
The Joys of Concurrent
Programming

1

1
“I suspect that concurrency is best supported by a library
and that such a library can be implemented without major
language extensions.”

—Bjarne Stroustrup, inventor of C++

In this Chapter

What is Concurrency? • The Benefits of Parallel Programming • The
Benefits of Distributed Programming • The Minimal Effort Required •
The Basic Layers of Software Concurrency • No Keyword Support for
Parallelism in C++ • Programming Environments for Parallel and Dis-
tributed Programming • Summary—Toward Concurrency

The software development process now requires a working knowledge
of parallel and distributed programming. The requirement for a piece
of software to work properly over the Internet, on an intranet, or over

some network is almost universal. Once the piece of software is deployed in
one or more of these environments it is subjected to the most rigorous of
performance demands. The user wants instantaneous and reliable results. In
many situations the user wants the software to satisfy many requests at the
same time. The capability to perform multiple simultaneous downloads of
software and data from the Internet is a typical expectation of the user. Soft-
ware designed to broadcast video must also be able to render graphics and
digitally process sound seamlessly and without interruption. Web server soft-
ware is often subjected to hundreds of thousands of hits per day. It is not un-
common for frequently used e-mail servers to be forced to survive the stress
of a million sent and received messages during business hours. And it’s not
just the quantity of the messages that can require tremendous work, it’s also
the content. For instance, data transmissions containing digitized music,
movies, or graphics devour network bandwidth and can inflict a serious
penalty on server software that has not been properly designed. The typical

computing environment is networked and the computers involved have mul-
tiple processors. The more the software does, the more it is required to do.
To meet the minimal user’s requirements, today’s software must work harder
and smarter. Software must be designed to take advantage of computers that
have multiple processors. Since networked computers are more the rule than
the exception, software must be designed to correctly and effectively run,
with some of its pieces executing simultaneously on different computers. In
some cases, the different computers have totally different operating systems
with different network protocols! To accommodate these realities, a software
development repertoire must include techniques for implementing concur-
rency through parallel and distributed programming.

1.1 What is Concurrency?

Two events are said to be concurrent if they occur within the same time in-
terval. Two or more tasks executing over the same time interval are said to
execute concurrently. For our purposes, concurrent doesn’t necessarily mean
at the same exact instant. For example, two tasks may occur concurrently
within the same second but with each task executing within different frac-
tions of the second. The first task may execute for the first tenth of the sec-
ond and pause, the second task may execute for the next tenth of the second
and pause, the first task may start again executing in the third tenth of a sec-
ond, and so on. Each task may alternate executing. However, the length of a
second is so short that it appears that both tasks are executing simultane-
ously. We may extend this notion to longer time intervals. Two programs per-
forming some task within the same hour continuously make progress of the
task during that hour, although they may or may not be executing at the same
exact instant. We say that the two programs are executing concurrently for
that hour. Tasks that exist at the same time and perform in the same time pe-
riod are concurrent. Concurrent tasks can execute in a single or multipro-
cessing environment. In a single processing environment, concurrent tasks
exist at the same time and execute within the same time period by context
switching. In a multiprocessor environment, if enough processors are free,
concurrent tasks may execute at the same instant over the same time period.
The determining factor for what makes an acceptable time period for con-
currency is relative to the application.

Chapter 1 The Joys of Concurrent Programming2

Concurrency techniques are used to allow a computer program to do
more work over the same time period or time interval. Rather than designing
the program to do one task at a time, the program is broken down in such a
way that some of the tasks can be executed concurrently. In some situations,
doing more work over the same time period is not the goal. Rather, simplify-
ing the programming solution is the goal. Sometimes it makes more sense to
think of the solution to the problem as a set of concurrently executed tasks.
For instance, the solution to the problem of losing weight is best thought of
as concurrently executed tasks: diet and exercise. That is, the improved diet
and exercise regimen are supposed to occur over the same time interval (not
necessarily at the same instant). It is typically not very beneficial to do one
during one time period and the other within a totally different time period.
The concurrency of both processes is the natural form of the solution. Some-
times concurrency is used to make software faster or get done with its work
sooner. Sometimes concurrency is used to make software do more work over
the same interval where speed is secondary to capacity. For instance, some
web sites want customers to stay logged on as long as possible. So it’s not how
fast they can get the customers on and off of the site that is the concern—it’s
how many customers the site can support concurrently. So the goal of the
software design is to handle as many connections as possible for as long a
time period as possible. Finally, concurrency can be used to make the soft-
ware simpler. Often, one long, complicated sequence of operations can be
implemented easier as a series of small, concurrently executing operations.
Whether concurrency is used to make the software faster, handle larger
loads, or simplify the programming solution, the main object is software im-
provement using concurrency to make the software better.

1.1.1 The Two Basic Approaches
to Achieving Concurrency

Parallel programming and distributed programming are two basic ap-
proaches for achieving concurrency with a piece of software. They are two
different programming paradigms that sometimes intersect. Parallel pro-
gramming techniques assign the work a program has to do to two or more
processors within a single physical or a single virtual computer. Distributed
programming techniques assign the work a program has to do to two or more
processes—where the processes may or may not exist on the same computer.
That is, the parts of a distributed program often run on different computers

What is Concurrency? 3

connected by a network or at least in different processes. A program that
contains parallelism executes on the same physical or virtual computer. The
parallelism within a program may be divided into processes or threads. We
discuss processes in Chapter 3 and threads in Chapter 4. For our purposes,
distributed programs can only be divided into processes. Multithreading is
restricted to parallelism. Technically, parallel programs are sometimes dis-
tributed, as is the case with PVM (Parallel Virtual Machine) programming.
Distributed programming is sometimes used to implement parallelism, as is

Chapter 1 The Joys of Concurrent Programming4

Program 1

COMPUTER A

Task C

COMPUTER B

DISTRIBUTED APPLICATION

NETWORK
CONNECTION

NETWORK
CONNECTION

Program 2

Task B

Program 3

COMPUTER C

Task A

Task D

SINGLE PHYSICAL OR
VIRTUAL COMPUTERProgram

Task A

Task B

Task C

Task D

APPLICATION’S
CONCURRENTLY
EXECUTING TASKS

P2

P3

P4

P1

Figure 1–1 Typical architecture for a parallel and distributed program.

the case with MPI (Message Passing Interface) programming. However, not
all distributed programs involve parallelism. The parts of a distributed pro-
gram may execute at different instances and over different time periods. For
instance, a software calendar program might be divided into two parts: One
part provides the user with a calendar and a method for recording important
appointments and the other part provides the user with a set of alarms for
each different type of appointment. The user schedules the appointments
using part of the software, and the other part of the software executes sepa-
rately at a different time. The alarms and the scheduling component to-
gether make a single application, but they are divided into two separately
executing parts. In pure parallelism, the concurrently executing parts are all
components of the same program. In distributed programs, the parts are
usually implemented as separate programs. Figure 1–1 shows the typical ar-
chitecture for a parallel and distributed program.

The parallel application in Figure 1–1 consists of one program divided
into four tasks. Each task executes on a separate processor, therefore, each
task may execute simultaneously. The tasks can be implemented by either a
process or a thread. On the other hand, the distributed application in Figure
1–1 consists of three separate programs with each program executing on a
separate computer. Program 3 consists of two separate parts that execute on
the same computer. Although Task A and D of Program 3 are on the same
computer, they are distributed because they are implemented by two sepa-
rate processes. Tasks within a parallel program are more tightly coupled than
tasks within a distributed program. In general, processors associated with
distributed programs are on different computers, whereas processors associ-
ated with programs that involve parallelism are on the same computer. Of
course, there are hybrid programs that are both parallel and distributed.
These hybrid combinations are becoming the norm.

1.2 The Benefits
of Parallel Programming

Programs that are properly designed to take advantage of parallelism can exe-
cute faster than their sequential counterparts, which is a market advantage. In
other cases the speed is used to save lives. In these cases faster equates to bet-
ter. The solutions to certain problems are represented more naturally as a col-
lection of simultaneously executing tasks. This is especially the case in many
areas of scientific, mathematical, and artificial intelligence programming. This

The Benef its of Paral le l Programming 5

means that parallel programming techniques can save the software developer
work in some situations by allowing the developer to directly implement data
structures, algorithms, and heuristics developed by researchers. Specialized
hardware can be exploited. For instance, in high-end multimedia programs
the logic can be distributed to specialized processors for increased perfor-
mance, such as specialized graphics chips, digital sound processors, and spe-
cialized math processors. These processors can usually be accessed
simultaneously. Computers with MPP (Massively Parallel Processors) have
hundreds, sometimes thousands of processors and can be used to solve prob-
lems that simply cannot realistically be solved using sequential methods. With
MPP computers, it’s the combination of fast with pure brute force that makes
the impossible possible. In this category would fall environmental modeling,
space exploration, and several areas in biological research such as the Human
Genome Project. Further parallel programming techniques open the door to
certain software architectures that are specifically designed for parallel envi-
ronments. For example, there are certain multiagent and blackboard architec-
tures designed specifically for a parallel processor environment.

1.2.1 The Simplest Parallel Model (PRAM)

The easiest method for approaching the basic concepts in parallel program-
ming is through the use of the PRAM (Parallel Random Access Machine).
The PRAM is a simplified theoretical model where there are n processors la-
beled as P1, P2, P3, . . . Pn and each processor shares one global memory. Fig-
ure 1–2 shows a simple PRAM.

All the processors have read and write access to a shared global memory.
In the PRAM the access can be simultaneous. The assumption is that each
processor can perform various arithmetic and logical operations in parallel.
Also, each of the theoretical processors in Figure 1–2 can access the global
shared memory in one uninterruptible unit of time. The PRAM model has

Chapter 1 The Joys of Concurrent Programming6

.

.

.

shared
memory

P2

P3

Pn

P1

Figure 1–2
A Simple PRAM.

both concurrent and exclusive read algorithms. Concurrent read algorithms
are allowed to read the same piece of memory simultaneously with no data
corruption. Exclusive read algorithms are used to ensure that no two proces-
sors ever read the same memory location at the same time. The PRAM
model also has both concurrent and exclusive write algorithms. Concurrent
write algorithms allow multiple processors to write to memory, while exclu-
sive write algorithms ensure that no two processors write to the same mem-
ory at the same time. Table 1–1 shows the four basic types of algorithms that
can be derived from the read and write possibilities.

The Benef its of Paral le l Programming 7

Table 1–1 Four Basic Read-Write Algorithms

Read-Write Algorithm Types Meaning

EREW Exclusive read exclusive write
CREW Concurrent read exclusive write
ERCW Exclusive read concurrent write
CRCW Concurrent read concurrent write

We will refer to these algorithm types often in this book as we discuss
methods for implementing concurrent architectures. The blackboard archi-
tecture is one of the important architectures that we implement using the
PRAM model and it is discussed in Chapter 13. It is important to note that
although PRAM is a simplified theoretical model, it is used to develop practi-
cal programs, and these programs can compete on performance with pro-
grams that were developed using more sophisticated models of parallelism.

1.2.2 The Simplest Parallel Classification

The PRAM gives us a simple model for thinking about how a computer can
be divided into processors and memory and gives us some ideas for how those
processors may access memory. A simplified scheme for classifying the paral-
lel computers was introduced by M.J. Flynn.1 These schemes were SIMD
(Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple
Data). These were later extended to SPMD (Single Program Multiple Data)
and MPMD (Multiple Program Multiple Data). The SPMD (SIMD) scheme

1M.J. Flynn. Very high-speed computers. In Proceedings of the IEEE, 54, 1901–1909 (December 1966).

allows multiple processors to execute the same instruction or program with
each processor accessing different data. The MPMD (MIMD) scheme allows
for multiple processors with each executing different programs or instructions
and each with its own data. So in one scheme all the processors execute the
same program or instructions and in the other scheme each processor exe-
cutes different instructions. Of course, there are hybrids of these models
where the processors are divided up and some are SPMD and some are
MPMD. Using SPMD, all of the processors are simply doing the same thing
only with different data. For example, we can divide a single puzzle up into
groups and assign each group to a separate processor. Each processor will
apply the same rules for trying to put together the puzzle, but each processor
has different pieces to work with. When all of the processors are done putting
their pieces together, we can see the whole. Using MPMD, each processor ex-
ecutes something different. Even though they are all trying to solve the same
problem, they have been assigned a different aspect of the problem. For ex-
ample, we might divide the work of securing a Web server as a MPMD
scheme. Each processor is assigned a different task. For instance, one proces-
sor monitors the ports, another processor monitors login attempts, another
processor analyzes packet contents, and so on. Each processor works with its
own data relative to its area of concern. Although the processors are each
doing different work using different data, they are working toward a single so-
lution: security. The parallel programming concepts that we discuss in this
book are easily described using PRAM, SPMD (SIMD), and MPMD
(MIMD). In fact, these schemes and models are used to implement practical
small- to medium-scale applications and should be sufficient until you are
ready to do advanced parallel programming.

1.3 The Benefits
of Distributed Programming

Distributed programming techniques allow software to take advantage of re-
sources located on the Internet, on corporate and organization intranets, and
on networks. Distributed programming usually involves network program-
ming in one form or another. That is, a program on one computer on a net-
work needs some hardware or software resource that belongs to another
computer either on the same network or on some remote network. Distrib-
uted programming is all about one program talking to another program over

Chapter 1 The Joys of Concurrent Programming8

some kind of network connection, which may involve everything from
modems to satellites. The distinguishing feature of distributed programs is
they are broken into parts. Those parts are usually implemented as separate
programs. Those programs typically execute on separate computers and the
program’s parts communicate with each other over a network. Distributed
programming techniques provide access to resources that may be geographi-
cally distant. For example, a distributed program divided into a Web server
component and a Web client component can execute on two separate com-
puters. The Web server component can be located in Africa and the Web
client component can be located in Japan. The Web client part is able to use
software and hardware resources of the Web server component, although
they are separated by a great distance and almost certainly located on differ-
ent networks running different operating environments. Distributed pro-
gramming techniques provide shared access to expensive hardware and
software resources. For instance, an expensive, high-end holographic printer
may have print server software that provides print services to client software.
The print client software resides on one computer and the print server soft-
ware resides on another computer. Only one print server is needed to serve
many print clients. Distributed computing can be used for redundancy and
fail over. If we divide the program up into a number of parts with each run-
ning on different computers, then we may assign some of the parts the same
task. If one of the computers fails for some reason then another part of the
same program executing on a different computer picks up the work. Data-
bases can be used to hold billions, trillions, even quadrillions of pieces of in-
formation. It is simply not practical for every user to have a copy of the
database. The problem is some users are located in different buildings than
where the computer with the database is located. Some users are located in
different cities, states, and in some instances, countries. Distributed pro-
gramming techniques are used to allow users to share the massive database
regardless of where they are located.

1.3.1 The Simplest Distributed
Programming Models

The client-server model of distributed computing is perhaps the easiest to
understand and the most commonly used. In this model, a program is di-
vided up into two parts: One part is called the server and the other the client.
The server has direct access to some hardware or software resource that the

The Benef its of Distr ibuted Programming 9

client wants to use. In most cases, the server is located on a different ma-
chine than the client. Typically, there is a many-to-one relationship between
the server and the client, that is, there is usually one server fulfilling the re-
quests of many clients. The server usually mediates access to a large data-
base, an expensive hardware resource, or an important collection of
applications. The client makes requests for data, calculations, and other types
of processing. A search engine is a good example of a client-server applica-
tion. Search engines are used to locate information on the Internet or on cor-
porate and organization intranets. The client is used to obtain a keyword or
phrase that the user is interested in. The client software part then passes the
request to the server software part. The server has the muscle to perform the
massive search for the user’s keyword or phrase. The server has either direct
access to the information or to other servers that have access to the informa-
tion. Ideally, the server finds the keyword or phrase the user requested and
returns that information to the client component. Although the client and
the server are separate programs on separate computers, they make up a sin-
gle application. This division of a piece of software into a client and a server
is the primary method of distributed programming. The client-server model
also has other forms depending on the environment. For instance, the term
producer-consumer is a close cousin of client-server. Typically, client-server
applications refer to larger programs and producer-consumer refers to
smaller programs. Usually when the programs are at the operating system
level or lower they are called producer-consumer, and when they are above
the operating system level they are usually called client-server (however,
there are always exceptions).

1.3.2 The Multiagent (Peer-to-Peer)
Distributed Model

Although the client-server model is the most prevalent distributed program-
ming model in use, it is not the only model. Agents are rational software
components that are self directed, often autonomous, and can continuously
execute. Agents can both make requests of other software components and
fulfill requests of other software components. Agents can cooperate within
groups to perform certain tasks collectively. In this model there is no specific
client or server. The agents form a kind of peer-to-peer model where each of
the components are on somewhat equal footing and each component has
something to offer to the other. For example, an agent that is providing a

Chapter 1 The Joys of Concurrent Programming10

price quote for the refurbishing of a vintage sports car might work together
with other agents. Where one agent specializes in engine work, another spe-
cializes in body work, another specializes in interior design and so on. These
agents may cooperatively and collectively come up with the most competitive
quote for refurbishing the car. The agents are distributed because each agent
is located on a different server on the Internet. The agents use an agreed-
upon Internet protocol to communicate. The client-server model is a natural
fit for certain types of distributed programming and the peer-to-peer agent
model is a natural fit for certain types of distributed programming. We ex-
plore both types in this book. The client-server and peer-to-peer models can
be used to satisfy most distributed programming demands.

1.4 The Minimal Effort Required

Parallel and distributed programming come with a cost. Although there are
many benefits to writing parallel and distributed programming, there are also
some challenges and prerequisites. We discuss some challenges in Chapter 2.
We mention the prerequisites here. Before a program is written or a piece of
software is developed, it must first go through a design process. For parallel
and distributed programs, the design process will include three issues: de-
composition, communication, and synchronization.

1.4.1 Decomposition

Decomposition is the process of dividing up the problem and the solution
into parts. Sometimes the parts are grouped into logical areas (i.e., searching,
sorting, calculating, input, output, etc.). In other situations the parts are
grouped by logical resource (i.e., file, communication, printer, database,
etc.). The decomposition of the software solution amounts to the WBS (work
breakdown structure). The WBS determines which piece of software does
what. One of the primary issues of concurrent programming is identifying a
natural WBS for the software solution at hand. There is no simple or cook-
book approach to identifying the WBS. Software development is the process
of translating concepts, ideas, patterns of work, rules, algorithms, or formulas
into sets of instructions and data that can be executed or manipulated by a
computer. This is largely a process of modeling. Software models are repro-

The Minimal Ef for t Required 11

ductions in software of some real-world task, process, or ideal. The purpose
of the model is to imitate or duplicate the behavior and characteristics of
some real-world entity in a particular domain. This process of modeling un-
covers the natural WBS of a software solution. The better the model is un-
derstood and developed the more natural the WBS will be. Our approach is
to uncover the parallelism or distribution within a solution through model-
ing. If parallelism doesn’t naturally fit, don’t force it. The question of how to
break up an application into concurrently executing parts should be an-
swered during the design phase and should be obvious in the model of the
solution. If the model of the problem and the solution don’t imply or suggest
parallelism and distribution then try a sequential solution. If the sequential
solution fails, that failure may give clues to how to approach the parallelism.

1.4.2 Communication

Once the software solution is decomposed into a number of concurrently ex-
ecuting parts, those parts will usually do some amount of communicating.
How will this communication be performed if the parts are in different
processes or different computers? Do the different parts need to share any
memory? How will one part of the software know when the other part is
done? Which part starts first? How will one component know if another
component has failed? These issues have to be considered when designing
parallel or distributed systems. If no communication is required between the
parts, then the parts don’t really constitute a single application.

1.4.3 Synchronization

The WBS designates who does what. When multiple components of software
are working on the same problem, they must be coordinated. Some compo-
nent has to determine when a solution has been reached. The components’
order of execution must be coordinated. Do all of the parts start at the same
time or does some work while others wait? What two or more components
need access to the same resource? Who gets it first? If some of the parts fin-
ish their work long before the other parts, should they be assigned new
work? Who assigns the new work in such cases? DCS (decomposition, com-
munication, and synchronization) is the minimum that must be considered
when approaching parallel or distributed programming. In addition to con-
sidering DCS, the location of DCS is also important. There are several layers

Chapter 1 The Joys of Concurrent Programming12

of concurrency in application development. DCS is applied a little differ-
ently in each layer.

1.5 The Basic Layers
of Software Concurrency

In this book we are concerned with concurrency within the application as op-
posed to concurrency at the operating system level, or concurrency within
hardware. Although the concurrency within hardware and the concurrency
at the operating system level support application concurrency, our focus is on
the application. For our purposes, concurrency occurs at:

• Instruction level
• Routine (function/procedure) level
• Object level
• Application level

1.5.1 Concurrency at the Instruction Level

Concurrency at the instruction level occurs when multiple parts of a single
instruction can be executed simultaneously. Figure 1–3 shows how a single
instruction can be decomposed for simultaneous execution.

In Figure 1-3, the component (A + B) can be executed at the same time as
(C − D). This is an example of concurrency at the instruction level. This kind
of parallelism is normally supported by compiler directives and is not under
the direct control of a C++ programmer.

The Basic Layers of Software Concurrency 13

X = (A + B) * (C - D)

execute in parallel1X = A + B

synchronization

1X2 = C − D

X = X2 * X2

Figure 1–3
Decomposition of a single instruction.

1.5.2 Concurrency at the Routine Level

The WBS structure of a program may be along function lines, that is, the
total work involved in a software solution is divided between a number of
functions. If these functions are assigned to threads, then each function can
execute on a different processor and if enough processors are available, each
function can execute simultaneously. We discuss threads in more detail in
Chapter 4.

1.5.3 Concurrency at the Object Level

The WBS of a software solution may be distributed between objects. Each
object can be assigned to a different thread, or process. Using the CORBA
(Common Object Request Broker Architecture) standard, each object may
be assigned to a different computer on the network or different computer
on a different network. We discuss CORBA in more detail in Chapter 8.
Objects residing in different threads or processes may execute their meth-
ods concurrently.

1.5.4 Concurrency of Applications

Two or more applications can cooperatively work together to solve some
problem. Although the application may have originally been designed sepa-
rately and for different purposes, the principles of code reuse often allow ap-
plications to cooperate. In these circumstances two separate applications
work together as a single distributed application. For example, the Clipboard
was not designed to work with any one application but can be used by a vari-
ety of applications on the desktop. Some uses of the Clipboard had not been
dreamed of during its original design.

The second and the third layers are the primary layers of concurrency that
we will focus on in this book. We show techniques for implementing concur-
rency in these layers. Operating system and hardware issues are presented
only where they are necessary in the context of application design. Once we
have an appropriate WBS for a parallel programming or distributed pro-
gramming design, the question is how do we implement it in C++.

Chapter 1 The Joys of Concurrent Programming14

1.6 No Keyword Support
for Parallelism in C++

The C++ language does not include any keyword primitives for parallelism.
The C++ ISO standard is for the most part silent on the topic of multithread-
ing. There is no way within the language to specify that two or more state-
ments should be executed in parallel. Other languages use built-in parallelism
as a selling feature. Bjarne Stroustrup, the inventor of the C++ language, had
something else in mind. In Stroustrup’s opinion:

It is possible to design concurrency support libraries that approach built-in con-
currency support both in convenience and efficiency. By relying on libraries, you
can support a variety of concurrency models, though, and thus serve the users
that need those different models better than can be done by a single built-in con-
currency model. I expect this will be the direction taken by most people and that
the portability problems that arise when several concurrency-support libraries
are used within the community can be dealt with by a thin layer of interface
classes.

Furthermore, Stroustrup says, “I recommend parallelism be represented
by libraries within C++ rather than as a general language feature.” The au-
thors have found Stroustrup’s position and recommendation on parallelism as
a library the most practical option. This book is only made possible because
of the availability of high-quality libraries that can be used for parallel and
distributed programming. The libraries that we use to enhance C++ imple-
ment national and international standards for parallelism and distributed
programming and are used by thousands of C++ programmers worldwide.

1.6.1 The Options for Implementing
Parallelism Using C++

Although there are special versions of C++ that implement parallelism, we
present methods on how parallelism can be implemented using the ISO (In-
ternational Standard Organization) standard for C++. The library approach
to parallelism is the most flexible. System libraries and user-level libraries
can be used to support parallelism in C++. System libraries are those li-
braries provided by the operating system environment. For example, the
POSIX threads library is a set of system calls that can be used in conjunction

No Keyword Support for Paral le l ism in C++ 15

with C++ to support parallelism. The POSIX (Portable Operating System In-
terface) threads are part of the new Single UNIX Specification. The POSIX
threads are included in the IEEE Std. 1003.1-2001. The Single UNIX Speci-
fication is sponsored by the Open Group and developed by the Austin Com-
mon Standards Revision Group. According to the Open Group, the Single
UNIX Specification is:

• Designed to give software developers a single set of APIs to be
supported by every UNIX system.

• Shifts the focus from incompatible UNIX system product imple-
mentations to compliance to a single set of APIs.

• It is the codification and dejure standardization of the common
core of UNIX system practice.

• The basic objective is portability of both programmers and appli-
cation source code.

The Single UNIX Specification Version 3 includes the IEEE Std 1003.
1-2001 and the Open Group Base Specifications Issue 6. The IEEE POSIX
standards are now a formal part of the Single UNIX Specification and vice
versa. There is now a single international standard for a portable operating
system interface. C++ developers benefit because this standard contains
APIs for creating threads and processes. Excluding instruction-level paral-
lelism, dividing a program up into either threads or processes is the only way
to achieve parallelism with C++. The new standard provides the tools to do
this. The developer can use:

• POSIX threads (also referred to as pthreads)
• POSIX spawn function
• the exec() family of functions

These are all supported by system API calls and system libraries. If an op-
eration system complies with the Single UNIX Specification Version 3, then
these APIs will be available to the C++ developer. These APIs are discussed
in Chapters 3 and 4. They are used in many of the examples in this book. In
addition to system-level libraries, user-level libraries that implement other
international standards such as the MPI (Message Passing Interface), PVM
(Parallel Virtual Machine), and CORBA (Common Object Request Broker
Architecture) can be used to support parallelism with C++.

Chapter 1 The Joys of Concurrent Programming16

1.6.2 MPI Standard

The MPI is the standard specification for message passing. The MPI was de-
signed for high performance on both massively parallel machines and on
workstation clusters. This book uses the MPICH implementation of the MPI
standard. MPICH is a freely available, portable implementation of MPI. The
MPICH provides the C++ programmer with a set of APIs and libraries that
support parallel programming. The MPI is especially useful for SPMD and
MPMD programming. The authors use the MPICH implementation of MPI
on a 32-node cluster running Linux and an 8-node cluster running Solaris
and Linux. Although C++ doesn’t have parallel primitives built in, it can take
advantage of power libraries such as MPICH that does support parallelism.
This is one of the benefits of C++. It is designed for flexibility.

1.6.3 PVM: A Standard
for Cluster Programming

The PVM is a software package that permits a heterogeneous collection of
computers hooked together by a network to be used as a single large parallel
computer. The overall objective of the PVM system is to enable a collection
of computers to be used cooperatively for concurrent or parallel computa-
tion. A PVM library implementation supports:

• Heterogeneity in terms of machines, networks, and applications
• Explicit message-passing model
• Process-based computation
• Multiprocessor support (MPP, SMP)
• Translucent access to hardware (applications can either ignore or

take advantage of hardware differences)
• Dynamically configurable host pool (processors can be added

and deleted at runtime and can include processor mixes)

The PVM is the easiest to use and most flexible environment available for
basic parallel programming tasks that require the involvement of different
types of computers running different operating systems. The PVM library is
especially useful for several single processor systems that can be networked
together to form a virtual parallel processor machine. We discuss techniques

No Keyword Support for Paral le l ism in C++ 17

for using PVM with C++ in Chapter 6. The PVM is the de facto standard for
implementing heterogeneous clusters and is freely available and widely used.
The PVM has excellent support for MPMD (MIMD) and SPMD (SIMD)
models of parallel programming. The authors use PVM for small- to
medium-size parallel programming tasks and the MPI for larger, more com-
plex MPI tasks. PVM and MPI are both libraries that can be used with C++
to do cluster programming.

1.6.4 The CORBA Standard

CORBA is the standard for distributed cross-platform object-oriented pro-
gramming. We mention CORBA here under parallelism because implemen-
tations of the CORBA standard can be used to develop multiagent systems.
Multiagent systems offer important models of peer-to-peer distributed pro-
gramming. Multiagent systems can work concurrently. This is one of the
areas where parallel programming and distributed programming overlap. Al-
though the agents are executing on different computers, they are executing
during the same time period, working cooperatively on a common problem.
The CORBA standard provides an open, vendor-independent architecture
and infrastructure that computer applications use to work together over net-
works. Using the standard protocol IIOP, a CORBA-based program from any
vendor, on almost any computer, operating system, programming language,
and network, can interoperate with a CORBA-based program from the same
or another vendor on almost any other computer operating system, program-
ming language, and network. In this book we use the MICO implementa-
tion. MICO is a freely available and fully compliant implementation of the
CORBA standard. MICO supports C++.

1.6.5 Library Implementations
Based on Standards

MPICH, PVM, MICO, and POSIX threads are each library implementations
based on standards. This means that software developers can rely on these
implementations to be widely available and portable across multiple plat-
forms. These libraries are freely available and used by software developers
worldwide. The POSIX threads library can be used with C++ to do multi-
threaded programming. If the program is running on a computer that has
multiple processors, then each thread can possibly run on a separate proces-

Chapter 1 The Joys of Concurrent Programming18

sor and thereby execute concurrently. If only a single processor is available,
then the illusion of parallelism is provided and concurrency is achieved
through the process of context switching. POSIX threads are perhaps the easi-
est way to introduce parallelism within a C++ program. Whereas the MPICH,
PVM, and MICO libraries will have to be downloaded or obtained (they are
readily available), any operating system environment that is client with the
POSIX standard or the new UNIX Specification Version 3 will have a POSIX
threads implementation. Each library offers a slightly different model of par-
allelism. Table 1–2 shows how each library can be used with C++.

Programming Environments 19

Table 1–2 MPICH, PVM, MICO, and POSIX Threads Used with C++

Libraries C++ Usage

MPICH Supports large-scale, complex cluster programming. Strong support for SPMD
model. Also supports SMP, MPP, and multiuser configurations.

PVM Supports cluster programming of heterogeneous environments. Easy to use for
single-user, small to medium cluster applications. Also supports MPP.

MICO Supports either distributed or object-oriented parallel programming. Contains
nice support for agent and multiagent programming.

POSIX Supports parallel processing within a single application at the function or object
level. Can be used to take advantage of SMP or MPP.

Whereas languages that depend on built-in support for parallelism are re-
stricted to the models supplied, the C++ developer is free to mix and match
parallel programming models. As the nature of the applications change, a
C++ developer can select different libraries to match the scenario.

1.7 Programming Environments
for Parallel and Distributed
Programming

The most common environments for parallel and distributed programming
are clusters, MPPs, and SMP computers.

Clusters are collections of two or more computers that are networked to-
gether to provide a single, logical system. The group of computers appear to

the application as a single virtual computer. MPP (Massively Parallel Proces-
sors) is a single computer that has hundreds of processors. SMP (Symmetric
Multiprocessing) is a single system that has processors that are tightly cou-
pled where the processors share memory and the data path. SMP processors
share the resources and are all controlled by a single operating system. This
book provides a gentle introduction to parallel and distributed programming,
therefore we focus our attention on small clusters of 8 to 32 processors and
on multiprocessor machines with 2 to 4 processors. Although many of the
techniques we discuss can be used in MPP environments or in large SMP
environments, our primary attention is on moderate systems.

Summary—Toward Concurrency

Throughout this book we present an architectural approach to parallel and
distributed programming. The emphasis is placed on uncovering the natural
parallelism within a problem and its solution. This parallelism is captured
within the software model for the solution. We suggest object-oriented
methods to help manage the complexity of parallel and distributed program-
ming. Our mantra is function follows form. We use the library approach to
provide parallelism support for the C++ language. The libraries we recom-
mend are based on national and international standards. Each library is
freely available and widely used. Techniques and concepts presented in the
book are vendor independent, nonproprietary, and rely on open standards
and open architectures. The C++ programmer and software developer can
use different parallel models to serve different needs because each paral-
lelism model is captured within a library. The library approach to parallel and
distributed programming gives the C++ programmer the greatest possible
flexibility. While parallel and distributed programming can be fun and re-
warding, it presents several challenges. In the next chapter we will provide
an overview of the most common challenges to parallel and distributed
programming.

Chapter 1 The Joys of Concurrent Programming20

