facts, and not
really about plain data at all.

In short, the term metadata is overused. To a programmer, the only thing
in RDF that should be considered as metadata is type information. Everything
else is just plain data or, preferably, plain facts. No facts are special; no facts
have any special “meta” status.

A second set of facts are these three, which are automatically true:

<- example-fact, subject, 1 ->
<- example-fact, predicate, is-named ->
<- example-fact, object, Tom ->

Here, example-fact means the preceding example fact. The subject
predicate says that 1 is the subject for that fact. The predicate predicate
says that is-named is the predicate for that example fact. In other words,
these facts are facts about the example fact. This process is called reification
(from reify), which loosely means “exposing the facts about this fact so that we
can work on it.”

Reification is similar to extracting metadata, but far messier. To see why,
consider this problem. Earlier it was said that all stated facts are true, and all
unstated facts are false. Does an example fact without the first reification fact
above have a subject or not? If the reification fact doesn’t exist, then the

AppDevMozilla-11 Page 376 Thursday, December 4, 2003 6:34 PM

11.3 A Tutorial on Facts 377

answer should be false. But the example fact exists, so assumptions about its
composition are surely true. There is an apparent contradiction (but the logic
is flawed). Such thinking gets a practical person nowhere. Neither does asking
whether the reification facts should themselves be reified. These kinds of facts
might be used by a Mozilla/RDF application interested in textual analysis or
natural language processing, but that’s all.

A further set of design observations that yields extra facts is the matter
of names. A programmer developing a fact set might choose to name features
of the fact set. Using the same single example fact, one might name the sub-
ject and object data items, perhaps if data are to be presented in columns with
column headings, or if some King is handing out titles to his nobles.

<- 1, is-named, person-id ->
<- Tom, is-named, person-name ->
<- example-fact, is-named, person-definition ->

This is also very messy. The original fact states that there is a person
named Tom. But according to the first fact here, the string “Tom” is named
(has the type) person-name, and the name of the string “1” used to recognize
Tom is person-id. Also, the whole initial fact that states “a person exists
named Tom with identity 1,” is itself named person-definition. To summa-
rize, Tom’s name is "Tom", "Tom"’s name is person-name, and “Tom is
named "Tom"” is named person-definition. This subtle thinking is not of
practical use to programmers.

Next, note that most aspects of most data modeling systems can be
expressed as predicate facts. For example, you can use the following predicates
to state facts describing an OO model:

is-a has-a uses-a instance-of

These other predicates might instead assist a relational model:

has-key has-foreign-key one-to-many one-to-one has-optional

Using such predicates, it is possible to add complex layers of meaning
(like object-orientedness) over the top of the basic fact system. This is very
messy and not for beginners. RDF includes a few features like this itself, but
for ordinary use they should be avoided. Use of these predicates might appear
to be metadata, but metadata should use “is-a” (and other relationships) as an
object term, not as a predicate term. A correct metadata example fact is “UML
arrow 5 has-feature is-a.” A messier, layered solution is just to state directly
“UML entity 3 is-a UML entity 2.”

Finally, new facts can be derived from existing facts. In the boy and dog
example, this fact might be implied because of the other facts stated:

<- Tom, plays-with, Spot ->

Whether this fact is implied depends on what assumptions are made about the
safety of leaping to such conclusions. After all, Tom and Spot are playing with

AppDevMozilla-11 Page 377 Thursday, December 4, 2003 6:34 PM

378 RDF Chap. 11

the same ball, so they’re probably playing with each other. Such derived facts
are the responsibility of deductive systems, and neither RDF nor Mozilla does
any real deduction.

When facts are collected together for processing, they are held in a fact
store. A fact store is the fact equivalent of a database, and is usually memory-
based rather than disk-based.

To summarize this tutorial on facts, predicate triples are a useful subset of
simple tuples. Facts are expressed in such triples. RDF documents contain facts.
Facts are statements, not data, and when stated are true. Complex aspects of
facts are easily revealed, but they are not that useful. Using facts as informa-
tion about other, named, nonfact information (like URLs) is normal. Using facts
as information about other facts should wait until simpler uses are mastered.

11.3.5 Queries, Filters, and Ground Facts

Storing facts in a fact store is useless if you can’t get them out. Programmers
need a way of extracting important facts and ignoring the rest.

RDF documents are XML content and therefore can be navigated by
hand, or queried. The simplest way to navigate XML by hand is to use the
DOM standards. The simplest way to query an XML document is to use a
search method like getElementById(), or something fancier like XML
Query or XPath. None of these approaches is used for RDF.

Instead, RDF documents are read or produced as a stream of facts. A pro-
grammer would rather receive only the content that is needed, not everything
under the sun. For RDF, that means only the facts that are needed. To restrict
the supplied stream of facts, a matching process is required, one that throws
away irrelevant information. Such a process is a kind of query or filtering sys-
tem, like SQL or grep(1).

Query systems aren’t explored in this chapter, but they rely on the concept
of a ground fact. A ground fact (sometimes called a concrete fact) is a fact that is
fully known. All the facts discussed so far in this chapter are ground facts.

As an example, consider this statement: “Tom is the owner of Spot.” It is
easy to identify a subject (Tom), object (Spot), and predicate (owner). Every-
thing is known about the statement, and so the statement is said to be ground.
This means it has a solid basis. An equivalent ground fact can be written down
right away:

<- Tom, owner, Spot ->

By comparison, a trickier statement might be: “Tom owns a dog.” The
subject, object, and predicate can still be identified so the statement is ground.
An equivalent fact is

<- Tom, owner, dog ->

If, in this case, you happen to know that there are many dogs, then the
question “Which dog does Tom own?” is left unanswered. In that case, “Tom

AppDevMozilla-11 Page 378 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 379

owns a dog” is not ground because no object (a particular dog) can be identi-
fied. A lawyer would say, “That statement is groundless because you can’t pro-
duce a specific dog that Tom owns.” That is his way of saying that you are too
vague to be trusted. In such a case, the best fact you can write down is

<- Tom, owner, ??? ->

The question marks just indicate that something is missing; they are not
special syntax. There is very little you can do if handed such an incomplete
fact. The opposite of ground is not ground, so this fact is not ground.

This partial-fact problem can be turned on its head. If the computer
knows which dog Tom owns, but you don’t, then the incomplete fact can be
given to the computer to fix. The computer runs some code that compares the
incomplete fact (called a goal) against all the available facts and returns all
the facts that would ground it. This is called unification; in Mozilla’s simple
system, it’s a matching process. You would find out all the dogs that Tom owns,
or even all the pets that Tom owns, or possibly everything that Tom owns. How
much you get back just depends on what facts are in the fact store. Mozilla’s
query and filtering systems do this for you.

RDF ground facts are queried or filtered by programmers using a fact or
facts that are not ground and that are called a goal. RDF itself can state both
ground and not ground facts, but facts that are not ground are rare and gener-
ally bad design. Mozilla-specific features are required to support goals.

To summarize, facts can be stored like data and examined with a match-
ing system that unifies a goal against ground facts. That is all the ground facts
about facts.

11.4 RDF SYNTAX

RDF’s syntax is based on several standards and nonstandards.
The core standard at work is, of course, RDF. This W3C standard consists

of two main parts and has evolved in two stages.
The first stage of standardization consisted of draft standards developed

in 1999 and 2000. There are two main documents:

☞ http://www.w3.org/TR/1999/REC-rdf-syntax-19990222. This docu-
ment is the “RDF 1.0 Model and Syntax Final Recommendation.” Model
just means underlying conceptual design.

☞ http://www.w3.org/TR/2000/CR-rdf-schema-20000327. This docu-
ment was not finalized for several years. It provides complex schema
operations on RDF tags and is different from XML Schema.

The second stage of RDF standardization consisted of expanding and
completing the existing documents. These newer documents were finalized in
2003:

AppDevMozilla-11 Page 379 Thursday, December 4, 2003 6:34 PM

380 RDF Chap. 11

☞ http://www.w3.org/TR/rdf-syntax-grammar/, “RDF/XML Syntax Spec-
ification (Revised),” is an update to the preceding 1999 document.

☞ http://www.w3.org/TR/rdf-schema/, “RDF Vocabulary Description
Language 1.0: RDF Schema,” is a completion of the earlier RDF schema
document.

☞ There are also several explanatory documents at http://www.w3.org/
RDF/ that analyze RDF from different points of view.

Of these five items, Mozilla implements nearly all the first item (the 1999
recommendation) and a little of the new features of the third item (the Revised
recommendation).

Other standards that work closely with RDF are XML Namespaces and
XML Schemas. Mozilla implements XML Namespaces and XML Schema, but
the XML Schema support is not used in any way for RDF processing. Mozilla’s
XUL also has some syntax support for RDF.

These standards provide a set of XML tags from which facts can be con-
structed. Fact subjects and fact objects can be expressed as attribute values, or
(for objects) as text nodes enclosed in start and end tags. The standards, how-
ever, provide only a few special-purpose predicates. All the rest of the predi-
cates must be supplied by the application programmer. This means that
names for extra XML tags and/or extra XML attributes must be defined.

These extra names form a vocabulary. Such a set of names can be speci-
fied in an XML Schema document or in an RDF document. Some existing
vocabularies have well-known URLs and specifications to encourage their
reuse. The most famous example is the Dublin Core, which is a set of key-
words. It is used primarily by librarians and archivists for catalogues, and
consists of predicates like “Title” and “Author.”

Mozilla does not use the Dublin Core for its vocabulary. It does not allow
XML Schema to be used to specify a vocabulary. Instead, a few vocabularies
are built into the platform directly. The RDF processing that Mozilla does also
allows the application programmer to make up names on the spot without any
formal definition existing. So predicate names can be made up in the same
way that JavaScript variable names can be made up.

11.4.1 Syntax Concepts

An RDF document is an XML document, and RDF is an application of XML.
The XML Namespace identifier used for RDF in Mozilla is

http://www.w3.org/1999/02/22-rdf-syntax-ns#

RDF documents should have an .rdf suffix. The MIME types Mozilla
recognizes for RDF are

text/rdf
text/xml

AppDevMozilla-11 Page 380 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 381

The official MIME type is not yet supported as of 1.4. That type is

application/rdf+xml

11.4.1.1 Tags The primary goal of RDF is to provide a syntax that allows
facts to be specified. XML facts could be represented a number of ways. Listing
11.6 illustrates some imaginary options:

Listing 11.6 Potential XML syntax for facts.
<fact subject="…" predicate="…" object="…"/>

<fact>
 <subject …/>
 <predicate …/>
 <object …/>
</fact>

<subject … predicate="…" object="…"/>

None of the forms in Listing 11.6 is used for RDF. RDF syntax uses this
form instead:

<fact subject="…">
 <predicate>object</predicate>
</fact>

This is conceptual syntax only, not actual RDF. A syntactically correct
RDF fact matching the conceptual syntax is

<Description about="http://www.mozilla.org/">
 <NC:LastVisited>10 January 2004</NC:LastVisited>
</Description>

This syntax choice provides options for nesting facts inside other facts. It
makes a number of syntax shortcuts possible. It mimics some technical
aspects of the Web environment. Unfortunately, terminology is a real chal-
lenge for beginners. The words in this conceptual syntax are not used in RDF.
Worse, the different bits of this syntax are described with RDF-specific ideas,
not with the fact concepts that appear earlier in this chapter. That is a very
confusing state of affairs.

RDF uses different ideas because it attempts to reuse thinking from Web
technologies; RDF was originally created to address issues in the Web environ-
ment. On the one hand, this reuse does create a somewhat familiar environ-
ment for developers. On the other hand, RDF is still about facts, and no
amount of clever naming can hide that. Table 11.2 compares these RDF names
with fact concepts and Web terminology.

The recommended way to handle this is to wear two hats. When thinking
very generally, RDF syntax is best seen as a set of facts, so use the fact con-

AppDevMozilla-11 Page 381 Thursday, December 4, 2003 6:34 PM

382 RDF Chap. 11

cepts. In specific examples where the set of facts forms a simple tree, it is best
to see it as a hierarchy of resources and properties, so use RDF terms. Because
most RDF documents are small or highly structured or both, this simpler case
is easy to get away with.

We can practice this thinking on the simple <Description> tag stated
earlier. In fact terminology, it is interpreted as follows. The <Description>
tag defines the subject term of a fact. If that tag has any contents, that content
represents the remaining terms of one or more facts. The <NC:LastVisited>
tag is a predicate term, and the plain string “10 January 2004” is an object
term. By comparison, in RDF terminology, the <Description> tag is inter-
preted this way. The <Description> tag identifies a resource. That resource
may have properties, given by other tags. The <NC:LastVisited> tag is one
such property, and it has the value “10 January 2004”.

An advantage of the RDF terminology is that most predicate names in
Mozilla’s RDF are property-like. Although color (or any word) can be used as
a predicate, color sounds more like a DOM or CSS property name than a
predicate relationship. Even so, in RDF, the terms predicate and property are
harmlessly interchangeable.

The complete list of basic RDF tags is as follows:

<RDF> <Description> <Seq> <Bag> <Alt>

The last four tags are redundant and can be expressed using <Description>,
so RDF has a very small number of tags. Although predicate tags are applica-
tion-specific, RDF does predefine some predicates. These predicate tags are
named

<Statement> <subject> <predicate> <object>

These tags are used for reification of facts. <Statement> reifies a fact. The
other three reify one term each of a triple. Mozilla does not support any of
these four tags.

Table 11.2 RDF terminology

Fact
concept RDF term

Web terms borrowed
from RDF syntax

Fact Description Description of a document
or record

<Description>, <Seq>,
<Alt>, <Bag>

Subject Resource URL about=, id=

Predicate Property (and
resource)

Object property, CSS
property, XML attribute

user-defined

Object Value (or
resource)

Property value, attribute
value

resource=, plain text

AppDevMozilla-11 Page 382 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 383

11.4.1.2 Containers RDF supports containers. Containers are a lazy per-
son’s way of writing and collecting repetitious facts. A container consists of a
<Bag>, <Seq>, or <Alt> tag. The container and its content together make a
collection. Such a collection can be put where the object appears in a fact. Such
a container looks like this:

<Description>
 <Bag>
 object 1
 object 2
 object 3
 </Bag>
</Description>

In a normal fact, there is a one-to-one mapping between the fact’s subject
and object (between resource and property value). That means one object per
subject. Containers change this so that there can be a one-to-many mapping.
That means at least zero objects per subject. Containers are the RDF equiva-
lent of a list or an array. If a container is used, it is up to the application to
know about it or to detect it and react appropriately.

An obvious use of a container is to track the empty seats in a theatre or
plane booking system. Each seat is a resource; such a system needs to manage
all the seats, whether full or empty. A list of yet-to-be allocated seats can be
maintained in a container separate from the facts about the seats themselves.
An example RDF fragment is shown in Listing 11.7.

Listing 11.7 Two facts specified with a single RDF <description> tag.
<Description id="seat:A1">
 <aisle>true</aisle>
</Description>
<Description id="seat:A2">
 <booked>Tim</booked>
 <aisle>false</aisle>
</Description>
<Description id="seat:A3">
 <aisle>false</aisle>
</Description>

<Description id="seat:vacancies">
 <Bag>
 <li resource="seat:A1"/>
 <li resource="seat:A3"/>
 </Bag>
</Description>

This example states whether each seat is an aisle seat, and if the seat is
booked, it adds the name of the person booked. The seat: syntax is an imagi-
nary application-specific URL scheme. Only seat A2 is booked. The <Bag> con-
tainer holds references to the two unbooked seats. The syntax used for the
 tag is one of the several shorthands that RDF supports.

AppDevMozilla-11 Page 383 Thursday, December 4, 2003 6:34 PM

384 RDF Chap. 11

So containers are also used to give programmers access to subsets of
facts. A container’s held items are the subjects of another set of other facts,
and those other facts can be accessed by grabbing the container and looking
through it. Containers can be viewed as a simple data structure for facts and
as a simple navigation mechanism. In the booking system, the programmer
can book a seat by first checking it is in the vacancies container, then adding a
booked predicate to the seat’s <Description>, and then removing it from
that container.

In object-oriented terms, the container has a uses-a relationship with
each collected item. The collected items are not in any way hidden inside the
container.

Container tags and their collection of items can always be replaced with
an equivalent set of plain facts. See the specific tags.

11.4.1.3 Identifiers The boy and dog example discussed earlier in this chap-
ter made some effort to provided identifiers for each significant item modeled
by the set of facts. This emphasis on identifiers is much stronger in RDF than
it is in most XML applications. Identifiers are critical to RDF and are used two
ways.

The first use of identifiers identifies whole facts. This is achieved by add-
ing an id attribute to the tag holding a particular fact. The RDF document’s
URL, plus #, plus the id’s value uniquely identifies that fact worldwide.
According to IETF RFC 2396, such a URL represents a document fragment,
not a complete resource. RDF breaks that rule—such a URL is considered a
whole resource even though it is part of a larger document. RDF documents
therefore can be viewed as a bundle of resources—a resource collection. Each
resource is a single fact. This is very different from HTML. In HTML, an id is
just a single tag, and <A> without HREF just marks progress points inside a
single document. An example of an RDF identifier is

<Description ID="printEnabled" … />

This RDF file might store information about the printing subsystem, and
the ID makes this specific fact locatable via a meaningful name.

The second use of RDF identifiers is to replace local literals in a given
RDF file. The example facts so far noted generally work with information
stored right in that fact. For example, “tennis” (for tennis ball) is a piece of
information stored directly in one fact in Listing 11.5.

Such immediacy does not need to be the case. For example, several facts
have been considered about Tom. Tom’s physical body does not appear in the
fact—just a number (1) used to identify him. It’s understood that this number
stands in for him. RDF provides a better identifier for Tom than a simple num-
ber; a URL can be used instead. This URL represents Tom just as a simple
number can. Perhaps it’s a mailto: address or a URL that retrieves a person-
nel record. Any facts whose subject is a string matching that URL are about
Tom. In Web terms, Tom is a resource, and a URL locates him.

AppDevMozilla-11 Page 384 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 385

RDF goes further, though. The fact’s object can be a URL, just as the sub-
ject can. For subject and object, this is straightforward. Tom’s dog has a URL
and so does Tom’s ball.

More subtly, RDF allows the fact predicate/property to have a URL. The
URL of a predicate is just a pointer to a location where that predicate is fully
described. The URL is the predicate’s identifier and stands in for the actual
predicate, which might be held by some regulatory body, a standards organiza-
tion, or even an MIS server. Actually, RDF insists that the predicate part of a
fact be represented with an id, and that id must be a URL. For readability, the
URL of a predicate usually contains a word that expresses its general mean-
ing, like www.example.com/#Owner.

Facts can therefore be expressed entirely in URL identifiers if necessary.
This is really no more than using pointers to the terms the facts are composed
of. This kind of RDF document is one source of confusion for beginners because
such a file seems to have some direct interaction with the Web. The URLs in
such a document are no more significant than strings that hold a street address.
There is no automatic Web navigation or other magic, unless the software pro-
cessing the RDF file adds it. Mozilla does not add any such processing. RDF doc-
uments do not need access to the Web. URLs are just data items in RDF.

There is one complexity, however. Any URL in an RDF document might
be a fact in another RDF file. Facts in documents can therefore refer to each
other. In ordinary applications, this is a bad idea because it creates a spaghetti
mess of fact dependencies. In specialized cases, like authentication protocols,
it might be more necessary. It makes sense for facts in one document to con-
tain URLs to metadata facts or schema items in some other, authoritative
resource, but that’s about as far as it should go.

These stand-in URLs can have the more general syntax of a URI (Uni-
versal Resource Identifier). A URI is a URL or URN (Universal Resource
Name). The benefits of this broader possibility are explored shortly. The exam-
ple of a URL has only been used because it is familiar.

It is possible for a fact to have a missing term in an RDF document. This
happens when a container or <Description> tag with no identifier is used.
The container tag represents an extra subject in the graph of facts and with-
out some identification; it is anonymous. An RDF document with no anony-
mous facts is ground. For query purposes, it is highly recommended that all
RDF documents be ground. Therefore, container tags should not be left with-
out identifiers.

11.4.2 <RDF>

The <RDF> tag is the container tag for a whole RDF document and is required.
Because RDF documents contain several namespaces, it is common to always
use a namespace prefix for RDF. Thus,

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

AppDevMozilla-11 Page 385 Thursday, December 4, 2003 6:34 PM

386 RDF Chap. 11

This tag has no special attributes of its own. The only things that appear in it
are XML namespace declarations, which add a vocabulary (additional tags) to
the RDF document. These namespace declarations assist RDF in the same
way the DTDs assist HTML. Table 11.3 shows all the namespaces used in the
Mozilla Platform.

Except for the first entry, none of these URLs exists as documents. The
URLs containing “netscape” are a legacy of Netscape Communicator 4.x. Pre-
fixes are suggestions based on existing conventions. Of these prefixes, web,
chrome, and nc are used the most in Mozilla. To use a namespace, you must
know the keywords it supplies. Those keywords are remarked on under “Pred-
icate Tags.” An application programmer is free to add namespaces as needed
because namespaces are just arbitrary xmlns strings.

The contents of the <RDF> tag is a set of child tags. Each of those child
tags must be either <Description> or one of the collection tags <Seq>,
<Bag>, or <Alt>.

11.4.3 <Description>

The <Description> tag is the heart of RDF. A <Description> tag repre-
sents one or more facts and can contain zero or more child tags. Each child tag
is a predicate (RDF property). Each child tag implies one complete fact, with
the <Description> tag as subject in each case. An example of two facts is
layed out in Listing 11.8.

Table 11.3 XML Namespaces Used for RDF Vocabulary

URL of Namespace
xmlns
Prefix

Defined
Where? Use

http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF www.w3.org Core RDF support

http://home.netscape.com/WEB-rdf# Web Hard-coded Bookmarks and
timestamps

http://www.mozilla.org/rdf/chrome# Chrome Hard-coded Managing chrome
packages and
overlays

http://home.netscape.com/NC-rdf# nc Hard-coded General purpose

http://www.mozilla.org/LDAPATTR-rdf# ldapattr JavaScript,
based on LDAP
properties

email LDAP sup-
port in Mail
&News client

http://www.mozilla.org/inspector# ins JavaScript DOM Inspector

AppDevMozilla-11 Page 386 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 387

Listing 11.8 Two facts specified with a single RDF <description> tag.
<fact subject="…">
 <property1 …>object1</property1>
 <property2 …>object2</property2>
</fact>

This is pseudo-code, not plain RDF. In this example, property has been
written instead of predicate, since they are interchangeable. The example
makes it clear why RDF uses the term property: the fact appears to hold two
properties for its subject. In reality this syntax just states two different facts
with the same subject. It just saves some typing.

Because the role of the <fact> pseudo-code is taken by the RDF
<Description> tag, that tag is therefore like a container. It is not like other
RDF containers because it has no special semantics at all and contains predi-
cates/properties, not subjects or objects.

<Description> has the following special attributes.

ID about type

Every <Description> tag should have an ID or an about attribute. If both
are missing, the subject of the stated fact will be anonymous. It will not be vis-
ible to the rest of the world, and inside the document it represents a term that
is not ground.

The ID attribute has a name as its value; this name is appended to the
RDF document’s URL to create a unique URL for the whole fact. That con-
structed URL is also the URL of the stated fact’s subject. Applying an ID to
<Description> only makes sense when the <Description> tag has exactly
one property. A fact subject stated with ID is visible to the whole Web.

The about attribute specifies the subject of the stated fact. It takes a full
URI as its value. If the about attribute is used instead of the ID attribute, the
whole fact has no URL of its own. A fact subject stated with about is not visi-
ble to the Web.

The type attribute records the type of the fact’s object (its value). The
value/object normally appears as XML content between the property start and
end tags. The type attribute states what kind of thing the value/object is. If it
is present, its value should be a URI. Mozilla does nothing with the type
except store and retrieve it. It is not integrated with any schema definition.
The type attribute has one additional role. It is also a property or predicate.
Its use as shown here is really a shorthand notation, as described below.

Mozilla does not support these attributes:

aboutEach aboutEachItem bagID

All but bagID are deprecated in the most recent RDF standards. bagID is
used for reification of RDF facts. Mozilla does not do this.

AppDevMozilla-11 Page 387 Thursday, December 4, 2003 6:34 PM

388 RDF Chap. 11

11.4.3.1 Shorthand Notation The <Description> tag and its contents can
be reduced to a single <Description/> tag with no contents. This can be
done by treating the property/predicate and value/object as an XML attribute.

This RDF fragment is a single fact stating that Tom owns Spot:

<Description about="www.test.com/#Tom">
 <ns:Owns>Spot</ns:Owner>
</Description>

The subject and predicate are defined by URLs; the object is defined by a
literal. The predicate belongs to a declared namespace with ns as prefix, so the
full URL of the predicate is not obvious. This example can be shortened to a
single tag:

<Description about="www.test.com/#Tom" ns:Owns="Spot"/>

Note the namespace prefix before the Owns attribute name. That is stan-
dard XML but is not often seen in practical examples. This shorthand can be
used only if the value/object is a literal. It does not work if the value/object is a
URI.

11.4.4 Predicate/Property Tags

Predicate or property tags must be supplied by the application developer. The
easiest way to do this is to find an existing set of tags useful for your purpose.
For informal use, it is possible to make up tags as you go, but properly defining
the namespace that you use is a sign of good design and ensures that the pur-
pose of your RDF content is clear.

RDF supplies XML attributes that can be added to property tags. Just as
the observes attribute turns any XUL tag into an observer, so too do RDF
custom properties affect application-defined property tags. The list of such
special attributes is

ID parseType

The ID attribute has the same purpose for the predicate tag that it has
for the <Description> tag. It is used when the parent <Description> tag
has more than one predicate tag, and therefore represents more than one fact.
The ID on a specific predicate tag identifies the matching fact globally.

The parseType attribute provides a hint to the RDF parser. It is differ-
ent from the type predicate, discussed in the next topic. It states how the
XML text string holding the value/object should be interpreted. It can be set to
one of these four values:

Literal Resource Integer Date

Literal means the value is an arbitrary string; it is the default. Resource
means that the value is a URI. Those two options are standard. Integer and
Date are Mozilla enhancements. Integer reads the string as a 32-bit signed

AppDevMozilla-11 Page 388 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 389

integer. Date reads the string to be a date. Such a date can be in any of several
formats, but Mozilla’s support is incomplete. The safest format is to use the
UTC output of the UNIX date(1) command, and change “UTC” in the result-
ant string to “UT” or “GMT.” The Date option does not accommodate Unicode
characters, only ASCII ones.

11.4.4.1 Existing Predicates RDF itself provides the type predicate. This
predicate matches the type attribute of the <Description> tag. Its use in
that tag is actually shorthand for

<rdf:type>value</rdf:type>

where rdf is the prefix used for the RDF namespace. Because type is a predi-
cate, it can be applied to all fact subjects. Such a use can extend the basic type
system of RDF, either with application-specified facts, or with RDF Schema, if
that were implemented. It is not much used in Mozilla applications.

The namespaces noted in Table 11.3 also provide sets of predicates.
Because predicates are ultimately just data items, these names do not “do”
anything by themselves.

In Chapter 9, Commands, we noted that many command names exist in
the Mozilla Platform, but those commands are all tied to specific application
code, such as the Navigator, Messenger, and Composer clients. The same is
true of predicates. Many exist, but their uses are all tied to specific application
code.

These predicates are not centrally listed anywhere, not even in the source
code. Since it is easy to make new predicates up (just add them to the .rdf and
to the code), it is a matter of curiosity to track down the ones that Mozilla uses.
Some examples of their use appear in Chapter 12, Overlays and Chrome.

A new Mozilla application that uses RDF should have a formal data
model, and/or a data dictionary that states the predicates used in the applica-
tion. The application programmer might look to the existing Mozilla predi-
cates as a source of inspiration or to ensure the new application is similar, but
there is no need to use the same names.

The only time predicate names must be followed exactly is when RDF
files in existing formats are to be created, like mimeTypes.rdf. In such cases,
it is enough to create a sample file using the Classic Browser, and then to
examine the predicates generated. A more thorough alternative is to look at
the source code.

11.4.4.2 Shorthand Notation The RDF resource attribute can be added to
predicate tags. It works like the about attribute on the <Description> tag,
except that it specifies the value/object of the fact. When the resource
attribute is added, no XML content is required for the object, and the object
must be a URI, not a literal. An unshortened example is

<ns:Owns parseType="Resource">www.test.com/#Spot</ns:Owns>

AppDevMozilla-11 Page 389 Thursday, December 4, 2003 6:34 PM

390 RDF Chap. 11

and the equivalent shortened form is

<ns:Owns rdf:resource="www.test.com/#Spot"/>

This use of the resource attribute is straightforward. The resource
attribute has a further use which is more complicated.

In the simple case, the object/value specified with the resource attribute
participates only in one fact—the current one. The URI of that object might,
however, be specified as a subject in another fact. In that case, the URI’s
resource has two roles: It is both subject and object. A very confusing short-
hand syntax rule says this: If XML attribute-value pairs appear in the predi-
cate tag, and the resource attribute is also specified, then those attribute-
value pairs act as though they appeared in the <Description> tag where the
URI is a subject.

This means that the final shorthand technique noted for the <Descrip-
tion> tag can also be used inside predicate/property tags. However, another
<Description> tag, elsewhere in the document, is affected as a result.

This is messy and complex, and not worth exploring unless your applica-
tion is ambitious. It is designed to reduce the total number of tags required in
a set of nested tags. In theory, this makes the RDF document more human-
readable, but that is debateable. For more on this subject, read section 2.2.2 of
the original RDF standard.

11.4.5 <Seq>, <Bag>, <Alt>, and

<Seq>, <Bag>, and <Alt> are RDF’s three container tags.

☞ <Seq> is a sequence or ordered list. The contained items are ordered.
One possible use is history information, like a list of commands recently
executed.

☞ <Bag> is a simple collection. There are no restrictions on contained items.
☞ <Alt> stands for alternative. It is a simple collection with no restrictions

except that the contained items are all considered equivalent to each
other in some application-specific way. One possible use of <Alt> is sup-
port for a message stated in multiple languages.

These container tags provide a way to organize objects and subjects into
groups and to write many similar facts in a compact notation. All three con-
tainers can contain duplicate terms.

Containers contain items. Each item in a container is enclosed in an RDF
 tag, just as each item in an HTML or list is enclosed in an
HTML tag. Each item in a container is an object. Therefore, is a
delimiter for an object. Because <Description> tags or container tags can
substitute for objects, containers can be nested. Listing 11.9 shows a single
container.

AppDevMozilla-11 Page 390 Thursday, December 4, 2003 6:34 PM

11.4 RDF Syntax 391

Listing 11.9 Example of an RDF container.
<Description about="www.example.com/#Tom">
 <ns:Owns>
 <Bag ID="Dogs">
 Spot
 Fido
 Cerberus
 </Bag>
 </ns:Owns>
</Description>

Tom owns Spot; Tom owns Fido; Tom owns Cerebus. That should be three
facts. Containers are easy to write down. Unfortunately, containers are
slightly ugly to implement. The equivalent facts are shown in Listing 11.10.

Listing 11.10 Equivalent facts for ownership of three dogs.
<- "www.example.com/#Tom", ns:Owns, "Dogs" ->
<- "Dogs", rdf:_1, "Spot" ->
<- "Dogs", rdf:_2, "Fido" ->
<- "Dogs", rdf:_3, "Cerberus" ->

RDF can only state facts, so containers must be implemented with facts.
This is accomplished by manufacturing an extra term to stand for the con-
tainer itself. The <Description>’s fact has this subject as object. Whole facts
are also manufactured. In turn, these facts tie the manufactured subject term
to each of the container items. These new facts are therefore one-to-one, as all
facts really are. These manufactured facts and terms are automatically added
to the fact store created when the RDF document is read.

Two things are missing from this manufacturing strategy: The manufac-
tured subject needs an ID, or at least a literal value, and the new facts need
predicate or property names.

The first gap is filled easily: The container tag must be supplied with an
ID or an about attribute by the document creator. If it isn’t, it remains anony-
mous, and the RDF document is not ground. Anonymity should be avoided
because it prevents Mozilla templates from working.

The second gap is filled when the RDF document is interpreted by soft-
ware. If that software meets the RDF standard, then it will generate predi-
cates for these new facts as it goes. These predicates will be named _1, _2, _3,
and so forth. They exist in the RDF namespace, so they will be called rdf:_1,
rdf:_2, and so forth, assuming rdf is the prefix selected for that namespace.
That is the origin of those names in Listing 11.10.

Listing 11.11 shows facts equivalent to Listing 11.9 after that RDF frag-
ment has been read. The RDF standard has some diagrams showing graphs
for container-style facts and is worth glancing at.

AppDevMozilla-11 Page 391 Thursday, December 4, 2003 6:34 PM

392 RDF Chap. 11

Listing 11.11 Equivalent RDF facts to a container of three items.
<Description about="www.test.com/#Tom">
 <ns:Owns resource="Dogs"/>
</Description>
<Description about="Dogs" rdf:_1="Spot"/>
<Description about="Dogs" rdf:_2="Fido"/>
<Description about="Dogs" rdf:_3="Cerberus/>

Shorthand can be used for the <rdf:_1> predicate tag because its object
value is a literal. Full shorthand cannot be used for the id of Dogs in the first
fact because it is a URL fragment, not a literal. Whether you do or don’t use
containers is a design choice, but they are somewhat neater than the equiva-
lent <Description> tags.

Because the container items and the <Description> subject are sorted
into separate facts, they are not directly connected. An application cannot find
a single fact in Listing 11.11 that states that Tom owns Spot. This means that
an application looking for such a fact must either know the structure of the
fact graph and navigate through it, including knowing where the containers
are, or make an extensive analysis of the content. The former strategy is obvi-
ously far more efficient.

The following attribute applies to container tags:

ID type

The ID attribute has the same purpose as for <Description>.
The type attribute is not set by the document creator. It is set automati-

cally to the name of the container tag (e.g., rdf:Bag), which is the type of that
tag. This attribute is a predicate and value pair for the <Description> sub-
ject and is, thus, a fact in its own right. That extra fact is stated not with type
as predicate, but with the special value instanceOf. For the example of three
dogs, that fact is

<- "Dogs",
 http://www.w3.org/1999/02/22-rdf-syntax-ns#instanceOf,
 http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
->

That fact can be used by the application programmer to detect the existence
and kind of the container tag. In Mozilla, such direct detection is not usually nec-
essary because the platform supplies utility objects that do the job for you.

Container tags can also use the general property = value shorthand that
applies to <Description> tags. The following attributes apply to tags:

parseType resource

These attributes act the same as they do for predicate/property tags, and sup-
port the same shorthand forms.

That concludes the discussion on RDF syntax.

AppDevMozilla-11 Page 392 Thursday, December 4, 2003 6:34 PM

11.5 RDF Examples 393

11.5 RDF EXAMPLES

Several examples are presented to show how the syntax and concepts work
together.

11.5.1 A URL Example: The Download Manager

Classic Mozilla’s Download Manager presents a clean example of an RDF doc-
ument that manages Web-based resources. The Download Manager is avail-
able only in version 1.2.1 and greater. It tracks progress and completion of
downloaded files. It is turned on with a preference under Edit | Preferences | Nav-
igator | Downloads.

The Download Manager consists of a single XUL window and an RDF
file. The window appears when saving a URL to the local file system, perhaps
with File | Save Page As .. from the Navigator menu system. It can also be
opened directly with Tools | Download Manager. The RDF file is called down-
loads.rdf and is stored in the user’s profile directory. The code for the Down-
load Manager is in the chrome file comm.jar. The GUI is implemented with a
XUL <tree> tag.

To see this at work, open the Download Manager and remove all listed
items by selecting them and clicking the “Remove From List” button. Using a
text editor, open the downloads.rdf file. It contains nothing but namespace
declarations and an empty collection which is a <Seq> tag. Listing 11.12
shows this file.

Listing 11.12 “Empty” downloads.rdf file.
<?xml version="1.0"?>
<RDF:RDF
 xmlns:NC="http://home.netscape.com/NC-rdf#"
 xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <RDF:Seq about="NC:DownloadsRoot">
 </RDF:Seq>
</RDF:RDF>

Next, view any remote Web page such as www.mozilla.org. Save the page
to a local file. Using a text editor, reopen the downloads.rdf file when the
save operation is complete. A <Description> tag and contents, and an
collection item have been added. The <Description> tag states eight facts
(spot them) about the locally downloaded file. The item states a further
fact: The fact subject that is the downloaded file is also an object in the
sequence collection. This sequence is used to find all the files recorded in the
document.

After a single file has been downloaded, the RDF appears as in Listing
11.13.

AppDevMozilla-11 Page 393 Thursday, December 4, 2003 6:34 PM

394 RDF Chap. 11

Listing 11.13 downloads.rdf file after a single complete download.
<?xml version="1.0"?>
<RDF:RDF
 xmlns:NC="http://home.netscape.com/NC-rdf#"
 xmlns:RDF="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <RDF:Seq about="NC:DownloadsRoot">
 <RDF:li resource="C:\tmp\test_save.html"/>
 </RDF:Seq>
 <RDF:Description about="C:\tmp\test_save.html"
 NC:Name="test_save.html"
 NC:ProgressMode="none"
 NC:StatusText="Finished"
 NC:Transferred="1KB of 1KB">
 <NC:URL resource="http://www.mozilla.org/"/>
 <NC:File resource="C:\tmp\test_save.html"/>
 <NC:DownloadState NC:parseType="Integer">1</NC:DownloadState>
 <NC:ProgressPercent NC:parseType="Integer">100</NC:ProgressPercent>
 </RDF:Description>
</RDF:RDF>

If you are using Microsoft Windows, don’t be confused by path names pre-
fixed with C: (or any drive letter). This is just a variation on URL syntax
invented by Microsoft that Mozilla supports. Such things are equivalent to a
file:///C|/ prefix and are still URLs.

Try viewing and saving any Web page, and then deleting entries with the
Download Manager. It is easy to see how the RDF data file and XUL window
are coordinated. Shut down the Download Manager and carefully hand-edit
the downloads.rdf file so that one sequence item and the matching
<Description> is removed. Restart the Download Manager to see the effect.

When downloading Internet files to local disk, there is sometimes a long
pause before the FilePicker dialog box appears. This is a bug and occurs when
the Download Manager’s RDF file has grown large. Delete or empty the file to
improve response times.

The Download Manager could be implemented without using RDF. RDF
is used because it means that only a small amount of code is needed. The
extensive RDF infrastructure inside the Mozilla Platform makes retrieving
and storing information in RDF format easy.

11.5.2 Using URNs for Plain Data

The whole point of using RDF is to get some perhaps fact-driven processing
done in an application. Although URLs have their uses, most applications
work on traditional data. Traditional data are also expressible in RDF.

Why use RDF for traditional data? The RDF infrastructure in Mozilla
allows data stored in RDF to be pooled and dynamically updated. This pool of
data can be used from several points in an application at once, or even from

AppDevMozilla-11 Page 394 Thursday, December 4, 2003 6:34 PM

11.5 RDF Examples 395

several different applications. The RDF infrastructure also provides extensive
automatic parsing and management of RDF content. The application pro-
grammer’s script does not have to perform any low-level operations. Most
importantly, RDF is the basis for Mozilla’s XUL Template system, which pro-
vides automated display of RDF content.

11.5.2.1 Summary of Useable Types in Mozilla RDF To complete previous
remarks on RDF types, the available types include the following:

☞ Literal types. Literal, Resource, Integer, Date, Blob. XMLLiteral
is not supported.

☞ Fact component types. Property, Bag, Seq, Alt. List is not sup-
ported.

☞ Fact types. Statement is not supported.
☞ Reification types. Subject, predicate, and object are not supported.

The Blob type holds an array of binary data. It cannot be specified in an
RDF document or from JavaScript. It is a Mozilla extension that can only be
used from C/C++ code. One use of the Blob type occurs in the Classic Mail &
News client. There, attachments are treated as fact objects of type Blob.

Types that are supported in RDF are specified with the <Description>
tag’s type attribute, which is the same as the built-in rdf:type predicate.

None of the type features of RDF Schema are supported. In general, an
application programmer should store content in RDF as a plain XML string
and do any necessary conversion in application code.

11.5.2.2 URNs When identifiers were discussed earlier, all the examples
used URLs. URLs are useful if the stored facts are about Web or Internet
resources. For more ordinary applications that only work with plain data,
URNs are recommended instead of URLs.

Identifiers in RDF are actually URIs, not URLs. Recall that a URI (a
Uniform Resource Identifier) is either a URL (a Uniform Resource Locator) or
a URN (a Uniform Resource Name).

A URL ties a resource to a particular access point and an access method
such as HTTP. The resource at that point might change over time, like a Web
page. A URN, on the other hand, is just a name for an unchangeable thing that
exists as a concept. If that concept has a real-world equivalent, that is at most
convenient.

To a programmer, a URN is a variable name for a constant piece of data.
Although URNs are supposed to be globally unique, you can make up your
own provided your application is isolated from the rest of the world. This is
like making up your own domain name or your own IP address. See IETF RFC
2611 for the URN registration body. In Mozilla, URNs are short, which suits
programmers. Their syntax is

urn:{namespace}:{name}

AppDevMozilla-11 Page 395 Thursday, December 4, 2003 6:34 PM

396 RDF Chap. 11

where {namespace} is a string, and {name} is a string. {namespace} cannot
be “urn” and cannot contain colons (:). {name} can be anything, including
colons, which can be initially confusing. RFC 2141 describes the exact syntax,
which allows for an ASCII, alphanumeric, case-insensitive namespace and an
ASCII-punctuated case-insensitive name. {name} is optional in Mozilla.
There are no “relative” URNs. Some punctuation marks are banned. See also
RFC 2379. Two examples of URNs are

urn:myapp:runstate
urn:myapp:perfdialog:response

In the second URN, the {name} part is constructed to look like a second
namespace plus a final name. In standards terms, this is just an illusion, but
in programming terms it is a useful way to divide up a large number of URNs
into subcategories. This kind of subdivision can have as many levels as neces-
sary.

URNs are useful in RDF. They turn a verbose, Web-specific document
with a worldwide focus into a general-purpose document about local informa-
tion. An example of a URN fact is

<Description about="urn:mozilla:skin:modern/1.0"
chrome:author="mozilla.org"/>

Here, chrome: is an XML namespace, "mozilla.org" is a literal, and
"skin:modern/1.0" is the name of the thing the URN describes. Although
this is a fact, not data, such a simple arrangement can be compared to a line of
JavaScript code:

mozilla["skin:modern/1.0"].author = "mozilla.org";

It can also be compared to a more verbose line like this:

urn.mozilla.skin["modern/1.0"].chrome.author = "mozilla.org";

Of course, this simple code does not match all the behavior that facts have; it
just reflects one possible use of a particular fact.

There is a URL scheme called data URLs. It is documented in IETF RFC
2397. This scheme offers a tempting way to pretend that raw data are also a
URL. It might seem that this is a way to name a resource after its own con-
tents. Data URLs are not useful in RDF, except possibly as objects, because
they are not unique identifiers. Avoid them.

11.5.3 A URN Example: MIME Types

MIME types (and file suffixes) are used in the Classic Browser to handle for-
eign documents to the correct application for viewing. An example is a
Microsoft Word .DOC document, which on Microsoft Windows is handed to
winword.exe for display. MIME types are configured under Edit | Preferences |
Navigator | Helper Applications.

AppDevMozilla-11 Page 396 Thursday, December 4, 2003 6:34 PM

11.5 RDF Examples 397

As for the Download Manager, the MIME types system has a GUI and a
file component. The GUI component is a panel in the Preferences dialog box;
the file component is the file mimeTypes.rdf stored in the Classic Browser’s
profile directory. Code for this system is in comm.jar in the chrome, in files
prefixed pref-application.

This subsystem of Mozilla can be exercised in a similar way to the Down-
load Manager. The significant difference is that the RDF data model uses
URNs instead of URLs. That data model is a set of facts, whose subjects are a
hierarchy of URNs. An example of that hierarchy, for a configuration of two
types only, is shown in Listing 11.14.

Listing 11.14 Hierarchy of URNs for a two-type MIME configuration.
urn:mimetypes
urn:mimetypes:root
urn:mimetypes:text/plain
urn:mimetypes:application/octet-stream
urn:mimetypes:handler:text/plain
urn:mimetypes:handler:application/octet-stream
urn:mimetypes:externalApplication:text/plain
urn:mimetypes:externalApplication:application/octet-stream

Because these URNs are just names, their apparent hierarchy has no
technical meaning. It just serves to tell the reader that something is going on.
There is also real hierarchy at work, one that is made of facts. If you draw the
RDF graph for a mimeTypes.rdf file (try that), you will see that the facts
make up a simple hierarchy, with a little bit of cross-referencing. This hierar-
chy is very much like the window.navigator.mimeTypes DOM extension
used by Web developers. In fact, that array is populated from the mime-
Types.rdf data.

As for the Download Manager, a <Seq> container captures the full set of
MIME types in an easy-to-retrieve structure. If multiple Classic Browser win-
dows are open, and content of several special types is downloaded, then all
those windows will use a single pool of RDF MIME type data to determine how
to display that content.

11.5.4 RDF Application Areas

Mozilla uses RDF as an implementation technology for a number of features,
but those features could have been created without it. Why does RDF exist,
really? The answer is that there are some application-level problems for which
RDF is a supposed solution.

According to the RDF specification, the primary application use of RDF is
library catalogs. Such catalogs need a formal and flexible data model that
everyone agrees on because such catalogs are increasingly Web-enabled and
interconnected.

AppDevMozilla-11 Page 397 Thursday, December 4, 2003 6:34 PM

398 RDF Chap. 11

The most visible result of this application area is the Dublin Core. This is
a data model broadly agreed to by the library industry and suitable for storing
information about any kind of publication, including Web pages. In RDF
terms, it is a list of predicate names that should be used for this type of appli-
cation. See www.purl.org (that’s P-URL not Perl).

A second use of RDF, according to the RDF specification, is Content Man-
agement. This is the process of adding review-generated information to con-
tent so that management decisions can be made about it. Simple examples of
review information are secrecy ratings and maturity ratings. RDF is an obvi-
ous way to attach such information to content URLs via facts. A software sys-
tem can then choose to supply or not supply the content, depending on the
clearance or age of the reader.

In practice, there are many mechanisms for managing Web content, and
RDF is not yet a clear winner, or even a major player.

A more successful use of RDF is to maintain information hierarchies. The
volunteer-run Web catalog www.dmoz.org stores its entire subject hierarchy,
including individual URL entries, as a single large RDF file.

RDF has not yet broken out as a vital piece of Internet infrastructure; at
the moment it is just a useful tool. When developing Mozilla applications, con-
sider RDF in that light.

That concludes the discussion of RDF examples.

11.6 HANDS ON: NOTETAKER: DATA MODELS

This “Hands On” session gives you an example of the modeling process
required to create a set of RDF facts.

We’ve experimented extensively with GUI elements of the NoteTaker
tool, and with the scripting environment, but now its time to go back to the
design phase. We have no clear statement yet what data NoteTaker manipu-
lates. We choose RDF as the final storage format for that data. We need a data
model that tells us what RDF facts are needed. Facts are the modeling lan-
guage we’ll use.

In Mozilla, RDF is strongest when it is used inside the platform’s own
install area, although it can be passed across the Internet as well. It is also
strong when the amount of data is small. Those strengths suit us because the
NoteTaker tool will store the few notes that the user creates in their Mozilla
user profile, on the local disk. No Internet access will be required.

The choice of facts as a modeling language is not a casual choice. We
could as easily have chosen an object-oriented approach, or a relational
approach like SQL. But facts have one clear advantage over those other sys-
tems: They map directly to RDF syntax. UML is good for objects; Entity Rela-
tionship Modeling is good for relational databases; facts are good for RDF.

The process we use to find, build, and implement the model follows.

AppDevMozilla-11 Page 398 Thursday, December 4, 2003 6:34 PM

11.6 Hands On: NoteTaker: Data Models 399

1. Write down everything about the data.
2. Pick out the significant words (terms).
3. Construct some useful facts.
4. Ensure that those facts are about resources.
5. Consider how those facts need to be accessed.
6. Arrange the facts into structures that support that access.
7. Translate the results into pure RDF.

Data modeling usually requires several drafts, but here we’ll get it
mostly right to start with, and highlight a few common pitfalls and blind
alleys as we go.

The NoteTaker data model is very simple for us to state in words. Each
note is associated with one URL. It has a short and a long description (sum-
mary and details). It has a position on the screen (top, left, width, height). It
also has keywords associated with it.

Keywords are just descriptive words added by the user that classify the
URL to which the note belongs. If two keywords appear on the same note,
those two keywords are said to be related. This “relatedness” goes beyond a
single note. After two keywords appear together somewhere, that is evidence
that they are related in a general sense. Related keywords can give the user
guidance. When the user picks a keyword for a note, any related keywords are
displayed at the same time. The user can then check if any of those other key-
words should be added to the note at the same time.

This keyword system is used only a little by the NoteTaker tool. It is
merely a reminder system for the user and an exploration of XUL and RDF
technology. A version of NoteTaker created after the example in this book will
support a Note Manager window. Such a window is used to list all existing
notes, order and manage those notes, search for notes by keyword, and
retrieve and display URLs for specific notes.

In the NoteTaker GUI, two other pieces of data exist. They appear as
checkable boxes in the Edit dialog box under “Chop Query” and “Home Page.”
These items are not properties of the note, but rather control how the note is
created.

If “Chop Query” is ticked, then a new note’s URL will have any HTTP
GET parameters removed. For example,

http://www.test.com/circuits.cgi?voltage=240V;amps=50mA

would be reduced to

http://www.test.com/circuits.cgi

The constructed note would appear on any page whose URL is prefixed with
this shorter URL. If “Home Page” is ticked, then the URL will be reduced even
more, to

http://www.test.com/

AppDevMozilla-11 Page 399 Thursday, December 4, 2003 6:34 PM

400 RDF Chap. 11

In this case, the note will only appear on the home page. If the URL con-
tains an individual user’s directory like this example:

http://www.test.com/~fred/mytests/test2.htm

then ticking “Home Page” will reduce this URL to

http://www.test.com/~fred/

For both of these options, only the most specific note for a given URL will
be shown when that URL is displayed. In summary, after these choices are
made in the GUI, the results are implicit in the URL for the note. Therefore,
they add no further data to the model.

That concludes our descriptive overview of the data.
This overview of the data needs to be reduced to the three components of

facts. Step 2 involves picking out the significant terms. Because facts include
relationship information, we need to spot that as well, not just the nouns (enti-
ties, objects, or resources). Finding the nouns is a useful beginning point,
though. Our first guesses in this case are as follows:

note keyword URL summary details top left width height

To these noun-like items, we add some relationship guesses:

related-keyword note-data note-for-a-url

Now to assemble these terms into facts—step 3. Facts can be viewed as
subject-predicate-object triples (the general terminology) or as resource-
property-value triples (the RDF terminology). Here we will see how both of
these views are useful. First, we test each of the found terms for useful
meaning by asking three questions:

1. Could this term be a thing of its own (a subject or resource)?
2. Could this term be a relationship (a predicate)?
3. Could this term be a descriptive feature of something else (a property)?

Question 3 will help us separate out the “weaker” terms so that we set a
reasonable limit on what we model. Table 11.4 shows the early results of these
questions.

Table 11.4 XML namespaces used for RDF vocabulary

Term Thing? Relationship? Feature?

note ✓ ✓ 3.

keyword ✓ 1.

URL ✓ ✓ 3.

summary 2. ✓

AppDevMozilla-11 Page 400 Thursday, December 4, 2003 6:34 PM

11.6 Hands On: NoteTaker: Data Models 401

After this initial guesswork, we have some results and some outstanding
issues. First the results: keyword is a thing; note-data is a relationship; and
summary, details, top, left, width, and height are all descriptive features.
We’re sure of these results because each relevant row in the table has one tick
only.

Next, the issues:

1. We suspect that a keyword can’t be a feature of another term because
that would make it a property in RDF (a fact predicate). Although there’s
nothing legally wrong with that, properties are generally expected to
have well-known names, like “color.” We know that there can be zero or
more keywords per note, each with a different user-entered name. That
means there is no single well-known name. Keyword is therefore not a
good example of a feature. We would have this problem with any data
item that has a many-to-one relationship with another data item.

2. These terms have no features of their own, so we can’t see any reason to
elevate them to the status of a thing. It seems pretty obvious that they’re
properties of something else, like a URL or a note.

3. We’re still a bit confused about note and URL. Which belongs to which, or
are they separate? We’d better assume they’re both things for the minute.

4. Note-data sounds a bit uncertain. It doesn’t identify the data or its rela-
tionship. In fact, it’s not a concrete piece of information at all; it’s vague.
We’ve accidentally introduced a metadata concept: “notes have data.”
Summary, by comparison, is a concrete piece of data for a note. We’ll
throw note-data away. Metadata is never required for simple applica-
tions.

Out of this analysis, the facts we’ve identified are shown in Listing 11.15.

details 2. ✓

top 2. ✓

left 2. ✓

width 2. ✓

height 2. ✓

related-keyword ✓ ✓

note-data ✓ 4.

note-for-a-url ✓ ✓

Table 11.4 XML namespaces used for RDF vocabulary (Continued)

Term Thing? Relationship? Feature?

AppDevMozilla-11 Page 401 Thursday, December 4, 2003 6:34 PM

402 RDF Chap. 11

Listing 11.15 Starting facts for NoteTaker data model.
<- note, ?, URL ->
<- URL, ?, note ->
<- note, URL, ? ->
<- URL, note, ? ->

<- keyword, ?, ? ->
<- note, summary, ? ->
<- note, details, ? ->
<- note, top, ? ->
<- note, left, ? ->
<- note, width, ? ->
<- note, height, ? ->
<- ?, related-keyword, ? ->
<- ?, note-for-a-url, ? ->

The first four facts are possibilities that reflect our uncertainty about
how notes and URLs are related. We need to fill in the unknowns, using our
knowledge of the application’s needs. We’ll come back to these, after we’ve
done the easy bits.

The six facts from summary to height are easy. They will hold a simple
value each, so their object component is not a URI. It must be one of the types
that Mozilla supports (Literal, Integer, Date, Blob). We’ll just choose
Literal (which is a string). So an example is

<- note, top, Literal ->

The related-keyword fact relates two keywords together. It seems obvious
that the subject and object of this fact should be a keyword. We’ll reduce the
spelling related-keyword to related, for brevity:

<- keyword, related, keyword ->

The keyword fact presents us with a naming problem. We know that a
keyword must be named by a URI because it’s a thing (a resource). Unless
some server specifies all the keywords in the world (not our case, and not even
practical), it must be a URN rather than a URL. What is that URN? We
haven’t got one. We’ll have to construct it out of the data the user supplies.
We’ll make it by prefixing the keyword string with urn:notetaker:key-
word:. For example, the keyword foo will have URI:

urn:notetaker:keyword:foo

We also need access to the keyword string itself. It’s not obvious now, but
in later chapters we’ll see that it’s hard to extract a substring out of an RDF
URI. So we’ll have a property named label, and we’ll hold the keyword as a
separate string in it:

<- urn:notetaker:keyword:{keystring}, label, "{keystring}" ->

AppDevMozilla-11 Page 402 Thursday, December 4, 2003 6:34 PM

11.6 Hands On: NoteTaker: Data Models 403

Finally, there is the complexity of a note and a URL. Each note has one
URL, and each URL has one note. We need to know if they’re separate. If they
are separate, we’ll need some kind of cross-table relationship between them. If
they’re not separate, then one will probably be a property of the other.

If note and URL are separate, then both will have a URI, so let’s test that
possibility. The URI for a URL is obvious—it’s just the URL itself. What is the
URI for a note? It will have to be a URN (it could be a file: URL, but that
would be unusual). What will that URN be? Ultimately, we don’t have a name
for the note, we’d have to manufacture an arbitrary one (how?), or make the
note anonymous (but then the final RDF document wouldn’t be ground). Both
of those options are ugly.

The truth is that the note lacks identity of its own and must therefore be
dependent on the URL. Because it has no identity, it can’t appear as a subject
or object in any fact. Since a note doesn’t have an “own value,” it can’t be a lit-
eral either. The whole concept of a note as a thing collapses to nothing. We
throw it out of the model, leaving only the URL that the note is for. That
resolves most of our issues with the first four facts in Listing 11.13.

This last point may seem very surprising, especially if you’ve done any
object-oriented or relational modeling before. Aren’t notes central to the whole
NoteTaker application? Aren’t we at liberty to create whatever objects/entities
we like? The answers are Yes to the former and No to the latter. Yes, notes are
a concept of the application, but as it turns out, not of the data model. No,
we’re not at liberty to create whatever entities we like because we’re not work-
ing with a pure fact system like Prolog or Lisp, we’re working with RDF. In
RDF, one concept exists already before modeling starts: the concept of a URI-
based resource. We’re not free to create first-class objects; we’re only free to
create things with URIs, or else plain literals. Although we have a concept of a
note in the NoteTaker application, in the RDF data model everything signifi-
cant must be a URI. The only reason we managed to keep “keyword” as a data
model concept is because we found a URI for each one.

The moral of this modeling process is simple: If you are not modeling a
URL, you must make a URN for it, treat it as a literal, or forget it.

Listing 11.16 shows what’s left when all of these changes are made:

Listing 11.16 Completed data facts for the NoteTaker data model.
<- URL, summary, Literal ->
<- URL, details, Literal ->
<- URL, top, Literal ->
<- URL, left, Literal ->
<- URL, width, Literal ->
<- URL, height, Literal ->
<- keyword, label, Literal ->
<- keyword, related, keyword ->

AppDevMozilla-11 Page 403 Thursday, December 4, 2003 6:34 PM

404 RDF Chap. 11

The obvious missing fact is some link between keyword and the note-
laden URL. In Table 11.4 we put off thinking about this link because it wasn’t
clear how a keyword could be related to another fact when it’s a many-to-one
relationship. We can’t use a keyword as a property/predicate because it’s URN
changes for each keyword. We could try either of these:

<- URL, keyword, keyword-urn ->
<- keyword-urn, note-url, URL->

Each URL (and note) would have zero or more instances of the first fact; alter-
nately (or also), each keyword would have zero or more instances of the second
fact.

In this proposed solution, there are multiple “keyword” properties per
note (per URL). Could we store those keywords in an RDF container, like
<Seq>? The answer is: not easily. If we did, there would be one such container
for each URL with a note defined. What would those containers have as
names? Such names would need to be URNs, and so we would need to con-
struct them. We would need to do something like concatenating the URL for
the note to the end of some prefix. That is possible, but messy, and we would
run into string-processing problems in later chapters. We are better off stick-
ing to a simple solution. We avoid <Seq> because such sequences would be
repeated. We stick with the proposed solution, but we’ll be lazy and only use
the first fact:

<- URL, keyword, keyword-urn ->

We have now finished step 4 of our seven-step modeling process—we
have captured all the necessary information for the data model. An example of
the facts we’ll store for one note with two keywords “test” and “cool” is shown
in Listing 11.17.

Listing 11.17 Example facts for one NoteTaker note.
<- http://saturn/test.html, summary, "My Summary" ->
<- http://saturn/test.html, details, "My Details" ->
<- http://saturn/test.html, top, "100" ->
<- http://saturn/test.html, left, "90" ->
<- http://saturn/test.html, width, "80" ->
<- http://saturn/test.html, height, "70" ->
<- http://saturn/test.html, keyword, urn:notetaker:keyword:test ->
<- http://saturn/test.html, keyword, urn:notetaker:keyword:cool ->

<- urn:notetaker:keyword:test, label, "test" ->
<- urn:notetaker:keyword:cool, label, "cool" ->

<- urn:notetaker:keyword:test, related, urn:notetaker:keyword:cool ->

The last fact is the sole “relatedness” between keywords. We could also
store a fact that is the reverse of the last fact, since test is also related to

AppDevMozilla-11 Page 404 Thursday, December 4, 2003 6:34 PM

11.6 Hands On: NoteTaker: Data Models 405

cool. If we do that, we’ll have many extra facts for notes with many key-
words. Here we’ll just describe the minimum facts necessary to link the key-
words.

Steps 5 and 6 of the modeling anticipate Chapter 14, Templates. Eventu-
ally, we’d like to extract these facts from an RDF document efficiently. This
means adding extra structure to the basic facts. Scripts and templates will be
able to exploit this structure. The only such structures that RDF provides are
container tags, a little type information, and the capbility to add facts without
restriction. Looking at the NoteTaker tool, scripts and templates will want to:

1. Find out if a note exists for a given URL, so that NoteTaker knows
whether to display one or not.

2. Extract the details of a note, including keywords, using a URL. That is
for display in the dialog box, for both the Edit and the Keywords panes.

3. Extract just the summary and details of a note using a URL. This is for
the toolbar textboxes and for the content of the HTML-based note.

4. Extract a list of all the existing keywords. That is for the drop-down
menu in the toolbar.

5. Somehow extract all the related keywords for a given keyword, and all
their related keywords, and so on. That is for the user’s information in
the Keywords pane of the dialog box.

In addition to these fact extractions, we want to be able to add, remove,
and update notes easily. Those tasks are generally easy, so we’ll address only
the preceding list. That list is effectively a set of queries.

Mozilla can find facts in an RDF document no matter how they are
arranged, but some arrangement makes it faster, and some arrangements
make the RDF easier to read. We’ll do two things:

☞ Put all the URLs for existing notes into a <Bag> RDF container with URI
urn:notetaker:notes. Queries 1, 2, and 3 can use this container to
find a note and its content.

☞ Put all the URNs for existing keywords into a <Bag> RDF container with
URI urn:notetaker:keywords. Query 4 can use this container to get
its list.

Query 5 is quite difficult because it requires extensive exploration of the
keyword-laden facts. We’ll just say that there is no obvious help we can add at
this stage. Whatever system handles query 5 will probably have to search the
whole set of facts, or a large subset.

Because RDF documents are supposed to use <Bag> tags as fact subjects,
we’d better add a topmost <Description> tag with resource urn:noteta-
ker:root. Our two <Bag> tags can be property values of that tag.

AppDevMozilla-11 Page 405 Thursday, December 4, 2003 6:34 PM

406 RDF Chap. 11

That is all the modeling we need. In step 7, the last step, it is purely
mechanical to turn the data model into an RDF document. A skeleton docu-
ment based on our RDF container choices, and containing no notes, is shown
in Listing 11.18.

Listing 11.18 Example facts for one NoteTaker note.
<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmnls:NT="http://www.mozilla.org/notetaker-rdf#>
 <Description about="urn:notetaker:root">
 <NT:notes>
 <Seq about="urn:notetaker:notes"/>
 </NT:notes>
 <NT:keywords>
 <Seq about="urn:notetaker:keywords"/>
 </NT:keywords>
 </Description>
</RDF>

If this document is populated with the note of Listing 11.18, then the
final RDF document is shown in Listing 11.19.

Listing 11.19 Example NoteTaker database in RDF—one note only.
<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmnls:NT="http://www.mozilla.org/notetaker-rdf#>
 <Description about="urn:notetaker:root">
 <NT:notes>
 <Seq about="urn:notetaker:notes">
 <li resource="http://saturn/test.html"/>
 </Seq>
 </NT:notes>
 <NT:keywords>
 <Seq about="urn:notetaker:keywords">
 <NT:keyword resource="urn:notetaker:keyword:cool/>
 <NT:keyword resource="urn:notetaker:keyword:test/>
 </Seq>
 </NT:keywords>
 </Description>

<!-- one note -->
 <Description about="http://saturn/test.html">
 <NT:summary>My Summary<NT:summary/>
 <NT:details>My Details<NT:details/>
 <NT:top>100<NT:top/>
 <NT:left>90<NT:left/>
 <NT:width>80<NT:width/>
 <NT:height>70<NT:height/>
 <NT:keyword resource="urn:notetaker:keyword:test"/>

AppDevMozilla-11 Page 406 Thursday, December 4, 2003 6:34 PM

11.7 Debug Corner: Dumping RDF 407

 <NT:keyword resource="urn:notetaker:keyword:cool"/>
 </Description>

<!-- values for each keyword -->
 <Description about="urn:notetaker:keyword:test label="test"/>
 <Description about="urn:notetaker:keyword:cool label="cool"/>

<!-- all related keyword pairings go here; one so far -->
 <Description about="urn:notetaker:keyword:test">
 <NT:related resource="urn:notetaker:keyword:cool">
 </Description>
</RDF>

Some of the <NT:keyword> tags are duplicated in this file. There’s
always a balance between keeping data simple and keeping systems that
query that data simple. In our case we’ve chosen a little duplication of data so
that most of the data querying work (described in Chapter 14, Templates) is
straightforward.

Thus we are now finished with the data model for NoteTaker’s notes. The
file format that we’ll eventually use to store those notes is set at the same
time. The only reason we’re using RDF is because NoteTaker is a client-only
tool (no server), and the amounts of data are likely to be small.

11.7 DEBUG CORNER: DUMPING RDF

RDF data are processed silently so there’s not much feedback to be had. A few
tricks exist.

RDF documents usually contain whitespace that hint at the purpose of
the facts stated. You can strip that whitespace out and view such a document
as plain, hierarchical XML. To do this, just change the file extension to .xml
(or use a shortcut or a link) and load it directly into a Navigator window.

There is no need to restart Mozilla every time you read an RDF docu-
ment, or even every time you modify that document by hand. The document is
managed by the Mozilla cache. If you modify the fact store extensively (and get
lost), then you should restart Mozilla entirely.

The RDF diagram (as in Figure 11.5) for a given document is not easy to
produce automatically. It is possible to write a graph-drawing routine for a
graph of known, familiar, or simple structure. Such a graph can be displayed
by an SVG-enabled version of Mozilla—you can use DOM operations on an
SVG document to create such a graph dynamically. What you can’t easily do is
write a general-purpose function that analyzes and arranges an unknown
RDF graph in a guaranteed readable way—there are theoretical constraints.
It is a hard task and not worth attempting on limited time. The RDF page at
the W3C (www.w3.org) contains a massive list of RDF software tools.

AppDevMozilla-11 Page 407 Thursday, December 4, 2003 6:34 PM

408 RDF Chap. 11

If you are not sure of the state of your fact store, then the easy way to
inspect it is to write it out. The code in Listing 11.20 achieves this end.

Listing 11.20 downloads.rdf file after a single complete download.
// preparation ..
var Cc = Components.classes;
var Ci = Components.interfaces;
var comp = Cc["@mozilla.org/rdf/rdf-service;1"]
var iface = Ci.nsIRDFService;

var svc = comp.getService(iface);
var ds = svc.GetDataSource("file:///C|/tmp/test.rdf");
var rds = ds.QueryInterface(Ci.nsIRDFRemoteDataSource);

// .. normal processing of the fact store here ..

function dumpRDF()
{
 // one change must be made before a store is writable
 var sub = svc.GetResource("urn:debug:subject");
 var pred = svc.GetResource("DebugProp");
 var obj = svc.GetResource("urn:debug:object");
 ds.Assert(sub, pred, obj, true);

 rds.Flush(); // write it out
}

This code does nothing more than create a data source for the file C:/
tmp/test.rdf. The function dumpRDF() can be called anytime after the
source has finished loading, which can be detected with the rds.loaded flag
or with an observer object. The dumpRDF() function just adds a fact to the fact
store and writes the whole fact store out. One fact is added so that the data
source knows that the file is out of date. If the written file is subsequently
viewed, the extra fact appears like this:

<RDF:Description about="urn:debug:subject">
 <DebugProp resource="urn:debug:object"/>
 </RDF:Description>

DebugProp and debug are plain strings and have no special meaning.

11.8 SUMMARY

Fact-based systems are a little different from normal data processing. There’s
plenty of new concepts to pick up: fact, tuple, triple, subject, object, predicate,
fact store. When those are finished, there’s RDF-specific terminology as well:
description, resource, property, value, container, URL, URN. RDF is a not-so
simple application of XML, but at least it has a core of sensible design.

AppDevMozilla-11 Page 408 Thursday, December 4, 2003 6:34 PM

11.8 Summary 409

In addition to standards- and theory-based concept, Mozilla has a num-
ber of concrete, heavyweight internal structures that can pump information
around. These are different from simple event-processing systems because the
processing content takes time. Channels and data sources are heavyweight
structures that are intimately tied to RDF.

Inside Mozilla, RDF is used all over the place. There are many data
sources, components, and interfaces that an application programmer can take
advantage of, and a fair chunk of the finished browser application uses RDF to
store state permanently. If only RDF processing were a little faster, it might be
useable as a general message exchange format, but at the moment it’s best for
nonperformance critical tasks.

After digesting RDF, something lighter would be most welcome. In the
next chapter, Mozilla’s overlay and chrome systems are examined. It requires
only XML and XUL tags. Just to keep the discussion honest, the RDF system
underneath is examined as well.

AppDevMozilla-11 Page 409 Thursday, December 4, 2003 6:34 PM

