
337

 10 ADMINISTERING
NETWORK SERVICES

This chapter contains information about checking on remote system status, 
logging in to a remote system, transferring files between systems, and 
administering the Network Information Service Plus (NIS+) databases. It 
also introduces the IPv6 Internet protocol, new in the Solaris 8 release, and 
describes how to display network and configuration information.

This chapter also provides information about the Secure Shell commands, 
new in the Solaris 9 release, that enable users to securely access a remote 
host on an unsecured network. It also contains brief instructions on creating 
and editing local network configuration files and on using the snoop 
command.

Configuring Systems for a Network

When you install Solaris, network software is installed along with the 
operating system software. At installation time, certain IP configuration 
parameters are stored in appropriate files so that they can be read when the 
system boots.

The parameters that are supplied during network configuration are listed 
below.

• IP address of the network interface for the system.
• Host name of the system.

New!New!

New!New!

Sysadmin.book  Page 337  Friday, April 11, 2003  12:45 PM



338 Administer ing Network Services

• NIS, NIS+, or DNS domain name in which the system resides, if 
applicable.

• Default router address.
• Subnet mask.

Configuring a Host for Local Files Mode
Use the following steps to configure TCP/IP on a system that runs in local 
files mode. You may need to use this procedure if you add a new network 
interface to your system after the initial Solaris software installation.

1. Become superuser.
2. Type cd /etc and press Return.
3. Create a file named /etc/hostname.interface or 

/etc/hostname6.interface for each network interface.
The Solaris installation program creates this file automatically for 
the primary network interface. This file maps host names to 
interfaces for IPv4. For IPv6, you need one 
/etc/hostname.interface or /etc/hostname6.interface file 
for each system, for example, hostname.le0 or hostname6.le0.

4. Edit the /etc/hostname.interface or 
/etc/hostname6.interface file and type either the system’s IP 
address or its host name.

NOTE. The Solaris installation program creates the default 
/etc/inet/hosts file for the local system. The old /etc/hosts 
name for this file is now a symbolic link to /etc/inet/hosts. If you 
are using IPv6, the installation program creates the default 
/etc/inet/ipnodes file.

5. Edit the /etc/inet/hosts file to add any IP addresses that you 
have assigned to any additional network interfaces in the local 
system along with the corresponding host name for each interface. If 
you are running IPv4, you do not need to create the 
/etc/inet/ipnodes file. If you have any IPv6 systems, copy all of 
the IPv4 IP addresses and host names from /etc/inet/hosts to the 
/etc/inet/ipnodes file. Add the IP addresses and host names for 
IPv6 systems only to the /etc/inet/ipnodes file.

NOTE. Put only the host name(s) and IP address(es) of network 
interfaces that are in each system in the /etc/inet/hosts file. DNS 
should handle all external host-name-to-IP-address mappings; you 
must, therefore, properly configure the /etc/nsswitch.conf and 
/etc/resolv.conf files to make this work. Follow this convention 

Sysadmin.book  Page 338  Friday, April 11, 2003  12:45 PM



Checking on Remote System Status 339

because you (as the system administrator) normally don’t control the 
network or other systems on the network. If, for example, the owners of 
other systems or network equipment change their IP addresses or host 
names in DNS, the /etc/inet/hosts file on each of the systems 
under your control would then be out of date and each system’s 
network configuration would mysteriously no longer work.

6. If the /usr file system is NFS mounted, also add the IP address or 
addresses of the file server to the /etc/inet/hosts file.

7. Edit the /etc/defaultrouter file and type the router’s IP address.
This file should contain an entry for each router that is directly 
connected to the network. The entry should be the IP address of an 
interface on the router that is on the same subnet as the system 
you’re configuring.

8. Edit the /etc/inet/hosts file and type the name of the default 
router and its IP addresses.

9. If the network is subnetted, edit the /etc/inet/netmasks file and 
type the network number and netmask.
If you have set up an NIS, NIS+, or LDAP server, you can type 
netmask information in the netmasks database on the server if 
server and clients are on the same network.

10. Reboot the system.

Checking on Remote System Status

This section describes commands you use to find out the status of remote 
systems: rup, ping, and rpcinfo -d. 

Determining How Long a Remote System Has 
Been Up (rup)
To find out how long a system has been up and to determine the load average, 
type rup system-name and press Return. The host name, uptime, and load 
average are displayed.

oak% rup ash
ash    up 59 days,  3:42, load average: 0.12, 0.12, 0.01
oak%

Sysadmin.book  Page 339  Friday, April 11, 2003  12:45 PM



340 Administer ing Network Services

You can also display a list of all remote hosts in the subnet by typing rup 
and pressing Return. If you display a list, you can use the options shown in 
Table 78 to sort the output.

In the following example, the output is sorted alphabetically by host name.

Determining Whether a Remote System Is Up 
(ping, rup, rpcinfo -p)
Use the following steps to determine whether a remote system is up and to 
log in to the remote system.

1. Type ping system-name and press Return.
The message system-name is alive means the system is 
accessible over the network. The message ping: unknown host 
system-name means the system name is not known on the network. 
The message ping: no answer from system-name means the 
system is known on the network but is not up at this time.

2. Type rup system-name and press Return.
Information about how long the system has been up and the load 
average is displayed.

3. Type rpcinfo -p system-name and press Return.
Information about RPC services is displayed.

4. Type rlogin system-name and press Return.
You are logged in to the remote system.

Table 78 Options to the rup Command

Option Description

-h Sort the display alphabetically by host name.

-l Sort the display alphabetically by load average.

-t Sort the display by uptime.

oak% rup -h
ash    up  1 day,   1:42,   load average: 0.00, 0.31, 0.34

elm    up 14 days,  0 min,  load average: 0.07, 0.01, 0.00

maple  up 32 days,  14:39,  load average: 0.21, 0.05, 0.00

oak    up  8 days,  15:44,  load average: 0.02, 0.00, 0.00
oak%

cinderella% ping drusilla
drusilla is alive

Sysadmin.book  Page 340  Friday, April 11, 2003  12:45 PM



Logging In to a Remote System (r login) 341

You can also use ping with a system’s IP address by typing 
ping IP-address and pressing Return. The message IP-address is 
alive means the system is accessible over the network. The message ping: 
no answer from IP-address means the system is not available to the 
network. The message ping: unknown host IP-address means the 
system name is not known on the network.

Logging In to a Remote System (rlogin)

NOTE. Starting with the Solaris 9 release, Secure Shell is 
recommended for secure remote login. See “Secure Shell Commands” 
on page 359 for more information.

cinderella% rup drusilla
   drusilla    up  3 days,  15:10   load average: 0.07, 0.08, 0.09
cinderella% rpcinfo -p drusilla
program  vers proto port  service
100000    3   udp    111  portmapper
100000    2   udp    111  portmapper
100000    3   tcp    111  portmapper
100000    2   tcp    111  portmapper
100007    3   tcp   1029  ypbind
100007    3   udp   1025  ypbind
100021    1   tcp   1030  nlockmgr
100021    1   udp   1026  nlockmgr
100024    1   tcp   1028  status
100024    1   udp   1027  status
100021    3   tcp   1030  nlockmgr
100021    3   udp   1026  nlockmgr
100020    2   tcp   4045  llockmgr
100020    2   udp   4045  llockmgr
100021    2   tcp   1030  nlockmgr
100021    2   udp   1026  nlockmgr
100087   10   udp   1031  adm_agent
100011    1   udp   1034  rquotad
100002    1   udp   1037  rusersd
100002    2   udp   1037  rusersd
100012    1   udp   1041  sprayd
100008    1   udp   1043  walld
100001    2   udp   1046  rstatd
100001    3   udp   1046  rstatd
100001    4   udp   1046  rstatd
100068    2   udp   1049  cmsd
100068    3   udp   1049  cmsd
100083    1   tcp   4049
cinderella% rlogin drusilla
Password:
Last login: Mon Mar  2 10:31:55 from cinderella
drusilla%

oak% ping 129.144.52.119
129.144.52.119 is alive
oak% ping 129.137.67.234
ping: unknown host 129.137.67.234
oak% ping 129.145.52.119
ping: no answer from 129.145.52.119
oak%

New!New!

Sysadmin.book  Page 341  Friday, April 11, 2003  12:45 PM



342 Administer ing Network Services

Use the following steps to log in to a remote system.

1. Type rlogin system-name and press Return. You may be prompted 
for a password.

2. If you have a local account on that system, type your local password. 
Otherwise, type your NIS, NIS+, or LDAP password.
Unless you have a home directory that is accessible on the remote 
system (because it is local on that system or because it is 
hard-mounted or automounted), you log in to the root (/) directory.

Authentication for Remote Logins (rlogin)
The remote system or the network environment can perform authentication 
to establish who the user is for rlogin operations.

The main differences between these forms of authentication are in the type 
of interaction they require from the user and the way the authentication is 
established. If a remote system tries to authenticate a user, the user is 
prompted for a password unless the user is included in the 
/etc/hosts.equiv or .rhosts file on the remote system. If the network 
authenticates the user, no password is required because the network already 
knows who the user is.

Network authentication relies on either a trusting network environment 
set up with your local nameservice and the automounter or one of the 
nameservices pointed to by the remote system’s /etc/nsswitch.conf file.

NOTE. Network authentication usually supersedes system 
authentication.

The rlogin command also interacts with the Pluggable Authentication 
Module (PAM) subsystem for authentication and may require configuration of 
the /etc/pam.conf file for authentication to work. For complete information 
on PAM, refer to the Sun System Administration Guide: Security Services or 
the “Using Authentication Services” chapter in the Solaris Advanced System 
Administrator’s Guide available from Sun Microsystems Press and Prentice 
Hall.

oak% rlogin ash
Password:
No directory!  Logging in with home=/
Last login: Tue Sep 17 13:54:28 from 129.144.52.119
Sun Microsystems, Inc. SunOS 5.8    Generic February 2000
ash% 

New!New!

New!New!

Sysadmin.book  Page 342  Friday, April 11, 2003  12:45 PM



Logging In to a Remote System (r login) 343

Remote System Authentication

When the remote system tries to authenticate a user, it relies on information 
in its local /etc/hosts.equiv or .rhosts files. If the user’s system or host 
name is included in the remote system’s /etc/hosts.equiv file, 
authentication is automatic and the user can use the rlogin command 
without typing a password. Alternatively, authentication is automatic with 
the rlogin command when the user has a remote home directory with a 
.rhosts file that includes the user’s system name and user name.

The /etc/hosts.equiv File      The /etc/hosts.equiv file contains a list of 
trusted hosts for a remote system, one entry per line. If a user tries to log in 
remotely with the rlogin command from one of the hosts listed in this file, 
and if the remote system can access the password entry for the user, the 
remote system enables the user to log in without a password.

A typical hosts.equiv file has the following structure.

When the /etc/hosts.equiv file contains an entry consisting of just a 
host name, such as the host1 entry above, the host is trusted and so is any 
user at that system.

If the user name is also mentioned, as in the second entry above, then the 
host is trusted only for that specified user.

A netgroup name preceded by a plus sign (+) means that all the systems in 
that netgroup are considered trusted.

A netgroup name preceded by a minus sign (-) means that none of the 
systems in that netgroup are considered trusted.

A single line of + in the /etc/hosts.equiv file indicates that every 
known host is trusted.

The /etc/hosts.equiv file presents a security risk, especially if it 
contains a + entry. If you maintain an /etc/hosts.equiv file on a system, 
include only trusted hosts in your network. Do not include any host that 
belongs to a different network or any systems that are in public areas. For 
example, do not include a host for which you do not have administrative 
control.

The .rhosts File      The .rhosts file is the user equivalent of the 
/etc/hosts.equiv file. It contains a list of host-user combinations instead 
of hosts in general. If a host-user combination is listed in this file, the 

host1
host2 user_a
+@engineering
-@marketing

Sysadmin.book  Page 343  Friday, April 11, 2003  12:45 PM



344 Administer ing Network Services

specified user is granted permission to log in remotely from the specified host 
without having to supply a password.

NOTE. A .rhosts file must reside at the top level of a user’s home 
directory. .rhosts files located in subdirectories are not consulted.

Users can create .rhosts files in their home directories. Using the 
.rhosts file is another way to enable trusted access between an individual’s 
user accounts on different systems without using the /etc/hosts.equiv 
file.

Unfortunately, the .rhosts file presents a major security problem. While 
the /etc/hosts.equiv file is under the control of system administrators 
and can be managed effectively, any user can create a .rhosts file granting 
access to whomever the user chooses without the system administrator’s 
knowledge. The only secure way to manage .rhosts files is to completely 
disallow them.

Use the following procedures to search and remove .rhosts files.

1. Become superuser.
2. All on one line, type find home-directories -name .rhosts 

-print -exec rm{} \; and press Return.
The find command starts at the designated directory and searches 
for any file named .rhosts. If any .rhosts files are found, the path 
is printed on the screen and the file is removed.

The following example removes all .rhosts files in the users’ home 
directories located in the /export/home directory.

Network Authentication

Network information is stored in NIS maps, NIS+ tables, or LDAP. Network 
authentication relies on one of the following two methods.

• A trusting network environment that has been set up with the user’s 
local network information service and the automounters.

• One of the network information services pointed to by the 
/etc/nsswitch.conf file on the remote system that contains 
information about the user. 

paperbark% su
Password:
# find /export/home -name .rhosts -print -exec rm{} \;
/export/home/ray/.rhosts
/export/home/des/.rhosts
#

Sysadmin.book  Page 344  Friday, April 11, 2003  12:45 PM



Logging In to a Remote System (r login) 345

What Happens After You Log In Remotely

When you log in to a remote system, the in.rlogind daemon tries to find 
your home directory. If the in.rlogind daemon can’t find your home 
directory, it assigns you to the root (/) directory on the remote system and the 
following message is displayed.

When you invoke the rlogin command on your local host, inetd(1M)  on 
the remote host invokes the in.rlogind daemon. The server checks the 
client’s source port. If the port is not in the range 512–1023, the server aborts 
the connection. The server checks the client’s source address. If an entry for 
the client exists in both /etc/inet/hosts and /etc/hosts.equiv, a user 
logging in from the client is not prompted for a password. If the address is 
associated with a host for which no corresponding entry exists in 
/etc/inet/hosts or if the host name is found in the NIS or NIS+ hosts 
map or in DNS, the user is prompted for a password, regardless of whether 
an entry for the client is present in /etc/hosts.equiv.

Once the source port and address are checked, in.rlogind allocates a 
pseudoterminal and manipulates file descriptors so that the slave half of the 
pseudoterminal becomes the standard input, standard output, and standard 
error for a login process.

The login process is an instance of the login(1) program invoked with the 
-r option. The login process then proceeds with the pam(3PAM) 
authentication process. If the login program finds your home directory, it 
sources both the .cshrc and .login files for the C shell or the .profile 
file for the Bourne shell. Therefore, your prompt on the remote system is your 
standard login prompt, and the current directory is the same as for a local 
login. For example, if your usual prompt is your system name followed by the 
percent (%) sign, such as paperbark%, when you log in to a remote system, 
the remote system name is displayed as the login prompt.

In the following example, user winsor remotely logs in to the system 
castle and displays the current working directory.

Unable to find home directory, logging in with /

paperbark% rlogin castle
Password: 
Last login: Tue Jun 20 14:02:01 from :0
Sun Microsystems Inc.   SunOS 5.7       Generic October 1998
You have mail.
castle% pwd
/export/home/winsor
castle%

New!New!

Sysadmin.book  Page 345  Friday, April 11, 2003  12:45 PM



346 Administer ing Network Services

Logging Out from a Remote System

You use the exit(1) command to log out from a remote system.

The following example shows the user winsor logging out from the system 
castle.

Transferring Files Between Systems (rcp, ftp)

NOTE. Starting with the Solaris 9 release, Secure Shell is 
recommended for secure remote copy and file transfer protocol. See 
“Secure Shell Commands” on page 359 for more information.

If the automounter is set up for your site, you can transfer files between 
systems by using commands such as cp and mv. This section describes how to 
use the rcp and ftp commands to transfer files between systems.

Using the rcp Command
To transfer a file from a remote system to your system with the remote copy 
command, type rcp system-name:source-pathname destination and 
press Return. If you have proper security to access the remote system, the file 
is copied to the destination you specify.

In the following example, the file quest is copied from the /tmp directory 
on the system ash to the current working directory on the system oak.

To transfer a file from a local system to a remote system, type rcp 
pathname system-name:destination-pathname and press Return. If 
you have proper security to access the remote system, the file is copied from 
the local system to the remote destination you specify.

In the following example, the file quest is copied from the current working 
directory on the system oak to the /tmp directory on the system ash.

castle% exit
castle% logout
Connection closed.
paperbark% 

oak% rcp ash:/tmp/quest .
oak%

New!New!

Sysadmin.book  Page 346  Friday, April 11, 2003  12:45 PM



Transferr ing Fi les Between Systems (rcp, f tp) 347

If you want, you can rename the file as part of the destination path name. 
For example, to rename the file quest to questions and put it in the /tmp 
directory, type /tmp/questions as the destination path name.

Using the File Transfer Program (ftp)
Use the following steps to transfer files from your local system to a remote 
system by using the file transfer program.

NOTE. You may need to have an account on each system to use the file 
transfer program. Some systems allow read-only ftp access to 
anybody who logs in as anonymous and types a login name at the 
password prompt.

If you have an NIS, NIS+, or LDAP account, you can use your login name 
and network password to access a remote system by using ftp.

1. Type ftp and press Return.
The ftp> prompt is displayed.

2. Type open remote-system-name and press Return.
System connection messages are displayed, and you are asked for a 
user name.

3. Type the user name for your account on the remote system and press 
Return.
If a password is required, you are asked to enter it.

4. Type the password (if required) for your account on the remote 
system and press Return.
A system login message and the ftp> prompt are displayed.

5. Type bin to set binary format or asc to set ASCII format and press 
Return.
The file type is set. ASCII is the default format.

6. Type put local-filename destination-filename and press 
Return to transfer a single file.
File transfer messages and the ftp> prompt are displayed.

7. Type quit and press Return.
A goodbye message and the command prompt are displayed.

The following example establishes an ftp connection from the system oak 
to the system elm, specifies ASCII format, puts the file quest from oak into 
the /tmp/quest directory on elm, and quits the session.

oak% rcp quest ash:/tmp
oak%

Sysadmin.book  Page 347  Friday, April 11, 2003  12:45 PM



348 Administer ing Network Services

You can use the send command as an alternative to the put command. You 
can copy multiple files by using the mput command. There is no msend 
command. See the ftp(1) manual page for more information.

NOTE. You must have an account on each system to use the file 
transfer program.

If you have an NIS, NIS+, or LDAP account, you can use your login name 
and network password to access a remote system with ftp. Use the following 
steps to transfer files from a remote system to your local system by using the 
file transfer program.

1. Type ftp and press Return.
The ftp> prompt is displayed.

2. Type open remote-system-name and press Return.
System connection messages are displayed, and you are asked for a 
user name.

3. Type the user name for your account on the remote system and press 
Return.
If a password is required, you are asked to enter it.

4. Type the password (if required) for your account on the remote 
system and press Return.
A system login message and the ftp> prompt are displayed.

5. Type bin to set binary format or asc to set ASCII format and press 
Return.
The file type is set. ASCII is the default format.

6. Type get remote-filename destination-filename and press 
Return.
File transfer messages and the ftp> prompt are displayed.

oak% ftp
ftp> open elm
Connected to elm
220 elm FTP server (UNIX(r) System V Release 4.0) ready.

Name (elm:ignatz): ignatz
331 Password required for ignatz.
Password:
230 User ignatz logged in.
ftp> asc
ftp> put quest /tmp/quest
200 PORT command successful.

150 ASCII data connection for /tmp/quest (129.144.52.119,1333).

226 Transfer complete.
ftp> quit
221 Goodbye.
oak% 

Sysadmin.book  Page 348  Friday, April 11, 2003  12:45 PM



Administer ing NIS+ Databases 349

7. Type quit and press Return. A goodbye message and the command 
prompt are displayed.

The following example establishes an ftp connection from the system oak 
to the system elm, specifies ASCII format, gets the file quest from elm, puts 
it into the /tmp/quest directory on oak, and quits the session.

NOTE. You can copy multiple files by using the mget command. See 
the ftp(1) manual page for more information.

Administering NIS+ Databases

NIS+ provides a central store of information for network resources such as 
hosts, users, and mailboxes. NIS+ replaces NIS (Network Information 
Service) and provides the following enhancements.

NOTE. LDAP is now scheduled to replace NIS+.

• An organizational framework that is simpler to administer in large 
companies.

• Improved security.
• Improved distribution time to propagate changes through the network.

In addition, the Solaris Operating Environment provides a nameservice 
switch file, /etc/nsswitch.conf, that lets you use several different 
network information services at once. The /etc/nsswitch.conf file also 
lets you specify which service provides which type of information. In previous 
SunOS releases, selection of the nameservice was hard-coded into the 
services, which made it difficult to switch to a new nameservice. The 
/etc/nsswitch.conf file defines the order in which local files and network 
databases are searched for information. Describing how to set up NIS+ is 
beyond the scope of this book.

oak% ftp
ftp> open elm
Connected to elm
220 elm FTP server (UNIX(r)System V Release 4.0) ready.

Name (elm:ignatz): ignatz
331 Password required for ignatz.
Password:
230 User ignatz logged in.

ftp> asc
ftp> get quest /tmp/quest
200 PORT command successful.
150 ASCII data connection for /tmp/quest (129.144.52.119,1333).
226 Transfer complete.

ftp> quit
221 Goodbye.
oak% 

New!New!

Sysadmin.book  Page 349  Friday, April 11, 2003  12:45 PM



350 Administer ing Network Services

Using NIS+ Tables
NIS+ tables correspond to NIS maps. The Solaris Operating Environment 
provides 16 types of tables (shown in Figure 19) that store the network 
information used by NIS+.

 Figure 19 The 16 NIS+ Tables

Each table stores a different type of information about users, workstations, 
or resources on the network. For instance, the Hosts table stores the host 
name and network address of every workstation in the domain; the 
Bootparams table stores the location of the root, swap, and dump directories 
of the diskless clients in the domain.

Each domain can have its own set of these NIS+ tables, which store all the 
NIS+ information for that particular domain. Table 79 lists the 16 NIS+ 
tables and the information they store. 

Table 79 NIS+ Tables 

Table Information in the Table

Hosts Network address and host name of every 
workstation in the domain.

Bootparams Location of the root, swap, and dump partition of 
every diskless client in the domain.

Password Password information about every NIS+ principal 
(Nobody, Owner, Group, or World) in the domain, 
plus a pointer to the shadow file.

Cred Credentials for principals who have permission to 
access the information or objects in the domain.

Group Password, group ID, and members of every group in 
the domain.

Services

Netgroup

AliasesHosts

ProtocolsTimezoneBootparams

RPCNetworksPasswd

Auto_HomeNetmasksCred

Auto_MasterEthersGroup

Sysadmin.book  Page 350  Friday, April 11, 2003  12:45 PM



Administer ing NIS+ Databases 351

You can access information in NIS+ tables either by entry row or by 
column, as shown in Figure 20.

 Figure 20 Entry Row and Columns in a Table

For example, if you want to find the network address of a workstation 
named drusilla in the Hosts database, you can ask a search program to 

Netgroup The netgroups to which workstations and users in 
the domain may belong.

Aliases Information about the sendmail and e-mail aliases 
of individual users in the domain.

Timezone The time zone of every workstation in the domain.

Networks The networks in the domain and their canonical 
names.

Netmasks The networks in the domain and their associated 
netmasks.

Ethers The Ethernet address of every workstation in the 
domain.

Services The names of IP services used in the domain and 
their port numbers.

Protocols The list of IP protocols used in the domain.

RPC The RPC program numbers for RPC services 
available in the domain.

Auto_Home The location of all users’ home directories in the 
domain.

Auto_Master Automounter map information.

Table 79 NIS+ Tables (Continued)

Table Information in the Table

Column

Entry

Sysadmin.book  Page 351  Friday, April 11, 2003  12:45 PM



352 Administer ing Network Services

look through the hostname column until it finds drusilla, as shown in 
Figure 21. The program then searches the drusilla entry row to find its 
network address, as shown in Figure 22.

 Figure 21 Searching the Hostname Column

 Figure 22 Finding a Network Address

You can use NIS+ commands to perform these types of searches for you. 
Table 80 lists the NIS+ administrative commands.

Table 80 NIS+ Administrative Commands 

Command Description

nistbladm Display, add, modify, and delete information in an NIS+ 
table.

nisgrep Search for information in an NIS+ table.

nismatch Search for information in an NIS+ table.

niscat Display the entire contents of an NIS+ table.

Hostname�
column

drusilla

grass

violin

oak

Hostname�
column

Address�
column

drusilla129.44.12

grass

violin

oak

Sysadmin.book  Page 352  Friday, April 11, 2003  12:45 PM



Using SMC Computers and Networks Tool 353

See the manual pages for information about how to use these commands.

NIS+ Security
NIS+ uses a security authorization model that is similar to the UNIX file 
system model. It specifies that each item in the namespace as well as each 
record, each column, and each row has associated with it a set of access rights 
that are granted to four broad classes of principals.

• The owner of the item.
• A group owner of the item.
• All other principals.
• nobody—the class of users not defined in the NIS+ domain or those 

users accessing NIS+ resources from NIS clients.
The specific access rights are different from the traditional read, write, and 

execute rights of file systems because of the nature of information services. 
Refer to your system manual for more information about NIS+ security.

Using SMC Computers and Networks Tool

Starting with the Solaris 9 release, you can use the SMC System 
Configuration/Computers and Networks tool to administer computers and 
networks. With this tool, you can also create multihomed hosts and rename a 
computer.

Introducing the IPv6 Internet Protocol

Internet Protocol, version 6 (IPv6) was introduced in the Solaris 8 release. 
This new protocol version evolved from the current IPv4 version, which is 
also supported in the Solaris 8 Operating Environment. IPv6 adds increased 
address space and improves Internet functionality by use of a simplified 
header format, support for authentication and privacy, autoconfiguration of 
address assignments, and new quality-of-service capabilities. Networking 
commands in the Solaris 8 release have been amended to include support for 
both the IPv4 and IPv6 network protocols.

You can enable IPv6 on a system when you install the Solaris 8 software. If 
you answer yes to enable the IPv6 during the installation process, you do not 
need to enable IPv6 manually. Describing how to enable IPv6 manually is 
beyond the scope of this book. Refer to Sun’s System Administration Guide, IP 
Services, for more information.

New!New!

Sysadmin.book  Page 353  Friday, April 11, 2003  12:45 PM



354 Administer ing Network Services

 The IPv6 protocol changes are summarized below.

Expanded Routing and Addressing Capabilities
IPv6 increases the IP address size from 32 bits to 128 bits to support more 
levels of addressing hierarchy, provide more addressable nodes, and use 
simpler autoconfiguration of addresses.

A scope field improves the scalability of multicast routing to multicast 
addresses.

IPv6 supports three types of addresses: unicast, anycast, and 
multicast. The new anycast address is defined to identify sets of nodes, 
whereby a packet sent to an anycast address is delivered to one of the nodes. 
The use of anycast addresses in the IPv6 source route enables nodes to 
control the path over which their traffic flows.

IPv6 has no broadcast addresses. Multicast addresses are used instead.

Simplified Header Format
Some IPv4 header fields have been dropped or made optional to reduce the 
common-case processing cost of packet handling. Bandwidth cost of the IPv6 
header is kept as low as possible, despite the increased size of the addresses. 
Even though the IPv6 addresses are four times longer than IPv4 addresses, 
the IPv6 header is only twice the size of the IPv4 header.

Improved Support for Options
IP header options are encoded to enable more efficient forwarding, less 
stringent limits on the length of options, and greater flexibility for 
introducing new options in the future.

Quality-of-Service Capabilities
A new capability enables the labeling of packets belonging to particular 
traffic flows for which the sender requests special handling, such as 
nondefault quality of service or real-time service.

Authentication and Privacy Capabilities
IPv6 includes the definition of extensions that provide support for 
authentication, data integrity, and confidentiality.

Sysadmin.book  Page 354  Friday, April 11, 2003  12:45 PM



Showing Network Status (netstat) 355

Showing Network Status (netstat)

You can use the netstat(1M) command to display the following network 
status information. 

• A list of active sockets for each protocol.
• The state of the interfaces.
• The routing table.
• The multicast routing table.
• The state of DHCP on one or all interfaces.

The Solaris release supports both the IPv4 and IPv6 network interfaces. In 
the Solaris 8 release, the netstat command has been updated to include the 
IPv6 interfaces.

Displaying Status of Active TCP and UDP Ports
Use the netstat command with no arguments to display the status of active 
TCP and UDP ports. The following example shows the output of the netstat 
command with no arguments, to display the status of active TCP and UDP 
ports.

paperbark% netstat

TCP: IPv4
   Local Address        Remote Address    Swind Send-Q Rwind Recv-Q  State
-------------------- -------------------- ----- ------ ----- ------ -------
localhost.32786      localhost.32773      32768      0 32768      0 ESTABLISHED
localhost.32773      localhost.32786      32768      0 32768      0 ESTABLISHED
localhost.32789      localhost.32784      32768      0 32768      0 ESTABLISHED
localhost.32784      localhost.32789      32768      0 32768      0 ESTABLISHED
localhost.32792      localhost.32791      32768      0 32768      0 ESTABLISHED
localhost.32791      localhost.32792      32768      0 32768      0 ESTABLISHED
localhost.32795      localhost.32784      32768      0 32768      0 ESTABLISHED
localhost.32784      localhost.32795      32768      0 32768      0 ESTABLISHED
localhost.32798      localhost.32797      32768      0 32768      0 ESTABLISHED
localhost.32797      localhost.32798      32768      0 32768      0 ESTABLISHED
localhost.32813      localhost.32784      32768      0 32768      0 ESTABLISHED
localhost.32784      localhost.32813      32768      0 32768      0 ESTABLISHED
localhost.32816      localhost.32815      32767      0 32768      0 ESTABLISHED
localhost.32815      localhost.32816      32768      0 32768      0 ESTABLISHED
paperbark.32891      G3.ftp               17520      0 24820      0 ESTABLISHED
paperbark.8888       paperbark.32904      32768      0 32768      0 TIME_WAIT
paperbark.32905      paperbark.32779      32768      0 32768      0 TIME_WAIT

Active UNIX domain sockets
Address  Type          Vnode     Conn  Local Addr      Remote Addr
707f1d90 stream-ord 705b89e0 00000000 /tmp/.X11-unix/X0                
707f1ea8 stream-ord 00000000 00000000                               
paperbark% 

Sysadmin.book  Page 355  Friday, April 11, 2003  12:45 PM



356 Administer ing Network Services

Displaying the Status of Network Interfaces
Use the -i option to the netstat command to display the status of network 
interfaces. The following example uses the netstat -i command on the 
system paperbark to display the status of network interfaces.

Displaying Kernel Routing Tables
Use the -r option to the netstat command to display kernel routing tables, 
and use the -n option to display network addresses as numbers. The 
following example uses the netstat -r -n command to display the kernel’s 
routing tables with the network addresses as numbers. 

Refer to the netstat(1M) manual page for more information.

Displaying Network Interface Parameters (ifconfig)

You can use the ifconfig command to display information about specific 
interfaces, assign an address to a network interface, or configure network 
interfaces. The /etc/rc2.d scripts run ifconfig at boot time to define the 
network address of each interface present on a system. You can also use 
ifconfig at a later time to redefine an interface address or other operating 
parameters. Refer to the ifconfig(1M) manual page for complete 
information. The following sections describe how to use the ifconfig 
command to display information about specific interfaces.

The ifconfig command has been modified in the Solaris 8 release to 
create the IPv6 stack and to support new parameters.

paperbark% netstat -i
Name  Mtu  Net/Dest      Address        Ipkts  Ierrs Opkts  Oerrs Collis Queue 
lo0   8232 loopback      localhost      11787  0     11787  0     0      0     
hme0  1500 paperbark     paperbark      8      0     5      0     0      0     

paperbark% 

paperbark% netstat -r -n

Routing Table: IPv4
  Destination           Gateway           Flags  Ref   Use   Interface
-------------------- -------------------- ----- ----- ------ ---------
172.16.8.0           172.16.8.22           U        1      0  hme0
224.0.0.0            172.16.8.22           U        1      0  hme0
127.0.0.1            127.0.0.1             UH      16  11150  lo0
paperbark% 

Sysadmin.book  Page 356  Friday, April 11, 2003  12:45 PM



Displaying Network Interface Parameters ( i fconfig) 357

Displaying Information About All Interfaces on a 
System
Use the -a option of the ifconfig command to display information about all 
interfaces on a system. The following example shows the interfaces on the 
system paperbark.

The flags section shows the status of the interface. The mtu field tells you 
the maximum transfer size in octets. Information on the second line includes 
the IP address of the host you are using, the netmask currently being used, 
and the IP broadcast address of the interface.

The following example shows the interfaces on the system castle.

Displaying Information About Specific 
Interfaces
Use the following syntax to display information about the configuration of a 
specific interface.

The following example displays information about the hme0 interface.

The flags section shows that the interface is configured UP, is capable of 
broadcasting, and not using trailer link-level encapsulation. The mtu field 
tells you that this interface has a maximum transfer size of 1500 octets. 

paperbark% ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
        inet 127.0.0.1 netmask ff000000 
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 172.16.8.22 netmask ffffff00 broadcast 172.16.8.255
paperbark% 

castle% ifconfig -a
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
        inet 127.0.0.1 netmask ff000000 
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
        inet 172.16.8.19 netmask ffff0000 broadcast 172.16.255.255
castle% 

ifconfig interface-name [protocol-family]

paperbark% su
Password
# ifconfig hme0
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
        inet 172.16.8.22 netmask ffffff00 broadcast 172.16.8.255
        ether 8:0:20:7d:79:d4 
# 

Sysadmin.book  Page 357  Friday, April 11, 2003  12:45 PM



358 Administer ing Network Services

Information on the second line includes the IP address of the host, the 
netmask currently being used, and the IP broadcast address of the interface. 
The third line gives the system address (in this case, Ethernet) of the host.

Displaying Packet Contents

You can use the snoop(1M) command to capture network packets and display 
their contents. You can display packets as soon as they are received or save 
them to a file. When snoop writes to an intermediate file, it is unlikely that 
you will lose packets under busy trace conditions. You can then use snoop to 
interpret the file. See the snoop(1M) manual page for more information 
about using the snoop command.

You must run snoop as root to capture packets to and from the default 
interface in promiscuous mode. In summary form, only data that pertains to 
the highest-level protocol is displayed.

Checking All Packets from Your System
Use the following steps to check all packets from your system.

1. Become superuser.
2. Type netstat -i and press Return.

Review the output to determine the interfaces that are attached to 
the system.

3. Type snoop and press Return.
Packet information is displayed.

4. Press Control-C to halt the process.
The following example traces packets during an FTP file transfer.

mopoke% netstat -i
Name  Mtu  Net/Dest      Address        Ipkts  Ierrs Opkts  Oerrs Collis Queue 
lo0   8232 loopback      localhost      11197  0     11197  0     0      0     
eri0  1500 mopoke        mopoke         537    0     9      3     0      0     

mopoke% su
Password: 
# snoop
Using device /dev/eri (promiscuous mode)
      mopoke -> G4           FTP C port=32830 PORT 172,16,8,25,128
          G4 -> mopoke       FTP R port=32830 200 PORT command suc
      mopoke -> G4           FTP C port=32830 STOR examples\r\n
          G4 -> mopoke       FTP-DATA R port=32834 
      mopoke -> G4           FTP-DATA C port=32834 
          G4 -> mopoke       FTP-DATA R port=32834 
          G4 -> mopoke       FTP R port=32830 150 Opening BINARY m
      mopoke -> G4           FTP-DATA C port=32834 mopoke% netstat -i\nN
      mopoke -> G4           FTP-DATA C port=32834 
          G4 -> mopoke       FTP-DATA R port=32834 
          G4 -> mopoke       FTP-DATA R port=32834 
      mopoke -> G4           FTP-DATA C port=32834 

New!New!

Sysadmin.book  Page 358  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 359

Capturing snoop Results to a File
Use the following steps to capture snoop results to a file.

1. Become superuser.
2. Type snoop -o filename and press Return.

Review the output to determine the interfaces that are attached to 
the system.

3. To inspect the file, type snoop -i filename and press Return.

Secure Shell Commands

Secure Shell commands enable users to securely access a remote host on an 
unsecured network. Passwords, public keys, or both provide authentication. 
All network traffic is encrypted to prevent others from reading an intercepted 
communication or spoofing the system.

The Solaris 9 release provides the Secure Shell commands described in 
Table 81 to communicate among systems.

      mopoke -> G4           FTP C port=32830 
          G4 -> mopoke       FTP R port=32830 226 Transfer complet
      mopoke -> G4           FTP C port=32830 
          G4 -> 172.16.8.255 UDP D=631 S=631 LEN=76
          G4 -> 172.16.8.255 UDP D=631 S=631 LEN=118
          G4 -> 172.16.8.255 UDP D=631 S=631 LEN=107
^C#

Table 81 Secure Shell Commands 

Command Description

scp(1) Secure copy (remote file copy program).

sftp(1) Secure file transfer program.

ssh(1) Open SSH client (remote login program).

ssh-add(1) Add RSA or DSA identities for the authentication agent.

ssh-agent(1) Authentication agent.

ssh-http-proxy-connect(1)

Secure Shell proxy for HTTP.

ssh-keygen(1)

Authentication key generation.

New!New!

Sysadmin.book  Page 359  Friday, April 11, 2003  12:45 PM



360 Administer ing Network Services

Users can be authenticated with an account password or with a 
public/private key pair stored on the local host in the user’s home directory in 
the .ssh subdirectory. The remote host is provided with the public key, which 
is required to complete the authentication. Table 82 lists the default names 
for the identity files that store the public and private keys.

Secure Shell supports two versions of the Secure Shell protocol: the 
original version 1 and the more secure version 2. Version 2 also amends some 
of the basic security design flaws of version 1. Version 1 use is discouraged, 
and the SSH server daemon’s configuration file turns on only SSH v2 
compatibility (see the Protocol line in /etc/ssh/sshd_config). Version 1 
is provided only to assist users migrating to version 2.

Table 83 lists the authentication methods and local and remote host 
requirements.

ssh-socks5-proxy-connect(1)

Secure Shell proxy for SOCKS5.

sshd(1M) Secure Shell daemon.

ssh_config(4)

SSH client configuration file.

sshd_config(4)

SSH server configuration file.

Table 82 Naming Conventions for Private/Public Keys

Private Key Public Key Cipher and Protocol Version

identity identity.pub RSA v1

id_rsa id_rsa.pub RSA v2

id_dsa id_dsa.pub DSA v2

Table 83 Authentication Methods for Secure Shell 

Authentication 
Method

Local Host Requirements Remote Host Requirements

Password-based 
(v1 or v2)

User account User account

Table 81 Secure Shell Commands (Continued)

Command Description

Sysadmin.book  Page 360  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 361

.rhosts provides only weak security, and SSH in the Solaris 9 Operating 
Environment is, by default, configured to ignore .rhosts completely. 
.rhosts with RSA (v1) and password-based authentication (v1 or v2) 
provide medium security. RSA public key (v1) and RSA/DSA public key (v2) 
provide strong security. Password-based authentication is the default.

RSA/DSA public 
key (v2)

User account

Private key in 
$HOME/.ssh/id_rsa or 
$HOME/.ssh/id_dsa

Public key in
$HOME/.ssh/id_rsa.pub or 
$HOME/.ssh/id_dsa.pub

User account

User’s public key (id_rsa.pub 
or id_dsa.pub) in 
$HOME/.ssh/authorized_keys

RSA public key 
(v1)

User account

Private key in 
$HOME/.ssh/identity

Public key in 
$HOME/.ssh/identity.pub 

User account

User’s public key 
(identity.pub) in 
$HOME/.ssh/authorized_keys

.rhosts with 
RSA (v1)

User account User account

Local host name in 
/etc/hosts.equiv 
/etc/shosts/equiv 
$HOME/.rhosts or 
$home/.shosts

.rhosts only 
(v1 or v2)

User account User account

Local host name in 
/etc/hosts.equiv 
/etc/shosts/equiv 
$HOME/.rhosts or 
$home/.shosts

Table 83 Authentication Methods for Secure Shell (Continued)

Authentication 
Method

Local Host Requirements Remote Host Requirements

Sysadmin.book  Page 361  Friday, April 11, 2003  12:45 PM



362 Administer ing Network Services

Benefits of SSH
SSH provides a secure replacement for the rsh, rlogin, rcp, telnet, and 
ftp commands. It automatically tunnels X11 traffic and allows 
authentication with passwords, Kerberos 4 and 5, and public keypairs.

With Secure Shell, you can log in to another host securely over an 
unsecured network, copy files securely between two hosts, and run commands 
securely on the remote host.

SSH Configuration
At boot time, the /etc/init.d/sshd script normally starts the sshd Secure 
Shell daemon. The daemon listens for connections from clients. When the 
user runs the ssh, scp, or sftp command, a Secure Shell session begins. A 
new sshd daemon is forked for each incoming connection to handle key 
exchange, encryption, authentication, command execution, and data 
exchange with the client. The client-side configuration files and server-side 
configuration files determine the session characteristics. After the 
authentication succeeds, the user can execute commands remotely and copy 
data between hosts.

Configuring Secure Shell Clients

The client-side characteristics of a Secure Shell session are usually governed 
by the systemwide configuration file /etc/ssh/ssh_config, which the 
administrator sets up. Users can override settings in the systemwide 
configuration file with the configuration in the user’s $HOME/.ssh_config 
file. In addition, the user can override both configuration files on the 
command line.

The default /etc/ssh/ssh_config file is shown below.

# Copyright (c) 2001 by Sun Microsystems, Inc.
# All rights reserved.
#
# ident   "@(#)ssh_config   1.2   01/10/08 SMI"
#
# This file provides defaults for ssh(1).
# The values can be changed in per-user configuration files $HOME/.ssh/config
# or on the command line of ssh(1).

# Configuration data is parsed as follows:
#  1. command line options
#  2. user-specific file
#  3. system-wide file /etc/ssh/ssh_config
#
# Any configuration value is only changed the first time it is set.
# host-specific definitions should be at the beginning of the
# configuration file, and defaults at the end.

# Example (matches compiled in defaults):
#
# Host *
#   ForwardAgent no

Sysadmin.book  Page 362  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 363

Lines have the format keyword arguments and are case sensitive.

Table 84 lists valid keywords and their descriptions.

#   ForwardX11 no
#   PubkeyAuthentication yes
#   PasswordAuthentication yes
#   FallBackToRsh no
#   UseRsh no
#   BatchMode no
#   CheckHostIP yes
#   StrictHostKeyChecking ask
#   EscapeChar ~

Table 84 Valid Keywords for the ssh_config FIle 

Keyword Description

BatchMode The argument must be yes or no. If set to yes, 
passphrase/password querying is disabled. This option is 
useful in scripts and other batch jobs for which no user is 
present to supply the password.

CheckHostIP If this option is set to yes, ssh additionally checks the 
host IP address in the known_hosts file. This option 
enables ssh to detect if a host key changed because of 
DNS spoofing. If the option is set to no, the check is not 
executed.

Cipher Specify the cipher to use for encrypting the session in 
protocol version 1; blowfish and 3des are the only valid 
values. Specify the ciphers allowed for protocol version 2 
in order of preference. Comma-separate multiple ciphers. 
The default is 
3des-cbc,blowfish-cbc,aes-128-cbc.

Compression Specify whether to use compression. The argument must 
be yes or no.

CompressionLevel

Specify the compression level to use if compression is 
enabled. The argument must be an integer from 1 (fast) 
to 9 (slow, best). The default level is 6, which is good for 
most applications.

ConnectionAttempts

Specify the number of tries (one per second) to make 
before falling back to rsh or exiting. The argument must 
be an integer. This option can be useful in scripts if the 
connection sometimes fails.

Sysadmin.book  Page 363  Friday, April 11, 2003  12:45 PM



364 Administer ing Network Services

DSAAuthentication

Specify whether to try DSA authentication. The 
argument to this keyword must be yes or no. DSA 
authentication is tried only if a DSA identity file exists. 
Note that this option applies to protocol version 2 only.

EscapeChar Set the escape character. The default is tilde (~). You can 
also set the escape character on the command line. The 
argument should be a single character, ^, followed by a 
letter, or none to disable the escape character entirely 
(making the connection transparent for binary data).

FallBackToRsh

Specify that if connecting with ssh fails because of a 
connection-refused error (there is no sshd listening on 
the remote host), automatically use rsh(1) instead (after 
a suitable warning about the session being unencrypted). 
The argument must be yes or no.

ForwardAgent Specify whether to forward the connection to the 
authentication agent (if any) on the remote system. The 
argument must be yes or no. The default is no.

ForwardX11 Specify whether X11 connections are automatically 
redirected over the secure channel and DISPLAY set. The 
argument must be yes or no. The default is no.

GatewayPorts Specify whether remote hosts are allowed to connect to 
local forwarded ports. The argument must be yes or no. 
The default is no.

GlobalKnownHostsFile

Specify a file to use instead of /etc/ssh_known_hosts.

Host Restrict the following declarations (up to the next Host 
keyword) to be those only for hosts that match one of the 
patterns given after the keyword. You can use asterisk (*) 
and question mark (?) as wildcards in the patterns. To 
provide global defaults for all hosts, use a single *. The 
host is the hostname argument given on the command 
line (that is, the name is not converted to a canonicalized 
host name before matching).

Table 84 Valid Keywords for the ssh_config FIle (Continued)

Keyword Description

Sysadmin.book  Page 364  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 365

HostName Specify the real host name to log in to. You can use this 
option to specify nicknames or abbreviations for hosts. 
Default is the name given on the command line. Numeric 
IP addresses are also permitted (both on the command 
line and in HostName specifications).

IdentityFile Specify the file from which the user’s RSA authentication 
identity is read. The default is $HOME/.ssh/identity 
in the user’s home directory. Additionally, any identities 
represented by the authentication agent are used for 
authentication. The file name can use the tilde (~) syntax 
to refer to a user’s home directory. You can specify 
multiple identity files in configuration files; all of these 
identities are tried in sequence.

IdentityFile2

Specify the file from which the user’s DSA authentication 
identity is read. The default is $HOME/.ssh/id_dsa in 
the user’s home directory. The file name can use the tilde 
(~) syntax to refer to a user’s home directory. You can 
have multiple identity files specified in configuration 
files; all of these identities are tried in sequence.

KeepAlive Specify whether the system should send keepalive 
messages to the other side. If the messages are sent, 
death of the connection or crash of one of the systems are 
properly noticed. However, connections die if the route is 
down temporarily, which can be annoying.

The default is yes (to send keepalives), which means the 
client notices if the network goes down or the remote host 
dies. This behavior is important in scripts, and many 
users also want it. To disable keepalives, set the value to 
no in both the server and the client configuration files.

LocalForward Specify that a TCP/IP port on the local system be 
forwarded over the secure channel to a given host:port 
from the remote system. The first argument must be a 
port number, and the second must be host:port. You 
can specify multiple forwardings, and you can specify 
additional forwardings on the command line. Only 
superuser can forward privileged ports.

Table 84 Valid Keywords for the ssh_config FIle (Continued)

Keyword Description

Sysadmin.book  Page 365  Friday, April 11, 2003  12:45 PM



366 Administer ing Network Services

LogLevel Specify the verbosity level used when logging messages 
from ssh. The possible values are QUIET, FATAL, ERROR, 
INFO, VERBOSE, and DEBUG. The default is INFO.

NumberOfPasswordPrompts

Specify the number of password prompts before giving 
up. The argument to this keyword must be an integer. 
The default is 3.

PasswordAuthentication

Specify whether to use password authentication. The 
argument to this keyword must be yes or no. Note that 
this option applies to both protocol versions 1 and 2.

Port Specify the port number to connect on the remote host. 
The default is 22.

Protocol Specify the protocol versions ssh should support, in order 
of preference. The possible values are 1 and 2. Comma- 
separate multiple versions. The default is 1,2, which 
means that ssh tries version 1 and falls back to version 2 
if version 1 is not available.

ProxyCommand Specify the command to use to connect to the server. The 
command string extends to the end of the line and is 
executed with /bin/sh. In the command string, for %h 
substitute the host name to connect, and for %p 
substitute the port. The string can be any valid command 
and should read from its standard input and write to its 
standard output. It should eventually connect an 
sshd(1M) server running on some system or execute 
sshd -i somewhere. Host key management is done by 
use of the HostName of the host being connected 
(defaulting to the name typed by the user). Note that 
CheckHostIP is not available for connections with a 
proxy command.

RemoteForward

Specify that a TCP/IP port on the remote system be 
forwarded over the secure channel to a given host:port 
from the local system. The first argument must be a port 
number, and the second must be host:port. You can 

Table 84 Valid Keywords for the ssh_config FIle (Continued)

Keyword Description

Sysadmin.book  Page 366  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 367

specify multiple forwardings and give additional 
forwardings on the command line. Only superuser can 
forward privileged ports.

RhostsAuthentication

Specify whether to try rhosts-based authentication. 
Note that this declaration affects only the client side and 
has no effect whatsoever on security. Disabling rhosts 
authentication can reduce authentication time on slow 
connections when rhosts authentication is not used. 
Most servers do not permit RhostsAuthentication, 
because it is not secure (see 
RhostsRSAAuthentication). The argument to this 
keyword must be yes or no.

RhostsRSAAuthentication

Specify whether to try rhosts-based authentication with 
RSA host authentication. This authentication method is 
the primary one for most sites. The argument must be 
yes or no.

StrictHostKeyChecking

If this option is set to yes, ssh never automatically adds 
host keys to the $HOME/.ssh/known_hosts file and 
refuses to connect hosts whose host key has changed. 
This option provides maximum protection against Trojan 
horse attacks. However, it can be inconvenient if you do 
not have good /etc/ssh_known_hosts files installed, 
and you frequently connect new hosts. This option forces 
the user to manually add any new hosts. Normally, this 
option is disabled, and new hosts are added 
automatically to the known host files. The host keys of 
known hosts are verified automatically in either case. 
The argument must be yes or no.

UsePrivilegedPort

Specify whether to use a privileged port for outgoing 
connections. The argument must be yes or no. The 
default is yes. Note that setting this option to no turns 
off RhostsAuthentication and 
RhostsRSAAuthentication.

Table 84 Valid Keywords for the ssh_config FIle (Continued)

Keyword Description

Sysadmin.book  Page 367  Friday, April 11, 2003  12:45 PM



368 Administer ing Network Services

You determine the authentication method for a client by setting one of the 
following keywords to yes.

• DSAAuthentication
• PasswordAuthentication
• RhostsAuthentication
• RhostsRSAAuthentication

Configuring Secure Shell Servers

The server-side characteristics of a Secure Shell session are usually governed 
by the systemwide configuration file /etc/ssh/sshd_config, which the 
administrator sets up. Users can override settings in the system-wide 
configuration file with the configuration in the user’s $HOME/.ssh_config 
file only if the user runs his own copy of the sshd daemon on a nonprivileged 
port. In addition, the user can override both configuration files on the 
command line.

The default /etc/ssh/sshd_config file is shown below.

User Specify the user to log in as. This option can be useful if 
you have different user names on different systems. 
Using this option means you do not need to enter the 
user name on the command line.

UserKnownHostsFile

Specify a file to use instead of 
$HOME/.ssh/known_hosts.

UseRsh Use rlogin or rsh for this host. It is possible that the 
host does not support the ssh protocol. ssh immediately 
executes rsh(1). All other options (except HostName) are 
ignored if you specify this option. The argument must be 
yes or no.

XAuthLocation

Specify the location of the xauth(1) program. The default 
is /usr/openwin/bin/xauth.

# Copyright (c) 2001 by Sun Microsystems, Inc.
# All rights reserved.
#
# ident  "@(#)sshd_config   1.3   01/10/08 SMI"
#
# Configuration file for sshd(1m)

# Protocol versions supported

Table 84 Valid Keywords for the ssh_config FIle (Continued)

Keyword Description

Sysadmin.book  Page 368  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 369

#
# The sshd shipped in this release of Solaris has support for major versions
# 1 and 2.  It is recommended due to security weaknesses in the v1 protocol
# that sites run only v2 if possible. Support for v1 is provided to help sites
# with existing ssh v1 clients/servers to transition. 
# Support for v1 may not be available in a future release of Solaris.
#
# To enable support for v1 an RSA1 key must be created with ssh-keygen(1).
# RSA and DSA keys for protocol v2 are created by /etc/init.d/sshd if they
# do not already exist, RSA1 keys for protocol v1 are not automatically created.

# Uncomment ONLY ONE of the following Protocol statements.

# Only v2 (recommended)
Protocol 2

# Both v1 and v2 (not recommended)
#Protocol 2,1

# Only v1 (not recommended)
#Protocol 1

# Listen port (the IANA registered port number for ssh is 22)
Port 22

# The default listen address is all interfaces, this may need to be changed
# if you wish to restrict the interfaces sshd listens on for a multi homed host.
# Multiple ListenAddress entries are allowed.

# IPv4 only
#ListenAddress 0.0.0.0
# IPv4 & IPv6
ListenAddress ::

# Port forwarding
AllowTcpForwarding no

# If port forwarding is enabled, specify if the server can bind to INADDR_ANY. 
# This allows the local port forwarding to work when connections are received
# from any remote host.
GatewayPorts no

# X11 tunneling options
X11Forwarding no
X11DisplayOffset 10

# The maximum number of concurrent unauthenticated connections to sshd.
# start:rate:full see sshd(1) for more information.
# The default is 10 unauthenticated clients.
#MaxStartups 10:30:60

# Banner to be printed before authentication starts.
#Banner /etc/issue

# Should sshd print the /etc/motd file and check for mail.
# On Solaris it is assumed that the login shell will do these (eg /etc/profile).
PrintMotd no
CheckMail no

# KeepAlive specifies whether keep alive messages are sent to the client.
# See sshd(1) for detailed description of what this means.
# Note that the client may also be sending keep alive messages to the server.
KeepAlive yes

# Syslog facility and level 
SyslogFacility auth
LogLevel info

#
# Authentication configuration
# 

# Host private key files
# Must be on a local disk and readable only by the root user (root:sys 600).
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key

Sysadmin.book  Page 369  Friday, April 11, 2003  12:45 PM



370 Administer ing Network Services

# Default Encryption algorithms and Message Authentication codes
Ciphers   aes128-cbc,blowfish-cbc,3des-cbc
MACS      hmac-sha1,hmac-md5

# Length of the server key
# Default 768, Minimum 512
ServerKeyBits 768

# sshd regenerates the key every KeyRegenerationInterval seconds.
# The key is never stored anywhere except the memory of sshd.
# The default is 1 hour (3600 seconds).
KeyRegenerationInterval 3600

# Ensure secure permissions on users .ssh directory.
StrictModes yes

# Length of time in seconds before a client that hasn't completed
# authentication is disconnected.
# Default is 600 seconds. 0 means no time limit.
LoginGraceTime 600

# Maximum number of retries for authentication
# Default is 6. Default (if unset) for MaxAuthTriesLog is MaxAuthTries / 2
MaxAuthTries      6
MaxAuthTriesLog   3

# Are logins to accounts with empty passwords allowed.
# If PermitEmptyPasswords is no, pass PAM_DISALLOW_NULL_AUTHTOK 
# to pam_authenticate(3PAM).
PermitEmptyPasswords no

# To disable tunneled clear text passwords, change PasswordAuthentication to no.
PasswordAuthentication yes

# Use PAM via keyboard interactive method for authentication.
# Depending on the setup of pam.conf(4) this may allow tunneled clear text
# passwords even when PasswordAuthentication is set to no. This is dependent
# on what the individual modules request and is out of the control of sshd
# or the protocol.
PAMAuthenticationViaKBDInt yes

# Are root logins permitted using sshd.
# Note that sshd uses pam_authenticate(3PAM) so the root (or any other) user
# maybe denied access by a PAM module regardless of this setting.
# Valid options are yes, without-password, no.
PermitRootLogin no

# sftp subsystem
Subsystem   sftp   /usr/lib/ssh/sftp-server

# SSH protocol v1 specific options
#
# The following options only apply to the v1 protocol and provide
# some form of backwards compatibility with the very weak security
# of /usr/bin/rsh.  Their use is not recommended and the functionality
# will be removed when support for v1 protocol is removed.

# Should sshd use .rhosts and .shosts for password less authentication.
IgnoreRhosts yes
RhostsAuthentication no

# Rhosts RSA Authentication
# For this to work you will also need host keys in /etc/ssh/ssh_known_hosts.
# If the user on the client side is not root then this won't work on
# Solaris since /usr/bin/ssh is not installed setuid.
RhostsRSAAuthentication no

# Uncomment if you don't trust ~/.ssh/known_hosts for RhostsRSAAuthentication.
#IgnoreUserKnownHosts yes

# Is pure RSA authentication allowed.
# Default is yes
RSAAuthentication yes

Sysadmin.book  Page 370  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 371

Lines have the format keyword arguments and are case sensitive.

Table 85 lists valid keywords and their descriptions.

Table 85 Valid Keywords and Descriptions for sshd_config 

Keyword Description

AllowGroups You can follow this keyword with a space-separated list of 
names of groups that are allowed to log in. If specified, 
login is allowed only for users whose primary group 
matches one of the patterns. You can use asterisk (*) and 
question mark (?) as wildcards in the patterns. Only 
group names are valid; a numerical group ID is not 
recognized. By default, login is allowed regardless of the 
primary group.

AllowTcpForwarding

Specify whether TCP forwarding is permitted. The 
default is yes. Note that disabling TCP forwarding does 
not improve security unless users are also denied shell 
access, because they can always install their own 
forwarders.

AllowUsers Follow this keyword with a space-separated list of names 
of users who are allowed to log in. If specified, login is 
allowed only for a user whose name matches one of the 
patterns. You can use asterisk (*) and question mark (?) 
as wildcards in the patterns. Only user names are valid; 
a numerical user ID is not recognized. By default, login is 
allowed regardless of the user name.

Ciphers Specify the ciphers allowed for protocol version 2. 
Comma-separate multiple ciphers. The default is 
3des-cbc,blowfish-cbc,aes-128-cbc.

CheckMail Specify whether sshd checks for new mail for interactive 
logins. The default is no.

DenyGroups You can follow this keyword with a space-separated list of 
group names. Users whose primary group matches one of 
the patterns are not allowed to log in. You can use 
asterisk (*) and question mark (?) as wildcards in the 
patterns. Only group names are valid; a numerical group 
ID is not recognized. By default, login is allowed 
regardless of the primary group.

Sysadmin.book  Page 371  Friday, April 11, 2003  12:45 PM



372 Administer ing Network Services

DenyUsers You can follow this keyword with a space-separated list of 
user names. Login is disallowed for user names that 
match one of the patterns. You can use asterisk (*) and 
question mark (?) as wildcards in the patterns. Only user 
names are valid; a numerical user ID is not recognized. 
By default, login is allowed regardless of the user name.

DSAAuthentication

Specify whether DSA authentication is allowed. The 
default is yes. Note that this option applies only to 
protocol version 2.

GatewayPorts Specify whether remote hosts are allowed to connect to 
ports forwarded for the client. The argument must be yes 
or no. The default is no.

HostKey Specify the file containing the private RSA host key 
(default /etc/ssh_host_key) used by SSH protocols. 
The /etc/ssh/sshd_config file provides two HostKey 
lines, one for the v3 RSA key 
(/etc/ssh/ssh_host_rsa_key) and one for the v2 DSA 
key (/etc/ssh/ssh_host_dsa_key).

IgnoreRhosts Specify that .rhosts and .shosts files are not used in 
authentication. /etc/hosts.equiv and 
/etc/shosts.equiv are still used. The default is yes.

IgnoreUserKnownHosts

Specify whether sshd ignores the user’s 
$HOME/.ssh/known_hosts file during 
RhostsRSAAuthentication. The default is no.

KeepAlive Specify whether the system should send keepalive 
messages to the other side. If they are sent, death of the 
connection or crash of one of the systems is properly 
noticed. However, connections die if the route is down 
temporarily, which can be annoying. On the other hand, if 
keepalives are not sent, sessions can hang indefinitely on 
the server, leaving “ghost” users and consuming server 
resources. The default is yes (to send keepalives), and 
the server notices if the network goes down or the client 
host reboots. This option avoids infinitely hanging 
sessions.

Table 85 Valid Keywords and Descriptions for sshd_config (Continued)

Keyword Description

Sysadmin.book  Page 372  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 373

To disable keepalives, set the value to no in both the 
server and the client configuration files.

KeyRegenerationInterval

Automatically regenerate the server key after n seconds 
(if it has been used). Regeneration prevents decryption of 
captured sessions by someone later breaking into the 
system and stealing the keys. The key is never stored 
anywhere. If the value is 0, the key is never regenerated. 
The default is 3600 (seconds).

ListenAddress

Specify the local address on which sshd listens. The 
default is to listen to all local addresses. Multiple options 
of this type are permitted. Additionally, the Ports 
options must precede this option.

LoginGraceTime

Disconnect the server after n seconds if the user has not 
successfully logged in. If the value is 0, there is no time 
limit. The default is 600 (seconds).

LogLevel Specify the verbosity level used when messages from 
sshd are logged. The possible values are QUIET, FATAL, 
ERROR, INFO, VERBOSE, and DEBUG. The default is INFO. 
Logging with level DEBUG violates the privacy of users 
and is not recommended.

MaxStartups Specify the maximum number of concurrent, 
unauthenticated connections to the sshd daemon. 
Additional connections are dropped until authentication 
succeeds or the LoginGraceTime expires for a 
connection. The default is 10.

Alternatively, you can enable random early drop by 
specifying the three colon-separated values 
start:rate:full (for example, 10:30:60). For this 
example, sshd refuses connection attempts with a 
probability of 30 percent (rate/100) when there are 
currently 10 (from the start field) unauthenticated 
connections. The probability increases linearly and all 
connection attempts are refused if the number of 
unauthenticated connections reaches 60 (full).

Table 85 Valid Keywords and Descriptions for sshd_config (Continued)

Keyword Description

Sysadmin.book  Page 373  Friday, April 11, 2003  12:45 PM



374 Administer ing Network Services

PasswordAuthentication

Specify whether password authentication is allowed. The 
default is yes. Note that this option applies to both 
protocol versions 1 and 2.

PermitEmptyPasswords

When password authentication is allowed, it specifies 
whether the server allows login to accounts with empty 
password strings. The default is no.

PermitRootLogin

Specify whether root can log in with ssh. The argument 
must be one of yes, without-password, or no. The 
default is no. When this options is set to 
without-password, root can log in only through public 
key authentication; passwords are ignored. Note that the 
Secure Shell is integrated with the PAM subsystem. You 
can configure PAM to deny login access to root regardless 
of this setting.

Root login with RSA authentication when the command 
option is specified is allowed regardless of the value of 
this setting. This setting might be useful for taking 
remote backups even if root login is normally not allowed.

Port Specify the port number at which sshd listens. The 
default is 22. You can specify multiple options of this 
type.

PrintMotd Specify whether sshd displays the contents of 
/etc/motd when a user logs in interactively. (On some 
systems, /etc/motd is also displayed by the shell or a 
shell startup file, such as /etc/profile.) The default 
is yes.

Protocol Specify the protocol versions sshd supports. The possible 
values are 1 and 2. You must comma-separate multiple 
versions. The default is 2.

RhostsAuthentication

Specify whether authentication with rhosts or 
/etc/hosts.equiv files is sufficient. Normally, you 
should not permit this method because it is insecure. Use 

Table 85 Valid Keywords and Descriptions for sshd_config (Continued)

Keyword Description

Sysadmin.book  Page 374  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 375

RhostsRSAAuthentication instead because it 
performs RSA-based host authentication in addition to 
normal rhosts or /etc/hosts.equiv authentication. 
The default is no.

RhostsRSAAuthentication

Specify whether rhosts or /etc/hosts.equiv 
authentication together with successful RSA host 
authentication is allowed. The default is no.

RSAAuthentication

Specify whether pure RSA authentication is allowed. The 
default is yes. Note that this option applies only to 
protocol version 1.

ServerKeyBits

Define the number of bits in the server key. The 
minimum value is 512, and the default is 768.

StrictModes Specify whether sshd checks file modes and ownership of 
the user’s files and home directory before accepting login. 
This behavior is normally desirable because novices 
sometimes accidentally leave their directory or files 
world-writable. The default is yes.

Subsystem Configure an external subsystem (for example, a file 
transfer daemon). Arguments should be a subsystem 
name and a command to execute on subsystem request. 
The command sftp-server(1M) implements the sftp 
file transfer subsystem. By default, no subsystems are 
defined. Note that this option applies only to protocol 
version 2.

SyslogFacility

Give the facility code used when messages from sshd are 
logged. The possible values are DAEMON, USER, AUTH, 
LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, 
LOCAL6, and LOCAL7. The default is AUTH.

X11DisplayOffset

Specify the first display number available for sshd X11 
forwarding. This option prevents sshd from interfering 
with real X11 servers. The default is 10.

Table 85 Valid Keywords and Descriptions for sshd_config (Continued)

Keyword Description

Sysadmin.book  Page 375  Friday, April 11, 2003  12:45 PM



376 Administer ing Network Services

You determine the authentication method for a server by setting one of the 
following keywords to yes.

• DSAAuthentication

• PasswordAuthentication

• RhostsAuthentication

• RhostsRSAAuthentication

• RSAAuthentication

X11 Forwarding

The X Window system (also known as X11) lets you log in to a remote system, 
run X11 programs on that system, and, if the X11 server program running on 
your local system controls the monitor at which you are working, displays the 
X11 program output there. If you use the Solaris rsh, rlogin, or telnet 
commands without SSH to log in to that remote system, you need to perform 
the following manual steps for this process to work properly.

• Before you log in to the remote system by using rsh, rlogin, or 
telnet, run xhost +remote-system to give the remote system 
permission to send X11 datastreams from any X11 program to your local 
X11 server program.

• Once you log in to the remote system, set the DISPLAY environment 
variable to indicate the X11 server program to which all X11 client 
programs send their data streams (in this case, your X11 server 
program).

The Secure Shell automates the X11 forwarding process and secures it by 
encrypting the X11 datastreams as they pass over the network. Sun disables 
the X11 forwarding feature by default. You must enable it for both the client 
and server by making the following changes to both the local and remote 
systems.

X11Forwarding

Specify whether X11 forwarding is permitted. The default 
is no. Note that disabling X11 forwarding does not 
improve security in any way, because users can always 
install their own forwarders.

XAuthLocation

Specify the location of the xauth(1) program. The default 
is /usr/openwin/bin/xauth.

Table 85 Valid Keywords and Descriptions for sshd_config (Continued)

Keyword Description

Sysadmin.book  Page 376  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 377

In the /etc/ssh/ssh_config file, change

to

Be sure to remove the # comment character at the beginning of the line as 
well.

This change takes effect the next time you run ssh.

In the /etc/ssh/sshd_config file, change

to

To make this change take effect, restart the Secure Shell daemon on both 
systems by running

You can now use ssh to log in to the remote system. Run an X11 client 
such as xterm to verify that X11 Forwarding works properly. If the xterm 
window is displayed on your local X11 display, then everything is working.

Public Key Authentication with the Secure Shell
The examples in this section assume that you have a single home directory 
that is automounted on every system under your control at 
/home/username.  By convention, this directory is referenced with the 
environment variable $HOME.  If you have a unique account and home 
directory on every system that you log in to, then a reference to the 
$HOME/.ssh/ directory implies that this directory exists on every system 
(that is, you need to copy the contents of that directory to each unique home 
directory you have before the procedures in this section work).

# ForwardX11 no

Forwardx11 yes

X11Forwarding no

X11Forwarding yes

# /etc/init.d/sshd stop
# /etc/init.d/sshd start

Sysadmin.book  Page 377  Friday, April 11, 2003  12:45 PM



378 Administer ing Network Services

The Secure Shell uses regular password authentication by default; that is, 
when you use ssh to log in to a remote system, you are asked to enter a 
password to authenticate your account identity.   Once you enter the correct 
password, you are allowed to log in.  The Secure Shell also allows you to use 
public key authentication instead of password authentication.  Public key 
authentication has the following benefits.

• When set up properly, you can log in to a remote host without entering a 
password. That means you get all the benefits that .rhosts previously 
gave you without any of the liabilities.

• It is much more difficult to break a public key’s passphrase than your 
regular UNIX password.  Accounts are better protected when you 
disallow the use of the rlogin, rsh, telnet, rcp, and ftp commands 
at your site and use only the Secure Shell commands.

The first step in using public key authentication is to generate one or more 
public/private keypairs with the ssh-keygen(1) command.  Refer to the 
ssh-keygen(1) manual page for detailed information on the different types 
of keypairs you can generate. 

NOTE. You can have more than one keypair, and you can use each for 
a different purpose.  For example, you can have one keypair for 
logging in as the root user on the Solaris systems on the 
manufacturing floor, and another for logging in as the backup 
administrator on the backup server, and so on.  By default, the 
keypairs are stored in your $HOME/.ssh/ directory when you create 
them.

The following examples create several keypairs. In these examples, $HOME 
is /home/gmarler.

The following example creates a default 1024-bit RSA keypair. This 
keypair is treated as  your default RSA keypair for use with the SSH v2 
protocol.  The public key is stored at $HOME/.ssh/id_rsa.pub, and the 
private key is stored at $HOME/.ssh/id_rsa.

The following example creates a 768-bit DSA keypair. This keypair is  
treated as your default DSA keypair for use with the SSH v2 protocol. The 
public key is stored as $HOME/.ssh/id_dsa.pub, and the private key is 
stored as $HOME/.ssh/id_dsa.

[ns3:/home/gmarler] 
$ ssh-keygen        
Enter file in which to save the key(/home/gmarler/.ssh/id_rsa): 
Generating public/private rsa key pair.
Enter passphrase(empty for no passphrase): Enter passphrase.
Enter same passphrase again: Enter passphrase again.
Your identification has been saved in /home/gmarler/.ssh/id_rsa.
Your public key has been saved in /home/gmarler/.ssh/id_rsa.pub.
The key fingerprint is:
md5 1024 d1:88:b9:5c:f1:28:0f:dd:6e:f3:fc:ea:af:3c:21:ed gmarler@ns3

Sysadmin.book  Page 378  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 379

The following example creates a 512-bit RSA1 keypair (for use only with 
SSH protocol v1). This keypair is treated as your default RSA keypair for use 
with SSH v1 protocol—SSH v1 supported only the use of RSA keys.  The 
public key is stored at $HOME/.ssh/identity.pub, and the private key is 
stored at $HOME/.ssh/identity.

The following example creates a 2048-bit RSA keypair for use when you log 
in to remote systems as the root user.

The following example creates a 1024-bit RSA keypair, with no passphrase, 
for use in automated batch jobs to remote systems.

You would use this keypair in cron jobs or scripts that use ssh. 

NOTE. Because the keypair is not protected by a passphrase, it is only 
as secure as the permissions on the files you store it in.

[ns3:/home/gmarler] 
$ ssh-keygen -b 768 -t dsa
Enter file in which to save the key(/home/gmarler/.ssh/id_dsa): 
Generating public/private dsa key pair.
Enter passphrase(empty for no passphrase): Enter passphrase.
Enter same passphrase again: Enter passphrase again.
Your identification has been saved in /home/gmarler/.ssh/id_dsa.
Your public key has been saved in /home/gmarler/.ssh/id_dsa.pub.
The key fingerprint is:
md5 768 1d:f0:f5:d5:bd:35:b1:ac:9a:2a:b9:7f:95:14:02:f0 gmarler@ns3

[ns3:/home/gmarler] 
$ ssh-keygen -b 512 -t rsa1
Enter file in which to save the key(/home/gmarler/.ssh/identity): 
Generating public/private rsa1 key pair.
Enter passphrase(empty for no passphrase): Enter passphrase.
Enter same passphrase again: Enter passphrase again.
Your identification has been saved in /home/gmarler/.ssh/identity.
Your public key has been saved in /home/gmarler/.ssh/identity.pub.
The key fingerprint is:
md5 512 bb:e2:c5:25:4d:d1:89:23:83:9e:89:51:4f:d0:5b:86 gmarler@ns3

[ns3:/home/gmarler] 
$ ssh-keygen -b 2048 -f $HOME/.ssh/rootkey -C "Root Admin Keypair"
Generating public/private rsa key pair.
Enter passphrase(empty for no passphrase): Enter passphrase.
Enter same passphrase again: Enter passphrase again.
Your identification has been saved in /home/gmarler/.ssh/rootkey.
Your public key has been saved in /home/gmarler/.ssh/rootkey.pub.
The key fingerprint is:
md5 2048 44:e0:26:4d:6a:93:6c:5c:88:ac:0a:87:e1:d6:ad:8b Root Admin Keypair

[ns3:/home/gmarler] 
$ ssh-keygen -b 1024 -f $HOME/.ssh/nopasskey -C "Batch Jobs (no passphrase)"
Generating public/private rsa key pair.
Enter passphrase(empty for no passphrase): Press Return.
Enter same passphrase again: Press Return.
Your identification has been saved in /home/gmarler/.ssh/nopasskey.
Your public key has been saved in /home/gmarler/.ssh/nopasskey.pub.
The key fingerprint is:

Sysadmin.book  Page 379  Friday, April 11, 2003  12:45 PM



380 Administer ing Network Services

Changing the Passphrase of a Private Key

Once you create keypairs, you can manipulate them in various ways.  One 
thing you may want to do fairly often is to change the passphrase on a 
keypair.  The following example changes the passphrase on the 2048-bit RSA 
keypair created in one of the previous examples.

Using the Public Key in Each Keypair

The public key in each keypair is not used by the Secure Shell client.  It is 
used by sshd on a remote host whenever you try to use ssh to log in to that 
remote host.  But how does sshd on the remote host get access to your public 
key?

When you use ssh to log in to a remote host, ssh on your local host 
contacts sshd on the remote host and tells sshd which user you want to log 
in as. sshd then looks into the .ssh subdirectory of that user’s home 
directory for the authorized_keys file.  If any of the public keys stored in 
that file match the private key you told ssh to use when logging in to the 
remote host, the Secure Shell grants you access to that account.

  The following example logs you in to a remote host as yourself with public 
key authentication.

In this case, you’re logging in as yourself, so you need to append one of 
your public keys into your $HOME/.ssh/authorized_keys file.  For this 
example, assume that you are the user gmarler and use the key generated 
in the first example above.

Now you can try to log in to another host (that has the same home 
directory automounted) with the private key (specifying it with the –i option 
to ssh) that matches the public key you appended to the authorized_keys 
file.

md5 1024 21:56:cb:8e:fb:1f:d1:1c:14:50:f2:88:09:f7:39:93 Batch Jobs (no 
passphrase)

[ns3:/home/gmarler] 
$ ssh-keygen -p -f $HOME/.ssh/rootkey
Enter old passphrase: Enter old passphrase.
Key has comment 'rsa w/o comment'
Enter new passphrase(empty for no passphrase): Enter new passphrase.
Enter same passphrase again: Enter new assphrase again.
Your identification has been saved with the new passphrase.

[ns3:/home/gmarler] 
$ cat $HOME/.ssh/id_rsa.pub >>$HOME/.ssh/authorized_keys

Sysadmin.book  Page 380  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 381

NOTE. The passphrase you are asked for is NOT your login 
password, but the passphrase entered for the private key when the 
keypair was created (or last changed).

The following example logs in to a remote host as the root user with public 
key authentication.

In this case, you’re trying to log in to a remote host as the root user, so you 
need to find some way to first log in to that host as root, then append the 
specific public key you want to use to that root’s authorized_keys file 
(located at /.ssh/authorized_keys on that host).  This time, use the key 
generated specifically for this purpose in the fourth example above.

NOTE. At this point you’re already logged in to the remote host as 
root.

NOTE. Now you’re back on your original system as the user gmarler.

Private Keys and Passphrases

You’ve probably noticed that a passphrase is usually applied to the private 
key in each keypair.  You apply the passphrase to the private key so that if 
someone happens to steal your private keys (you don’t care if someone takes 
your public keys; in fact, you want everyone to have them), the thief can’t use 
them. Why not? Because each private key is encrypted with the passphrase 
you put on it and is useless until it is decrypted.

But, you have to enter a passphrase before using each private key to log in 
to a remote host, right?  That would be true if you used each private key 

[ns3:/home/gmarler] 
$ ssh -i $HOME/.ssh/id_rsa ns1.gmarler.com
Enter passphrase for key '/home/gmarler/.ssh/id_rsa': Enter key passphrase.
Last login: Thu Oct 10 18:57:07 2002 from dhcp101.gmarler
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
Agent pid 17661
[ns1.gmarler.com:/home/gmarler] 
 $

[ns1.gmarler.com:/] 
# cat /home/gmarler/.ssh/rootkey.pub >>/.ssh/authorized_keys  
[ns1.gmarler.com:/] 
# exit

[ns3:/home/gmarler] 
$ ssh -i $HOME/.ssh/rootkey ns1.gmarler.com -l root
Enter passphrase for key '/home/gmarler/.ssh/rootkey': Enter key passphrase.
Last login: Thu Oct 10 23:15:47 2002 from ns3
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
[ns1.gmarler.com:/] 
 # 

Sysadmin.book  Page 381  Friday, April 11, 2003  12:45 PM



382 Administer ing Network Services

manually, as has been done so far.  But that’s where the ssh-agent program 
comes in.

The ssh-agent      The ssh-agent command has a simple and elegant 
purpose: it stores one or more of your decrypted private keys in memory so 
that ssh can use them without prompting you for the passphrase every time 
you use them.  And, if you load all of your private keys into ssh-agent, ssh 
tries them all in sequence until it finds one that works.  You don’t have to 
specify a particular private key on the command line.

How do you use ssh-agent?  Each user must configure his login 
environment to properly start and stop this program for every shell he 
invokes.  The following example shows the necessary changes to 
$HOME/.profile if you use the sh, ksh, or bash shells.

The following example shows the changes needed to $HOME/.login and 
$HOME/.logout if you used the csh or tcsh shells.

Once you make these changes and log out and back in, each shell started 
inherits the environment variable settings that ssh-agent sets up (with the 
eval command) so that ssh knows how to communicate with ssh-agent.  
Also, the program is terminated whenever you log out, so you don’t have 
hundreds of separate ssh-agent programs cluttering up the system.

Now that ssh-agent has been set up and automatically starts every time 
you log in, you need to know how to decrypt and load your private keys 
into it.

ssh-add      You use ssh-add to decrypt and load each private key into 
your ssh-agent.  The following example loads all the private keys you 
generated earlier. You can load the first three default identity keys (RSA, 
DSA, RSA1)  just by running the ssh-add command with no arguments, as 
shown in the following example.

# Set up SSH-Agent
if [ "$SSH_AUTH_SOCK" = "" -a -f /bin/ssh-agent ]; then
  eval `/bin/ssh-agent`
fi

# Kill the SSH-Agent when you log out…
trap '
   test -n "$SSH_AGENT_PID" && eval `/bin/ssh-agent -k`
' 0

$HOME/.login:
# Start SSH-Agent
eval `/bin/ssh-agent -c`

$HOME/.logout:
# Kill SSH-Agent
if ( "$SSH_AGENT_PID" != "" ) then
  eval `/bin/ssh-agent -k`
endif

Sysadmin.book  Page 382  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 383

NOTE. This example worked this way only because the private keys 
all had the same passphrase.  If they did not, then you would have to 
enter each passphrase when prompted.

Now load rootkey and nopasskey, as shown in the following example.

Notice that nopasskey did not prompt for a passphrase because there is 
no passkey.  It was simply loaded into the ssh-agent.

You can see which keys are loaded into this particular ssh-agent with the 
ssh-add -l command.

You have now resolved the problem of having to manually enter the 
passphrase each time you use ssh.  Because you now have the rootkey loaded 
in the ssh-agent, try logging into the remote system as root again.

Presto!  No need to enter a passphrase again (except when you first log in 
to your account).

[ns3:/home/gmarler] 
$ ssh-add
Enter passphrase for gmarler@ns3: Enter passphrase.
Identity added: /home/gmarler/.ssh/identity(gmarler@ns3)
Identity added: /home/gmarler/.ssh/id_rsa(/home/gmarler/.ssh/id_rsa)
Identity added: /home/gmarler/.ssh/id_dsa(/home/gmarler/.ssh/id_dsa)

[ns3:/home/gmarler] 
$ ssh-add $HOME/.ssh/rootkey
Enter passphrase for /home/gmarler/.ssh/rootkey: Enter passphrase.
Identity added: /home/gmarler/.ssh/rootkey(/home/gmarler/.ssh/rootkey)
[ns3:/home/gmarler] 
 $ ssh-add $HOME/.ssh/nopasskey
Identity added: /home/gmarler/.ssh/nopasskey(/home/gmarler/.ssh/nopasskey)

[ns3:/home/gmarler] 
$ ssh-add -l
md5 512 bb:e2:c5:25:4d:d1:89:23:83:9e:89:51:4f:d0:5b:86 gmarler@ns3(RSA1)
md5 1024 d1:88:b9:5c:f1:28:0f:dd:6e:f3:fc:ea:af:3c:21:ed 
/home/gmarler/.ssh/id_rsa(RSA)

md5 768 1d:f0:f5:d5:bd:35:b1:ac:9a:2a:b9:7f:95:14:02:f0 
/home/gmarler/.ssh/id_dsa(DSA)

md5 2048 44:e0:26:4d:6a:93:6c:5c:88:ac:0a:87:e1:d6:ad:8b 
/home/gmarler/.ssh/rootkey(RSA)

md5 1024 21:56:cb:8e:fb:1f:d1:1c:14:50:f2:88:09:f7:39:93 
/home/gmarler/.ssh/nopasskey(RSA)

[ns3:/home/gmarler] 
 $ ssh ns1.gmarler.com -l root
Last login: Thu Oct 10 23:16:11 2002 from ns3
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
[ns1.gmarler.com:/] 
 #

Sysadmin.book  Page 383  Friday, April 11, 2003  12:45 PM



384 Administer ing Network Services

The Secure Shell Commands

The following section discusses the ssh, scp, and sftp commands.

NOTE. The examples for these commands use public key 
authentication, discussed above, instead of  password authentication. 
You won’t see the commands prompting for passwords here.  If you 
don’t set up public key authentication, then you will be prompted for 
your account’s password.

ssh      The ssh command is a secure replacement for rlogin, rsh, and 
telnet.  It takes the same parameters as rlogin and rsh (and many more), 
so migration to this tool is easy. 

The following example logs in to a remote host as the root user.

The following example creates a tar archive datastream of the ./src 
directory and transmits it to another host (by logging in to that host as the 
current user with ssh) to be extracted in the /tmp directory.

scp      The scp command is a secure replacement for the rcp command.  It 
takes parameters similar to those of rcp, but is more flexible.  The following 
examples show some ways to use the scp command.

The following example copies the connect.sql file from the current 
directory to the /tmp directory on host ns1.gmarler.com, as the user 
gmarler.

The following example logs in to host ns1.gmarler.com as user gmarler 
and copies the file /tmp/connect.sql to the /tmp directory on the local 
system.

[ns3:/home/gmarler] 
$ ssh ns1.gmarler.com -l root
Last login: Thu Oct 10 23:51:09 2002 from ns3
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
Sun Microsystems Inc.   SunOS 5.8       Generic February 2000
[ns1.gmarler.com:/] 
 #

[ns3:/home/gmarler] 
$ tar cf - ./src | ssh ns1.gmarler.com "(cd /tmp; tar xf -)"
[ns3:/home/gmarler] 
 $

[ns3:/home/gmarler] 
$ scp connect.sql gmarler@ns1.gmarler.com:/tmp
connect.sql          100% |*****************************|    49       00:00    

Sysadmin.book  Page 384  Friday, April 11, 2003  12:45 PM



Secure Shel l  Commands 385

The following example recursively copies the ./bin/ directory on the local 
system to the /tmp/bin directory on system ns1.gmarler.com, as user 
gmarler.

The following example logs in to host ns1.gmarler.com as the root user 
and copies the /etc/passwd file to the /tmp directory on the local system. 

sftp      The sftp command is a secure replacement for the ftp command.  
It takes parameters similar to those of ftp, but is more flexible. 

The following example uses sftp to connect to the host 
ns1.gmarler.com as the current user, changes to the /tmp directory on the 
local system, and downloads connect.sql from that system to /tmp on the 
local system.

The following example uses sftp to connect to the host 
ns1.gmarler.com as the root user, changes to the /tmp directory on the 
local system, changes to the /etc directory on the remote system, and 
downloads the passwd file.

[ns3:/home/gmarler] 
$ scp gmarler@ns1.gmarler.com:/tmp/connect.sql /tmp
connect.sql          100% |*****************************|    49       00:00  

[ns3:/home/gmarler] 
$ scp -r bin/ gmarler@ns1.gmarler.com:/tmp/bin
ksh                  100% |*****************************|  1609 KB    00:03    
patch                100% |*****************************|   349 KB    00:00    

[ns3:/home/gmarler]
$ scp root@ns1.gmarler.com:/etc/passwd /tmp
passwd               100% |*****************************|   931       00:00

[ns3:/home/gmarler] 
$ sftp ns1.gmarler.com
Connecting to ns1.gmarler.com...
sftp > lcd /tmp
sftp > lpwd
Local working directory: /tmp
sftp > get /home/gmarler/connect.sql
sftp > quit

[ns3:/home/gmarler] 
$ sftp root@ns1.gmarler.com
Connecting to ns1.gmarler.com...
sftp > lcd /tmp
sftp > lpwd
Local working directory: /tmp
sftp > cd /etc
sftp > pwd
Remote working directory: /etc
sftp > get passwd
sftp > quit

Sysadmin.book  Page 385  Friday, April 11, 2003  12:45 PM



386 Administer ing Network Services

Common Administrative Uses for the Secure Shell

This section describes two common uses for SSH.

Transferring Files Between Systems Securely      Quite often, you need to 
move files between systems.  You can do so securely by using ssh instead of 
rsh. The following example copies the home directory of the user gmarler 
from system ns3.gmarler.com to ns1.gmarler.com.  This action is done 
as the root user on ns3.gmarler.com, using public key authentication.

Secure Root Login Without Allowing Passwords      You’ve already seen how 
to use public key authentication to allow authorized system administrators to 
log in to remote systems as the root user. This section describes how to make 
public key authentication the only way a user can log in to a system as the 
root user.  To force such behavior, edit the /etc/ssh/sshd_config file on all 
systems and change the following line

to

Once you have made the changes, restart the sshd daemon on each system 
with the following commands.

Secure Shell on Pre-Solaris 9 Releases

The Secure Shell provided with Solaris 9 is a Sun-supported port of 
OpenSSH.  If you want to use the Secure Shell on releases of Solaris before 
Solaris 9, go to the http://www.openssh.com/ Web site, download the 
source code, compile it, and install it on your pre-Solaris 9 systems.

For More Information

For more information, refer to SSH, The Secure Shell: The Definitive Guide, 
by Daniel J. Barrett and Richard E. Silverman, O’Reilly & Associates, Inc., 
2001.

[ns3:/home/gmarler] 
# cd /home
[ns3:/home] 
# tar cf - gmarler | ssh ns1.gmarler.com -l root "(cd /home; tar xf -)"

PermitRootLogin yes

PermitRootLogin without-password

# /etc/init.d/sshd stop
# /etc/init.d/sshd start

Sysadmin.book  Page 386  Friday, April 11, 2003  12:45 PM


