

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

Components

AppDevMozilla-06 Page 196 Thursday, December 4, 2003 6:29 PM

197

C H A P T E R

Overlay
database

XBL
definitions

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

DTDs

Skins

RDF

DOM

Events

GesturesKeycodes

Keyboard

W3C
standards

Mouse

JavaScriptcript

6

Events

AppDevMozilla-06 Page 197 Thursday, December 4, 2003 6:29 PM

198 Events Chap. 6

The Mozilla Platform is designed first and foremost for interactive applica-
tions. This chapter explains the basic features of Mozilla that build a bridge
between a real live human and a software system. Such features are quite
varied. They range from device drivers to single keystrokes to forms, menus,
and toolbars. Underneath most of these possibilities is an event-driven input-
processing system. This chapter covers that underlying raw, event-driven
input.

In order to act, a user’s raw input must first be boiled down into some-
thing more useful. This chapter also describes Mozilla’s low-level collection
systems for user input from the mouse, keyboard, and other sources. User
input is deeply linked with Mozilla’s event management systems, and the
basics of these systems are carefully explored as well.

Traditional computer-user interfaces like keyboards, mice, and monitors
are not very standard at all. These devices are connected to an operating sys-
tem and a desktop, and those systems attempt to impose their own unique
standards in order to make sense of it all. Such standards make the construc-
tion of cross-platform applications a challenge. Even the simplest standard
makes portability a challenge: one mouse button for the Macintosh, two for
Microsoft Windows, and three for UNIX.

On the other hand, most operating systems use Control-X, Control-C,
and Control-V for cut, copy, and paste operations, respectively, except when
keyboards don’t have X, C, or V. The thing about standards is this: Not only
are there many to choose from, but there are also many to be compatible with.
Every standard is a little tyrant.

The Mozilla Platform must try to handle all these constraints gracefully,
as well as find a way to set its own conventions. Users want their interaction
with Mozilla to be familiar, obvious, simple, and reliable. Most user actions are
repetitive, and users want to be able to perform those actions by reacting
through habit, not by thinking.

The NPA diagram that precedes this chapter illustrates the areas of
Mozilla that involve user input. The diagram is exactly as you would expect—
most of the user input activity is on the user side of the diagram. The box
labeled “Events” is of central concern to this chapter; it represents a system
described in the DOM 2 Events and DOM 3 Events standards.

Now that JavaScript, XPConnect, and XPCOM have been introduced, a
few relevant components from the back part of Mozilla are explored as well.
These components, and the XUL tags that happen to complement them, pro-
vide several ways to express where an event should go after it appears.

Before proceeding, note this word of caution. Many of the concepts in this
chapter are trivial to grasp. Some, however, are a little too subtle for readers
with only HTML experience. If you are a beginner programmer, it’s highly rec-
ommended that you experiment with the event concepts described, to gain
experience. These event concepts recur throughout Mozilla and are an impor-
tant step on the road to mastering the platform. The “Hands On” session in
this chapter is a good starting point.

AppDevMozilla-06 Page 198 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 199

6.1 H

OW

 M

OZILLA

 H

ANDLES

 E

VENTS

Figure 6.1 is a conceptual overview of the event-driven systems inside Mozilla.
All these approaches are briefly discussed here; most are extensively dis-

cussed here, but commands are discussed in Chapter 9, Commands, and con-
tent processing is a topic addressed in Chapter 16, XPCOM Objects.

6.1.1 Scheduling Input and Output

All programs need some form of input and output, and the Mozilla Platform is
no exception. It can receive input from devices driven by human beings, from
network and Internet connections, from the operating system, from other
applications, and from itself. It can send output to most of those places. All
together, that’s a complicated set of possibilities to juggle. What if input
arrives from several places at once? Won’t something be missed? Mozilla’s
solution involves a simple event-driven scheduling system.

The problem with scheduling systems is that few programming lan-
guages have direct support for them, and simple-minded programs rarely use
them. Some programmers never come into contact with such systems. A begin-
ner’s introduction is provided here. Experienced programmers note that this
system is equivalent to a multithreaded environment and the

select()

 ker-
nel call.

“hello, world” might be the first program everyone attempts, but it only
produces output. The second program attempted is likely to do both input and

Fig. 6.1 Overview of event processing inside Mozilla.

AppDevMozilla-06 Page 199 Thursday, December 4, 2003 6:29 PM

200 Events Chap. 6

output. Listing 6.1 shows an example of such a second program, using Java-
Script syntax. You can’t run this program in a browser—it is just an imaginary
example.

Listing 6.1

Example of a first input-output program.

var info;
while (true)
{
 read info;
 print info;

}

According to the rules of 3GL programming languages, this program has
one statement block containing two statements, which are executed one after
the other, over and over. This program never ends; it just reports back what-
ever is entered. It could be written in a slightly more structured way, as List-
ing 6.2 shows.

Listing 6.2

Example of a first structured input-output program.

var info;
function read_data() { read info; }
function print_data() { print info; }

function run()
{
 while (true)
 {
 read_data();
 print_data();
 }
}

run();

Even though this second program performs only the single statement

run()

, it’s clear that this is the same step-by-step approach used in Listing
6.1. Software based on scheduled systems doesn’t work this way at all. The
same program expressed in a scheduling system might appear as in Listing
6.3.

Listing 6.3

Example of a first scheduled input-output program.

var info;

function read_data() {
 if (!info)
 read info;
}

AppDevMozilla-06 Page 200 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 201

function print_data() {
 if (info) {
 print info;
 info = null;
 }
}

schedule(read_data, 500);
schedule(print_data, 1000);

run();

The

schedule()

 function in this example takes two arguments: a func-
tion to run and a time delay in milliseconds.

schedule()

 says that the sup-
plied function should be run regularly whenever time equal to the millisecond
delay has passed.

run()

 tells the system to start looking for things to run. At
time 0.5 seconds (500 milliseconds),

read_data()

 will be run. At time 1.0 sec-
onds (1,000 milliseconds, which is also 2 * 500 milliseconds), both functions
will be run. At time 1.5 seconds (1,500 milliseconds = 3 * 500 milliseconds),

read_data()

 will run for a third time, and so on. The

run()

 function never
finishes.

Such an arrangement can seem quite foreign, especially since the

schedule()

 and

run()

 functions aren’t defined anywhere in the program.
You just have to trust that they work as advertised. They are services provided
by some exist ing schedul ing system. Worse,

read_data()

 and

print_data()

 don’t execute in any particular order. In fact,

read_data()

runs twice as frequently (every half second, compared to once a second for

print_data()

).
In order to work together, the two functions rely on a shared piece of data

(the

info

 variable).

read_data()

 will not read anything until the last item
in info is used by

print_data()

.

print_data()

 will not print anything
until

read_info()

 puts something into

info

. The two functions are coordi-
nated with each other via shared state information, even though they are oth-
erwise independent.

In Mozilla, you can either create such a scheduler yourself or use an
existing one and add your own scheduled items, but neither strategy is com-
mon practice. The Mozilla Platform takes care of all this for you. It has a built-
in scheduler and scheduled functions that check for all possible forms of user
input and output. A keypress is one kind of input, a JavaScript script to run is
another, and a chunk of HTML content received from a Web server is a third.
Scheduled items can be small (a mouse click) or very large (please redisplay
this whole HTML document). Everything in Mozilla is a scheduled item, even
if this fact is buried deeply underneath everyday features.

Occasionally this scheduled system is revealed to the programmer. List-
ing 6.4 closely matches Listing 6.3; however, it is a legal and runnable Java-
Script script. Include it in any HTML or XML page, fill in the regularly

AppDevMozilla-06 Page 201 Thursday, December 4, 2003 6:29 PM

202 Events Chap. 6

appearing popup, and watch the text in the window’s title to see the schedul-
ing system at work. The example goes slowly so that you have time to shut the
windows down with the mouse when you’ve had enough.

Listing 6.4

Example of function scheduling using

setInterval()

.

function read_data() {
 if (!window.userdata)
 window.userdata = prompt("Enter new title");
}

function print_data() {
 if (window.userdata) {
 window.title = window.userdata;
 window.userdata = null;
 }
}

window.setInterval(read_data, 5000);

window.setInterval(print_data, 100);

Even though the two functions run at very different frequencies, the sys-
tem works.

print_data()

 will do frequent checks for something to do;

read_data()

 will less frequently ask the user for information.
This example could be simplified. The

read_data()

 function could be
made to write the title into the window as soon as it is read. If that were done,

print_data()

 could be done away with entirely. Such a variation shows how
bigger functions mean fewer scheduled items. The reverse is true as well. The
number of items scheduled is just a programmer’s choice at design time.

Listing 6.4 can be viewed from a different perspective. Rather than be
amazed that two functions can run in a coordinated but independent manner,
it is possible to think about the roles of those two functions inside the running
environment.

read_data()

 acquires new information and makes it available.
From the perspective of the run-time environment, it is a producer of informa-
tion.

print_data()

 takes available information and puts it somewhere else,
using it up in the process. It is a consumer of information.

Producers and consumers are very important design ideas, and they
appear throughout Mozilla. The idea of a

producer-consumer pair

 working
together is a very common one, and the pair is tied together by a common pur-
pose: the desire to process one kind of information. Sometimes the pair sits
and does nothing. When some new stimulus occurs, the pair goes into action.

A further modification to Listing 6.4 might be to change the

setInter-
val()

 calls to

setTimeout()

 calls.

setTimeout()

 schedules its function
argument to run just once, not repeatedly. After that sole run, the scheduled
item is removed from the schedule system, never to appear again. Items that
appear just once in a schedule system are a very important special case.

Suppose that a schedule system consists of nothing but one-off items.
Further, suppose that these items all have a time delay of zero. Lastly, suppose

AppDevMozilla-06 Page 202 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 203

that these items are all producers—they will each produce one item of data
when they run. In such circumstances, the schedule system is a simple event
queue. When a producer in the queue runs, an event is said to be underway. In
casual conversation, the producer in the queue is also called an event, but the
data that the producer creates is called an event too. Since all the producers in
an event queue have a zero delay, Mozilla will do its best to run them right
away, which means they leave the queue almost immediately. Such a system is
useful for reporting keystrokes, for example.

In Listing 6.4, the application programmer is responsible for creating
both consumers and producers. An event queue can be arranged differently.
The Mozilla Platform can be made responsible for adding the events to the
queue. It can also be made responsible for finding a suitable consumer when a
producer event occurs. The application programmer can be responsible for writ-
ing consumers that consume the created event data and for telling the Mozilla
Platform that these consumers are interested in certain kinds of event data.

The application programmer calls these consumers event handlers, and
Mozilla calls them listeners. A listener is a programming design pattern—a
well-established idea that is a useful thinking point for design. Code designed
to be a listener awaits information from other code and acts on it when it
occurs. All JavaScript scripts are listeners that run in response to some event,
even though no event appears to be at work.

This brief introduction has gone from a plain 3GL example to an event-
driven system. This is how much of Mozilla works. In particular, this is how
user input, for example, is processed. We have touched on the concepts of con-
sumers, producers, scheduling, listeners, and timing along the way, and these
concepts are all useful in their own right. When the moment comes to get dirty
using XPCOM components, these concepts will become essential. For now, all
you need to do is accept that events drive all processing in Mozilla, even if the
thing to process is just one big script.

From Chapter 5, Scripting, you know that much of the Mozilla Platform
is available as XPCOM interfaces and components, and that includes event
queues. The two components

@mozilla.org/event-queue;1
@mozilla.org/event-queue-service;1

and the interface

nsIEventQueue

allow an event queue to be created, started, and stopped. These components
are only useful for applications that deeply customize Mozilla.

Because the Mozilla event queue is so low-level, it is rarely used directly.
Instead, Mozilla builds several higher-level systems on top that are easier to
work with. These are the features that application programmers depend on
heavily. They are still “below the surface” in the sense that they don’t include
much direct user input. They are like the middle layer of a cake, not the icing.

AppDevMozilla-06 Page 203 Thursday, December 4, 2003 6:29 PM

204 Events Chap. 6

This overview of how Mozilla processes events is continued with a look at
no less than five of these middle systems.

6.1.2 The DOM Event Model

The event handlers and events that Web developers use on a daily basis come
from the W3C’s DOM Events standards. Many of these events apply to any
XML document, including XUL, and experience with these handlers can be
directly applied to Mozilla. The DOM Event system sits on top of Mozilla’s
basic event queue. DOM Events are restricted to a single XML document.

Because the DOM Events standard has only recently been finalized with
DOM level 3, Web browser support has some catching up to do. Cross-browser
compatibility issues, nonstandard event behavior, and gaps have made the use
of events in scripts something of a vexing issue. Generally, the “flat” event
model of version 3.0 Web browsers, in which events do not propogate much, is
all Web developers risk using for cross-platform HTML.

With the release of Mozilla, many of these problems have gone away. For
application developers and for XUL documents, there are no cross-platform
issues. Mozilla supports the full DOM 2 and DOM 3 Event flow for many com-
mon events. Both event capture and bubbling phases are supported.

Mozilla also supports the use of more than one event handler per event
target, as per the standards. It is strongly recommended that you read sec-
tions 1.1 and 1.2 of the DOM 3 Events standard, if you haven’t yet. That’s a
mere four pages of reading.

To briefly summarize those sections of the standard, events in an XML
document can be handled with JavaScript scripts. A piece of script or a single
function is an event handler, which the programmer installs against an event
target. An event target is just a tag or the tag’s DOM 1

Element

 object, plus
an event type. When an event occurs as a result of user input or some other
reason, an

Event

 object is created. That object travels down the DOM hierar-
chy of tags, starting with the

Document

 object and ending with the event tar-
get tag. This is the capture phase, and any tag along the way can process the
event if it has a suitable event handler. Such an interposed handler can stop
the event or allow it to continue to the event target tag.

After the

Event

 object reaches the event target tag, the intended event
handler is executed. This handler can stop the

Event

 object from traveling
and prevent the default action from occurring. The default action is what
would happen if the event target tag had no installed handler at all. After the
handler has finished running, the default action takes place (if it hasn’t been
stopped), and then the event enters the bubble phase. In the bubble phase, the

Event

 object returns up the DOM hierarchy to the

Document

 object, and
again can be intercepted by one or more other handlers on the way. When it
reaches the

 Document

 object, the event is over.
Events travel down and up like this to support construction of two types

of interactive documents.

AppDevMozilla-06 Page 204 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 205

In one design, tags within a document are considered dumb objects that
need to be managed. In this case, events need to be captured at the most
abstract level (at the document level) so that high-level processing of the docu-
ment’s contents can occur. Examples of this type of design include window
managers that receive input on behalf of the windows, desktops that receive
input on behalf of icons, and rubber-banding (area-selection) operations. The
capture phase supports this kind of design.

In another design, tags within a document are considered smart objects
that can think for themselves. Input goes straight to the most specific object,
which does its own processing. Examples of this type of design are ordinary
application windows, forms, and graphical tools. This is the more common use
of XUL. The bubbling phase supports this kind of design.

Table 6.1 shows events that Mozilla recognizes. This list is derived from
the Mozilla source file

content/events/src/nsDOMEvent.cpp

 and is orga-
nized according to the sections of the DOM 3 Events standard, plus two col-
umns for Mozilla custom events. There are many XUL tags that support only a
subset of these events.

Mozilla-specific events are discussed in the appropriate topic in this
chapter. Here is a brief summary of these events. dblclick occurs on double-
click of a mouse button. contextmenu occurs if the mouse or keyboard makes
a context menu appear (e.g., right-click in Microsoft Windows). Events

Table 6.1 Implemented events in Mozilla

DOM
mouse

DOM
text

DOM
HTML DOM mutation Mozilla Mozilla

click keydown load DOMNodeInserted dblclick popupshowing

mousedown keyup unload DOMNodeRemoved contextmenu popupshown

mouseup abort DOMAttrModified popuphiding

mouseover error DOMCharacterData-
Modified

keypress popuphidden

mousemove select text

mouseout change command dragenter

submit commandupdate dragover

reset input dragexit

focus dragdrop

blur paint draggesture

resize overflow

scroll underflow broadcast

overflowchanged close

AppDevMozilla-06 Page 205 Thursday, December 4, 2003 6:29 PM

206 Events Chap. 6

grouped with keypress are for keyboard actions or for actions that are typi-
cally initiated by the user. Events grouped with paint are for changes to doc-
ument layout. popup... events are for menu popups and tooltips. drag...
events are for drag-and-drop gestures with the mouse. broadcast supports
the broadcaster-observer system that is a Mozilla-specific technology. close
occurs when a user attempts to close a window.

These events all generate an Event object, as per the DOM Events stan-
dard. Mozilla’s nsIDOMEvent interface is equivalent to the Event interface in
the standard, and other interface names convert similarly.

Table 6.2 shows events that Mozilla does not recognize as of version 1.4.
These events are also drawn from the DOM 3 Events standard.

The common way to specify an event handler is to use an XML attribute.
Mozilla is case-sensitive, and all such attributes should be lowercase, unless
uppercase is explicitly stated in these tables. A handler attribute has the same
name as the event with a prefix of “on”. Less popular, but more powerful, is
the DOM system for setting event handlers. Listing 6.5 compares the syntax
for these two systems.

Listing 6.5 Event handlers registration techniques.
<!-- the XML way -->
<button id="test" onclick="myhandler(event);">
 <label value="Press Me"/>
</button>

// The DOM way
 var obj = getElementById("test");
 obj.addEventListener("click", myhandler, false);

Traditional HTML would supply the handler function a this argument.
In Mozilla, the current Event object is always available as an event property.
That Event object’s currentTarget property is equivalent to this, so use
either name.

Table 6.2 Unimplemented standard event names in Mozilla 1.2.1

DOM user inter-
face events DOM mutation name events DOM text events

DOMFocusIn DOMElementNameChanged textInput (use keypress
or text)

DOMFocusOut DOMAttributeNameChanged

DOMActivate DOMSubtreeModified

DOMNodeInsertedIntoDocument

DOMNodeRemovedFromDocument

AppDevMozilla-06 Page 206 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 207

There are minor differences in the execution of these two variants. The
scripted DOM approach is slightly more flexible for several reasons:

☞ More than one handler can be added for the same object using add-
EventListener().

☞ addEventListener()’s third argument set to true allows a handler to
run in the capture phase. That is not possible from XML.

☞ Handlers can be removed using removeEventListener(). In XUL, an
inline event listener can only be replaced, not removed.

☞ The DOM method allows all event handlers to be factored out of the XML
content. Handlers can therefore be installed from a separate .js file.

The XML approach has one advantage: It supports a script fragment
smaller than a whole function. This capability might be useful for HTML, but
for XUL, where structured programming is good practice, it is not much of a
benefit. If your XML is likely to have a long life, it’s recommended that you
keep event handlers out of XML attributes.

6.1.2.1 XUL Support for Event Handlers According to Table 5.4, Mozilla
does not support the HTMLEvents and TextEvents interfaces that are part of
the DOM 3 Events standard. That is not the full story.

XUL is not HTML, so lack of support for HTMLEvents is not a surprise.
The default actions for some HTML tags are substantial (e.g., form submission
or link navigation), but default actions for XUL tags are less common. XUL
tags, on the other hand, are frequently backed by XBL bindings and sophisti-
cated styles. These bindings and styles add effects and handlers that might as
well be counted as default actions. If a XUL tag has no programmer-installed
event handlers, but something is still happening when the event occurs, the
best place to start looking is in xul.css in the toolkit.jar chrome file.
That is where default styles and bindings for tags are located. Chapter 15,
XBL Bindings, describes how to add event support using XBL bindings.

TextEvents is a DOM standard term for events in which a character is
sent to an XML document. In plain English, this means keypresses, but
TextEvents could in theory originate from some other source. The Tex-
tEvents section of the Events standard is based on Mozilla’s nsIKeyEvents
interface, but it is slightly different in detail. In practice, Mozilla has almost
the same functionality as the standard.

TextEvents do have one shortcoming in Mozilla. These events can only
be received by the Document or Window object. There is no capturing or bub-
bling phase at all.

There is no exhaustive cross-reference yet that documents event support
for every XUL tag. The easiest way to proceed is still to try out an event han-
dler and note the results for yourself. The individual topics of this chapter pro-
vide some guidance on specific handlers.

AppDevMozilla-06 Page 207 Thursday, December 4, 2003 6:29 PM

208 Events Chap. 6

Many XUL tags have XBL bindings attached to them, and XBL has a
<handler> tag. This means that the default action for a given tag might be
specified in XBL, rather than inside Mozilla’s C/C++. This opens up some XUL
default actions to study.

6.1.3 Timed Events

A second event system inside Mozilla is a simple mechanism for timed events.
Listing 6.4 and its discussion use this system. Because Mozilla’s event queue
is such a fundamental feature of the platform, it is both easy and sensible to
make a user-friendly version available to programmers. The four calls that
make up this little system are shown in Listing 6.6.

Listing 6.6 Timed events API examples.
timer = window.setTimeout(code, milliseconds);
timer = window.setInterval(code, milliseconds);

window.clearTimeout(timer);
window.clearInterval(timer);

// examples of timed code
timer = setTimeout(myfunction, 100, arg1, arg2);
timer = setTimeout("myfunction();", 100);
timer = setTimeout("window.title='Go'; go();", 100);

The argument named code can be either a function object or a string
containing JavaScript. If it is a string, it is evaluated with eval() when run.
The timer return value is a numeric identifier for the scheduled item. Its only
purpose is to allow removal of the item. The identifier has no meaning within
JavaScript, other than being unique.

Timers have some restrictions: The timed event does not have the Java-
Script scope chain of the code that called it; the window object is the first scope
chain member; and the number of milliseconds must be at least 10.

Perhaps the biggest restriction is the single-threaded nature of both
JavaScript and XPCOM. No timed event will occur until the current script is
finished running. Only one timed event can be in progress at a given time. If a
given piece of code takes a long time to complete, then all the due events will
bank up and be executed late. Finally, some input and output operations
must wait for an event handler to finish before they can take place. For exam-
ple, style layout changes made by a setTimeout() event won’t occur until
the event is over. This is a major constraint on animated systems. In general,
the JavaScript interpreter must release the CPU before other activities in the
Mozilla Platform can proceed.

Mozilla’s XPCOM system can also provide timed events. It has an API
entirely separate from setTimeout(). The XPCOM pair required is

@mozilla.org/timer;1 nsITimer.

AppDevMozilla-06 Page 208 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 209

Such an object works with a second object that supports the nsIOb-
serves interface. To use nsITimer, you must implement this second object
yourself. Listing 6.7 illustrates.

Listing 6.7 Single setTimeout() call implemented using XPCOM components.
var observer = {
 // Components.interfaces.nsIObserver
 observe: function(aSubject, aTopic, aData)
 {
 alert("From: " + aSubject + " saw: " + aTopic + " data: " + aData);
 },

 // Components.interfaces.nsISupports
 QueryInterface : function(iid)
 {
 if (iid.equals(Components.interfaces.nsIObserver) ||
 iid.equals(Components.interfaces.nsISupportsWeakReference)
 || iid.equals(Components.interfaces.nsISupports)
)
 return this;
 throw Components.results.NS_NOINTERFACE;
 }
};

with(netscape.security.PrivilegeManager)
{ enablePrivilege("UniversalXPConnect"); }

var c, timer;

c = Components.classes["@mozilla.org/timer;1"];
timer = c.createInstance(Components.interfaces.nsITimer);

timer.init(observer, 5000, timer.TYPE_ONE_SHOT);

Most of this code simply creates an object that implements the nsIOb-
server interface. How exactly this works isn’t too important yet; it is just
worth noting that the observe() method has the same name and arguments
as the one defined in the nsIObserver interface, which you can find in the
nsIObserver.idl interface file. Compare this object with the contents of
nsIObserver.idl and nsISupports.idl in the source code, if you like.
That created object will receive the timed event when it occurs.

The last few lines of Listing 6.7 create the Timer object, and set up the
event. init() tells the timer what object should be used when the event
comes due, when the event should be, and whether the event should run once
or repeatedly. Just like setTimeout(), this script then ends. The event fires
later on, causing observer.observe() to run. It’s clear that this code
achieves the same effect as a setTimeout() call that runs alert().

The line of security code in the middle of this example is required if the
script is not stored inside the chrome. The user must confirm that the script

AppDevMozilla-06 Page 209 Thursday, December 4, 2003 6:29 PM

210 Events Chap. 6

has permission to use XPCOM, for security purposes. It is shown here just to
illustrate what is required for nonchrome XUL. Most XUL is stored in the
chrome and doesn’t require this line.

If you include this code in any HTML or XUL page, you’ll see that a sin-
gle alert box appears 5 seconds or so after the page loads. For everyday pur-
poses, it’s much easier just to use setTimeout() and setInterval(). Later
on, this more formal system will seem much more convenient for some tasks.

6.1.4 Broadcasters and Observers

The third event system in Mozilla is based on the Observer design pattern.
Recall that design patterns are high-level design ideas that, when imple-
mented carefully, create powerful, flexible, and sometimes simple software
systems. Mozilla’s XPCOM components, which together look like an object
library, make extensive use of the Observer design pattern. Any nontrivial
use of XPCOM means learning this pattern. This pattern is used so much that
it also appears directly in XUL tags.

Earlier in this chapter the concepts of event queues, producers and con-
sumers, and listeners were outlined. All of these things are designed to bring
some structure to input or, more generally, to notify that something, some-
where has changed. Recall that listeners are a kind of consumer that is noti-
fied when an event occurs. Observers are another kind of consumer that is
notified when an event occurs.

The difference between listeners and observers is that listeners don’t
generally respond. A listener notes the information or event that it is advised
of, perhaps does something with it, but usually ignores the system that sup-
plied the event. An observer also notes the information or event that it is
advised of and perhaps does something with it, but an observer is also free to
interact with the provider of the event. Observers are somewhat interactive
and, in less common cases, can even take on a supervisory role.

Observers work with a broadcaster. The broadcaster’s role is to notify the
observer when an event occurs. The broadcaster has the ability to notify any
number of observers when one event occurs, hence its name. There is a one-to-
many relationship between a broadcaster and its observers. Just as one DOM
2 Event can be handled by several event handlers on the same event target,
one broadcast event can be handled by several observers.

An observer and a broadcaster are like a consumer-producer pair, except
the broadcaster is a producer for many observer consumers. The pair’s rela-
tionship doesn’t end there, though. Initially, the observer does nothing but
wait until the broadcaster acts, sending an event. After the event is sent, the
roles are reversed. The broadcaster does nothing, and the observer can act on
the broadcaster, if it so wishes. Both are free to act on other software that they
are part of.

All that is a bit abstract, so here is some concrete technology.

AppDevMozilla-06 Page 210 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 211

6.1.4.1 XUL Broadcasters and Observers XUL supports the <broadcast-
erset>, <broadcaster>, and <observes> tags. It also supports the
observes and onbroadcast attributes, which apply to all XUL tags. A
related tag is the <command> tag. <command> is explored in Chapter 9, Com-
mands.

These tags allow XML attribute value changes in one tag to appear in
another tag. In other words, two tags are linked by an attribute. These
changes are used as a notification system inside XUL. Syntax for these tags is
shown in Listing 6.8.

Listing 6.8 Broadcasters and observers implemented in XUL.
<broadcasterset>
 <broadcaster id="producer1" att1="A" att2="B" ... />
 <broadcaster id="producer2" att1="C" ... />
</broadcasterset>

<observes element="producer1"
 attribute="att1"
 onbroadcast="alert('test1')"/>

<observes element="producer1"
 attribute="att1 att2"
 onbroadcast="alert('test2')"/>

<box observes="producer2"/>

att1 and att2 stand for any legal XML attribute names, except for id,
ref, and persist. None of these tags have any visual appearance except pos-
sibly <box>. The last line could have used any XUL tag; there is no special
reason for choosing <box>. An overview of these tags follows.

Recall that the <stringbundleset> tag was introduced in Chapter 3,
Static Content. It is a nondisplayed tag with no special behavior. It is just used
as a convenient container for <stringbundle> tags. <broadcasterset>
has exactly the same role for <broadcaster> tags. It does nothing except
look tidy in the source code; however, you are encouraged to follow its use con-
vention.

The <broadcaster> tag has a unique id and a set of attributes. These
attributes are just plain data and have no special meaning. The tag can have
as many of these attributes as necessary. If any of these attributes change, the
broadcaster will look for places to send an event.

The <observes> tag uses the element attribute to register itself with
a <broadcaster> that has a matching id. The <observes> tag must also
have an attribute attribute. This determines which of the <broad-
caster>’s attributes it is observing. The second example in Listing 6.8 shows
an <observes> tag observing two attributes. The value for this attribute can
also be "*", meaning observe all attributes.

AppDevMozilla-06 Page 211 Thursday, December 4, 2003 6:29 PM

212 Events Chap. 6

The onbroadcast attribute applies only to the <observes> tag. It is
optional. Broadcast events will occur even if such a handler is missing. If a
handler is present, it will be fired before the attribute change takes place. In
that way, the old value can be read from the tag, and the new value, from the
event. The onbroadcaster handler is buggy in some Mozilla versions. It can
fire twice, or not at all, which are both wrong. It works reliably if the
attribute attribute has a value that is a single attribute name.

Finally for this example, the observes attribute allows any XUL tag to
observe all the changes from a given broadcaster. This is the role that the
<box> tag has. When observes is used, there is no way to restrict the obser-
vations to specific attributes. The tag with observes receives all attribute
changes that occur on the broadcaster.

Listing 6.9 shows all this at work as a series of code fragments.

Listing 6.9 Processing order for a broadcast event.
<button label="Press Me" oncommand="produce('bar');"/>

function produce(str)
{
 getElementById("b").setAttribute("foo",str);
}

function consume1(obj)
{
 if (obj.getAttribute("foo") == "bar")
 getElementById("x1").setAttribute("style","color:red");
}

<broadcaster id="b" foo="default"/>

<observes id="o1"
 element="b"
 attribute="foo"
 onbroadcast="consume1(this)"/>

<box id="x1"><label value="content"></box>

In this example, the broadcast event starts and ends with the XUL tags
<button> and <box>, respectively. This practice is common but not abso-
lutely necessary. The two JavaScript functions produce() and consume1()
are the real start and end points for the event.

produce() starts the event by changing a foo attribute on the broad-
caster tag. The broadcaster then informs any observers of the change. In this
case, there is only one observer. The observer’s foo attribute then changes.
The event could finish at this point, in which case some other script would
have to come back and examine the observer’s attribute. In this example, the
<observes> tag finishes the event with a call to the consume1() function. It
has some end-effect, in this case setting a style on the <box> tag. If there were

AppDevMozilla-06 Page 212 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 213

more observers, consume2() and consume3() functions might exist as well.
The consume1() function manipulates the observer tag, not the broadcaster
tag. The foo attribute it manipulates is copied to the observer tag when it is
changed on the broadcast tag—that is the origin of the broadcast event.

In this example, the button’s handler could set the required style directly,
saving a lot of tags and code. Even if there were more than one observer, each
with a different effect, the button handler could still implement all these
effects directly. Listing 6.9 is more sophisticated than a single button handler
because the existing button handler has no idea what tags are observing the
change it creates. This means that the <button>’s action is not rigidly con-
nected to specific tags. The <button> tag provides a service, and any inter-
ested parties can benefit from it. This is particularly useful when overlays are
used—they are described in Chapter 12, Overlays and Chrome. Overlays cre-
ate an environment where even the application programmer is not sure what
content might currently be displayed. In such cases, the observer pattern is a
perfect solution: Just broadcast your event to the crowd, and those wanting it
will pick it up.

There is a further use of <observes>. Any XUL tag may have an
<observes> tag as one of its content tags. The parent tag of <observes> will
then receive on broadcast whatever attributes of the broadcaster the
<observes> tag specifies. The <observes> tag itself does not change in this
case. If the broadcast event is just designed to change tag attributes, then this
nested tag arrangement makes the general case in Listing 6.8 much simpler.
The consume1() function can be done away with, and if attribute names are
coordinated throughout the code, then Listing 6.10 shows how the <box> tag’s
attribute can be set without any scripting:

Listing 6.10 Processing order for a broadcast event.
<button label="Press Me" oncommand="produce('color:red');"/>

function produce(str)
{
 getElementById("b").setAttribute("style",str);
}

<broadcaster id="b" style=""/>

<box id="x1">
 <observes id="o1" element="b" attribute="style"/>
 <label value="content">
</box>

This example could be further shortened by using the observes
attribute. To do this, remove the <observes> tag and add observes="b" to
the <box> tag. The <box> tag now receives all broadcaster changes, not just
those on attribute style, but less code is required.

AppDevMozilla-06 Page 213 Thursday, December 4, 2003 6:29 PM

214 Events Chap. 6

Finally, a <broadcaster> tag also sends an event when its XUL page is
first loaded. In this case, no broadcast-related event handlers fire.

Having covered the mechanics of <broadcaster> and <observes>, it’s
easy to wonder what it is all used for. The answer is that the application pro-
grammer adds a layer of meaning (semantics) on top of the basic system to
achieve an end purpose. In Mozilla, informal but common naming conventions
for the id attribute of the broadcaster are used to indicate different semantic
purposes. Three example purposes follow:

1. id=“cmd_mycommand”. The observer pattern can be used to send a com-
mand (like cmd_mycommand) to multiple destinations. The command
might be a function attached to the broadcaster. When an event occurs,
the observers all retrieve it and execute it. An example of this attribute
at work is the closing of multiple windows in one operation.

2. id=“Panel:CurrentFlags”. The observer pattern can be used to man-
age a resource or an object. This resource may or may not be exactly one
XUL tag. In the simplest case, the <broadcaster> tag is effectively a
record for the resource, holding many informational attributes. When
those attributes of the resource change, the broadcaster sends updates to
the observers, keeping them advised.

3. id=“data.db.currentRow”. The observer pattern can be used as a
data replication system. The id might exactly match a real JavaScript
object or any other data item. When the data changes, the broadcaster
tells all the observers. These observers can then grab the JavaScript
object and update whatever subsystems asked them to observe the data.

These examples show that the observer design pattern is widely useful
as a design tool.

When the observer concept was introduced, it was said that observers
often interact with their broadcasters. This is less common for the XUL-based
observer system, although there is nothing stopping an onbroadcast handler
from digging into the matching broadcaster. It is far more common in Mozilla’s
XPCOM broadcaster system, discussed shortly.

6.1.4.2 JavaScript Broadcasters and Observers Event handlers can be
installed using an XML attribute or using a JavaScript method based on DOM
standards. Both techniques were illustrated in Listing 6.8. The same is true of
Mozilla’s broadcasters and observers. The analogous methods apply only to
XUL, however. Listing 6.11 compares the XUL and JavaScript DOM tech-
niques for broadcast-observer pairs.

Listing 6.11 Linking broadcasters and observers using XUL JavaScript.
<!-- the XML way -->
<broadcaster id="bc"/>
<box id="x1" observes="bc" onbroadcast="execute(this)"/>

AppDevMozilla-06 Page 214 Thursday, December 4, 2003 6:29 PM

6.1 How Mozilla Handles Events 215

// the AOM way
<broadcaster id="bc"/>
<box id="x1"/>

var bc = getElementById("bc");
var x1 = getElementById("x1");
addBroadcastListenerFor(bc, x1, "foo");
addEventListener("broadcast", execute, false);

// also removeBroadcastListenerFor(bc, x1, "foo");

Both of these examples set up a broadcaster-observer relationship
between the two tags. The new method addBroadcasterListenerFor() of
the XUL window object sets up the connection in the JavaScript case. Note
that the observer’s onbroadcast listener needs to be installed as well.

6.1.4.3 XPCOM Broadcasters and Observers Like timers, broadcasters and
observers can be created the quick, Web development way using XUL, or more
slowly, but more flexibly using XPCOM components. Listing 6.7 illustrates a
partial example of XPCOM component use. Recall that the observer object
clearly follows the observer pattern, and that the nsITimer object is a broad-
caster of sorts, although it is limited to accepting one observer for a given
delayed event.

Listing 6.7 can be studied further. Figure 6.2 shows output from the sin-
gle alert() call run in that example.

The three arguments passed to the observe() method are displayed in
this dialog box. We didn’t consider these arguments earlier, but they are now
ripe for examination.

The third argument is data associated with the event. nsITimer sup-
plies no data for this argument. Boring.

The second argument is equivalent to the attribute attribute in XUL’s
<observes> tag. It specifies what event is occurring. The value of “timer-
callback” is the special value associated with an XPCOM nsITimer event.
This value is specified in the C/C++ code of Mozilla, but it is not a standard
DOM Event.

The first argument is the nsITimer object itself. In the alert box, it has
been changed to a JavaScript String type. The only way to do this is to call the
toString() method on that object. So the observer in this example is execut-
ing a method on the broadcaster for the trivial purpose of getting a string

Fig. 6.2 nsIObserver observe() arguments from nsITimer.

AppDevMozilla-06 Page 215 Thursday, December 4, 2003 6:29 PM

216 Events Chap. 6

back. This is an example of objects and broadcasters actively working together.
The observer can in fact examine or use any of the properties that the broad-
caster has, not just toString().

Mozilla has more general support for broadcaster-observer systems than
nsITimer. The simplest observer is

@mozilla.org/xpcom/observer;1 interface nsIObserver

This is a “do nothing” observer, a bit like /dev/null. It’s observe()
method just returns success. Mozilla has many specialist observer compo-
nents, or you can make your own, as is done in Listing 6.7. Mozilla’s XPCOM
broadcaster is more useful. It is based on this XPCOM pair:

@mozilla.org/observer-service;1 interface nsIObserverService

This singleton object is a general-purpose broadcaster. It will broadcast
to any observer object registered with it, regardless of the observer’s window
of origin. Listing 6.12 shows a typical use.

Listing 6.12 Example of an XPCOM broadcaster-observer pair.
var observer = { ... as in Listing 6-6 ... };
var observer2 = { ... another observer ...);

var CC = Components.classes, CI = Components.interfaces;
var cls, caster;

cls = CC["@mozilla.org/observer-service;1"];
caster = cls.getService(CI.nsIObserverService);

caster.addObserver(observer, "my-event", true);
caster.addObserver(observer2, "my-event", true);

caster.notifyObservers(caster, "my-event", "anydata");

The caster object is the single broadcaster. When observers are added,
using addObserver(), the first argument is the observer object; the second is
the event string to observer; and the third argument is a flag that indicates
whether the observer is written in JavaScript. If it is, true must be used. If it
is a C/C++ XPCOM component, false. notifyObservers() generates an
event of the given type on the broadcaster; the third argument is a piece of
arbitrary data in which arguments or parameters for the event can be placed.
It will be received by the observer object.

That concludes this introduction to Mozilla’s broadcasters and observers.

6.1.5 Commands

The fourth event system noted in this chapter relates to commands. In
Mozilla, a command is an action that an application might perform. HTML’s

AppDevMozilla-06 Page 216 Thursday, December 4, 2003 6:29 PM

6.2 How Keystrokes Work 217

link navigation and form submission are roughly equivalent to the tasks that
Mozilla commands implement.

Although the simplest way to think of a command is as a single Java-
Script function, that is far from the only way. A command can also be a mes-
sage sent from one place to another. This aspect of Mozilla commands is very
event-like. Another set of event-like behaviors occurs on top of the basic com-
mand system. Change notifications are sent when commands change their
state.

Overall, Mozilla’s command system is quite complex. Chapter 9, Com-
mands, not only examines this system in the context of a whole XUL window
but also covers its nuts and bolts. For now, just note that Mozilla’s command
system is an extension of, or a complement to, the DOM 3 Events processing
model.

6.1.6 Content Delivery Events

The final Mozilla event input system considered in this chapter is the content
delivery system. This is the system responsible for accepting a URL and
returning a document or for sending an email. It is a general system with sev-
eral different uses.

DOM events, timed events, and observer events all deal with tiny pieces
of information. The event that occurs may represent some larger processing
elsewhere in the Mozilla Platform, but the event data itself is usually small.
You might call these events lightweight events.

Content delivery events, by comparison, are typically big. They range
from email download to a file delivered via FTP to a newsgroup update. Such
events, furthermore, are likely broken into subevents: single emails, a partial
chunk of an FTPed file, or individual newgroup headers. During the passing of
these subevents, the producer and consumer have a long-term relationship.
That relationship doesn’t end until the last bit of the main job is complete.

Such a heavyweight event system has its own language. Producers are
called content sources or data sources; consumers are called content sinks or
just sinks. Detailed discussion of sources and sinks is left until Chapter 16,
XPCOM Objects.

Having now covered Mozilla’s internal event processing, it’s time to see
how those events can be created by the user.

6.2 HOW KEYSTROKES WORK

Mozilla’s XUL supports the <keyset>, <key>, <commandset>, and <com-
mand> tags. These tags are used to associate keys with GUI elements and to
process keystrokes when they occur. These tags allow key assignments to be
changed on a per-document or per-application basis. XUL also supports the
accesskey attribute.

AppDevMozilla-06 Page 217 Thursday, December 4, 2003 6:29 PM

218 Events Chap. 6

A key is a small bit of plastic on a keyboard, with some printing on it.
Keys can be divided into two rough groups: those with an equivalent glyph
and those without. A glyph is a visual representation, like A. The Unicode
standard handles keys that have glyphs; for nonglyph keys, like Control-C,
there is almost no standards support.

Mozilla’s support for keypresses predates the DOM 3 Events standard.
That standard defines only keys without glyphs. Mozilla’s support includes
additional keys that do have glyphs. Mozilla and the standard use different
numbering systems, so values for keycodes are different in each. As noted
under “XUL Support for Event Handlers” earlier, Mozilla only supports
generic keypress, keyup, and keydown events on the Document object.
These events are not supported on every tag.

Table 6.3 shows the keycode differences between the two definitions. VK
stands for Virtual Key.

Table 6.3 Differences between Mozilla and DOM 3 event keycodes

Keycodes specific to
Mozilla

Keycodes specific to
Mozilla

Keycodes specific to DOM 3
Events

DOM_VK_CANCEL DOM_VK_SEMICOLON DOM_VK_UNDEFINED

DOM_VK_HELP DOM_VK_EQUALS

DOM_VK_CLEAR DOM_VK_QUOTE DOM_VK_RIGHT_ALT

DOM_VK_MULTIPLY DOM_VK_LEFT_ALT

DOM_VK_ALT DOM_VK_ADD DOM_VK_RIGHT_CONTROL

DOM_VK_CONTROL DOM_VK_SEPARATOR DOM_VK_LEFT_CONTROL

DOM_VK_SHIFT DOM_VK_SUBTRACT DOM_VK_RIGHT_SHIFT

DOM_VK_META DOM_VK_DECIMAL DOM_VK_LEFT_SHIFT

DOM_VK_DIVIDE DOM_VK_RIGHT_META

DOM_VK_BACK_SPACE DOM_VK_COMMA DOM_VK_LEFT_META

DOM_VK_TAB DOM_VK_PERIOD

DOM_VK_RETURN DOM_VK_SLASH

DOM_VK_BACK_QUOTE

DOM_VK_0 to 9 DOM_VK_OPEN_BRACKET

DOM_VK_A to Z DOM_VK_BACK_SLASH

DOM_VK_CLOSE_BRACKET

DOM_VK_NUMPAD0 to 9

AppDevMozilla-06 Page 218 Thursday, December 4, 2003 6:29 PM

6.2 How Keystrokes Work 219

Two further differences between the standard and Mozilla are worth not-
ing:

☞ The DOM 3 Event keyval property matches the Mozilla nsI-
DOMKeyEvent interface’s charCode property.

☞ The DOM 3 Event virtKeyVal property matches the Mozilla nsI-
DOMKeyEvent interface’s keyCode property.

These differences are little more than syntax differences.

6.2.1 Where Key Events Come From

A key stroke is translated several times before it becomes a key event. The
“Debug Corner” in this chapter explains how to diagnose that translation
when it goes wrong. Here we just illustrate the process of collecting a key
event.

Keypresses start at the keyboard. Each physical key in a keyboard has
its own key number. This number does not match ASCII or anything else. This
is the first number generated when a key is pressed.

A keyboard is not as dumb as you might think. It has two-way communi-
cation with its computer. Inside the keyboard firmware, a keypress, key
release, or key repetition is converted into a scan code. A scan code is a single-
or multibyte value. There is no absolute standard for scan codes, just well-
known implementations like the IBM PC AT 101 keyboard. Scan codes don’t
match ASCII or anything else, and they are sent in both directions.

Some scan codes go directly to the hardware, like Delete when used to
start BIOS firmware on PC hardware, or sometimes Pause or Control-Alt-
Delete. Others are interpreted by the operating system of the computer. An
attempt is made to turn interpreted scan codes into a character code—either
an ASCII code, a Unicode code, or an internal representation. The Keyboard
icon in the Control Panel comes into play in Microsoft Windows. On Linux, the
operating system does this using a driver.

Some application software is quite sophisticated. Examples include X-
Windows and East Asian (e.g., China, Korea, and Japan) word processors. If
the application is sophisticated, almost-raw scan codes might be sent directly
to it. In X-Windows, the xmodmap utility is responsible for mapping names
associated with scan codes to X11’s own internal character system. In coun-
tries where the character set is larger than the keyboard, a special system
called an input method is used. This is a small window that appears when the
user presses a “Character compose” key sequence. The window gives visual
feedback as the character is created using multiple keystrokes. Non-Western
versions of Mozilla have such an input method. An example is Japanese
Hiragana, which has thousands of characters, all composed by a keyboard
with less than a hundred keys.

AppDevMozilla-06 Page 219 Thursday, December 4, 2003 6:29 PM

220 Events Chap. 6

6.2.2 What Keys Are Available

After conversion has been attempted, a standards-based character code
(ASCII, Unicode, X11, or operating-system internal) holds the key. From that
point on, the key itself is less interesting than so-called keyboard maps. These
are use statements for individual character codes. Such maps can be added by
the operating system, desktop, or individual application.

Some character codes are always interpreted by the operating system,
desktop, or window manager keyboard maps. These keys never reach an appli-
cation. An example is the (Windows) key, used to pop up the Start menu on
Microsoft Windows, or Alt-Tab. Pressing such a key is of no use to an applica-
tion, so application programmers cannot readily implement these keys.

Of the keys that are sent to an application, some will be tied to application-
specific functions, like “open addressbook window,” and some will be tied to
desktop or application keyboard map standards, like “save document.” If the
application programmer seeks maximum compatibility with desktop conven-
tions, then the first group of keys is available for special tasks. The second
group of keys must match existing desktop keyboard maps or else not be used
at all.

Keyboard maps often use a modifier key like Control or Alt and another
key. Such a modifier key is usually set by convention. This modifier key is not
the same on all platforms. Mozilla solves this problem with an accelerator key.
That key is bound to the modifier that best suits the current platform. The
accelerator key and one or two others like it can be set as user preferences. See
the URL www.mozilla.org/unix/customizing.html for details.

In the Mozilla Platform, character codes arrive via the native GUI toolkit
and are converted into a DOM_VK keycode. These application keys are bound to
tasks that a given Mozilla window performs. This can be arranged in one of
several ways: by using a general keyboard mapping, by assigning keys
directly, and by matching keys to an observer. Each of these techniques is
described next.

At the highest level, what key does what action is a matter of design. A
list of the current key allocation policy for Mozilla can be seen at
www.mozilla.org/projects/ui/accessibility/mozkeyplan.html.
Click on any key in the top half of that page to get a report of uses for that key
in the bottom half.

6.2.2.1 XBL Keyboard Maps Mozilla’s generic keyboard mappings are done
in XBL files. The existing examples are not in the chrome: they are platform
resources stored under the res/builtin directory. There are two files: the
general htmlBindings.xml and the specific platformHTMLBindings.xml.
These files apply to the XUL and HTML in existing Mozilla windows and so
are good starting points for any application bindings. XBL is described in
Chapter 15, XBL Bindings, but a brief example of a keyboard binding is shown
in Listing 6.13.

AppDevMozilla-06 Page 220 Thursday, December 4, 2003 6:29 PM

6.2 How Keystrokes Work 221

Listing 6.13 Implementing the Redo key command with XBL.
<bindings id="myAppKeys">
 <binding id="CmdHistoryKeys">
 <handler event="keypress"
 keycode="DOM_VK_Z"
 command="cmd_redo"
 modifiers="accel,shift"
 />
 </binding>
</bindings>

This fragment of XBL creates a group of binding collections called myAp-
pKeys, presumable for a specific application. Each collection within the group
sets keys for some part of the application. Collecting keys together into several
collections encourages reuse. In this case, the CmdHistoryKeys collection
specifies all the keys required for command history, that is, Undo and Redo
operations. Only one such key is shown.

The handler tag is specifically an onkeypress event handler in this
case. The command that the key is tied to is cmd_redo. For now, just note that
this is a function implemented somewhere in the platform. The key and modi-
fiers attributes together specify the keypresses required to make Redo occur
just once. In this case, it is implemented with three keys: the platform acceler-
ator, any Shift key, and the Z key. In Microsoft Windows notation, this combi-
nation is Control-Shift-Z, since the Control key is the accelerator key for
Mozilla on Windows.

If the command attribute is left off, then plain JavaScript can be put
between open and closing <handler> tags. In that case, the script is directly
invoked for that keypress. keycode="DOM_VK_Z" can be replaced with just
key="z" as well, since z has a character equivalent. If this is done without a
modifiers attribute, both z and Z mean lowercase z.

6.2.3 <keybinding>, <keyset>, and <key>

The <keybinding>, <keyset>, and <key> tags are used to specify how a sin-
gle XUL document will capture keystrokes. These tags are used more specifi-
cally than XBL bindings. The <key> tag is the important tag and supports the
following attributes:

disabled keytext key keycode modifiers oncommand command

Except for the oncommand attribute, the <key> tag acts like a simple data
record and has no visual appearance. It is not a user-defined tag because the
Mozilla Platform specially processes its contents when it is encountered.
Every <key> tag should have an id attribute, since that is how other tags ref-
erence the key.

The disabled attribute set to true stops the <key> tag from doing any-
thing. keytext is used only by <menuitem> tags and contains a readable

AppDevMozilla-06 Page 221 Thursday, December 4, 2003 6:29 PM

222 Events Chap. 6

string that describes the key specified. The key attribute contains a single
printable keystroke; if it is not specified, then the keycode character is exam-
ined for a nonprintable keystroke that has a VK keycode. In XUL, such a key
code starts with VK_, not with DOM_VK_. key or keycode specify the keyboard
input for which the <key> tag stands.

The modifiers attribute can be a space- or comma- separated list of the
standard key modifiers and the cross-platform accelerator keys:

shift alt meta control accel access

Use of accel is recommended if the application is to be cross platform. The
access modifier indicates that the user had pressed the shortcut key that
exists for the tag in question.

The oncommand attribute is a place to put a JavaScript handler that will
fire for the given keystroke. When used for the <key> tag, its meaning is dif-
ferent from the use in Chapter 9, Commands. For <key>, oncommand fires
when the keystroke occurs, as you’d expect.

<keyset> is a container tag like <stringbundleset> and <broad-
casterset>. It has no special properties of its own. Use it as a tidy container
for a set of <key> tags.

<keybinding> is not a true XUL tag at all. Inside Mozilla’s chrome,
some key definitions are stored as separate .xul files. Rather than have
<window> as the outermost tag in such files, <keybinding> is used instead.
This is just a naming convention with no special meaning. These keybinding
files are added to other XUL files and never display a window on their own.

The <key> tag is most often associated with formlike documents, and
this shows. Once a <key> tag is in place, striking that key will fire the oncom-
mand handler for that key, no matter where the mouse cursor is in the docu-
ment window. There is, however, one restriction. There must be at least one
form control in the document, and one of the form controls must have the cur-
rent focus. This means that at least one of these tags must be present and
focused before keys will work:

<button> <radio> <checkbox> <textbox> <menulist>

It is possible to bend this restriction a little by hiding a single, focused tag
with styles so that it takes up zero pixels of space.

There are other XUL tags and attributes that relate to <key>. The
accesskey attribute, described in Chapter 7, Forms and Menus, specifies a
per-tag key for accessibility use. The <key> tag also works closely with the
<menuitem> tag used in drop-down menus.

The following attribute names are used to lodge data with <key> tags,
but they have no special meaning any more—if they ever did. They are listed
here because they occasionally appear in Mozilla’s own chrome. Don’t be con-
fused by them—ignore them:

shift cancel xulkey charcode

AppDevMozilla-06 Page 222 Thursday, December 4, 2003 6:29 PM

6.3 How Mouse Gestures Work 223

6.2.4 The XUL accesskey Attribute

XUL provides a feature that supports disabled access. The accesskey
attribute can be added to many form- or menu-like tags, including <button>
and <toolbarbutton>. It has the same syntax as the keytext attribute; in
other words, it is specified with a printable character:

accesskey="K"

accesskey keystrokes are collected only if the access system is turned
on. This access system is turned on either by custom accessibility equipment
connected to the computer, like special input devices, or by pressing the Alt
key. This system is described briefly in Chapter 8, Navigation, but is not a
large theme of this book.

Individual XUL tags throughout this book note whether they support
accesskey. Some tags provide a visual hint of the specified accesskey; oth-
ers do not.

6.2.5 Find As You Type (Typeahead Find)

Find As You Type, formerly called Typeahead Find, is a Classic Browser fea-
ture in version 1.21 and later that makes extensive use of keystrokes. Its goal
is to speed up Web navigation and to assist with accessibility goals. It works
only in HTML pages.

Find As You Type is activated with the / key. From that point onward,
any printable keys typed are gathered into a string. That string is matched
against the text that appears in hypertext links on the page. Pressing Return/
Enter causes the currently matching link to be navigated to. This is similar to
the search syntax used in UNIX tools like more, less, and vi.

Find As You Type affects state information in the document such as the
current focus. This can have unexpected effects if navigation in your document
is heavily scripted.

This feature picks up keystrokes during the bubbling phase of DOM
Events processing. To stop it from running, call preventDefault() on the
event after your own key handling code is finished with it.

Find As You Type is complemented by Find Links As You Type. This fea-
ture searches only the content of hypertext links. It runs if no / key precedes
the search characters, or if the ? key is used instead of the / key.

6.3 HOW MOUSE GESTURES WORK

Mouse gestures are button clicks, mouse movements, and scroll wheel rolls.
Mozilla supports them all. Mozilla also supports graphic tablets and other
devices that pretend to be mice.

AppDevMozilla-06 Page 223 Thursday, December 4, 2003 6:29 PM

224 Events Chap. 6

Mouse gestures can be simple or complex. Just as keystrokes can be put
together into a search word with the Find As You Type feature, so too can
mouse clicks and movements be put together into a larger action that has its
own special meaning. Such a larger action is a true mouse gesture. A simple
click by itself is a trivial gesture. Nontrivial examples of gestures include
drag-and-drop and content selection.

Trivial gestures are handled in Mozilla using DOM 3 Events. These
events are the simplest (atomic) operations out of which larger gestures are
built and are listed in Table 6.2 earlier in this chapter. Use them as for any
DOM Event. More complex gesture support is examined in the following sub-
topics.

Why would you want complex gesture support? Users are well educated
about several basic gestures, and some applications are expected to support
them. The most common example is an image manipulation or drawing pro-
gram with its bounding boxes and freestyle scribble. Novel or experimental
uses of gestures must be handled carefully because there is a risk that the
user will become confused.

In most cases, complex mouse gestures must be implemented in Java-
Script. Although Mozilla can catch and process a stream of mousemove events
in JavaScript impressively fast, such processing is also very CPU-intensive.
Poorly implemented (or even well-implemented) JavaScript gesture support
may be too CPU-intensive to run on older PC hardware.

6.3.1 Content Selection

Content selection is a mouse gesture that picks out a portion of a document,
from a starting point to an ending point. Visual feedback, in which content is
“blacked” or “highlighted” to indicate the extent of the current selection, is
usually provided. Selections can be quite small, comprising a single menu or
list item, or even just a few characters. Mozilla supports several types of con-
tent selection.

The simplest type is selection of whole data items. This applies to XUL
widgets such as menus, listboxes and trees, and HTML equivalents, where
they exist. Display any menu, and as you draw the mouse pointer down it, one
item at a time is selected. This kind of selection is seen as part of the underly-
ing widget’s normal behavior, and the start and end points of the selected con-
tent are not generally user-definable. Selecting an item from a menu is
something we do without thinking.

More significant content selection occurs where there is semistructured
content and the user defines the start and end points of the selection with the
mouse. Word processors and text editors are the places where this kind of
selection is most common. In such systems, the selected content is separate
from the gesture that selects it. A typical gesture for selecting content goes
like this:

AppDevMozilla-06 Page 224 Thursday, December 4, 2003 6:29 PM

6.3 How Mouse Gestures Work 225

1. Left-click-press on the starting point.
2. Mouse move to the ending point.
3. Left-click-release on the ending point.

This is not an absolute rule, though. A different gesture with the same effect
might be:

1. Left-click down and up on the starting point.
2. Mouse move to the ending point.
3. Right-click down and up on the ending point.

There are many such variations. For example, shift-click is also com-
monly used to extend a selection from an existing start point to a current
point. Mozilla implements two kinds of content selection using one mouse ges-
ture—the press-move-release gesture style. The first of these two selection
types occurs inside textboxes. The second kind of selection occurs across all the
content of a displayed document.

Textbox selection works inside HTML’s <input type="text"> and
<textarea> tags and XUL’s <textbox> tag. The DOM 1 Element for these
tags contains properties and methods to examine and set this selected text:

☞ value. The whole content of the textbox.
☞ selectionStart. The character offset of the selection start point.
☞ selectionEnd. The character offset of the selection end point.
☞ setSelectionRange(start,end). Set the offsets of the start and end

points.

The CSS3 draft property user-select is also relevant.
General content selection outside widgets is only implemented for the

user in HTML. A starting point for examining HTML’s support is to look at the
document.getSelection() method, which returns an object that includes
an array of Range objects. Range objects are defined in the DOM 2 Traversal
and Ranges standard.

By default, it is not possible for the user to select XUL content with a
mouse gesture. Such a gesture-based feature can be added, though. A starting
point is to examine the createRange() method of the XUL document object.
This creates a DOM Range object, which can be manipulated to match any
contiguous part of an XUL document tree. This object can be dynamically
updated as the mouse moves, and styles can be applied to the subtree the
range represents so that the content selected is visually highlighted.

In both HTML and XUL, this form of selection is restricted to visually
selecting whole, contiguous lines of content (in other words line boxes; see
Chapter 2, XUL Layout), except for the first and last lines, which may be par-
tially selected. The exception to this rule is text that displays vertically, like
Hebrew and Chinese, and HTML table columns (see “Multiple Selection”).

AppDevMozilla-06 Page 225 Thursday, December 4, 2003 6:29 PM

226 Events Chap. 6

If you decide to experiment with the DOM Range object, beware that
although it is fully implemented, it is used only a little in Mozilla and has not
had extensive testing.

6.3.1.1 Rubber Band Selection Rubber band selection is best known in
desktop windows that display icons. By clicking on the background of the win-
dow and dragging, a small box with a dotted or dashed border appears. Any
icon that falls within that expanding box is considered to be selected. Rubber-
banding is a form of content selection, but it is not restricted to selecting whole
contiguous lines. It can select any content in a given rectangular area.

Mozilla has no support for rubber band selection at all, but the platform
has enough features to implement it. This can be done in HTML or XUL. The
XUL case is discussed here.

Since XUL doesn’t support layers or CSS2 z-index styles, the rubber
band box itself is problematic to create. The solution is to ensure that all con-
tent inside the XUL document is contained in a single card of a <stack> tag
(see Chapter 2, XUL Layout). The rubber band box is a <box> tag with no con-
tents and a border style. It comprises the sole other card of the <stack>. In
normal circumstances, this second card has style visibility:none.

When the user begins the mouse gesture, scripts makes the bordered box
visible. As the drag part of the rubber band gesture proceeds, the width and
height properties of the box are changed to match. At each mousemove update,
a diagnostic routine walks the DOM tree and changes the styling of any tag
that falls within the current edges of the rubber band box. Simple.

6.3.1.2 Multiple Selection Multiple selection is most familiar when it
appears inside desktop windows that display icons. On Microsoft Windows or
GNOME, for example, several icons can be selected by Control-left-clicking on
each one in turn. This is different from rubber-banding, which is a form of sin-
gle selection.

Mozilla supports multiple selection in <listbox> and <tree> tags. See
Chapter 13, Listboxes and Trees, for a description of those tags at work. Multi-
ple selection for those tags uses Control-left-click.

Mozilla also supports multiple selection in HTML for vertically oriented
text. Support for this text, called BiDi text (bi-directional text) does not exist
in XUL yet. The gesture for this form of multiple selection is the same as for
normal content selection, but the data processing is different. When using the
getSelection() factory method of the HTML document object, an array of
Range objects, instead of just one object, is created. These ranges cover one
vertical swath (one column of selected content) each. The getRangeAt()
index method returns any one such range.

Desktop-style Control-left-clicking can easily be implemented in Mozilla.
keydown and keyup events can be used to define the start and end of the ges-
ture, which occur when the Control key is pressed and later released. Click
events can be used to identify the items selected while the gesture is active.

AppDevMozilla-06 Page 226 Thursday, December 4, 2003 6:29 PM

6.3 How Mouse Gestures Work 227

Just because the mouse is completely released between clicks doesn’t mean
that the gesture ends. A gesture ends when the programmer says it ends.

6.3.2 Drag and Drop

Drag and drop is a gesture where a visual element is chosen and moves with the
mouse cursor until it is released. An optional aspect of drag and drop is the use
of target sites. A target site is a spot in the window where the drag-and-drop
operation could successfully end. If target sites exist, they should be highlighted
when the dragged object hovers over them. The classic example of a target site
is the Trash icon on the Macintosh. The trash goes dark when a document’s icon
is dragged over it. When target sites are used, the dragged object usually disap-
pears from view when the drop part of the drag-and-drop gesture occurs.

Drag-and-drop gestures can occur within an application window,
between application windows, or between windows of different applications.
Mozilla’s support for drag-and-drop is designed for gestures that stay within
one Mozilla window. This support can in theory be extended to gestures
between Mozilla windows, but there is only basic support for dragging to or
from the desktop or other applications. It is possible to detect when a desktop
drag enters or leaves a Mozilla window and collect or send the resulting
dragged data.

The major limitation of drag-and-drop gestures in Mozilla is that the
item dragged does not follow the cursor. During the drag, Mozilla only pro-
vides alternate mouse cursors and occasional style information that hints
when the dragged item is over a drop target. This limitation can be worked
around using a stack as described in “Rubber Band Selection.” Instead of the
rubber band occupying a second card of the stack, that card contains a copy of
the dragged item. This item can be animated to follow the mouse cursor using
the techniques used in Dynamic HTML.

Mozilla’s drag-and-drop support is a puzzle of several pieces.
The first piece of the puzzle is events and event handlers. Three events

are required for simple drag and drop: draggesture (the start of the drag),
dragover (equivalent to mouseover), and dragdrop (the end of the drag).
Two additional events cover the more complex case where a desktop drag-and-
drop operation enters or leaves a Mozilla window. Those two events are
dragenter and dragexit.

The second piece of the puzzle is XPCOM objects. The most important
component pair is

@mozilla.org/widget/dragservice;1 nsIDragService

This is the bit of Mozilla responsible for managing the drag-and-drop gesture
while it is in progress.

The invokeDragSession() method of the nsIDragService interface
starts the drag session. For special cases, it can accept an nsIScriptableRe-
gion object. This object is a collection of rectangles stated in pixel coordinates.

AppDevMozilla-06 Page 227 Thursday, December 4, 2003 6:29 PM

228 Events Chap. 6

It is used for the special case where the area dragged over includes a complex
widget built entirely with a low-level GUI toolkit. The set of rectangles identify
a set of “hotspots” (possible drop targets) on the widget that the widget itself
should handle if the gesture tracks the cursor over any of them. This system
allows the user to get drag feedback from a widget that can’t be scripted, or
from a widget where no scripts are present. This is mostly useful for embedded
purposes and doesn’t do anything in the Mozilla Platform unless a <tree> tag
is involved. In most cases, use null for this nsIScriptableRegion object.

The getCurrentSession() method returns an nsIDragSession
object. This object is a simple set of states about the current drag gesture and
contains no methods of its own. At most, one drag operation can be in progress
per Mozilla window.

The third piece of the puzzle is JavaScript support. Although manage-
ment of the drag-and-drop gesture is implemented, the consequences of the
gesture (the command implied) must be hand-coded. In the simple case, this
means setting up the nsIDragService and nsIDragSession interfaces
when the gesture starts, detecting the start and end points of the gesture, pro-
viding styles or other feedback while the gesture is in progress, and perform-
ing the command implied by the gesture at the end.

In the more complex case, the gesture might result in dragged data being
imported to or exported from the desktop so that the scripting that backs the
gesture must also copy data to or from an nsITransferable interface. This
interface works with the desktop’s clipboard (the copy-and-paste buffer).

In general, the scripting work for drag and drop is nontrivial. Two Java-
Script objects are available to simplify the process.

The chrome file nsDragAndDrop.js in toolkit.jar implements the
nsDragAndDrop object, which is installed as a property of the window object.
This object provides methods that do most of the housekeeping described so
far, including special support for the XUL <tree> tag. There is no XPIDL
interface definition for this file—just what appears in the .js file. It has a
method to match each of the drag-and-drop events.

The second object must be created by the application programmer. It is a
plain JavaScript object and also has no published XPIDL interface. It must be
created with the right methods. This object is a bundle of event handlers, one
for each event. Regardless of what pattern it might or might not follow, an
object of this kind is created and assigned to a variable, usually with a name
like myAppDNDObserver.

Together, these two objects reduce each required drag-and-drop handler
to a single line of script. The event first passes through the generic code of
nsDragAndDrop and then into any specific code supplied by myAppDNDOb-
server. To examine this system at work, look at the simple example in
Mozilla’s address book. Look at uses of abResultsPaneObserver (which
could be called abResPaneDNDObserver) in messenger.jar in the chrome.

Table 6.4 shows the equivalences between these handy methods and the
basic events.

AppDevMozilla-06 Page 228 Thursday, December 4, 2003 6:29 PM

6.4 Style Options 229

6.3.3 Window Resizing

Window resizing is a consequence of a mouse gesture that is built into the C/
C++ code of Mozilla. See the discussion on the <resizer> tag in Chapter 4,
First Widgets and Themes.

6.3.4 Advanced Gesture Support

Mouse gestures can be less formal than the examples discussed so far. Like an
orchestra conductor waving a baton, specific movements and clicks with the
mouse might cause the Classic Browser to execute menu and key commands
such as Bookmark This, Go Back, or Save. Support for these kinds of gestures
is being considered for the Mozilla Browser as this is written.

In the simplest case, such gesture support consists of chopping mouse
movements up into a number of straight strokes. The strokes are identified by
dividing the window into an imaginary rectangular grid, with each cell some
pixels wide and high. A stroke is considered complete when mousemove events
indicate that the mouse cursor has left one cell in the grid and entered
another. Such strokes form a set of simple instructions that together make a
distinctive pattern that is the gesture. After the instruction set is complete,
the gesture is identified, and the matching command is executed.

The Optimoz project is such a gesture system and is implemented
entirely in JavaScript. It can be examined at www.mozdev.org. The code for
this extension is small and not difficult to understand. Like Find As You Type,
this gesture system grabs events during the bubbling phase, thus avoiding
competition with other consumers of the same events.

6.4 STYLE OPTIONS

There are no Mozilla-specific styles that affect event handling. Some of the
CSS2 pseudo-styles, like :active, are activated by changes to the currently
focused and currently selected element.

Table 6.4 Equivalences between Drag events and Script methods

Event nsDragAndDrop method -DNDObserver method

Draggesture startDrag() onDragStart()

Dragover dragOver() onDragOver()

Dragdrop drop() onDrop()

dragexit dragExit() onDragExit()

dragenter dragEnter() onDragEnter()

AppDevMozilla-06 Page 229 Thursday, December 4, 2003 6:29 PM

230 Events Chap. 6

6.5 HANDS ON: NOTETAKER USER INPUT

In this session, we’ll add key support and a few event handlers to the NoteTa-
ker dialog box. There is further discussion on event handlers in “Hands On” in
Chapter 13, Listboxes and Trees. There, a systematic approach is considered.
This session contains simple introductory code only.

The key support we want comes in two parts: We want the user to have a
hint at what keys can be pressed and we want the actual keystrokes to do
something.

To add key hints, we use the accesskey attribute. This attribute serves
as the basis for disabled use of the application, but we’re not designing for dis-
abled users at this point. Instead, we’re just exploiting the fact that this
attribute underlines a useful character of text for us.

To do that, we change all the buttons in the dialog box, as Listing 6.14
shows.

Listing 6.14 Addition of accesskeys to NoteTaker.
// old
<toolbarbutton label="Edit" onclick="action('edit');"/>
<toolbarbutton label="Keywords" onclick="action('keywords');"/>
<button label="Cancel"/>
<button label="Save"/>

// new
<toolbarbutton label="Edit" accesskey="E" onclick="action('edit');"/>
<toolbarbutton label="Keywords" accesskey="K"

onclick="action('keywords');"/>
<button label="Cancel" accesskey="C"/>
<button label="Save" accesskey="S"/>

We can go further than that one set of changes. We can also highlight
keys in the body of the edit area using the <label> tag. This means changing
content that reads

<description>Summary</description>

to

<label value="Summary" accesskey="u"/>

In this case, the key for Summary can’t be S because we’ve used that
already for "Save". When this change is made to all four headings, the result-
ing window looks like that in Figure 6.3.

After these changes, pressing the underlined keys still has no effect. To
change that, we need to add some <key> tags, as shown in Listing 6.15.

AppDevMozilla-06 Page 230 Thursday, December 4, 2003 6:29 PM

6.5 Hands On: NoteTaker User Input 231

Listing 6.15 Tying NoteTaker keys to actions.
<keyset>
 <key key="e" oncommand="action('edit')"/>
 <key key="k" oncommand="action('keywords')"/>
 <key key="c" oncommand="action('cancel')"/>
 <key key="s" oncommand="action('save')"/>
 <key key="u" oncommand="action('summary')"/>
 <key key="d" oncommand="action('details')"/>
 <key key="o" oncommand="action('options')"/>
 <key key="z" oncommand="action('size')"/>
</keyset>

The key attribute is not case-sensitive; if we explicitly want a capital S,
then we would add a modifiers="shift" attribute. If we wanted to use F1,
then we’d use the keycode attribute and a VK symbol instead of key and a
printable character. We’re able to reuse some code from previous chapters
because the function action() accepts a single instruction as argument. If
action() is modified to include a line like this

alert("Action: " + task");

then it is immediately obvious whether pressing a given key has worked. We’ll
defer the cancel and save instructions to a later chapter. To practice event han-
dling in a bit more depth, we’ll experiment with the other four keys. In later
chapters, this experimentation will become far easier.

It would be convenient if the user didn’t need to consider every detail of
this dialog box. Perhaps there are some defaults at work, or perhaps some of
the information is not always relevant. Either way, it would be nice if the user
could de-emphasize some of the content, with a keystroke or mouse click. That
is what we’ll implement.

Fig. 6.3 NoteTaker dialog box with available keys highlighted.

AppDevMozilla-06 Page 231 Thursday, December 4, 2003 6:29 PM

232 Events Chap. 6

Our strategy is to deemphasize content using style information. When we
pick up the user input, we’ll change the class attribute of the content so that
new style rules are used. When the user repeats the instruction, we’ll toggle
back to the previous appearance. We intend to apply this rule to the boxed con-
tent only. The deemphasizing style rule is

.disabled {
 border : solid; padding : 2px; margin : 2px;
 border-color : darkgrey; color : darkgrey
}

There are four areas on the edit panel (Summary, Details, Options, and
Size) and a total of eight displayed boxes, each of which might need an update.
We can group the eight back into four using broadcasters and observers. We
add the broadcasters in Listing 6.16, which specify nothing to start with.

Listing 6.16 Broadcasters for disabling NoteTaker dialog subpanels.
<broadcasterset>
 <broadcaster id="toggle-summary"/>
 <broadcaster id="toggle-details"/>
 <broadcaster id="toggle-options"/>
 <broadcaster id="toggle-size"/>
</broadcasterset>

We add observes= attributes on all eight boxes, tying each one to one of
the four broadcasters, so

<box id="dialog.top" class="temporary">

becomes

<box id="dialog.top" class="temporary" observes="toggle-size"/>

If any broadcaster gains a class="disabled" attribute, that attribute
will be passed to the boxes observing it, and those boxes will change style. We
can test this system by temporarily hand-setting the class="disabled"
attribute on any broadcaster. If that is done for the last broadcaster ("tog-
gle-size"), then the dialog box displays as in Figure 6.4.

Now that this code is working, we can hook it up to the user input. The
keystrokes are first. For those, we update the action() method. Listing 6.17
shows the new code.

Listing 6.17 Code to toggle gray-out state of NoteTaker dialog subpanels.
function action(task)
{
 if (task == "edit" || task == "keywords")
 {
 var card = document.getElementById("dialog." + task);
 var deck = card.parentNode;

AppDevMozilla-06 Page 232 Thursday, December 4, 2003 6:29 PM

6.5 Hands On: NoteTaker User Input 233

 if (task == "edit") deck.selectedIndex = 0;
 if (task == "keywords") deck.selectedIndex = 1;
 }

 if (task == "summary" || task == "details" || task == "options" || task
== "size")

 {
 var bc = document.getElementById("toggle-" + task);
 var style = bc.getAttribute("class");

 if (style == "" || style == "temporary")
 bc.setAttribute("class","disabled");
 else
 bc.setAttribute("class","temporary");
 }
}

This code modifies the broadcaster tags only, and the platform takes care
of the rest. If necessary, we can test this code by directly calling the action()
method, perhaps from the onload handler of the <window> tag. It’s just as
easy to test by pressing the correct key.

Supporting the mouse is a little trickier. Exactly where in the dialog box
is a user click supposed to have an effect? We could install an event handler on
every tag, but that isn’t very clever. Instead we’ll use the XUL layout model
and the DOM Event model. We’ll make sure that each of the subpanels is con-
tained in a single XUL tag—that’s the layout part. And, at the top of the docu-
ment tree, we’ll install an event handler that will catch any onclick events
and figure out which of the subpanels applies—that is the DOM Event part.

First, we will look at the XUL layout part. The Summary and Details
subpanels aren’t contained in a single box, so we’ll just wrap another <vbox>
around each <label> plus <box> pair. That’s unnecessary from a display

Fig. 6.4 NoteTaker dialog box with content grayed out.

AppDevMozilla-06 Page 233 Thursday, December 4, 2003 6:29 PM

234 Events Chap. 6

point of view, but it’s convenient for our code. Now we have two subpanels con-
tained within <vbox> tags and two within <groupbox> tags. We’ll add a sub-
panel attribute with the name of the subpanel to each of these four tags:

<groupbox subpanel="size"/>

This attribute has no special meaning to XUL; we just made it up. It’s a conve-
niently placed piece of constant data.

Second, we’ll write an event-handling function to catch the mouse click.
We want to catch it right at the start, which means during the capture phase.
The XUL onclick attribute is good only for the bubbling phase, so we’ll have
to use addEventListener() from JavaScript. The handler function and han-
dler installation code is shown in Listing 6.18.

Listing 6.18 Code to capture click events and deduce the action to run.
function handle_click(e)
{
 var task = "";
 var tag = e.target;
 while ((task = tag.getAttribute("subpanel")) == ""
 && tag.tagName != "window")
 tag = tag.parentNode;

 if (task != "")
 action(task);
}

document.addEventListener("click", handle_click, true);

Since this handler is installed on the Document object (the <window>
tag) and set for the capture phase, it will receive onclick events before any-
thing else. It looks at the passed-in DOM 2 Event object and determines what
the target of the event is. That target is the most specific tag that lies under
the user’s click. The code then walks up the DOM tree from that target, look-
ing for a tag with a subpanel attribute. If it finds one, it runs the action in that
attribute. If it doesn’t find one, nothing happens. The event then continues its
normal progress through the tree.

Because the actions are the same for each of the subparts of the dialog
box, the resulting code is very general. Instead of four, eight, or more event
handlers, we’ve succeeded with only one. Again, savings have resulted from
the passing of command names into a general routine. We can’t expect
these savings all the time, but good design should always yield some. We’ve
used four tag names, three attribute names, and two functions to achieve
all of this.

That concludes the “Hands On” session. We won’t keep all the experi-
ments we’ve made here, but in general terms, they are valuable practice.

AppDevMozilla-06 Page 234 Thursday, December 4, 2003 6:29 PM

6.6 Debug Corner: Detecting Events 235

6.6 DEBUG CORNER: DETECTING EVENTS

Detecting events is a trivial process in Mozilla.
First, ensure that you have the preference browser.dom.win-

dow.dump.enabled set to true. Start the platform with the -console
option. Second, write a one-line diagnostic function:

function edump(e) { dump(e.type+":"+e.target.tagName); }

Third, install this function as a handler on the window object for every
event that interests you. Install it via addEventListener() if you want to
see the events during the capture phase as well. Finally, start the browser from
the command line, and watch the flood of events appear in that command-line
window as you click and type.

To diagnose broadcast events, install handlers for the oncommand event,
or just add diagnostic observers to the nsIObserverService object. Cur-
rently, there is no way to observe all the topic names that are broadcast from
this global broadcasters in the standard platform.

In a debug version of the platform, it is possible to create a log file of all
broadcasts using these environment variables (see the source file prlog.h for
more details):

set NSPR_LOG_MODULES=ObserverService:5
set NSPR_LOGFILE=output.log

6.6.1 Diagnosing Key Problems

Nothing is more frustrating than a key that doesn’t work. The application,
whether Mozilla or something written on top of it, often receives the blame
because it is the intended destination of the keystroke. Some problems, how-
ever, have nothing to do with Mozilla.

At the lowest level, a physical key can be damaged or its contact ruined.
Test the key in some other application (e.g., in vi enter insert mode ('i'),
press Control-V, and then type the key desired).

The software drivers in the keyboard firmware and in the operating sys-
tem can be updated and, on rare occasions, may be incorrect. Read the Linux
Keyboard HOWTO document for more details on keyboard technology.

To test if the operating system is receiving the key correctly, start Win-
dows in DOS-only mode or login to Linux from the console without starting
X11. On Windows, the Edit character-mode editor can be used to test non-
ASCII keys.

To test foreign language keyboard issues, it is best to ask a native
speaker for help. The soc.culture USENET newsgroups are good places to
put a polite request. Some languages receive less support than others, and
users of those languages are occasionally keen to help out. The Mozilla bug-
Zilla bug database (http://bugzilla.mozilla.org) has captured many discus-
sions on the topics of internationalization, compatibility, and localization.

AppDevMozilla-06 Page 235 Thursday, December 4, 2003 6:29 PM

236 Events Chap. 6

To test if a desktop application is receiving a key, test the key using a ter-
minal emulator (e.g., a DOS box, xterm, or gnome-terminal) in “raw” mode.
Raw mode exists when an editor like Edit or vi runs in that terminal. That
terminal emulator relies on the desktop (or at least the windowing system) for
input.

To test if Mozilla is receiving a key, just add an event listener for that key
to the document object of a chrome window.

6.7 SUMMARY

Programmers can’t get access to user-typed data by admiring a widget; they
need some kind of internal structure to work with. The Mozilla Platform is
built on an event-oriented architecture from the very beginning and provides
several different event models for the programmer to work with.

The most powerful and obvious of these systems is the DOM 3 Event
model and associated HTML events, most of which are applicable to Mozilla’s
XUL. This event system is sufficient for the programmer to capture raw user
keypresses and mouse gestures.

Mozilla also supports less obvious event processing. From the world of
software design patterns, there are several models that allow the programmer
to handle input and change notifications. Generally speaking, these systems
have at their cores the producer-consumer concept for data processing. The
most noteworthy of these systems is the observer-based system that allows
several tags (or programming entities) to be advised of changes that occur at
one central place. This system lays the foundation for understanding the more
sophisticated command system that is at the heart of Mozilla applications.

Raw processing of events is fairly primitive. Most events occur in associa-
tion with a useful widget. In the next chapter, we look at Mozilla’s most useful
widgets—forms and menus.

AppDevMozilla-06 Page 236 Thursday, December 4, 2003 6:29 PM

AppDevMozilla-06 Page 237 Thursday, December 4, 2003 6:29 PM

