
45

C H A P T E R 3

Cryptography with
Java

ryptography, or the art, science and mathematics of keeping messages secure, is at the
heart of modern computer security. Primitive cryptographic operations such as one-way

hash functions, also known as message digests, and encryption, either with symmetric or asym-
metric algorithms, form the basis for higher level mechanisms such as MAC (Message Authen-
tication Code), digital signature and certificates. At yet another level, these are merely building
blocks for security infrastructure consisting of PKI, secure communication protocols such as
SSL and SSH, and products incorporating these technologies.

The study of principles and algorithms behind these cryptographic operations and security
protocols is fascinating but of little practical relevance to a Java programmer. A typical Java pro-
grammer programs at a much higher level, dealing mostly with the APIs, configuration options,
proper handling of cryptographic entities such as certificates and keystores, and interfacing with
other security products to satisfy the application’s security needs. At times, there may be deci-
sions to be made with respect to the most appropriate mechanism, algorithms, parameters and
other relevant aspects for solving the problem at hand. At other times, the challenge may be to
design the application so that it can be deployed under different situations to satisfy different
security and performance needs. At yet other times, the primary objective may be simply to
achieve the best possible performance, scalability and availability of the application without
compromising the level of security by selecting the right security products. Our discussion of
cryptography with Java in this and subsequent chapters is structured around this notion of use-
fulness and practicality to a typical Java programmer.

Two Java APIs, JCA (Java Cryptography Architecture) and JCE (Java Cryptography
Extension) both part of J2SE SDK v1.4, define the general architecture and specific services for
cryptographic operations. Among these, JCA was introduced first and specifies the architectural
framework for cryptographic support in Java. It also includes Java classes for digital signature,

C

Ch03.fm Page 45 Tuesday, August 5, 2003 2:39 PM

46 Chapter 3 • Cryptography with Java

message digest and other associated services. JCE classes follow the same general structure as
JCA classes, and include classes for encryption and decryption, MAC computation and a few
others. We discuss the JCA architectural framework and explore various cryptographic services
available with JCA and JCE in this chapter. Toward this, we develop simple programs making
use of these APIs and look at their source code.

Though we talk about some of the JCA and JCE APIs and present code fragments, the dis-
cussion of Java interfaces, classes and methods is anything but exhaustive. Our intent is to get a
better view of the overall picture and understand their inter-relations. If you do need the com-
plete information on any specific topic, refer to the J2SE SDK Javadocs and the respective spec-
ification documents. Keep in mind that the purpose of this chapter is to make you, a Java and
J2EE programmer, feel at home with cryptographic capabilities of Java and not to make you an
expert on developing security software.

Example Programs and crypttool
As mentioned in the JSTK (Java Security Tool Kit) section of the Preface, this book is

accompanied by a collection of utilities and example programs, termed as JSTK software. This
software includes not only the source files of example programs presented throughout this book
but also the various utility programs that I wrote in the course of researching and using Java
APIs for this book. Refer to Appendix C for more information on this software.

Example programs are usually good for illustrating use of specific APIs but are not written
for flexible handling of input, output and other user specified parameters. In this book, we come
across situations when it would be handy to have a tool that could perform some of the opera-
tions illustrated earlier in the text but in a more flexible manner. You will find most operations of
this kind available through an appropriate command line tool packaged within JSTK.

Example programs illustrated in this chapter can be found in the directory
%JSTK_HOME%\src\jsbook\ch3\ex1, where the environment variable JSTK_HOME
points to the JSTK home directory. The utility program covering most of the operations is
crypttool and can be invoked by command “bin\crypttool” on a Windows machine
and by “bin/crypttool.sh” on a UNIX or Linux machine, from the JSTK home directory.
We talk more about this utility in later in this chapter.

Cryptographic Services and Providers
In Java API terminology, cryptographic services are programming abstractions to carry out or
facilitate cryptographic operations. Most often, these services are represented as Java classes
with names conveying the intent of the service. For example, digital signature service, repre-
sented by java.security.Signature class, creates and verifies digital signatures. How-
ever, not all services are directly related to cryptographic operations. Take the functionality to

Ch03.fm Page 46 Tuesday, August 5, 2003 2:39 PM

Cryptographic Services and Providers 47

create certificates. This is provided as a certificate factory service through service class
java.security.cert.CertificateFactory.

An instance of a service is always associated with one of many algorithms or types. The
algorithm determines the specific sequence of steps to be carried out for a specific operation.
Similarly, the type determines the format to encode or store information with specific semantics.
For example, a Signature instance could be associated with algorithm DSA (Digital Signa-
ture Algorithm) or RSA (named after the initial letters of its three inventors: Rivest, Shamir,
and Adleman). Similarly, a CertificateFactory instance could be associated with certif-
icate type X.509.

While talking about cryptographic services and their algorithms or types, we use the term
algorithm for brevity, knowing well that some services will have associated types and not algo-
rithms.

The cryptographic service classes have a distinct structure to facilitate independence from
algorithm and implementation. They typically do not have public constructors and the instances
are created by invoking a static method getInstance() on the service class. The algorithm
or type, represented as a string, must be specified as an argument to the getInstance()
method. For exammple, the following statement creates a Signature instance with
“SHA1WithDSA” algorithm.

Signature sign = Siganture.getInstance(“SHA1WithDSA”);

Besides the algorithm, one could also specify the implementation, also known as the pro-
vider, while creating an instance of the service. This is illustrated by passing the string “SUN”,
and identifying a specific provider as an additional parameter.

Signature sign = Siganture.getInstance(“SHA1WithDSA”, “SUN”);

This structure of the API allows different implementation of the same service, supporting
overlapping collections of algorithms, to exist within the same program and be accessible
through the same service class. We talk more about this mechanism in the next section.

As noted earlier, certain services require an algorithm whereas others require a type. As
we saw, signature service requires an algorithm whereas key store service requires a type.
Roughly speaking, a service representing an operation needs an algorithm and a service repre-
senting an entity or actor needs a type.

Table 3-1 lists some of the J2SE v1.4 cryptographic services and supported algorithms,
with brief descriptions. A comprehensive table can be found in Appendix B.

You may find the information in Table 3-1 a bit overwhelming, but don’t be alarmed. We
talk more about the various services and supported algorithms later in the chapter. Just keep in
mind that cryptographic services have corresponding Java classes with the same names and
algorithm identifiers passed as string arguments to method invocations.

The separation of service from algorithm, coupled with the API design where a specific
service instance of a particular implementation is obtained by specifying them at runtime, is the
key mechanism for algorithm and implementation independence. The visible service API

Ch03.fm Page 47 Tuesday, August 5, 2003 2:39 PM

48 Chapter 3 • Cryptography with Java

classes, such as Signature and CertificateFactory, act only as a mechanism to get to
the real implementation class, and hence are also referred to as engine classes. We find many
examples of such classes later in the chapter and also in subsequent chapters.

Providers
As we noted, Cryptographic Service Providers, or just providers, are implementations of crypto-
graphic services consisting of classes belonging to one or more Java packages. It is possible to
have multiple providers installed within a J2SE environment, some even implementing the same
service with the same algorithms. A program can either explicitly specify the provider name
through an identifier string assigned by the vendor, or implicitly ask for the highest priority pro-
vider by not specifying any provider. In the last section, statement Signature.getIn-
stance(“SHA1withDSA”) retrieves the implementation class of Signature implementing
algorithm “SHA1withDSA” of the highest priority provider. In contrast, Signature.get-
Instance(“SHA1withDSA”, “SUN”) retrieves the implementation class from the pro-
vider with the name “SUN”.

Table 3-1 Java Cryptographic Services

Cryptographic
Service

Algorithms/Types Brief Description

SecureRandom SHA1PRNG Generates random numbers appropriate for use in
cryptography.

KeyGenerator DES, Triple-
DES, Blowfish

Generates secret keys to be used by other services
with the same algorithms.

KeyPairGenerator DSA, RSA, DH Generates a pair of public and private keys to be
used by other services with the same algorithms.

MessageDigest SHA1, MD5 Computes the digest of a message.

Mac HmacMD5,
HmacSHA1

Computes the message authentication code of a
message.

Signature SHA1WithDSA,
SHA1WithRSA

Creates and verifies the digital signature of a mes-
sage

KeyStore JKS, JCEKS,
PKCS12

Stores keys and certificates.

CertificateFac-
tory

X509 Creates certificates.

Cipher DES, Triple-
DES, Blowfish

Encrypts and decrypts messages.

KeyAgreement DH Lets two parties agree on a secret key without
exchanging it over an insecure medium.

Ch03.fm Page 48 Tuesday, August 5, 2003 2:39 PM

Cryptographic Services and Providers 49

A mechanism exists to specify priorities to these providers. We talk more about this mech-
anism in a subsequent section.

Note that JCA and JCE APIs define only the engine classes, most of them within
java.security, javax.crypto and their various subpackages. The actual implementa-
tion of these classes is in various provider classes that come bundled with J2SE v1.4. It is also
possible to install additional providers. We learn how to install additional providers in the sec-
tion Installing and Configuring a Provider.

A few points about providers are worth noting. A provider doesn’t have to implement all
the services defined within JCA or JCE. Also, a provider can implement some services from one
API and some from another. Which algorithms are to be supported for a specific service is also
left to the provider. As you can see, the bundling of engine classes in separate APIs is quite inde-
pendent of the packaging of classes within a provider.

Thankfully, there are APIs to access all the available providers, the services supported by
them and other associated details. JSTK utility crypttool has a command to list the providers
and related details. But before we get to that, let us understand the mechanism to achieve algo-
rithm and implementation independence by looking at the internal structure of engine classes
and their relationship with provider classes.

Algorithm and Implementation Independence
The best way to illustrate this independence is with the help of an example. Take the simple ser-
vice of creating and verifying a digital signature, java.security.Signature. It has a
static method getInstance() that takes the algorithm name and optionally, the provider
name, as arguments and creates a concrete Signature object. The client program operates on
this object, initializing it for signing by invoking the initSign() method or for verification
by invoking the initVerify() method.

Under the hood, the static method getInstance() consults the singleton class
java.security.Security to get the fully qualified name of the class associated with
Signature service for the specified provider or, if the provider is not specified, the highest
priority provider with Signature implementation for the specified algorithm. This implemen-
tation class must extend the abstract class java.security.SignatureSpi and provide
the implementation of all the abstract methods. Once such a class name is found, the corre-
sponding object is constructed using Java reflection and passed to the protected constructor of
the Signature class. The Signature class keeps a reference of the newly created object in its
member variable. Subsequent method invocations on Signature object operate on the object
corresponding to the underlying implementation class.

The relationship of various classes and their runtime behavior is further illustrated in Fig-
ure 3-1. Class XYZProvider extends java.security.Provider and registers itself to
the singleton class Security. This provider supplies the concrete implementation class
XYZSignature, extending abstract class SignatureSPI.

Ch03.fm Page 49 Tuesday, August 5, 2003 2:39 PM

50 Chapter 3 • Cryptography with Java

Although the preceding discussion and the diagram is for Signature service, the same
is true for all other cryptographic services. The point to be noted is that even though the client
program uses a well-known class, the selection of the actual class implementing the service hap-
pens at runtime. This makes adding new providers with new algorithms fairly straightforward
and quite transparent to the client program. Well, at least within certain limits. We come across
situations when this simple framework breaks down and the client must include code that knows
about specific algorithms.

Listing Providers

As we said earlier, it is possible to query a J2SE environment for currently installed providers
and the cryptographic services supported by them. This ability comes in handy in writing pro-
grams that adjust their behavior based on the capabilities available within an environment and
also in troubleshooting.

Java class Security keeps track of all the installed providers in the form of Provider
class instances and can be queried to get this information. A Provider object contains entries
for each service and information on supported algorithms.

The example program ListCSPs.java, available in the examples directory for this
chapter src\jsbook\ch3\ex1, lists all the installed cryptographic service providers, indi-
cating their name and version.

java.security.Signature

Signature getInstance()

XYZSignature

java.security.Security

java.security.Provider

XYZProvider

spiClass, provider = Security.getImpl
 (alg, “Signature”, provName);
return
 new Signature(spiClass, provider);

calls

calls

pseudo code
Client

Java.security.SignatureSpi

Figure 3-1 Provider Architecture for Signature Class.

Ch03.fm Page 50 Tuesday, August 5, 2003 2:39 PM

Cryptographic Services and Providers 51

Listing 3-1 Listing Cryptographic Service Providers

// File: src\jsbook\ch3\ex1\ListCSPs.java

import java.security.Security;
import java.security.Provider;

public class ListCSPs {
 public static void main(String[] unused){
 Provider[] providers = Security.getProviders();
 for (int i = 0; i < providers.length; i++){
 String name = providers[i].getName();
 double version = providers[i].getVersion();
 System.out.println("Provider["+i+"]:: " + name + " " +
version);
 }
 }
}

Compiling and running this program under J2SE v1.4.x, assuming that you are in the same
directory as this file and either the CLASSPATH is not set or includes the current directory, pro-
duces the following output:

C:\ch3\ex1>%JAVA_HOME%\bin\javac ListCSPs.java

C:\ch3\ex1>%JAVA_HOME%\bin\java ListCSPs
Provider[0]:: SUN 1.2
Provider[1]:: SunJSSE 1.41
Provider[2]:: SunRsaSign 1.0
Provider[3]:: SunJCE 1.4
Provider[4]:: SunJGSS 1.0

You can infer from the output that J2SE v1.4.1 comes with five bundled providers and
their names are: “SUN”, “SunJSSE”, “SunRsaSign”, “SunJCE” and “SunJGSS”. The
same code is executed by utility crypttool with listp command, for listing providers.

Information about services implemented by a provider, aliases or different names corre-
sponding to the same service, supported algorithms and other associated properties are stored
within the Provider object as name value pairs. These name value pairs can be displayed by
running the command “crypttool listp –props”. However, deducing information
about each service from this listing is somewhat nontrivial and hence is made available through
a separate option –csinfo, for cryptographic service information. Let us look at the output of
“crypttool listp –csinfo” command in Listing 3-2.

Ch03.fm Page 51 Tuesday, August 5, 2003 2:39 PM

52 Chapter 3 • Cryptography with Java

Listing 3-2 Output of “bin\crypttool listp –csinfo” command

C:\...\jstk>bin\crypttool listp -csinfo
Provider[0]:: SUN 1.2
Cryptographic Services::
[0] MessageDigest : SHA1|SHA|SHA-1
 ImplementedIn = Software
 MD5
 ImplementedIn = Software
[1] KeyStore : JKS
 ImplementedIn = Software
[2] Signature: SHAwithDSA|DSAWithSHA1|DSA|SHA/DSA|SHA-1/
DSA|SHA1withDSA|
DSS|SHA1/DSA
 ImplementedIn = Software
 KeySize = 1024
[3] SecureRandom : SHA1PRNG
 ImplementedIn = Software
[4] CertPathValidator : PKIX
 ImplementedIn = Software
 ValidationAlgorithm = draft-ietf-pkix-
new-part1-08.txt
[5] KeyPairGenerator : DSA
 ImplementedIn = Software
 KeySize = 1024
[6] CertificateFactory : X509|X.509
[7] AlgorithmParameterGenerator : DSA
 ImplementedIn = Software
 KeySize = 1024
[8] CertStore : LDAP
 ImplementedIn = Software
 LDAPSchema = RFC2587
 Collection
 ImplementedIn = Software
[9] AlgorithmParameters : DSA
 ImplementedIn = Software
[10] KeyFactory : DSA
 ImplementedIn = Software
[11] CertPathBuilder : PKIX
 ImplementedIn = Software
 ValidationAlgorithm = draft-ietf-pkix-
new-part1-08.txt

Provider[1]:: SunJSSE 1.41
Cryptographic Services::
[0] KeyStore : PKCS12
[1] Signature : MD5withRSA
 SHA1withRSA

Ch03.fm Page 52 Tuesday, August 5, 2003 2:39 PM

Cryptographic Services and Providers 53

 MD2withRSA
[2] TrustManagerFactory : SunX509
[3] KeyPairGenerator : RSA
[4] SSLContext : SSL
 SSLv3
 TLS
 TLSv1
[5] KeyManagerFactory : SunX509
[6] KeyFactory : RSA

Provider[2]:: SunRsaSign 1.0
Cryptographic Services::
[0] Signature : MD5withRSA
 SHA1withRSA
 MD2withRSA
[1] KeyPairGenerator : RSA
[2] KeyFactory : RSA

Provider[3]:: SunJCE 1.4
Cryptographic Services::
[0] Cipher : DES
 Blowfish
 TripleDES|DESede
 PBEWithMD5AndTripleDES
 PBEWithMD5AndDES
[1] KeyStore : JCEKS
[2] KeyPairGenerator : DiffieHellman|DH
[3] AlgorithmParameterGenerator : DiffieHellman|DH
[4] AlgorithmParameters : TripleDES|DESede
 PBEWithMD5AndDES|PBE
 DES
 Blowfish
 DiffieHellman|DH
[5] KeyAgreement : DiffieHellman|DH
[6] KeyGenerator : HmacSHA1
 TripleDES|DESede
 HmacMD5
 DES
 Blowfish
[7] SecretKeyFactory : TripleDES|DESede
 DES
 PBEWithMD5AndDES
[8] KeyFactory : DiffieHellman|DH
[9] Mac : HmacMD5
 HmacSHA1

Provider[4]:: SunJGSS 1.0
Cryptographic Services::

Ch03.fm Page 53 Tuesday, August 5, 2003 2:39 PM

54 Chapter 3 • Cryptography with Java

The output contains a wealth of information about various services supported by bundled
providers. To interpret the results, follow the following simple rules:

• The left side of “:” has the service name and the right side has the algorithms or types
supported.

• More than one algorithm or type name in the same line, separated by “|” imply aliases
for the same name.

• Some of the entries have additional information in the form of name-value pairs. An
example of such a name-value pair is “ImplementedIn = Software” for a
number of entries.

Once you get comfortable with the output, you have figured out a lot about various crypto-
graphic services available with J2SE SDK, v1.4. Regarding the supported services, the follow-
ing observations are worth noting:

• Cipher service in provider “SunJCE” supports only symmetric algorithms. You
cannot use this provider or any other bundled provider for public-key encryption.

• “TripleDES” and “DESede” are aliases for the same algorithm.

• Provider “SUN” has implementation for not only JCA services but also for a number of
certificate validation services. We cover certificates and other related operations in
Chapter 4, PKI with Java.

• Three different types of KeyStore are supported, each one in a different provider:
“JKS” in “SUN”, “JCEKS” in “SunJCE” and “PKCS12” and “SunJSSE”.

If you are working with a J2SE v1.4 compliant environment from a vendor other than Sun
or have installed third-party providers, the output may be different. In either case, crypttool
is a good tool to explore your environment.

Installing and Configuring a Provider

Installing a provider means placing the jar file(s) having the provider classes at appropriate loca-
tions and modifying the security configuration files so that the application program is able to
load and execute the provider class files. This can be done by installing the provider as a stan-
dard Java extension by placing the jar file in the jre-home\lib\ext directory where jre-
home is the Java runtime software installation directory. If you have J2SE SDK, v1.4 installed
in c:\j2sdk1.4 then the jre-home will be c:\j2sdk1.4\jre. If you have only the
JRE (Java Runtime Environment), then jre-home will be the root directory of the JRE
installation, such as c:\Program Files\Java\jre1.4.0.

It is also possible to install a provider by just making the jar file available as a component
in the bootclasspath of the program. This would require launching the client program with

Ch03.fm Page 54 Tuesday, August 5, 2003 2:39 PM

Cryptographic Services and Providers 55

the command “java –Xbootclasspath/a:provider-jar-file client-pro-
gram-class”. Just setting the CLASSPATH to include the provider jar file doesn’t work.

If the provider is not installed as an extension and it is to be accessed by a program where
a Security Manager is installed, then it must be granted appropriate permissions in the global or
user-specific policy file java.policy. Recall that JVM running an applet will most likely
have a Security Manager installed. The syntax of policy files and other details on granting spe-
cific permissions are covered in Chapter 5, Access Control. However, the brief description given
below would suffice for installing a provider.

The global policy file resides in the directory jre-home\lib\security. The default
location of the user specific policy file is in the user home directory. A sample policy statement
granting such permission to a provider with the name “MyJCE” and class files in
myjce_provider.jar kept in directory c:\myjce appears below:

grant codeBase “file:/c:/myjce/myjce_provider.jar” {
 permission java.lang.RuntimePermission “getProtectionDomain”;
 permission java.security.SecurityPermission
 “putProviderProperty.MyJCE”;
};

After installation, a provider must be configured before it can be accessed by the client
programs. This configuration is done either statically for the whole J2SE environment by modi-
fying security properties file or dynamically for a given run of a program by invoking appropri-
ate API calls from within the program.

Static configuration requires modification of the security properties file jre-
home\lib\security\java.security. This file contains an entry for each provider,
either bundled or installed, of the form

security.provider.n=master-class-name

Here n is a number specifying the priority, 1 being the highest, and master-class-
name is the fully qualified name of the class in the provider jar file that extends the class
java.security.Provider. To add a provider, simply insert an entry corresponding to the
provider’s master class with the appropriate priority number. Note that this may require some
adjustment in the priority of existing providers.

For example, after installing Cryptix JCE provider (Cryptix JCE provider is an open
source implementation available from http://www.cryptix.org) with lowest priority, a portion of
the java.security file would look like:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider

#Added by Pankaj on July 22, 2002 for testing.
security.provider.6=cryptix.jce.provider.CryptixCrypto

Ch03.fm Page 55 Tuesday, August 5, 2003 2:39 PM

56 Chapter 3 • Cryptography with Java

If you have more than one provider with the same priority, then the registration by the last
provider overrides the previous registrations. Also, you must not have gaps within the priority
number sequence, otherwise only the providers with consecutive priorities starting at 1 are regis-
tered. If there is a typo in the fully qualified name of the master class then the corresponding
provider is not registered. All this happens silently without any warning, so you must be careful
while modifying the security properties file.

You can check for successful configuration by running the command “crypttool
listp”. An invocation of this program should list all the providers, including the new ones, in
the same order as the specified priority numbers. A frequent mistake, especially on development
machines with multiple Java runtime software installed, is not realizing that the runtime environ-
ment of the java command may not be the same as the one you just configured. This is easily
rectified by executing the command with %JAVA_HOME%\bin\java in place of java to
launch the right JVM. Utility crypttool picks up the java executable from
%JAVA_HOME%\bin directory, so make sure that the value of environment variable
JAVA_HOME matches the Java installation you just configured.

A provider is dynamically configured within the client program code by calling addPro-
vider or insertProviderAt method of Security class. For this to work, appropriate
permission must be granted to the client code. For example, the following statement in the policy
file java.policy provides the adequate permission to all code from directory c:\mycli-
ent.

grant codeBase “file:/c:/myclient/” {

 permission java.security.SecurityPermission
“insertProviderAt.*”;

 permission java.security.SecurityPermission “addProvider.*”;

};

Another thing to keep in mind is that the JCE engine authenticates the provider by verifying
the signature on the code. The verification step looks for a signature by JCE Code Signing CA or a
CA whose certificate has been signed by it. This is not a problem for bundled or commercial pro-
viders, as they are signed with appropriate private keys, but it becomes an issue with your own
implementation of a JCE provider and most of the open source providers. For example, when I
installed the “CryptixCrypto” provider and launched a program accessing one of its services,
the exception java.security.NoSuchProviderException was thrown with a message
saying: JCE cannot authenticate the provider CryptixCrypto.

If you do want to play with an unsigned provider during development, you can bypass the
JCE engine by specifying an alternate JCE implementation. In the case of Cryptix provider, one
way to do this is simply by removing the JDK’s jce.jar file from jre-home\lib as the
Cryptix provider comes with its own JCE classes.

Another option is to use the open source JCE provider from Legion of the Bouncy Castle,
available from http://www.bouncycastle.org. This provider comes with an appropriate signed jar
file and supports a wide variety of services and algorithms. For release 1.18 (the current one in

Ch03.fm Page 56 Tuesday, August 5, 2003 2:39 PM

Cryptographic Keys 57

March 2003), you should download a file named bcprov-jdk14-118.jar and place it in
jre-home\lib\ext directory and add the following line in your java.security file:

security.provider.6=org.bouncycastle.jce.provider.BouncyCastleProvider

If you do install this provider, run command “bin\crypttool listp” to get a list of
active providers; and if this succeeds and shows BC as a provider, then command
“bin\crypttool listp –provider BC –csinfo” to get a listing of available ser-
vices and algorithms supported with this provider.

To recap, you must pay attention to the following while installing a security provider:

• The provider jar file has been placed in the standard extension directory or its path is
specified through –Xbootclasspath argument to JVM.

• The provider jar has been granted appropriate permissions. This is required only if the
program is running under a Security Manager. This is likely to be the case if your
program is running within a container.

• An appropriate CA has signed the provider jar.

Why is installing a security provider so complicated? Compromise of a security provider
can easily compromise all the security provided by cryptography. Hence, it is imperative that
proper safeguards are in place. A number of the above mentioned steps are about ensuring that
only trusted code is used as a security provider.

Why would someone want to use a third-party provider? Here are some good reasons:

• You need your Java application to be integrated into an existing environment that uses
algorithms and/or types not supported by bundled providers.

• You bought special hardware to speed up your application but use of this hardware
requires using the vendor’s provider.

• The algorithms supported by the bundled providers are not strong enough for your
requirements.

• You live in a country where you can only download the J2SE SDK with “limited”
cryptography but want to use “unlimited” cryptography. We will talk more about this
later in the section Limited versus Unlimited Cryptography.

• You invented a new algorithm or better implementation of an existing algorithm and
want to use it.

Whether you use the provider supplied with J2SE v1.4.x SDK or install your own, the pro-
grams using the cryptographic services remain the same.

Cryptographic Keys
Secret keys, a stream of randomly generated bits appropriate for the chosen algorithm and pur-
pose, are central to a number of cryptographic operations. In fact, much of the security offered

Ch03.fm Page 57 Tuesday, August 5, 2003 2:39 PM

58 Chapter 3 • Cryptography with Java

by cryptography depends on appropriate handling of keys, for the algorithms themselves are
publicly published. What it means is that a key that can be easily compromised, computed,
guessed, or found by trial and error with reasonable effort offers little or no security, no matter
how secure the algorithm. Strength of security, or the degree of difficulty in determining the
right key by a brute force exhaustive search, depends on the size and randomness of the key. For
all these reasons, it is imperative that due diligence is exercised in selecting the right keys, using
them properly and protecting them adequately.

However, not all cryptographic operations require secret keys. Certain operations work
with a pair of keys—a private key that must be kept secret and a corresponding public key that
can be shared freely.

The Java platform offers a rich set of abstractions, services and tools for generation, stor-
age, exchange and use of cryptographic keys, simplifying the problem to careful use of these
APIs and tools.

Java Representation of Keys
Java interface java.security.Key provides an opaque, algorithm and type independent
representation of keys with the following methods:

public String getAlgorithm()
Returns the standard name of the algorithm associated with the key. Examples include

“DES”, “DSA” and “RSA”, among many others.

public byte[] getEncoded()
Returns the encoded value of the key as a byte array or null if encoding is not supported.

The type of encoding is obtained by method getFormat(). For “RAW” encoding format, the
exact bytes comprising the key are returned. For “X.509” and “PKCS#8” format, the bytes
representing the encoded key are returned.

public String getFormat()
Returns the encoding format for this key or null if encoding is not supported. Examples:

“RAW”, “X.509” and “PKCS#8”.

As we know, there are two kinds of encryption algorithms: symmetric or secret key algo-
rithms and asymmetric or public key algorithms. Symmetric algorithms use the same key for
both encryption and decryption and it must be kept secret, whereas asymmetric algorithms use a
pair of keys, one for encryption and another for decryption. These keys are represented by vari-
ous subinterfaces of Key with self-explanatory names—SecretKey, PrivateKey and
PublicKey. These are marker interfaces, meaning they do not have any methods and are used
only for indicating the purpose and type-safety of the specific Key objects. Java Security API
has many more Key subinterfaces that allow access of algorithm specific parameters, but they
are rarely used directly in application programs and hence are not covered.

Ch03.fm Page 58 Tuesday, August 5, 2003 2:39 PM

Cryptographic Keys 59

Generating Keys
A Key object is instantiated by either internal generation within the program or getting the
underlying bit stream in some way from an external source such as secondary storage or another
program. Let us look at how keys are generated programmatically.

A SecretKey for a specific algorithm is generated by invoking method gener-
ateKey() on javax.crypto.KeyGenerator object. KeyGenerator is an engine
class implying that a concrete object is created by invoking the static factory method getIn-
stance(), passing the algorithm name and optionally, the provider name as arguments. After
creation, the KeyGenerator object must be initialized in one of two ways—algorithm inde-
pendent or algorithm specific. Algorithm independent initialization requires only the key size in
number of bits and an optional source of randomness. Here is example program GenerateS-
ecretKey.java that generates a secret key for DES algorithm.

Listing 3-3 Generating a secret key

// File: src\jsbook\ch3\GenerateSecretKey.java
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import java.security.Key;

public class GenerateSecretKey {
 private static String formatKey(Key key){
 StringBuffer sb = new StringBuffer();
 String algo = key.getAlgorithm();
 String fmt = key.getFormat();
 byte[] encoded = key.getEncoded();
 sb.append("Key[algorithm=" + algo + ", format=" + fmt +
 ", bytes=" + encoded.length + "]\n");
 if (fmt.equalsIgnoreCase("RAW")){
 sb.append("Key Material (in hex):: ");
 sb.append(Util.byteArray2Hex(key.getEncoded()));
 }
 return sb.toString();
 }
 public static void main(String[] unused) throws Exception {
 KeyGenerator kg = KeyGenerator.getInstance("DES");
 kg.init(56); // 56 is the keysize. Fixed for DES
 SecretKey key = kg.generateKey();
 System.out.println("Generated Key:: " + formatKey(key));
 }
}

Running this program produces the following output:

C:\ch3\ex1>java GenerateSecretKey
Generated Key:: Key[algorithm=DES, format=RAW, bytes=8]
Key Material (in hex):: 10 46 8f 83 4c 8a 58 57

Ch03.fm Page 59 Tuesday, August 5, 2003 2:39 PM

60 Chapter 3 • Cryptography with Java

Run the same program again. Do you get the same key material? No, you get a different
value. How is this explained? The KeyGenerator uses the default implementation of
SecureRandom as a source of randomness and this generates a different number for every
execution.

Generation of public and private key pair follows a similar pattern with class KeyGener-
ator replaced by java.security.KeyPairGenerator and method SecretKey
generateKey() replaced by KeyPair generateKeyPair(). Example program Gen-
erateKeyPair.java illustrates this.

Listing 3-4 Generating a public-private key pair

import java.security.KeyPairGenerator;
import java.security.KeyPair;
import java.security.PublicKey;
import java.security.PrivateKey;
import java.security.Key;

public class GenerateKeyPair {
 private static String formatKey(Key key){
 // Same as in GenerateSecretKey.java. hence omitted.
 }
 public static void main(String[] unused) throws Exception {
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(512); // 512 is the keysize.
 KeyPair kp = kpg.generateKeyPair();
 PublicKey pubk = kp.getPublic();
 PrivateKey prvk = kp.getPrivate();
 System.out.println("Generated Public Key:: " +
formatKey(pubk));
 System.out.println("Generated Private Key:: " +
formatKey(prvk));
 }
}

Running this program produces:

C:\ch3\ex1>java GenerateKeyPair
Generated Public Key:: Key[algorithm=DSA, format=X.509, bytes=244]
Generated Private Key:: Key[algorithm=DSA, format=PKCS#8,
bytes=201]

Note that the format of public and private keys is not RAW. The public key is in X.509
format and the private key is in PKCS#8 format.

Utility crypttool has commands genk and genkp to generate secret keys and pairs of
public-private keys, allowing the user to specify the algorithm, keysize and a way to save the
generated keys. Refer to the section Cryptography with crypttool for more details.

Ch03.fm Page 60 Tuesday, August 5, 2003 2:39 PM

Encryption and Decryption 61

Storing Keys
Keys need to be stored on secondary storage so that programs can access them conveniently and
securely for subsequent use. This is accomplished through the engine class java.secu-
rity.KeyStore. A KeyStore object maintains an in-memory table of key and certificate
entries, indexed by alias strings, allowing retrieval, insertion and deletion of entries. This object
can be initialized from a file and saved to a file. Such files are known as keystore files. For secu-
rity reasons, keystore files and, optionally, individual entries, are password protected.

The following code fragment illustrates initializing a KeyStore object from a JCEKS
keystore file test.ks protected with password “changeit”.

FileInputStream fis = new FileInputStream(“test.ks”);
KeyStore ks = KeyStore.getInstance(“JCEKS”);
ks.load(fis, “changeit”.toCharArray());

Different providers or even the same provider supporting different keystore types can store
keys in different types of persistent store: a flat file, a relational database, an LDAP (Light-
weight Data Access Protocol) server or even MS-Windows Registry.

J2SE v1.4 bundled providers support flat file formats JKS and JCEKS. JKS keystore can
hold only private key and certificate entries whereas JCEKS keystore can also hold secret key
entries. There is also read-only support for keystore type PKCS12, allowing import of Netscape
and MSIE browser certificates into a Java keystore

Java keystore types JKS and JCEK work okay for development and simple applications
with small number of entries, but may not be suitable in the production environment that is
required to support a large number of entries. Consider investing in a commercial provider for
such uses.

Java platform includes a simple command line utility keytool to manage keystores. The
primary purpose of this tool is to generate public and private key pairs and manage certificates
for PKI based applications. We talk more about this tool in Chapter 4, PKI with Java.

Encryption and Decryption
Encryption is the process of converting normal data or plaintext to something incomprehensible
or cipher-text by applying mathematical transformations. These transformations are known as
encryption algorithms and require an encryption key. Decryption is the reverse process of get-
ting back the original data from the cipher-text using a decryption key. The encryption key and
the decryption key could be the same as in symmetric or secret key cryptography, or different as
in asymmetric or public key cryptography.

Algorithms
A number of encryption algorithms have been developed over time for both symmetric and
asymmetric cryptography. The ones supported by the default providers in J2SE v1.4 are: DES,

Ch03.fm Page 61 Tuesday, August 5, 2003 2:39 PM

62 Chapter 3 • Cryptography with Java

TripleDES, Blowfish, PBEWithMD5AndDES, and PBEWithMD5AndTripleDES. Note that
these are all symmetric algorithms.

DES keys are 64 bits in length, of which only 56 are effectively available as one bit per byte
is used for parity. This makes DES encryption quite vulnerable to brute force attack. TripleDES, an
algorithm derived from DES, uses 128-bit keys (112 effective bits) and is considered much more
secure. Blowfish, another symmetric key encryption algorithm, could use any key with size up to
448 bits, although 128-bit keys are used most often. Blowfish is faster than TripleDES but has a
slow key setup time, meaning the overall speed may be less if many different keys are used for
small segments of data. Algorithms PBEWithMD5AndDES and PBEWithMD5AndTripleDES
take a password string as the key and use the algorithm specified in PKCS#5 standard.

There are currently four FIPS approved symmetric encryption algorithms: DES, TripleDES,
AES (Advanced Encryption Standard) and Skipjack. You can find more information about these
at http://csrc.nist.gov/CryptoToolkit/tkencryption.html. Among these, AES is a new standard and
was approved only in 2001. Note that both AES and Skipjack are not supported in J2SE v1.4.1

All these algorithms operate on a block of data, typically consisting of 64 bits or 8 bytes,
although smaller blocks are also possible. Each block can be processed independently or tied to
the result of processing on the earlier block, giving rise to different encryption modes. Com-
monly used and supported modes include ECB (Electronic CookBook) mode, whereby each
block is processed independently, CBC (Cipher Block Chaining) mode, whereby the result of
processing the current block is used in processing the next block), CFB (Cipher Feed Back) and
OFB (Output Feed Back). Detailed information on these modes and their performance, security
and other characteristics can be found in the book Applied Cryptography by noted cryptographer
Bruce Schneier.

CFB and OFB modes allow processing with less than 64 bits, with the actual number of
bits, usually a multiple of 8, specified after the mode such as CFB8, OFB8, CFB16, OFB16 and
so on. When a mode requires more than 1 byte to do the processing, such as ECB, CBC, CFB16,
OFB16 and so on, the data may need to be padded to become a multiple of the block size. Bun-
dled providers support PKCS5Padding, a padding scheme specified in PKCS#5. Also, modes
CBC, CFB and OFB need an 8-byte Initialization Vector, so that even the first block has an input
to start with. This must be same for both encryption and decryption.

Java API
Java class javax.crypto.Cipher is the engine class for encryption and decryption ser-
vices. A concrete Cipher object is created by invoking the static method getInstance()
and requires a transform string of the format algorithm/mode/padding (an example
string would be “DES/ECB/PKCS5Padding”) as an argument. After creation, it must be ini-
tialized with the key and, optionally, an initialization vector. After initialization, method
update() can be called any number of times to pass byte arrays for encryption or decryption,
terminated by a doFinal() invocation.

1. Support for AES has been added to J2SE v1.4.2.

Ch03.fm Page 62 Tuesday, August 5, 2003 2:39 PM

Encryption and Decryption 63

The example program SymmetricCipherTest.java illustrates symmetric encryp-
tion and decryption. This program generates a secret key for DES algorithm, encrypts the bytes
corresponding to a string value using the generated key and finally decrypts the encrypted bytes
to obtain the original bytes. Note the use of an initialization vector for both encryption and
decryption. Although the code in this program works on a byte array, it is possible to pass multi-
ple smaller chunks of byte sequences to the Cipher instance before initiating the encryption or
decryption.

The code presented here doesn’t list individual exceptions thrown in method encrypt()
and decrypt(), but you can find them in the electronic version of the source file.

Listing 3-5 Encryption and Decryption with a symmetric Cipher

// File: src\jsbook\ch3\SymmetricCipherTest.java
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.Cipher;

public class SymmetricCipherTest {
 private static byte[] iv =
 { 0x0a, 0x01, 0x02, 0x03, 0x04, 0x0b, 0x0c, 0x0d };

 private static byte[] encrypt(byte[] inpBytes,
 SecretKey key, String xform) throws Exception {
 Cipher cipher = Cipher.getInstance(xform);
 IvParameterSpec ips = new IvParameterSpec(iv);
 cipher.init(Cipher.ENCRYPT_MODE, key, ips);
 return cipher.doFinal(inpBytes);
 }

 private static byte[] decrypt(byte[] inpBytes,
 SecretKey key, String xform) throws Exception {
 Cipher cipher = Cipher.getInstance(xform);
 IvParameterSpec ips = new IvParameterSpec(iv);
 cipher.init(Cipher.DECRYPT_MODE, key, ips);
 return cipher.doFinal(inpBytes);
 }

 public static void main(String[] unused) throws Exception {
 String xform = "DES/ECB/PKCS5Padding";
 // Generate a secret key
 KeyGenerator kg = KeyGenerator.getInstance("DES");
 kg.init(56); // 56 is the keysize. Fixed for DES
 SecretKey key = kg.generateKey();

 byte[] dataBytes =

Ch03.fm Page 63 Tuesday, August 5, 2003 2:39 PM

64 Chapter 3 • Cryptography with Java

 "J2EE Security for Servlets, EJBs and Web
Services".getBytes();

 byte[] encBytes = encrypt(dataBytes, key, xform);
 byte[] decBytes = decrypt(encBytes, key, xform);

 boolean expected = java.util.Arrays.equals(dataBytes,
decBytes);
 System.out.println("Test " + (expected ? "SUCCEEDED!" :
"FAILED!"));
 }
}

Compiling and running this program is similar to other programs in this chapter.
Encryption algorithm PBEWithMD5AndDES requires a slightly different initialization

sequence of the Cipher object. Also, there is an alternate mechanism to do encryption decryption
involving classes CipherInputStream and CipherOutputStream. We do not cover
these methods here. If you are interested in their use, look at the source code of utility crypt-
tool.

The same sequence of calls, with appropriate modifications, would be valid for asymmet-
ric cryptography as well. The example program AsymmetricCipherTest.java illustrates
this.

Listing 3-6 Encryption and Decryption with a asymmetric Cipher

// File: src\jsbook\ch3\AsymmetricCipherTest.java
import java.security.KeyPairGenerator;
import java.security.KeyPair;
import java.security.PublicKey;
import java.security.PrivateKey;
import javax.crypto.Cipher;

public class AsymmetricCipherTest {
 private static byte[] encrypt(byte[] inpBytes, PublicKey key,
 String xform) throws Exception {
 Cipher cipher = Cipher.getInstance(xform);
 cipher.init(Cipher.ENCRYPT_MODE, key);
 return cipher.doFinal(inpBytes);
 }
 private static byte[] decrypt(byte[] inpBytes, PrivateKey key,
 String xform) throws Exception{
 Cipher cipher = Cipher.getInstance(xform);
 cipher.init(Cipher.DECRYPT_MODE, key);
 return cipher.doFinal(inpBytes);
 }

 public static void main(String[] unused) throws Exception {

Ch03.fm Page 64 Tuesday, August 5, 2003 2:39 PM

Message Digest 65

 String xform = "RSA/NONE/PKCS1PADDING";

 // Generate a key-pair

 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

 kpg.initialize(512); // 512 is the keysize.

 KeyPair kp = kpg.generateKeyPair();

 PublicKey pubk = kp.getPublic();

 PrivateKey prvk = kp.getPrivate();

 byte[] dataBytes =

 "J2EE Security for Servlets, EJBs and Web
Services".getBytes();

 byte[] encBytes = encrypt(dataBytes, pubk, xform);

 byte[] decBytes = decrypt(encBytes, prvk, xform);

 boolean expected = java.util.Arrays.equals(dataBytes,
decBytes);

 System.out.println("Test " + (expected ? "SUCCEEDED!" :
"FAILED!"));

 }

}

Note that this program uses a KeyPairGenerator to generate a public key and a pri-
vate key. The public key is used for encryption and the private key is used for decryption. As
there is no padding, there was no need to have an initialization vector.

The only caveat is that J2SE v1.4 bundled providers do not support asymmetric encryption
algorithms. You would need to install a third-party JCE provider for this. You could use the
Bouncy Castle provider. In fact, the above program is tested against this provider.

Message Digest
Message digests, also known as message fingerprints or secure hash, are computed by applying
a one-way hash function over the data bits comprising the message. Any modification in the
original message, either intentional or unintentional, will most certainly result in a change of the
digest value. Also, it is computationally impossible to derive the original message from the
digest value. These properties make digests ideal for detecting changes in a given message.
Compute the digest before storing or transmitting the message and then compute the digest after
loading or receiving the message. If the digest values match then one can be sure with good con-
fidence that the message has not changed. However, this scheme fails if a malicious interceptor
has access to both the original message and its digest. In this case the interceptor could easily
alter the message, compute the digest of the modified message and replace the original digest
with the new one. The solution, as we see in the next section, is to secure the message digest by
encrypting it with a secret key.

Ch03.fm Page 65 Tuesday, August 5, 2003 2:39 PM

66 Chapter 3 • Cryptography with Java

A common use of message digests is to securely store and validate passwords. The basic
idea is that you never store the password in clear-text. Compute the message digest of the pass-
word and store the digest value. To verify the password, compute its digest and match it with the
stored value. If both values are equal, the verification succeeds. This way no one, not even the
administrator, gets to know your password. A side effect of this mechanism is that you cannot
get back a forgotten password. This is not really as bad as it sounds, for you can always get it
changed to a temporary password by an administrator, and then change it to something that only
you know.

Message digests of messages stored in byte arrays are computed using engine class
java.security.MessageDigest. The following program illustrates this.

Listing 3-7 Computing message digest

// File: src\jsbook\ch3\ComputeDigest.java
import java.security.MessageDigest;
import java.io.FileInputStream;

public class ComputeDigest {
 public static void main(String[] unused) throws Exception{
 String datafile = "ComputeDigest.java";

 MessageDigest md = MessageDigest.getInstance("SHA1");
 FileInputStream fis = new FileInputStream(datafile);
 byte[] dataBytes = new byte[1024];
 int nread = fis.read(dataBytes);
 while (nread > 0) {
 md.update(dataBytes, 0, nread);
 nread = fis.read(dataBytes);
 };
 byte[] mdbytes = md.digest();
 System.out.println("Digest(in hex):: " +
Util.byteArray2Hex(mdbytes));
 }
}

A concrete, algorithm-specific MessageDigest object is created following the general
pattern of all engine classes. The invocation of update() method computes the digest value
and the digest() call completes the computation. It is possible to make multiple invocations
of update(byte[] bytes) before calling the digest() method, thus avoiding the need
to accumulate the complete message in a single buffer, if the original message happens to be
fragmented over more than one buffer or cannot be kept completely in main memory. This is
likely to be the case if the data bytes are being read from a huge file in fixed size buffers. In fact,
convenience classes DigestInputStream and DigestOutputStream, both in the
package java.security, exist to compute the digest as the bytes flow through the associated
streams.

Ch03.fm Page 66 Tuesday, August 5, 2003 2:39 PM

Message Authentication Code 67

The verification or check for integrity of the message is done by computing the digest
value and comparing this with the original digest for size and content equality. Class Mes-
sageDigest even includes static method isEqual(byte[] digestA, byte[]
digestB) to perform this task.

Theoretically, because a much larger set of messages get mapped to a much smaller set of
digest values, it is possible that two or more messages will have the same digest value. For
example, the set of 1 KB messages has a total of 2(8*1024) distinct messages. If the size of the
digest value is 128 then there are only 2128 different digest values possible. What it means is that
there are, on the average, 2(8*1024—128) different 1KB messages with the same digest value.
However, a brute-force search for a message that results in a given digest value would still
require examining, on the average, 2127 messages. The problem becomes a bit simpler if one
were to look for any pair of messages that give rise to the same digest value, requiring, on the
average, only 264 attempts. This is known as the birthday attack, deriving its name from a
famous mathematics puzzle, whose result can be stated as: there is more than a 50 percent
chance that you will find someone with the same birthday as yours in a party of 183 persons.
However, this number drops to 23 for any pair to have the same day as their birthday.

The providers bundled with J2SE v1.4 support two message digest algorithms: SHA
(Secure Hash Algorithm) and MD5. SHA, also known as SHA-1, produces a message digest of
160 bits. It is a FIPS (Federal Information Processing Standard) approved standard. In
August 2002, NIST announced three more FIPS approved standards for computing message
digest: SHA-256, SHA-384 and SHA-512. These algorithms use a digest value of 256, 384 and
512 bits respectively, and hence provide much better protection against brute-force attacks. MD5
produces only 128 bits as message digest, and is considerably weaker.

Message Authentication Code

Message Authentication Code or MAC is obtained by applying a secret key to the message
digest so that only the holder of the secret key can compute the MAC from the digest and hence,
the message. This method thwarts the threat posed by a malicious interceptor who could modify
the message and replace the digest with the digest of the modified message, for the interceptor
won’t have access to the secret key. Of course, there has to be a secure way to share the secret
key between the sender and the recipient for this to work.

J2SE includes class javax.crypto.Mac to compute MAC. This class is somewhat
similar to the MessagDigest class, except for the following:

• A Mac object must be initialized with a secret key.

• There is method doFinal() in place of digest().

Another difference between classes for MAC and message digest is that there are no
MacInputStream and MacOutputStream classes.

Ch03.fm Page 67 Tuesday, August 5, 2003 2:39 PM

68 Chapter 3 • Cryptography with Java

The example program to illustrate MAC computation is similar to the one for Message
Digest.

Listing 3-8 Computing Message Authentication Code (MAC)

// File: src\jsbook\ch3\ComputeMAC.java
import javax.crypto.Mac;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import java.io.FileInputStream;

public class ComputeMAC {
 public static void main(String[] unused) throws Exception{
 String datafile = "ComputeDigest.java";

 KeyGenerator kg = KeyGenerator.getInstance("DES");
 kg.init(56); // 56 is the keysize. Fixed for DES
 SecretKey key = kg.generateKey();

 Mac mac = Mac.getInstance("HmacSHA1");
 mac.init(key);

 FileInputStream fis = new FileInputStream(datafile);
 byte[] dataBytes = new byte[1024];
 int nread = fis.read(dataBytes);
 while (nread > 0) {
 mac.update(dataBytes, 0, nread);
 nread = fis.read(dataBytes);
 };
 byte[] macbytes = mac.doFinal();
 System.out.println("MAC(in hex):: " +
Util.byteArray2Hex(macbytes));
 }
}

J2SE bundled providers support MAC algorithms HmacSHA1 and HmacMD5, corre-
sponding to message digest algorithms SHA1 and MD5.

Digital Signature
Encrypting the digest of a message with the private key using asymmetric cryptography creates
the digital signature of the person or entity known to own the private key. Anyone with the corre-
sponding public key can decrypt the signature to get the message digest and verify that the mes-
sage digest indeed corresponds to the original message and be confident that it must have been
encrypted with the private key corresponding to the public key. As the private key is not made

Ch03.fm Page 68 Tuesday, August 5, 2003 2:39 PM

Digital Signature 69

public, it can be deduced that the message was signed by the owner of the private key. Generally,
these are the same properties as the ones associated with a signature on paper.

Note that use of a digital signature requires a digest algorithm and an asymmetric encryp-
tion algorithm.

Algorithms
Currently, there are three FIPS-approved digital signature algorithms: DSA, RSA and ECDSA
(Elliptic Curve Digital Signature Algorithm). More information on these algorithms can be
found at http://csrc.nist.gov/CryptoToolkit/tkhash.html.

Java API
Java class java.security.Signature represents the signature service and has methods
to create and verify a signature. Like any engine class, a concrete Signature object is created by
invoking the static method getInstance(). For signing data bytes, it must be initialized
using initSign() with the private key as an argument. A subsequent signature creation oper-
ated, through the method sign(), produces the signature bytes. Similarly, the verification
operation, through the method verify(), after initialization using initVerify() with the
public key as the argument, verifies whether a particular signature has been created using the
corresponding private key or not.

The example program SignatureTest.java illustrates signing and verification.

Listing 3-9 Signature creation and verification

// File: src\jsbook\ch3\ex1\SignatureTest.java
import java.security.KeyPairGenerator;
import java.security.KeyPair;
import java.security.PublicKey;
import java.security.PrivateKey;
import java.security.Signature;
import java.io.FileInputStream;

public class SignatureTest {
 private static byte[] sign(String datafile, PrivateKey prvKey,
 String sigAlg) throws Exception {
 Signature sig = Signature.getInstance(sigAlg);
 sig.initSign(prvKey);
 FileInputStream fis = new FileInputStream(datafile);
 byte[] dataBytes = new byte[1024];
 int nread = fis.read(dataBytes);
 while (nread > 0) {
 sig.update(dataBytes, 0, nread);
 nread = fis.read(dataBytes);
 };

Ch03.fm Page 69 Tuesday, August 5, 2003 2:39 PM

70 Chapter 3 • Cryptography with Java

 return sig.sign();
 }
 private static boolean verify(String datafile, PublicKey pubKey,
 String sigAlg, byte[] sigbytes) throws Exception {
 Signature sig = Signature.getInstance(sigAlg);
 sig.initVerify(pubKey);
 FileInputStream fis = new FileInputStream(datafile);
 byte[] dataBytes = new byte[1024];
 int nread = fis.read(dataBytes);
 while (nread > 0) {
 sig.update(dataBytes, 0, nread);
 nread = fis.read(dataBytes);
 };
 return sig.verify(sigbytes);
 }
 public static void main(String[] unused) throws Exception {
 // Generate a key-pair
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 kpg.initialize(512); // 512 is the keysize.
 KeyPair kp = kpg.generateKeyPair();
 PublicKey pubk = kp.getPublic();
 PrivateKey prvk = kp.getPrivate();

 String datafile = "SignatureTest.java";
 byte[] sigbytes = sign(datafile, prvk, "SHAwithDSA");
 System.out.println("Signature(in hex):: " +
 Util.byteArray2Hex(sigbytes));

 boolean result = verify(datafile, pubk, "SHAwithDSA",
sigbytes);
 System.out.println("Signature Verification Result = " +
result);
 }
}

Besides SHAwithDSA, the J2SE bundled providers support SHA1withRSA,
MD5withRSA and MD2with RSA signature algorithms.

Key Agreement
Secure exchange of data over an insecure channel requires the data packets to be encrypted by
the sender and decrypted by the receiver. In such a scenario, one could use symmetric cryptogra-
phy for encryption and decryption but that would require the communicating parties to use the
same secret key. This is not viable for an open communication medium like the Internet that
must allow secure exchange among unknown parties without prior agreement to share secret
keys.

Ch03.fm Page 70 Tuesday, August 5, 2003 2:39 PM

Key Agreement 71

One might think that public key cryptography is ideally suited to solve this problem. The
sender would do the encryption using the public key of the recipient and the recipient would
decrypt the message using its own private key. The whole scheme would only require each party
to have or generate its own key pair and share the public key with others.

In practice, this approach has a small problem. The performance overhead of public key
encryption and decryption is unacceptably high. However, there is a solution to this problem, for
the performance issue can be addressed by generating a secret key for encrypting the actual data
and encrypting the secret key with the public key. The recipient could now use his or her private
key to decrypt the secret key and then use this key to decrypt the data using much faster symmet-
ric decryption.

Even this scheme requires that every entity must have the public key of all other entities
with whom it wishes to communicate. This precondition will preclude secure communication
between parties that do not know each other beforehand.

One solution is to use the public key cryptography and a key agreement mechanism to
agree upon a secret key in such a way that the key itself is never transmitted and cannot be inter-
cepted or deduced from the intercepted traffic. Once such a secret key is agreed upon, it can be
used for data encryption and decryption.

J2SE v1.4 supports key agreement operations through the service class
javax.crypto.KeyAgreement. We do not get into the programmatic usage details of this
class but instead look at one of the key agreement algorithms supported by J2SE v1.4—Diffie-
Hellman.

1. The initiator generates a public and private key pair and sends the public key, along
with the algorithm specification, to the other party.

2. The other party generates its own public and private key pair using the algorithm speci-
fication and sends the public key to the initiator.

3. The initiator generates the secret key using its private key and the other party’s public
key.

4. The other party also generates the secret key using its private key and the initiator’s
public key. Diffie-Hellamn algorithm ensures that both parties generate the same secret
key.

This sequence of steps is pictorially illustrated in Figure 3-2.
As we see in Chapter 6, Securing the Wire, this mechanism is used by SSL to agree upon a

shared secret key and secure the exchange of data.

Ch03.fm Page 71 Tuesday, August 5, 2003 2:39 PM

72 Chapter 3 • Cryptography with Java

Summary of Cryptographic Operations
We have covered a number of cryptographic operations, their characteristics and uses in the pre-
vious sections. Let us recap the main points with help of Figure 3-3.

Here is the basic scenario: Alice has some data she wants to share with Bob. Depending
upon the situation, she could use one or more of the cryptographic operations discussed in this
chapter, as explained below.

1. Ensure that the data has not been accidentally corrupted. Alice computes the digest
of the data and sends the digest value along with the message. Bob, after receiving the
data, computes the digest and matches it against the received value. A successful match
implies that the data is not corrupted.

2. Ensure that the data has not been maliciously modified. In this case, Alice cannot
rely on digest value, as the malicious middleman could simply replace the digest value
after modifying the data. So, she arranges to share a secret key with Bob and uses this
key to compute the MAC of the data. Not being in the possession of the secret key, the
middleman now cannot replace the MAC.

3. Ensure that the data remains confidential. Alice shares a secret key with Bob and
uses this key to encrypt the data with a symmetric encryption algorithm.

4. Ensure that the data remains confidential but without a shared secret key. Alice
has Bob’s public key. She uses this key to encrypt the data. Bob decrypts it using his
private key.

5. Prove to Bob that the data has come from Alice. Alice uses her private key to sign
the data. Bob can verify the signature using her public key and be sure that the data

Alice Bob

generate
pub-key(A) and

prv-key(A)
pub-key(A), algo.

pub-key(B), algo.

generate
pub-key(B) and

prv-key(B)

sec-key = generate
(prv-key(A), pub-key(B)

sec-key = generate
(prv-key(B), pub-key(A)

Figure 3-2 Diffie-Hellman Key Agreement.

Ch03.fm Page 72 Tuesday, August 5, 2003 2:39 PM

Summary of Cryptographic Operations 73

indeed originated from Alice. This also guarantees that the data has not been modified
in transit.

6. Prove to Bob that the data came from Alice and keep it confidential. Alice signs the
data with her private key and then encrypts it using Bob’s public key. Bob decrypts it
using his private key and verifies the signature using Alice’s public key.

J2SE SDK includes classes to carry out these operations programmatically but includes no
ready-made tool. As mentioned earlier, JSTK software includes a tool called cryptool written
using these classes. The next section talks about this tool. You may find it useful to experiment
with different input values for cryptographic operation, keys, algorithm and input data.

Data

Compute
Digest

Sym-
Encrypt

Compute
MAC

Asym-
Encrypt

Create
Signature

digest MAC
sym-

ciphertext
asym-

ciphertext
signature

Secret
Key(A)

Public
Key(B)

Private
Key(A)

digest MAC
sym-

ciphertext
asym-

ciphertext
signature

Data

Verify
Digest

Verify
Signature

Verify MAC

Secret
Key(A)

Public
Key(A)

Sym-
Decrypt

Asym-
Decrypt

Private
Key(B)

Alice

Bob

Figure 3-3 Cryptographic operations and their uses.

Ch03.fm Page 73 Tuesday, August 5, 2003 2:39 PM

74 Chapter 3 • Cryptography with Java

Cryptography with crypttool
While writing this book, I strongly felt the need for such a tool that could allow me to carry out
the cryptographic operations without writing code and not finding one, wrote crypttool, a
command line utility to carry out common cryptographic operations. This tool is patterned after
keytool, a command line utility bundled with J2SE for generating public and private key pairs
and managing certificates. In a number of ways, crypttool complements keytool by pro-
viding additional functionality to a Java developer.

Here is a brief description of how crypttool operates: it accepts a command name and
other input as command line options, carries out the operation and writes the result to the stan-
dard output. You can get a listing of all the supported commands with brief descriptions by
invoking “crypttool help”. Command specific options and other details can be displayed
by executing “crypttool <cmd> help”. Refer to the appendix JSTK Tools for a complete
listing of commands and their options.

Let us have a brief session with crypttool. This also gives us an opportunity to recapit-
ulate all the operations that we have covered in this chapter.

The first step is to generate a secret key using DESede or TripleDES algorithm and
save the generated key in a file. This key will later be used for encryption/decryption and com-
puting the MAC of data in a file.

C:\jstk>bin\crypttool genk -action save -file test.sk \
-algorithm DESede -keysize 112
SecretKey written to file: test.sk

Execution of this command takes a while—around 7 seconds on a 900 MHz. AMD Athlon
machine running Windows 2000. This is primarily due to initialization overhead for secure ran-
dom number generator. J2SE v1.4.1 has optimized this step for the Windows platform and the
corresponding time is less than 4 seconds, which is still noticeably slow. Get used to the slow
start for standalone programs that use cryptography. Thankfully, the subsequent operations in
the same JVM are much quicker.

What gets written to the file test.sk is not the raw bits of the generated key but the seri-
alized Java object of type SecretKey. If you want to see the raw bits in hex format, use—
action print instead of –action save in the crypttool invocation. You may also
want to try other algorithms and keysizes supported in your environment.

Let us use the generated key to encrypt a file and then decrypt the encrypted file. We will
use DESede algorithm in CFB8 mode, matching the algorithm of key generation.

C:\jstk>bin\crypttool crypt -op enc -infile build.xml –outfile \
test.enc -keyfile test.sk -iv 12345678 -transform \
DESede/CFB8/NoPadding
encrypted file "build.xml" to "test.enc"

C:\jstk>bin\crypttool crypt -op dec -infile test.enc \
–outfile test.dec \

Ch03.fm Page 74 Tuesday, August 5, 2003 2:39 PM

Cryptography with crypttool 75

-keyfile test.sk -iv 12345678 -transform \
DESede/CFB8/NoPadding
decrypted file "test.enc" to "test.dec"

Note that padding is not required as CFB8 mode operates on 8-bit blocks. Other modes
such as CFB32 or CBC would require a padding scheme such as PKCS5Padding. Also note the
use of initialization vector by specifying –iv option. The string specified as the initialization
vector is converted into a byte array by crypttool. If you do not specify an initialization vec-
tor for encryption then the underlying implementation will supply one. You must specify the
same value for decryption.

Le us compare the decrypted file with the original file.

C:\jstk>comp test.dec build.xml
Comparing test.dec and build.xml...

Files compare OK

As expected, the decryption retrieves the original content.

You could use this command to encrypt sensitive information on disk or attachments that
must be sent over the Internet. In such situations, use of a secret key, an initialization vector and
a specific transformation scheme could be cumbersome. A better method is to use a password
based encryption as per PKCS#5 standard. This is supported by Java and also by crypttool.
Just replace the –keyfile, -iv and –transform options with –password option followed
by the password. By default, PBEWithMD5AndDES algorithm is used for encryption and
decryption.

C:\jstk>bin\crypttool crypt -op enc -infile build.xml \
–outfile test.enc -password changeit
encrypted file "build.xml" to "test.enc"

C:\jstk>bin\crypttool crypt -op dec -infile test.enc \
–outfile test.dec -password changeit
decrypted file "test.enc" to "test.dec"

Our next task is to generate a key pair, use the private key to sign a document and the pub-
lic key to verify the signature.

C:\jstk>bin\crypttool genkp -action save -file test.kp
KeyPair written to file: test.kp

C:\>crypttool sign -infile build.xml -keyfile test.kp \
-sigfile build.sig
signature written to file: build.sig

C:\>crypttool sign -verify -infile build.xml \
–keyfile test.kp -sigfile build.sig
verification succeeded

Ch03.fm Page 75 Tuesday, August 5, 2003 2:39 PM

76 Chapter 3 • Cryptography with Java

By default, crypttool uses the DSA algorithm with a key size of 512 bits to generate
key pair and SHA1withDSA algorithm for signature. Also, it knows to pick the private key for
signature creation and public key for verification from a file having a serialized KeyPair
object. In a real application, though, one would keep them in separate files and in a format
understood by widely used programs. The private and public keys are typically stored in a key-
store with the private key protected by a password and the public key embedded in a certificate.
crypttool can pick up private and public key from a keystore as well.

Use of crypttool to compute message digest and MAC is left as an exercise.

Limited versus Unlimited Cryptography
When you download and install J2SE v1.4, by default you get cryptographic capabilities that are
termed as strong but limited by Java Cryptographic Extension Reference Guide. What does it
mean? Here the term “strong” means that cryptographic algorithms that are considered crypto-
graphically hard to break, such as TripleDES, RSA and so on. are supported. The term “limited”
means that the keysize supported by these algorithms is limited to certain values.

A jurisdiction policy file controls the keysize supported. We learn more about policy files
in Chapter 5, Access Control. The brief summary is that the code invoking the cryptographic
algorithms checks the policy file before continuing the operation. This policy file itself resides in
a signed jar file, and cannot be modified without detection.

These policy files reside in jar files local_policy.jar and
US_export_policy.jar, both located in jre-home\lib\security directory. The
policy file default_US_export.policy, archived within US_export_policy.jar,
specifies the permissions allowed by US export laws. This includes all the cryptographic classes
packaged within J2SE v1.4.x. Policy file default_local.policy, archived within
local_policy.jar, specifies permissions that can be freely imported worldwide. Let us
look at this file.

// File: default_local.policy

// Some countries have import limits on crypto strength.

// This policy file is worldwide importable.

grant {

 permission javax.crypto.CryptoPermission "DES", 64;

 permission javax.crypto.CryptoPermission "DESede", *;

 permission javax.crypto.CryptoPermission "RC2", 128,

 "javax.crypto.spec.RC2ParameterSpec", 128;

 permission javax.crypto.CryptoPermission "RC4", 128;

 permission javax.crypto.CryptoPermission "RC5", 128,

 "javax.crypto.spec.RC5ParameterSpec", *, 12, *;

 permission javax.crypto.CryptoPermission "RSA", 2048;

 permission javax.crypto.CryptoPermission *, 128;

};

Ch03.fm Page 76 Tuesday, August 5, 2003 2:39 PM

Performance of Cryptographic Operations 77

If you are within the U.S. and want to use a larger keysize, you can download JCE Unlim-
ited Strength Jurisdiction Policy files from Sun’s J2SE download page and replace the default
policy jar files in jre-home\lib\security directory with downloaded jar files. The
default_local.policy file for unlimited strength is shown below.

// File: default_local.policy
// Country-specific policy file for countries with no limits on
// crypto strength.
grant {
 // There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;
};

The jar files having these policy files are signed and hence cannot be modified without
detection.

A brief overview of legal issues associated with cryptography can be found in the section
Legal Issues with Cryptography, on page 79.

Performance of Cryptographic Operations
Cryptographic operations are compute-intensive and do have an impact on overall application
performance. However, not all operations and, for a given operation, all algorithms use the same
number of CPU cycles for each unit of data processed. In fact, when selecting a particular algo-
rithm for an application, speed of processing is an important criterion.

Table 3-2 lists the encryption and decryption rate (in Kbytes per second) for a number of
algorithms. These measurements were taken on a 900MHz AMD Athlon machine running Win-
dows 2000 and Sun’s J2SE v1.4 JVM in server mode using repeated processing of a large (more
than 1 MB) text file. The time spent in I/O and initialization and a few minutes of JVM warmup
is not included in the reported figures.

These figures indicate that Blowfish is the fastest among all the reported algorithms. Inter-
estingly, the decryption is significantly slower than encryption with Blowfish.

How about signature creation and verification performance? Table 3-3 has the measure-
ment figures for signing and verifying the same document.

Table 3-2 Encryption/Decryption Performance Measurements

Transformation, Keysize
Encryption Rate

(KBytes/sec)
Decryption Rate

(KBytes/sec)

DES/CBC/PKCS5Padding, 56 bits 2720 2302

TripleDES/ECB/PKCS5Padding, 112 bits 1080 1010

Blowfish, 128 bits 5090 3010

PBEWithMD5AndDES 2660 2270

Ch03.fm Page 77 Tuesday, August 5, 2003 2:39 PM

78 Chapter 3 • Cryptography with Java

It is quite obvious that signing and verifying are significantly faster than encryption and
decryption operations. Also, SHA1WithRSA is almost one and a half times faster than
SHA1WithDSA.

These measurements are taken with the “crypttool bench” command. Use it
within your environment to compare different algorithms and estimate crypto overhead for your
application.

There are many ways to speed up the performance of these operations. A commonly used
mechanism, especially for large volume applications, is to use special cryptographic accelerator
cards. As most of the cryptographic algorithms can have extremely efficient hardware-based
implementations, an order of magnitude improvement is not uncommon.

Practical Applications
Now that we have looked at most of the basic cryptographic services and have an idea of how
they work, let us ask this question: What good are they? What can they do for us? As we have
been saying all along, despite the abstract nature, cryptography is quite useful and can do pretty
mighty things.

Confidentiality. Encrypted information is virtually hidden from everyone who doesn’t
know how to decrypt it or doesn’t have the appropriate key. This makes it possible to share secret
information over insecure communication channels, such as the Internet, thus providing confi-
dentiality even though the network itself is quite open. The same applies to data stored on disk.
Encryption ensures confidentiality of stored data even if the computer itself gets compromised
or stolen.

Integrity. There are times when you want to detect intentional tampering or unintentional
corruption of data. This goal can be achieved by computing the digest value of the original and
the current data. A mismatch would indicate some sort of change in the data. If the threat of
intentional tampering exists for both the data and the digest value then MAC can be used as the
detection mechanism.

Non-repudiation. A physical signature on paper, along with the visually observable state
of the paper, proves the authenticity of the document and is legally binding. Public key cryptog-
raphy-based digital signature performs the same role for electronic documents.

Table 3-3 Signature Creation/Verification Performance

Algorithm, Keysize
Signing Rate
(KBytes/sec)

Verification Rate
(KBytes/sec)

SHA1WithDSA, 512 bits 12080 11890

SHA1WithDSA, 1024 bits 11780 11580

SHA1WithRSA, 512 bits 16950 16910

SHA1WithRSA, 1024 bits 16070 16000

Ch03.fm Page 78 Tuesday, August 5, 2003 2:39 PM

Legal Issues with Cryptography 79

Although these are quite powerful capabilities, in reality, things are more complex. Pass-
words are prone to be easily guessed or to be captured by tricks or “stolen” by social engineer-
ing. The use of a private key by a computer program is not always same as the use by the stated
owner of the key. A compromised computer can trick a human user into doing things that the
user may never have done knowingly. Finally, the cryptography itself is not fully resistant to
attacks. Someone with good skill, sufficient determination and ample computing power can
defeat most cryptographic protection.

But before we proceed to dismiss cryptography as useless junk, let us think about the
physical world. Every now and then, the best-kept secrets become “public” due to careless-
ness or malicious intent of the parties in the know. Cases of forged documents or signatures
are not unheard of. Even the most wary are not immune from being duped by con artists. All
this is possible and happens more frequently than we care to admit. Still, life goes on. There
are safeguards, mostly in form of a legal and judicial system, to keep the occurrences of such
instances low.

The cyber world is no different. In the absence of a better technology, we have to rely on
cryptography and use it carefully.

However, cryptography by itself is quite inadequate for real life use. Exchange of
encrypted files may work as means to share secret information in a small group of people that
agree on the algorithm and a secret key or password beforehand, but is useless when the commu-
nicating parties may not know each other. Use of a digital signature as a means of proving
authenticity requires that someone with appropriate authority should be able to substantiate the
ownership claim of the private key. In cases where a private key is compromised, there has to be
a way to invalidate the key and minimize the damage. Even transportation of keys requires defin-
ing a format so that software from different vendors can use them appropriately.

The solution to these and many other related problems lies in using agreed upon standards
to store and communicate cryptographic information: conventions, policies and regulations for
trust relationships and other related aspects of doing business. As we see in subsequent chapters,
PKI standards, communication protocols like SSL and identification and authentication services
define exactly such standards and conventions.

Legal Issues with Cryptography
The use of cryptography has traditionally been associated with military intelligence gathering
and its use by criminals and terrorists has the potential to make law enforcement harder. Hence it
should come as no surprise that governments tend to restrict its use. Other legal issues are patent
related and arise due to the complex mathematical nature of the algorithms involved. Inventors
of these algorithms tend to protect their intellectual property by patenting them and requiring
that the user obtain a license.

All in all, the legal issues with cryptography fall into the following three categories:

Ch03.fm Page 79 Tuesday, August 5, 2003 2:39 PM

80 Chapter 3 • Cryptography with Java

1. Export Control Issues. The US government treats certain forms of cryptographic
software and hardware as munitions and has placed them under export control. What it
means is that a commercial entity seeking to export certain cryptographic libraries or
other software using these libraries must obtain an export license first. In recent years,
the export laws have eased somewhat and it has become possible to export freely a
number of commercial grade cryptographic software packages. Most of the software
and capabilities included in J2SE v1.4 falls under this category. However, it is possible
to have a JCE provider with capabilities that warrant review by export control authori-
ties and perhaps, an export license. A practical manifestation of this fact is that a ven-
dor of JCE provider must get export clearance.

2. Import Control Issues. Somewhat less intuitive is the fact that certain countries
restrict the use of certain types of cryptography within their jurisdiction. Under the
jurisdiction of these countries, it is the responsibility of the user to ensure proper adher-
ence to the law. J2SE v1.4 handles this by tying cryptographic capabilities to jurisdic-
tion policy files. The jurisdiction files shipped with the J2SE v1.4 allow “strong” but
“limited” cryptography by limiting the size of keys and other parameters. Those in the
US must download and install separate policy files to be able to use “unlimited” capa-
bilities.

3. Patent Related Issues. To avoid lawsuits related to patent infringement, it is recom-
mended that you either use algorithms that are not patented, whose patents have
expired, that are licensed for royalty free use or whose license you have obtained. The
patent on RSA, the de-facto public key cryptography, was a big inhibitor for the wide
spread use of public key cryptography before it expired in 2000. Algorithms available
within J2SE v1.4 are either unencumbered from patent issues or are licensed royalty-
free for use.

These are only broad guidelines that you must consider before deploying solutions using
cryptographic components. Most of the time, it is the vendor of the security products who has to
worry about these, but don’t take chances. Extra care is required if you plan to use open source
software freely available for download over the Internet, as you don’t have the vendor to do the
homework for legal compliance. When in doubt, consult legal counsel for proper guidance.

Notwithstanding, anything stated in this section or in the whole book, the author and pub-
lisher take no responsibility for any legal consequences resulting from following the advice
offered or using any of the security techniques in this book. The laws regulating cryptography
are complex, jurisdiction-dependent and keep changing all the time. It is your responsibility to
ensure that you remain within the four walls of the law.

Ch03.fm Page 80 Tuesday, August 5, 2003 2:39 PM

Summary 81

Summary
Java cryptographic services are defined independent of the underlying algorithms and
implementations. This supports extensibility through the addition of newer algorithms in sepa-
rate provider implementation without changing or adding the programmer visible classes. This
extensibility is achieved through an architecture where the service engine classes expose the
functionality, but hide the coupling with the implementation class. It also allows security capa-
bilities to be extended by installing and configuring third-party providers. The same architecture
is used by all security APIs, bringing a good deal of uniformity and ease of use.

Keys—secret key for symmetric encryption, and public-private key pairs for asym-
metric encryption—are central to a number of cryptographic operations. Proper generation
and handling of keys is essential for realizing the security offered by cryptography. Java Security
API contains classes to handle keys as Java objects and has services to generate, store and load
these keys. An important point to remember is that not all secret keys or public-private key pairs
have the same structure or are generated by the same process—key pair used by RSA cannot be
used by DSA and vice versa.

JCA and JCE contain the engine classes for basic cryptographic operations. Exam-
ples include Signature class for creating and verifying digital signature, Cipher class for
symmetric and asymmetric encryption and decryption, MessageDigest class for computing
and verifying message digest, Mac class for computing and verifying MAC and KeyAgree-
ment class for key agreement operations. Encryption provides message confidentiality and
digest helps in detecting changes to the message. MAC should be used in place of digest to pre-
vent willful tampering when the complete message including the digest or MAC is exposed.
Digital signature combines public key encryption with digest to provide non-repudiation.

You can perform these cryptographic operations using the command line utility
crypttool. This allows experimentation with various combinations of services, algorithms
and providers without any programming. You can also examine the source code of crypttool
for sample code using the Java Security API.

Speed of cryptographic operations depends on the quality of implementation, algo-
rithm used and the keysize. For J2SE v1.4 bundled providers, we found 56-bit DES encryption
to be 2.5 times faster than 112-bit TripleDES encryption. For digital signature, we found RSA to
be approximately 1.5 times faster than DSA for both signature creation and verification.

Cryptography requires standards and protocols to be useful in real life. Most of the
applications require agreement about using cryptographic capabilities in a certain way. This is
achieved through standards and protocols.

Ch03.fm Page 81 Tuesday, August 5, 2003 2:39 PM

82 Chapter 3 • Cryptography with Java

Further Reading
Most of the Java architecture for cryptography and API-related information presented in this
chapter can be found in J2SE v1.4 specification and reference guides. Refer to these guides
when in doubt. Authoritative documentation on Java classes and their methods can be found in
javadocs of J2SE SDK. The book Java Security by Scott Oaks includes comprehensive informa-
tion on security-related Java APIs and explains them with simple examples. This is a good book
to have if you are developing security software and need to use cryptographic APIs directly.

Look at the book Applied Cryptography by Bruce Schneier for very detailed, almost ency-
clopedic, information on cryptographic operations, algorithms, protocols, attack vulnerabilities,
performance and other related aspects such as patent and politico-legal issues. It’s a must have if
you plan to write your own provider and implement the cryptographic algorithms.

If you are interested in looking at working code as examples, dive into crypttool
source code. It is quite modular and you will have no difficulty identifying relevant portions.

Ch03.fm Page 82 Tuesday, August 5, 2003 2:39 PM

