
Chapter 3

Quantifying
Performance
Models

3.1 Introduction

Chapter 2 introduced the basic framework that will be used throughout the

book to think about performance issues in computer systems: queuing net-

works. In that chapter, we concentrated on the qualitative aspects of these

models and looked at how a computer system can be mapped into a network

of queues. In this chapter, we look at the quantitative aspects of these mod-

els and introduce the input parameters and performance metrics that can be

obtained from the QN models. The notions of service times, arrival rates, ser-

vice demands, utilization, queue lengths, response time, throughput, waiting

time, and response time are discussed here in more precise terms. The chap-

53



54 Quantifying Performance Models Chapter 3

ter also introduces Operational Law, a set of basic quantitative relationships

between performance quantities.

3.2 Basic Performance Results

In this section we present the approach known as operational analysis [1],

used to establish relationships among quantities based on measured or known

data about computer systems. To see how the operational approach might

be applied, consider the following motivating problem.

Motivating problem: Suppose that during an observation period of 1

minute, a single resource (e.g., the CPU) is observed to be busy for 36 sec.

A total of 1800 transactions were observed to arrive to the system. The

total number of observed completions is 1800 transactions (i.e., as many

completions as arrivals occurred in the observation period). What is the

performance of the system (e.g., the mean service time per transaction, the

utilization of the resource, the system throughput)?

Prior to solving this problem, some commonly accepted operational anal-

ysis notation is required for the measured data. The following is a partial

list of such measured quantities.

• T : length of time in the observation period

• K: number of resources in the system

• Bi: total busy time of resource i in the observation period T

• Ai: total number of service requests (i.e., arrivals) to resource i in the

observation period T

• A0: total number of requests submitted to the system in the observa-

tion period T

• Ci: total number of service completions from resource i in the obser-

vation period T



Section 3.2. Basic Performance Results 55

• C0: total number of requests completed by the system in the observa-

tion period T

From these known measurable quantities, called operational variables, a

set of derived quantities can be obtained. A partial list includes the following.

• Si: mean service time per completion at resource i; Si = Bi/Ci

• Ui: utilization of resource i; Ui = Bi/T

• Xi: throughput (i.e., completions per unit time) of resource i; Xi =

Ci/T

• λi: arrival rate (i.e., arrivals per unit time) at resource i; λi = Ai/T

• X0: system throughput; X0 = C0/T

• Vi: average number of visits (i.e., the visit count) per request to re-

source i; Vi = Ci/C0

Using the notation above, the motivating problem can be formally stated

and solved in a straightforward manner using operational analysis. The

measured quantities are:

T = 60 sec

K = 1 resource

B1 = 36 sec

A1 = A0 = 1800 transactions

C1 = C0 = 1800 transactions

Thus, the derived quantities are

S1 =
B1

C1
=

36
1800

=
1
50

second per transaction

U1 =
B1

T =
36
60

= 60%



56 Quantifying Performance Models Chapter 3

λ1 =
A1

T =
1800
60

= 30 tps

X0 =
C0

T =
1800
60

= 30 tps

In Chapter 2, we discussed the need to consider multiple class models

to account for transactions with different demands on the various resources.

The notation presented above can be easily extended to the multiple class

case by considering that R is the number of classes and by adding the class

number r (r = 1, · · · , R) to the subscript. For example, Ui,r is the utilization

of resource i due to requests of class r and X0,r is the throughput of class r

requests.

The subsections that follow discuss several useful relationships—called

operational laws—between operational variables.

3.2.1 Utilization Law

As we saw above, the utilization of a resource is defined as Ui = Bi/T . If

we divide the numerator and denominator of this ratio by the number of

completions from resource i, Ci, during the observation interval, we get

Ui =
Bi

T =
Bi/Ci

T /Ci
. (3.2.1)

The ratio Bi/Ci is simply the average time that the resource was busy for

each completion from resource i, i.e., the average service time Si per visit to

the resource. The ratio T /Ci is just the inverse of the resource throughput

Xi. So, we can write the relation known as the Utilization Law:

Ui = Si × Xi. (3.2.2)

If the number of completions from resource i during the observation interval

T is equal to the number of arrivals in that interval, i.e., if Ci = Ai, then

Xi = λi and the relationship given by the Utilization Law becomes Ui =

Si × λi.



Section 3.2. Basic Performance Results 57

If resource i has m servers, as in a multiprocessor, the Utilization Law

becomes Ui = (Si ×Xi)/m. The multiclass version of the Utilization Law is

Ui,r = Si,r × Xi,r.

Example 3.1

The bandwidth of a communication link is 56,000 bps and it is used

to transmit 1500-byte packets that flow through the link at a rate of 3

packets/second. What is the utilization of the link?

Start by identifying the operational variables given or that can be ob-

tained from the measured data. The link is the resource (K = 1) for

which we want to find the utilization. The throughput of that resource,

X1, is 3 packets/second. What is the average service time per packet?

In other words, what is the average transmission time? Each packet has

1,500 bytes/packet × 8 bits/byte = 12, 000 bits/packet. Thus, it takes

12, 000 bits/56, 000 bits/sec = 0.214 sec to transmit a packet over this link.

Therefore, S1 = 0.214 sec/packet. Using the Utilization Law, we compute

the utilization of the link as S1 × X1 = 0.214 × 3 = 0.642 = 64.2%.

Example 3.2

Consider a computer system with one CPU and three disks used to sup-

port a database server. Assume that all database transactions have similar

resource demands and that the database server is under a constant load of

transactions. Thus, the system is modeled using a single-class closed QN,

as indicated in Fig. 3.1. The CPU is resource 1 and the disks are numbered

from 2 to 4. Measurements taken during one hour provide the number of

transactions executed (13,680), the number of reads and writes per second

on each disk and their utilization, as indicated in Table 3.1. What is the

average service time per request on each disk? What is the database server’s

throughput?

The throughput of each disk, denoted by Xi (i = 2, 3, 4), is the total

number of I/Os per second, i.e., the sum of the number of reads and writes



58 Quantifying Performance Models Chapter 3

4

CPU

DISK 2

DISK 1

DISK 3

2

31

Figure 3.1. Closed QN model of a database server.

per second. This value is indicated in the fourth column of the table. Using

the Utilization Law, we can compute the average service time Si as Ui/Xi.

Thus, S2 = U2/X2 = 0.30/32 = 0.0094 sec, S3 = U3/X3 = 0.41/36 = 0.0114

sec, and S4 = U4/X4 = 0.54/50 = 0.0108 sec.

The throughput, X0, of the database server is given by X0 = C0/T =

13, 680 transactions/3, 600 seconds = 3.8 tps.

Table 3.1. Data for Example 3.2

Disk Reads Writes Total I/Os Utilization

Per Second Per Second Per Second

1 24 8 32 0.30

2 28 8 36 0.41

3 40 10 50 0.54



Section 3.2. Basic Performance Results 59

3.2.2 Service Demand Law

Service demand is a fundamental concept in performance modeling. The

notion of service demand is associated both to a resource and a set of requests

using the resource. The service demand , denoted as Di, is defined as the total

average time spent by a typical request of a given type obtaining service from

resource i. Throughout its existence, a request may visit several devices,

possibly multiple times. However, for any given request, its service demand

is the sum of all service times during all visits to a given resource. When

considering various requests using the same resource, we compute the service

demand at the resource as the average, for all requests, of the sum of the

service times at that resource. Note that, by definition, service demand does

not include queuing time since it is the sum of service times. If different

requests have very different service times, using a multiclass model is more

appropriate. In this case, define Di,r, as the service demand of requests of

class r at resource i.

To illustrate the concept of service demand, consider that six transactions

perform three I/Os on a disk. The service time, in msec, for each I/O and

each transaction is given in Table 3.2. The last line shows the sum of the

service times over all I/Os for each transaction. The average of these sums

is 36.2 msec. This is the service demand on this disk due to the workload

generated by the six transactions.

Table 3.2. Service times in msec for six requests

Transaction No.

I/O No. 1 2 3 4 5 6

1 10 15 13 10 12 14

2 12 12 12 11 13 12

3 11 14 11 11 11 13

Sum 33 41 36 32 36 39



60 Quantifying Performance Models Chapter 3

Service demands are important because, along with workload intensity

parameters, they are input parameters for QN models. Fortunately, there

is an easy way to obtain service demands from resource utilizations and

system throughput. By multiplying the utilization Ui of a resource by the

measurement interval T one obtains the total time the resource was busy.

If this time is divided by the total number of completed requests, C0, the

average amount of time that the resource was busy serving each request is

derived. This is precisely the service demand. So,

Di =
Ui × T

C0
=

Ui

C0/T
=

Ui

X0
. (3.2.3)

This relationship is called the Service Demand Law, which can also be

written as Di = Vi × Si, by definition of the service demand (and since

Di = Ui/X0 = (Bi/T )/(C0/T ) = Bi/C0 = (Ci × Si)/C0 = (Ci/C0) × Si =

Vi × Si). In many cases, it is not easy to obtain the individual values of

the visit counts and service times. However, Eq. (3.2.3) indicates that the

service demand can be computed directly from the device utilization and

system throughput. The multiclass version of the Service Demand Law is

Di,r = Ui,r/X0,r = Vi,r × Si,r.

Example 3.3

A Web server is monitored for 10 minutes and its CPU is observed to be

busy 90% of the monitoring period. The Web server log reveals that 30,000

requests are processed in that interval. What is the CPU service demand of

requests to the Web server?

The observation period T is 600 (= 10 × 60) seconds. The Web server

throughput, X0, is equal to the number of completed requests C0 divided

by the observation interval; X0 = 30, 000/600 = 50 requests/sec. The CPU

utilization is UCPU = 0.9. Thus, the service demand at the CPU is DCPU =

UCPU/X0 = 0.9/50 = 0.018 seconds/request.



Section 3.2. Basic Performance Results 61

Example 3.4

What are the service demands at the CPU and the three disks for the

database server of Example 3.2 assuming that the CPU utilization is 35%

measured during the same one-hour interval?

Remember that the database server’s throughput was computed to be 3.8

tps. Using the Service Demand Law and the utilization values for the three

disks shown in Table 3.1, we get: DCPU = 0.35/3.8 = 0.092 sec/transaction,

Ddisk1 = 0.30/3.8 = 0.079 sec/transaction, Ddisk2 = 0.41/3.8 = 0.108

sec/transaction, and Ddisk3 = 0.54/3.8 = 0.142 sec/transaction.

3.2.3 The Forced Flow Law

There is an easy way to relate the throughput of resource i, Xi, with the

system throughput, X0. Assume for the moment that every transaction that

completes from the database server of Example 3.2 performs an average of

two I/Os on disk 1. That is, suppose that for every one visit that the

transaction makes to the database server, it visits disk 1 an average of two

times. What is the throughput of that disk in I/Os per second? Since,

3.8 transactions complete per second (i.e., the system throughput, X0) and

each one performs two I/Os on average on disk 1, the throughput of disk 1

is 7.6 (= 2.0 × 3.8) I/Os per second. In other words, the throughput of a

resource (Xi) is equal to the average number of visits (Vi) made by a request

to that resource multiplied by the system throughput (X0). This relation is

called the Forced Flow Law:

Xi = Vi × X0. (3.2.4)

The multiclass version of the Forced Flow Law is Xi,r = Vi,r × X0,r.

Example 3.5

What is the average number of I/Os on each disk in Example 3.2?



62 Quantifying Performance Models Chapter 3

The value of Vi for each disk i, according to the Forced Flow Law, can

be obtained as Xi/X0. The database server throughput is 3.8 tps and the

throughput of each disk in I/Os per second is given in the fourth column of

Table 3.1. Thus, V1 = X1/X0 = 32/3.8 = 8.4 visits to disk 1 per database

transaction. Similarly, V2 = X2/X0 = 36/3.8 = 9.5 and V3 = X3/X0 =

50/3.8 = 13.2.

3.2.4 Little’s Law

Conceptually, Little’s Law [2] is quite simple and intuitively appealing. We

describe the result by way of an analogy. Consider a pub. Customers arrive

at the pub, stay for a while, and leave. Little’s result states that the average

number of folk in the pub (i.e., the queue length) is equal to the departure

rate of customers from the pub times the average time each customer stays

in the pub (see Fig. 3.2).

This result applies across a wide range of assumptions. For instance,

consider a deterministic situation where a new customer walks into the pub

every hour on the hour. Upon entering the pub, suppose that there are three

other customers in the pub. Suppose that the bartender regularly kicks out

the customer who has been there the longest, every hour at the half hour.

Thus, a new customer will enter at 9:00, 10:00, 11:00, . . ., and the oldest

remaining customer will be booted out at 9:30, 10:30, 11:30, . . .. It is clear

that the average number of persons in the pub will be 31
2 , since 4 customers

will be in the pub for the first half hour of every hour and only 3 customers

will be in the pub for the second half hour of every hour. The departure

rate of customers at the pub is one customer per hour. The time spent in

the pub by any customer is 31
2 hours. Thus, via Little’s Law:

avg. number in pub = departure rate at pub × avg. time spent in pub

3
1
2

= 1 × 3
1
2



Section 3.2. Basic Performance Results 63

Also, it does not matter which customer the bartender kicks out. For

instance, suppose that the bartender chooses a customer at random to kick

out. We leave it as an exercise to show that the average time spent in the

pub in this case would also be 31
2 hours. [Hint: the average time a customer

spends in the pub is one half hour with probability 0.25, one and a half

hours with probability (0.75)(0.25) = 0.1875 (i.e., the customer avoided the

bartender the first time around, but was chosen the second), two and a half

hours with probability (0.75)(0.75)(0.25), and so on.]

Little’s Law is quite general and requires few assumptions. In fact, Lit-

tle’s Law holds as long as customers are not destroyed or created. For exam-

ple, if there is a fight in the pub and someone gets killed or a if a pregnant

woman goes into the pub and gives birth, Little’s Law does not hold.

PUB

= x
average departure

in the pub time at the pub
mean number

rate

Figure 3.2. Little’s Law.



64 Quantifying Performance Models Chapter 3

Queue Server

Figure 3.3. Single server.

Little’s Law applies to any “black box”, which may contain an arbitrary

set of components. If the box contains a single resource (e.g., a single CPU,

a single pub) or if the box contains a complex system (e.g., the Internet, a

city full of pubs and shops), Little’s Law holds. Thus, we can restate Little’s

Law as

average number of

customers in a box
=

departure rate

from the box
× average time spent

in the box.
(3.2.5)

For example, consider the single server queue of Fig. 3.3. Let the designated

box be the server only, excluding the queue. Applying Little’s Law, the

average number of customers in the box is interpreted as the average number

of customers in the server. The server will either have a single customer

who is utilizing the server, or the server will have no customer present.

The probability that a single customer is utilizing the server is equal to the

server utilization. The probability that no customer is present is equal to

the probability that the server is idle.

Thus, the average number of customers in the server equals

1×Prob[single customer present] + 0×Prob[no customer present]. (3.2.6)

This simply equals the server’s utilization. Therefore, the average number of

customers in the server, N s, equals the server’s utilization. The departure

rate at the server (i.e., the departure rate from the box) equals the server



Section 3.2. Basic Performance Results 65

throughput. The average time spent by a customer at the server is simply

the mean service time of the server. Thus, with this interpretation of Little’s

Law, N s
i = Ui = Xi × Si. This result is simply the Utilization Law!

Now consider that the box includes both the waiting queue and the

server. The average number of customers in the box (waiting queue +

server), denoted by Ni, is equal, according to Little’s Law, to the average

time spent in the box, which is the response time Ri, times the throughput

Xi. Thus, Ni = Ri × Xi. Equivalently, by measuring the average number

of customers in a box and measuring the output rate (i.e., the throughput)

of the box, the response time can be calculated by taking the ratio of these

two measurements.

Finally, by considering the box to include just the waiting line (i.e., the

queue but not the server), Little’s Law indicates that Nw
i = Wi ×Xi, where

Nw
i is the average number of customers in the queue and Wi the average

waiting time in the queue prior to receiving service.

Example 3.6

Consider the database server of Example 3.2 and assume that during

the same measurement interval the average number of database transactions

in execution was 16. What was the response time of database transactions

during that measurement interval?

The throughput of the database server was already determined as being

3.8 tps. Apply Little’s Law and consider the entire database server as the

box. The average number in the box is the average number N of concurrent

database transactions in execution (i.e., 16). The average time in the box is

the average response time R desired. Thus, R = N/X0 = 16/3.8 = 4.2 sec.



66 Quantifying Performance Models Chapter 3

System

M

1

R

X0

. . .

Database

client workstations
Z

Interactive 

Figure 3.4. Interactive computer system.

3.2.5 Interactive Response Time Law

Consider an interactive system composed of M clients each sitting at their

own workstation and interactively accessing a common database server sys-

tem. Clients work independently and alternate between “thinking” (i.e.,

composing requests for the server) and waiting for a response from the server.

The average think time is denoted by Z and the average response time is R.

See Fig. 3.4. The think time is defined as the time elapsed since a customer

receives a reply to a request until a subsequent request is submitted. The

response time is the time elapsed between successive think times by a client.

Let M and N be the average number of clients thinking and the average

number of clients waiting for a response, respectively. By viewing clients

as moving between workstations and the database server, depending upon

whether or not they are in the think state, M and N represent the average

number of clients at the workstations and at the database server, respec-

tively. Clearly, M + N = M since a client is either in the think state or

waiting for a reply to a submitted request. By applying Little’s Law to the



Section 3.2. Basic Performance Results 67

box containing just the workstations,

M = X0 × Z (3.2.7)

since the average number of requests submitted per unit time (throughput

of the set of clients) must equal the number of completed requests per unit

time (system throughput X0). Similarly, by applying Little’s Law to the box

containing just the database server,

N = X0 × R (3.2.8)

where R is the average response time. By adding Eqs. (3.2.7) and (3.2.8),

M + N = M = X0(Z + R). (3.2.9)

With a bit of algebra,

R =
M

X0
− Z. (3.2.10)

This is an important formula known as the interactive response time law.

Example 3.7

If 7,200 requests are processed during one hour by an interactive com-

puter system with 40 clients and an average think time of 15 sec, the average

response time is

R =
40

7200/3600
− 15 = 5 sec. (3.2.11)

Example 3.8

A client/server system is monitored for one hour. During this time, the

utilization of a certain disk is measured to be 50%. Each request makes an

average of two accesses to this disk, which has an average service time equal

to 25 msec. Considering that there are 150 clients and that the average think

time is 10 sec, what is the average response time?



68 Quantifying Performance Models Chapter 3

The known quantities are: Udisk = 0.5, Vdisk = 2, Sdisk = 0.025 sec,

M = 150, and Z = 10 sec. From the Utilization Law,

Udisk = Sdisk × Xdisk.

Thus, Xdisk = 0.5/0.025 = 20 requests/sec. From the Forced Flow Law,

X0 =
Xdisk

Vdisk
=

20
2

= 10 requests/sec.

Finally, from the Interactive Response Time Law,

R =
M

X0
− Z =

150
10

− 10 = 5 sec.

The multiclass version of the Interactive Response Time Law is Rr =

Mr/X0,r − Zr.

Figure 3.5 summarizes the main relationships discussed in the previous

sections.

3.3 Bounds on Performance

Upper bounds on throughput and lower bounds on response time can be

obtained by considering the service demands only (i.e., without solving any

underlying model). This type of bounding analysis can be quite useful since

it provides the analyst with the best possible performance one could hope

from a system. The bounding behavior of a computer system is determined

by its bottleneck resource. The bottleneck of a system is that resource with

the highest utilization (or, equivalently, the resource with the largest service

demand).

Example 3.9

Consider again the database server of Example 3.2 and the service de-

mands for the CPU and the three disks computed in Example 3.4. The

service demands were computed to be: DCPU = 0.092 sec, Ddisk1 = 0.079



Section 3.3. Bounds on Performance 69

sec, Ddisk2 = 0.108 sec, and Ddisk3 = 0.142 sec. Correspondingly, the uti-

lization of these devices are 35%, 30%, 41%, and 54%, respectively (from

Example 3.4 and Table 1.1). What is the maximum throughput Xmax
0 of the

database server?

According to the Service Demand Law, we can write that UCPU =

DCPU × X0 = 0.092 × X0, Udisk1 = Ddisk1 × X0 = 0.079 × X0, Udisk2 =

Ddisk2 ×X0 = 0.108×X0, and Udisk3 = Ddisk3 ×X0 = 0.142×X0. Since the

service demands are constant (i.e., load-independent), they do not vary with

the number of concurrent transactions in execution. The service demands do

not include any queuing time, only the total service required by a transaction

at the device. Therefore, as the load (i.e., as the throughput, X0) increases

on the database server, each of the device utilizations also increases linearly

as a function of their individual Di’s. See Fig. 3.6. As indicated in the figure,

the utilization of disk 3 will reach 100% before any other resource, because

Utilization Law:

Ui = Xi × Si = λi × Si (3.2.12)

Forced Flow Law:

Xi = Vi × X0 (3.2.13)

Service Demand Law:

Di = Vi × Si = Ui/X0 (3.2.14)

Little’s Law:

N = X × R (3.2.15)

Interactive Response Time Law

R =
M

X0
− Z (3.2.16)

Figure 3.5. Summary of Operational Laws.



70 Quantifying Performance Models Chapter 3

the utilization of this disk is always greater than that of other resources.

That is, disk3 is the system’s bottleneck. When the system load increases to

a point where disk 3’s utilization reaches 100%, the throughput cannot be

increases any further. Since X0 = Udisk3/Ddisk3, X0 ≤ 1/Ddisk3. Therefore,

the maximum throughput, Xmax
0 = 1/Ddisk3 = 1/0.142 = 7.04 tps.

This example demonstrates that

X0 =
Ui

Di
≤ 1

Di
for all resources i. (3.3.17)

The resource with the largest service demand will have the highest utilization

and is, therefore, the system’s bottleneck. This bottleneck device yields the

lowest (upper bound) value for the ratio 1/Di. Therefore,

X0 ≤ 1
max {Di}

. (3.3.18)

This relationship is known as the upper asymptotic bound on throughput

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7

Throughput (req/sec)

U
ti

liz
at

io
n

Ucpu Udisk1 Udisk2 Udisk3

Figure 3.6. Utilization vs. throughput for Example 3.9.



Section 3.3. Bounds on Performance 71

under heavy load conditions [3].

Now consider Little’s Law applied to the same database server and let

N be the number of concurrent transactions in execution. Via Little’s Law,

N = R × X0. But, for a system with K resources, the response time R

is at least equal to the sum of service demands,
∑K

i=1 Di, when there is no

queuing. Thus,

N = R × X0 ≥ (
K∑

i=1

Di) × X0, (3.3.19)

which can be rewritten as

X0 ≤ N∑K
i=1 Di

. (3.3.20)

This relationship is known as the upper asymptotic bound on throughput

under light load conditions [3]. Combining Eqs. (3.3.18) and (3.3.20), the

upper asymptotic bounds are:

X0 ≤ min

[
1

max {Di}
,

N∑K
i=1 Di

]
. (3.3.21)

To illustrate these bounds, consider the same database server in Exam-

ples 3.2 and 3.4. Consider the two lines (i.e., from Eq. (3.3.21) that bound

its throughput as shown in Fig. 3.7. The line that corresponds to the light

load bound is the line N / 0.421 (solid line with solid diamonds). The

horizontal line at 7.04 tps (solid line with unfilled diamonds) is the heavy

load bound for this case. The actual throughput curve is shown in Fig. 3.7

as the dotted line with solid diamonds and lies below the two bounding

lines. Consider now that the bottleneck resource, disk 3, is upgraded in such

a way that its service demand is halved (i.e., by replacing it with a new

disk that is twice as fast). Then, the sum of the service demands becomes

0.35 (= 0.092 + 0.079 + 0.108 + 0.071) sec. The maximum service demand

is now that of disk 2, the new bottleneck, and the new heavy load bound

(i.e., the inverse of the maximum service demand) is now 9.26 (= 1/0.108)

tps. The solid lines with triangles show the bounds on throughput for the



72 Quantifying Performance Models Chapter 3

0

2

4

6

8

10

12

0 1 2 3 4 5

Number of Concurrent Transactions (N)

T
h

ro
u

g
h

p
u

t 
(t

p
s)

actual throughput of original system 

light load bound of original system 

heavy load bound of original system 

heavy load bound of upgraded system 

light load bound of upgraded system 

actual throughput of upgraded system 

Figure 3.7. Bounds on throughput example.

upgraded system. The actual throughput line (dashed line with triangles) is

also shown.

Note that when the bottleneck resource was upgraded by a factor of

two, the maximum throughput improved only by 32% (from 7.04 tps to 9.26

tps). This occurred because the upgrade to disk 3 was excessive. Disk 2

became the new bottleneck. It would have been sufficient to upgrade disk 3

by a factor of 1.32 (= 0.142/0.108) instead of 2 to make its service demand

equal to that of disk 2. By using simple bottleneck analysis and performance

bounds in this manner, performance can be improved for the least amount

of cost.

Example 3.10

Consider the same database server of Examples 3.2 and 3.4. Let the



Section 3.3. Bounds on Performance 73

service demand at the CPU be fixed at 0.092 sec. What should be the values

of the service demands of the three disks to obtain the maximum possible

throughput, but by maintaining constant the sum of the service demands at

the three disks? Note that this is a load balancing problem (i.e., we want to

maximize throughput by simply shifting the load among the three disks).

As demonstrated, the maximum service demand determines the maxi-

mum throughput. In this example, since the CPU is not the bottleneck,

the maximum throughput is obtained when the service demands on all three

disks is the same and equal to the average of the three original values. This

is the balanced disk solution. In other words, the optimal solution occurs

when Ddisk1 = Ddisk2 = Ddisk3 = (0.079 + 0.108 + 0.142)/3 = 0.1097 sec. In

this case, the maximum throughput is 9.12 (= 1/0.1097) tps. Therefore, the

maximum throughput can be expanded to increase 29.5% (i.e., from 7.04 tps

to 9.12 tps) simply by balancing the load on the three existing disks.

To be convinced that the balanced disk solution is the optimal solution,

assume that all disks have a service demand equal to D seconds. Now,

increase the service demand of one of them by ε seconds, for ε > 0. Since the

sum of the service demands is to be kept constant, the service demand of at

least one other disk has to be reduced in such a way that the sum remains

the same. The disk that had its service demand increased will now have

the largest service demand and becomes the bottleneck. The new maximum

throughput would be 1/(D + ε) < 1/D. Thus, by increasing the service

demand on one of the disks the maximum throughput decreases. Similarly,

suppose that the service demand of one of the disks is decreased. Then, the

service demand of at least one of the other disks will have to increase so

that the sum remains constant. The service demand of the disk that has the

largest increase limits the throughput. Let D + δ, for δ > 0, be the service

demand for the disk with the new largest demand. Then, the maximum

throughput is now equal to 1/(D + δ) < 1/D. Either way, the maximum

throughput decreases as one departs from the balanced case. Said differently,

the natural (and obvious) rule of thumb is to keep all devices equally utilized.



74 Quantifying Performance Models Chapter 3

Now consider a lower bound on the response time. According to Little’s

Law, the response time R is related to the throughput as R = N/X0. By

replacing X0 by its upper bound given in Eq. (3.3.21), the following lower

bounds for the response time can be obtained.

R =
N

X0
≥ N

min
[

1
max {Di} ,

N∑K

i=1
Di

] = max

[
N × max {Di},

K∑
i=1

Di

]
.

(3.3.22)

Example 3.11

Consider the same database server as before. What is the lower bound

on response time?

The sum of the service demands is 0.421 (= 0.092+0.079+0.108+0.142)

and the maximum service demand is 0.142 sec. Therefore, the response time

bounds are given by

R ≥ max[0.142 × N, 0.421]. (3.3.23)

These bounds are illustrated in Fig. 3.8, which also shows the actual response

time curve. As seen, as the load on the system increases, the actual response

time approaches the heavy load response time bound quickly. The actual

values of the response time are obtained by solving a closed QN model (see

Chapter 11) with the help of the enclosed ClosedQN.XLS MS Excel work-

book.

3.4 Using QN Models

One of the most important aspects in using QN models to predict perfor-

mance is to understand what models to use and how to obtain the data

for the model. In Chapter 2, different types and uses of QN models (open,

closed, single class, or multiclass) were discussed. Numerical examples that

illustrate the process are provided here.



Section 3.4. Using QN Models 75

Example 3.12

A Web server, composed of a single CPU and single disk, was moni-

tored for one hour. The main workload of the server can be divided into

HTML files and requests for image files. During the measurement inter-

val 14,040 requests for HTML files and 1,034 requests for image files are

processed. An analysis of the Web server log shows that HTML files are

3,000-bytes long and image files are 15,000-bytes long on average. The av-

erage disk service time is 12 msec for 1,000-byte blocks. The CPU demand,

in seconds, per HTTP request, is given by the expression CPUDemand =

0.008 + 0.002 × RequestSize, where RequestSize is given in the number of

1000-byte blocks processed. This expression for the CPU demand indicates

that there is a constant time associated to processing a request (i.e., 0.008

seconds) regardless of the size of the file being requested. This constant

time involves opening a TCP connection, analyzing the HTTP request, and

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12

Number of Concurrent Transactions

R
es

p
o

n
se

 T
im

e 
(s

ec
)

actual response time

heavy load bound 

light load bound 

Figure 3.8. Bounds on response time example.



76 Quantifying Performance Models Chapter 3

opening the requested file. The second component of the CPU demand is

proportional to the file size since the CPU is involved in each I/O operation.

What is the response time for HTML and image file requests for the current

load and for a load five times larger?

Since the workload is characterized as being composed of two types of

requests, a two-class queuing network model is required. Should an open or

closed model be used? The answer depends on how the workload intensity

is specified. In this example, the load is specified by the number of requests

of each type processed during the measurement interval. In other words, the

arrival rate for each type of requests is:

λHTML = 14, 040/3, 600 = 3.9 requests/sec, and

λimage = 1, 034/3, 600 = 0.29 requests/sec. (3.4.24)

This workload intensity is constant and does not depend on a fixed number

of customers. Therefore, an open QN model as described in Chapter 12

is chosen. The next step is to compute the service demands for the CPU

and disk for HTML and image file requests. Using the expression for CPU

time, the service demand for the CPU for HTML and image requests can

be computed by using the corresponding file sizes in 1,000-byte blocks for

each case as: DCPU,HTML = 0.008 + 0.002 × 3 = 0.014 sec and DCPU,image =

0.008 + 0.002 × 15 = 0.038 sec. The disk service demand is computed by

multiplying the number of blocks read for each type of request by the service

time per block. That is, Ddisk,HTML = 3×0.012 = 0.036 sec and Ddisk,image =

15× 0.012 = 0.18 sec. By entering this data into the MS Excel OpenQN.XLS

workbook that comes with this book and solving the model, the results in

Table 3.3 are obtained.

In the case of open models, the throughput is equal to the arrival rate.

Consider what happens under a five-fold increase in the load. The arrival

rates become λHTML = 5 × 3.9 = 19.5 requests/sec and λimage = 5 × 0.29 =

1.45 requests/sec. Solving the model with these values of the arrival rates,

new response times of 0.93 sec for HTML and 4.61 sec for image requests are



Section 3.4. Using QN Models 77

Table 3.3. Service Demands, Arrival Rates, and Performance Metrics for Ex. 3.12

HTML Images

Arrival Rate (req/sec) 3.90 0.29

Service Demands (sec)

CPU 0.014 0.038

Disk 0.036 0.180

Utilizations (%)

CPU 5.5 1.1

Disk 14 5.2

Residence times (sec)

CPU 0.015 0.041

Disk 0.045 0.223

Response times (sec) 0.060 0.264

obtained. Thus, image file requests experience an increase in their response

time by a factor of 17.5 and requests for HTML files experience a response

time increased by a factor of 15.5. At the new load level, the disk utilization

reaches 96% as indicated by the model, up from its previous 19.2% utiliza-

tion (i.e., 14% + 5.2%). This indicates that the original system has excess

capacity, but a five-fold load increase is nearing its maximum capacity.

Example 3.13

Reconsider the Web server of Example 3.12. What is the response time

and throughput of HTML and image file requests when there is an average

of 14 HTML requests and 6 image file requests being executed concurrently

at all times?

In this case, the workload is specified by a number of concurrent requests

in execution and not by an arrival rate. In this situation, a closed multi-

class QN model (described in Chapter 12) is now appropriate. This model



78 Quantifying Performance Models Chapter 3

can be solved using the MS Excel workbook ClosedQN.XLS. The service de-

mands are the same as in Example 3.12. Solving the model, RHTML = 0.72

sec, Rimage = 3.57 sec, XHTML = 19.3 requests/sec, and Ximage = 1.7 re-

quests/sec. By comparing these results against these in Example 3.12, when

the workload is increased five-fold, similar performance magnitudes are ob-

served.

3.5 Concluding Remarks

Chapter 2 described the various types of performance models from a quali-

tative point of view. In this chapter, these models are quantified. A set of

very important relationships between performance variables are introduced.

These relationships, called Operational Laws, are quite general (i.e., robust)

and are extremely useful because: i) they are very simple, ii) they ae based

on readily available measurement data, and iii) they can be used to obtain

helpful performance metrics.

Simple bounding techniques were introduced and used to obtain upper

bounds on throughput and lower bounds on response time from service de-

mands. Examples were presented of applying QN models to various perfor-

mance situations. In the following chapters of Part I the set of applications

of performance models is expanded. The models used here are described in

Part II and are implemented using the tools included.

3.6 Exercises

1. A computer system is monitored for one hour. During this period,

7,200 transactions were executed and the average multiprogramming

level is measured to be equal to 5 jobs. What is the average time spent

by a job in the system once it is in the multiprogramming mix (i.e.,

the average time spent by the job in the system once it is memory

resident)?

2. Measurements taken during one hour from a Web server indicate that



Section 3.6. Exercises 79

the utilization of the CPU and the two disks are: UCPU = 0.25,

Udisk1 = 0.35, and Udisk2 = 0.30. The Web server log shows that 21,600

requests were processed during the measurement interval. What are

the service demands at the CPU and both disks, what is the maximum

throughput, and what was the response time of the Web server during

the measurement interval?

3. Consider the Web server of Exercise 3.2. Draw a graph of the Web

server’s throughput as a function of the number of concurrent requests.

Comment on observations.

4. A computer system is measured for 30 minutes. During this time, 5,400

transactions are completed and 18,900 I/O operations are executed on

a certain disk that is 40% utilized. What is the average number of I/O

operations per transaction on this disk? What is the average service

time per transaction on this disk?

5. A transaction processing system is monitored for one hour. During

this period, 5,400 transactions are processed. What is the utilization

of a disk if its average service time is equal to 30 msec per visit and

the disk is visited three times on average by every transaction?

6. The average delay experienced by a packet when traversing a computer

network is 100 msec. The average number of packets that cross the

network per second is 128 packets/sec. What is the average number of

concurrent packets in transit in the network at any time?

7. A file server is monitored for 60 minutes, during which time 7,200

requests are completed. The disk utilization is measured to be 30%.

The average service time at this disk is 30 msec per file operation

request. What is the average number of accesses to this disk per file

request?

8. Consider the database server of Example 3.2. Using ClosedQN.XLS,



80 Quantifying Performance Models Chapter 3

what is the throughput of the database server, its response time, and

the utilization of the CPU and the three disks, when there are 5 con-

current transactions in execution?

9. A computer system has one CPU and two disks: disk 1 and disk 2. The

system is monitored for one hour and the utilization of the CPU and of

disk 1 are measured to be 32% and 60%, respectively. Each transaction

makes 5 I/O requests to disk 1 and 8 to disk 2. The average service

time at disk 1 is 30 msec and at disk 2 is 25 msec.

• Find the system throughput.

• Find the utilization of disk 2.

• Find the average service demands at the CPU, disk 1, and disk 2.

• Find the system throughput, response time, and average queue

length at the CPU and the disks when the degree of multipro-

gramming is n, for n = 0, ..., 4.

• Based on the above results, what is a good approximation for

the average degree of multiprogramming during the measurement

interval?

10. Obtain access to a Unix or Linux machine and become acquainted with

the command iostat, which displays information on disk and CPU

activity. The data in Table 3.4 shows a typical output report from

iostat. Each line displays values averaged over 5-second intervals.

The first three columns show activity on disk sd0. The kps column

reports KB transferred per second, the tps column shows the number

of I/Os per second, and the serv column shows average disk service

time in milliseconds. The next four columns display CPU activity. The

us column shows the percent of time the CPU spent in user mode. The

next column shows the percent of time the CPU was in system mode

followed by the percent of time the CPU was waiting for I/O. The last



Section 3.6. Exercises 81

Table 3.4. Data for Exercise 3.9

sd0 cpu

kps tps serv us sy wt id

25 3 6 19 3 0 78

32 4 7 13 4 0 83

28 2 7 20 3 0 77

18 2 8 24 2 0 74

29 3 9 18 5 0 77

33 4 12 23 3 0 74

35 4 8 25 5 0 70

25 4 10 32 4 0 64

26 3 11 28 4 0 68

34 4 12 22 6 0 72

column is the percent of time the CPU was idle. Compute the disk

and CPU utilizations.

Bibliography

[1] P. J. Denning and J. P. Buzen, “The Operational Analysis of Queueing

Network Models,” Computing Surveys, Vol. 10, No. 3, September 1978, pp.

225-261.

[2] J. C. Little, “A Proof of the Queueing Formula L = λW ,” Operations

Research, Vol. 9, 1961, pp. 383–387.

[3] R. R. Muntz and J. W. Wong, “Asymptotic Properties of Closed Queuing

Network Models,” Proc. 8th Princeton Conference on Information Sciences

and Systems, 1974.



82 Quantifying Performance Models Chapter 3


