

73

Collections

�

C

OLLECTION

 I

NTERFACES

�

C

ONCRETE

 C

OLLECTIONS

�

T

HE

 C

OLLECTIONS

 F

RAMEWORK

�

A

LGORITHMS

�

L

EGACY

 C

OLLECTIONS

O

OP encapsulates data inside classes, but this doesn’t make how you
organize the data inside the classes any less important than in traditional pro-
gramming languages. Of course, how you choose to structure the data depends
on the problem you are trying to solve. Does your class need a way to easily
search through thousands (or even millions) of items quickly? Does it need an
ordered sequence of elements

and

the ability to rapidly insert and remove ele-
ments in the middle of the sequence? Does it need an arraylike structure with ran-
dom-access ability that can grow at run time? The way you structure your data
inside your classes can make a big difference when it comes to implementing
methods in a natural style, as well as for performance.

This chapter shows how Java technology can help you accomplish the tradi-
tional data structuring needed for serious programming. In college com-
puter science programs, there is a course called

Data Structures

that usually

2

Core Java74

takes a semester to complete, so there are many, many books devoted to this
important topic. Exhaustively covering all the data structures that may be
useful is not our goal in this chapter; instead, we cover the fundamental ones
that the standard Java library supplies. We hope that, after you finish this
chapter, you will find it easy to translate any of your data structures to the
Java programming language.

Collection Interfaces

Before the release of the Java 2 platform, the standard library supplied only a
small set of classes for the most useful data structures:

Vector

,

Stack

,

Hash-

table

,

BitSet

, and the

Enumeration

 interface that provides an abstract
mechanism for visiting elements in an arbitrary container. That was certainly
a wise choice—it takes time and skill to come up with a comprehensive col-
lection class library.

With the advent of the Java 2 platform, the designers felt that the time had
come to roll out a full-fledged set of data structures. They faced a number of
conflicting design decisions. They wanted the library to be small and easy to
learn. They did not want the complexity of the “Standard Template Library”
(or STL) of C++, but they wanted the benefit of “generic algorithms” that
STL pioneered. They wanted the legacy classes to fit into the new frame-
work. As all designers of collection libraries do, they had to make some hard
choices, and they came up with a number of idiosyncratic design decisions
along the way. In this section, we will explore the basic design of the Java
collections framework, show you how to put it to work, and explain the rea-
soning behind some of the more controversial features.

Separating Collection Interfaces and Implementation

As is common for modern data structure libraries, the Java collection library
separates

interfaces

 and

implementations.

Let us look at that separation with a
familiar data structure, the

queue.

The Java library does not supply a queue,
but it is nevertheless a good example to introduce the basic concepts.

NOTE: If you need a queue, you can simply use the

LinkedList

 class that we dis-

cuss later in this chapter.

A

 queue interface

specifies that you can add elements at the tail end of the
queue, remove them at the head, and find out how many elements are in the
queue. You use a queue when you need to collect objects and retrieve them
in a “first in, first out” fashion (see Figure 2–1).

75

2 • Collections

Figure 2–1: A queue

If there was a queue interface in the collections library, it might look like this:

interface Queue
{ void add(Object obj);
 Object remove();
 int size();
}

The interface tells you nothing about how the queue is implemented. There are
two common implementations of a queue, one that uses a “circular array” and
one that uses a linked list (see Figure 2–2).

Figure 2–2: Queue implementations

tailhead

21 3 4 5

tailhead

head

tail

Linked List

Circular Array

Link

next

data

Link

next

data

Link

next

data

Link

next

data

3

2

1

5

4

1 2 3 4

Core Java76

Each implementation can be expressed by a class that realizes the

Queue

 interface:

class CircularArrayQueue

implements Queue

{ CircularArrayQueue(int capacity) { . . . }
 public void add(Object obj) { . . . }
 public Object remove() { . . . }
 public int size() { . . . }

 private Object[] elements;
 private int head;
 private int tail;
}

class LinkedListQueue

implements Queue

{ LinkedListQueue() { . . . }
 public void add(Object obj) { . . . }
 public Object remove() { . . . }
 public int size() { . . . }

 private Link head;
 private Link tail;
}

When you use a queue in your program, you don’t need to know which imple-
mentation is actually used once the collection has been constructed. Therefore,
it makes sense to use the concrete class (such as

CircularArrayQueue

)

only

when you construct the collection object. Use the

interface type

to hold the
collection reference.

Queue

 expressLane = new

CircularArrayQueue

(100);
expressLane.add(new Customer("Harry"));

This approach makes it easy to change your mind and use a different imple-
mentation. You only need to change your program in one place—the construc-
tor. If you decide that a

LinkedListQueue

 is a better choice after all, your
code becomes

Queue expressLane = new

LinkedListQueue()

;
expressLane.add(new Customer("Harry"));

Why would you choose one implementation over another? The interface says
nothing about the efficiency of the implementation. A circular array is some-
what more efficient than a linked list, so it is generally preferable. However, as
usual, there is a price to pay. The circular array is a

bounded

 collection—it has a
finite capacity. If you don’t have an upper limit on the number of objects that
your program will collect, you may be better off with a linked list implementa-
tion after all.

77

2 • Collections

This example illustrates another issue for the designer of a collection class library.
Strictly speaking, in a bounded collection, the interface of the

add

 method should
indicate that the method can fail:

class CircularArrayQueue
{ public void add(Object obj)

throws CollectionFullException

 . . .
}

That’s a problem—now the

CircularArrayQueue

 class can’t implement the

Queue

 interface since you can’t add exception specifiers when overriding a
method. Should one have two interfaces,

BoundedQueue

 and

Queue

? Or should
the

add

 method throw an unchecked exception? There are advantages and disad-
vantages to both approaches. It is these kinds of issues that make it genuinely
hard to design a logically coherent collection class library.

As we already mentioned, the Java library has no separate class for queues. We
just used this example to illustrate the difference between interface and imple-
mentation since a queue has a simple interface and two well-known distinct
implementations. In the next section, you will see how the Java library classifies
the collections that it supports.

Collection and Iterator Interfaces in the Java Library

The fundamental interface for collection classes in the Java library is the

Collection

 interface. The interface has two fundamental methods:

boolean add(Object obj)
Iterator iterator()

There are several methods in addition to these two; we will discuss them later.

The

add

 method adds an object to the collection. The

add

 method returns

true

 if
adding the object actually changed the collection;

false

, if the collection is
unchanged. For example, if you try to add an object to a set and the object is
already present, then the

add

 request is rejected since sets reject duplicates.

The

iterator

 method returns an object that implements the

Iterator

 inter-
face—we will describe that interface in a moment. You can use the iterator object
to visit the elements in the container one by one.

The

Iterator

 interface has three fundamental methods:

Object next()
boolean hasNext()
void remove()

Core Java78

By repeatedly calling the

next

 method, you can visit the elements from the
collection one by one. However, if you reach the end of the collection, the

next

method throws a

NoSuchElementException

. Therefore, you need to call the

hasNext

 method before calling

next

. That method returns

true

 if the iterator
object still has more elements to visit. If you want to inspect all elements in a
container, you request an iterator and then keep calling the

next

 method while
hasNext returns true.

Iterator iter = c.iterator();
while (iter.hasNext())
{ Object obj = iter.next();
 do something with obj
}

NOTE: Old-timers will notice that the next and hasNext methods of the
Iterator interface serve the same purpose as the nextElement and
hasMoreElements methods of an Enumeration. The designers of the Java
collection library could have chosen to extend the Enumeration interface. But
they disliked the cumbersome method names and chose to introduce a new inter-
face with shorter method names instead.

Finally, the remove method removes the element that was returned by the last
call to next.

You may well wonder why the remove method is a part of the Iterator inter-
face. It is more efficient to remove an element if you know where it is. The iterator
knows about positions in the collection. Therefore, the remove method was added
to the Iterator interface. If you visited an element that you didn’t like, you can
efficiently remove it.

There is an important conceptual difference between iterators in the Java collec-
tion library and iterators in other libraries. In traditional collection libraries such
as the Standard Template Library of C++, iterators are modeled after array
indexes. Given such an iterator, you can look up the element that is stored at that
position, much like you can look up an array element a[i] if you have an array
index i. Independently of the lookup, you can advance the iterator to the next
position, just like you can advance an array index with the i++ operation without
performing a lookup. However, the Java iterators do not work like that. The
lookup and position change are tightly coupled. The only way to look up an ele-
ment is to call next, and that lookup advances the position.

Instead, you should think of Java iterators as being between elements. When you
call next, the iterator jumps over the next element, and it returns a reference to the
element that it just passed (see Figure 2–3).

792 • Collections

Figure 2–3: Advancing an iterator

NOTE: Here is another useful analogy. You can think of Iterator.next as the equiv-
alent of InputStream.read. Reading a byte from a stream automatically “con-
sumes” the byte. The next call to read consumes and returns the next byte from the
input. Similarly, repeated calls to next let you read all elements in a collection.

You must be careful when using the remove method. Calling remove removes
the element that was returned by the last call to next. That makes sense if you
want to remove a particular value—you need to see the element before you can
decide that it is the one that should be removed. But if you want to remove an ele-
ment by position, you first need to skip past the element. For example, here is
how you remove the first element in a collection.

Iterator it = c.iterator();
it.next(); // skip over the first element
it.remove(); // now remove it

More importantly, there is a dependency between calls to the next and remove
methods. It is illegal to call remove if it wasn’t preceded by a call to next. If you
try, an IllegalStateException is thrown.

If you want to remove two adjacent elements, you cannot simply call

it.remove();
it.remove(); // Error!

iterator

returned
element

Core Java80

Instead, you must first call next to jump over the element to be removed.

it.remove();
it.next();
it.remove(); // Ok

Because the collection and iterator interfaces are generic, you can write utility
methods that operate on any kind of collection. For example, here is a generic
print method that prints all elements in a collection.

public static void print(Collection c)
{ System.out.print("[");
 Iterator iter = c.iterator();
 while (iter.hasNext())
 System.out.print(iter.next() + " ");
 System.out.println("]");
}

NOTE: We give this example to illustrate how to write a generic method. If you want to
print the elements in a collection, you can just call System.out.println(c). This
works because each collection class has a toString method that returns a string
containing all elements in the collection.

Here is a method that adds all objects from one collection to another:

public static boolean addAll(Collection to, Collection from)
{ Iterator iter = from.iterator();
 boolean modified = false;
 while (iter.hasNext())
 if (to.add(iter.next()))
 modified = true;
 return modified;
}

Recall that the add method returns true if adding the element modified the col-
lection. You can implement these utility methods for arbitrary collections because
the Collection and Iterator interfaces supply fundamental methods such as
add and next.

The designers of the Java library decided that some of these utility methods are so
useful that the library should make them available. That way, users don’t have to
keep reinventing the wheel. The addAll method is one such method.

Had Collection been an abstract class instead of an interface, then it would
have been an easy matter to supply this functionality in the class. However,
you cannot supply methods in interfaces of the Java programming language.
Therefore, the collection library takes a slightly different approach. The

812 • Collections

Collection interface declares quite a few useful methods that all implement-
ing classes must supply. Among them are:

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection c)
boolean equals(Object other)
boolean addAll(Collection from)
boolean remove(Object obj)
boolean removeAll(Collection c)
void clear()
boolean retainAll(Collection c)
Object[] toArray()

Many of these methods are self-explanatory; you will find full documentation in
the API notes at the end of this section.

Of course, it is a bother if every class that implements the Collection interface
has to supply so many routine methods. To make life easier for implementors,
the class AbstractCollection leaves the fundamental methods (such as add
and iterator) abstract but implements the routine methods in terms of them.
For example,

public class AbstractCollection
 implements Collection
{ . . .
 public abstract boolean add(Object obj);

 public boolean addAll(Collection from)
 { Iterator iter = iterator();
 boolean modified = false;
 while (iter.hasNext())
 if (add(iter.next()))
 modified = true;
 return modified
 }
 . . .
}

A concrete collection class can now extend the AbstractCollection class.
It is now up to the concrete collection class to supply an add method, but the
addAll method has been taken care of by the AbstractCollection super-
class. However, if the subclass has a more efficient way of implementing
addAll, it is free to do so.

This is a good design for a class framework. The users of the collection classes
have a richer set of methods available in the generic interface, but the

Core Java82

implementors of the actual data structures do not have the burden of imple-
menting all the routine methods.

• Iterator iterator()

returns an iterator that can be used to visit the elements in the collection.

• int size()

returns the number of elements currently stored in the collection.

• boolean isEmpty()

returns true if this collection contains no elements.

• boolean contains(Object obj)

returns true if this collection contains an object equal to obj.

• boolean containsAll(Collection other)

returns true if this collection contains all elements in the other collection.

• boolean add(Object element)

adds an element to the collection. Returns true if the collection changed as a
result of this call.

• boolean addAll(Collection other)

adds all elements from the other collection to this collection. Returns true if
the collection changed as a result of this call.

• boolean remove(Object obj)

removes an object equal to obj from this collection. Returns true if a match-
ing object was removed.

• boolean removeAll(Collection other)

removes all elements from the other collection from this collection. Returns
true if the collection changed as a result of this call.

• void clear()

removes all elements from this collection.

• boolean retainAll(Collection other)

removes all elements from this collection that do not equal one of the

java.util.Collection

Parameters: obj the object to match in the collection

Parameters: other the collection holding the elements to match

Parameters: element the element to add

Parameters: other the collection holding the elements to add

Parameters: obj an object that equals the element to remove

Parameters: other the collection holding the elements to add

832 • Collections

elements in the other collection. Returns true if the collection changed as a
result of this call.

• Object[] toArray()

returns an array of the objects in the collection.

• boolean hasNext()

returns true if there is another element to visit.
• Object next()

returns the next object to visit. Throws a NoSuchElementException if the
end of the collection has been reached.

• Object remove()

removes and returns the last visited object. This method must immediately
follow an element visit. If the collection has been modified since the last ele-
ment visit, then the method throws an IllegalStateException.

Concrete Collections
Rather than getting into more details about all the interfaces, we thought it would
be helpful to first discuss the concrete data structures that the Java library sup-
plies. Once you have a thorough understanding of what classes you will want to
use, we will return to abstract considerations and see how the collections frame-
work organizes these classes.

Linked Lists

We used arrays and their dynamic cousin, the Vector class, for many examples
in Volume 1. However, arrays and vectors suffer from a major drawback. Remov-
ing an element from the middle of an array is very expensive since all array
elements beyond the removed one must be moved toward the beginning of the
array (see Figure 2–4). The same is true for inserting elements in the middle.

Figure 2–4: Removing an element from an array

Parameters: other the collection holding the elements to
be kept

java.util.Iterator

removed element

Core Java84

Another well-known data structure, the linked list, solves this problem.
Whereas an array stores object references in consecutive memory locations, a
linked list stores each object in a separate link. Each link also stores a reference
to the next link in the sequence. In the Java programming language, all linked
lists are actually doubly linked, that is, each link also stores a reference to its
predecessor (see Figure 2–5).

Figure 2–5: A doubly linked list

Removing an element from the middle of a linked list is an inexpensive opera-
tion—only the links around the element to be removed need to be updated
(see Figure 2–6).

Figure 2–6: Removing an element from a linked list

Perhaps you once had a course in data structures where you learned how to
implement linked lists. You may have bad memories of tangling up the links
when removing or adding elements in the linked list. If so, you will be pleased
to learn that the Java collections library supplies a class LinkedList ready for
you to use.

Link

next

data

prev

LinkedList

first

Link

next

data

prev

Link

next

data

prev

LinkedList

first

Link

next

data

prev

Link

next

data

prev

Link

next

data

prev

852 • Collections

The LinkedList class implements the Collection interface. You can use the
familiar methods to traverse a list. The following code example prints the first
three elements of a list, adds three elements, and then removes the third one.

LinkedList staff = new LinkedList();
staff.add("Angela");
staff.add("Bob");
staff.add("Carl");
Iterator iter = staff.iterator();
for (int i = 0; i < 3; i++)
 System.out.println(iter.next());
iter.remove(); // remove last visited element

However, there is an important difference between linked lists and generic collec-
tions. A linked list is an ordered collection where the position of the objects matters.
The LinkedList.add method adds the object to the end of the list. But you often
want to add objects somewhere in the middle of a list. This position-dependent
add method is the responsibility of an iterator, since iterators describe positions in
collections. Using iterators to add elements only makes sense for collections that
have a natural ordering. For example, the set data type that we discuss in the next
section does not impose any ordering on its elements. Therefore, there is no add
method in the Iterator interface. Instead, the collections library supplies a sub-
interface ListIterator that contains an add method:

interface ListIterator extends Iterator
{ void add(Object);
 . . .
}

Unlike Collection.add, this method does not return a boolean—it is assumed
that the add operation always succeeds.

In addition, the ListIterator interface has two methods—

Object previous()
boolean hasPrevious()

—that you can use for traversing a list backwards. Like the next method, the
previous method returns the object that it skipped over.

The listIterator method of the LinkedList class returns an iterator object
that implements the ListIterator interface.

ListIterator iter = staff.listIterator();

The add method adds the new element before the iterator position. For example,
the code

ListIterator iter = staff.listIterator();
iter.next();
iter.add("Juliet");

Core Java86

skips past the first element in the linked list and adds "Juliet" before the sec-
ond element (see Figure 2–7).

Figure 2–7: Adding an element to a linked list

If you call the add method multiple times, the elements are simply added in the
order in which you supplied them. They all get added in turn before the current
iterator position.

When you use the add operation with an iterator that was freshly returned from the
listIterator method and that points to the beginning of the linked list, the newly
added element becomes the new head of the list. When the iterator has passed the last
element of the list (that is, when hasNext returns false), the added element becomes
the new tail of the list. If the linked list has n elements, there are n � 1 spots for adding a
new element. These spots correspond to the n � 1 possible positions of the iterator. For
example, if a linked list contains three elements A, B, and C, then the four possible posi-
tions (marked as |) for inserting a new element are:

|ABC
A|BC
AB|C
ABC|

NOTE: You have to be careful with the “cursor” analogy. The remove operation does
not quite work like the BACKSPACE key. Immediately after a call to next, the remove
method indeed removes the element to the left of the iterator, just like the BACKSPACE key
would. However, if you just called previous, the element to the right is removed. And
you can’t call remove twice in a row.

Unlike the add method, which only depends on the iterator position, the remove
method depends on the iterator state.

LinkedList

first

Link

next

data

prev

Link

next

data

prev

Link

next

data

prev

Link

next

data

prev

872 • Collections

Finally, there is a set method that replaces the last element returned by a call to
next or previous with a new element. For example, the following code replaces
the first element of a list with a new value:

ListIterator iter = list.listIterator();
Object oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another iterator is
modifying it, confusing situations can occur. For example, suppose an iterator points
before an element that another iterator has just removed. The iterator is now invalid
and should no longer be used. The linked list iterators have been designed to detect
such modifications. If an iterator finds that its collection has been modified by another
iterator or by a method of the collection itself, then it throws a ConcurrentModifi-
cationException. For example, consider the following code:

LinkedList list = . . .;
ListIterator iter1 = list.listIterator();
ListIterator iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

The call to iter2.next throws a ConcurrentModificationException since
iter2 detects that the list was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You can attach
as many iterators to a container as you like, provided that all of them are only readers.
Alternatively, you can attach a single iterator that can both read and write.

Concurrent modification detection is achieved in a simple way. The container
keeps track of the number of mutating operations (such as adding and removing
elements). Each iterator keeps a separate count of the number of mutating opera-
tions that it was responsible for. At the beginning of each iterator method, the iter-
ator simply checks whether its own mutation count equals that of the container. If
not, it throws a ConcurrentModificationException.

This is an excellent check and a great improvement over the fundamentally
unsafe iterators in the C++ STL framework. Note, however, that it does not auto-
matically make collections safe for multithreading. We discuss thread safety
issues later in this chapter.

NOTE: There is, however, a curious exception to the detection of concurrent modifica-
tions. The linked list only keeps track of structural modifications to the list, such as add-
ing and removing links. The set method does not count as a structural modification.
You can attach multiple iterators to a linked list, all of which call set to change the
contents of existing links. This capability is required for a number of algorithms in the
Collections class that we discuss later in this chapter.

Core Java88

Now you have seen the fundamental methods of the LinkedList class. You use
a ListIterator to traverse the elements of the linked list in either direction and
to add and remove elements.

As you saw in the preceding section, there are many other useful methods for operating
on linked lists that are declared in the Collection interface. These are, for the most
part, implemented in the AbstractCollection superclass of the LinkedList
class. For example, the toString method invokes toString on all elements and pro-
duces one long string of the format [A, B, C]. This is handy for debugging. Use the
contains method to check whether an element is present in a linked list. For example,
the call staff.contains("Harry") returns true if the linked list already contains
a string that is equal to the String "Harry". However, there is no method that returns
an iterator to that position. If you want to do something with the element beyond
knowing that it exists, you have to program an iteration loop by hand.

CAUTION: The Java platform documentation points out that you should not add a refer-
ence of a collection to itself. Otherwise, it is easy to generate a stack overflow in the vir-
tual machine. For example, the following call is fatal:

LinkedList list = new LinkedList();
list.add(list); // add list to itself
String contents = list.toString(); // dies with infinite recursion

Naturally, this is not a situation that comes up in everyday programming.

The library also supplies a number of methods that are, from a theoretical per-
spective, somewhat dubious. Linked lists do not support fast random access. If
you want to see the nth element of a linked list, you have to start at the beginning
and skip past the first n − 1 elements first. There is no shortcut. For that reason,
programmers don’t usually use linked lists in programming situations where ele-
ments need to be accessed by an integer index.

Nevertheless, the LinkedList class supplies a get method that lets you access a
particular element:

Object obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it, you are
probably using the wrong data structure for your problem.

You should never use this illusory random access method to step through a linked
list. The code

for (int i = 0; i < list.size(); i++)
 do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the search
starts again from the beginning of the list. The LinkedList object makes no
effort to cache the position information.

892 • Collections

NOTE: The get method has one slight optimization: if the index is at least
size() / 2, then the search for the element starts at the end of the list.

The list iterator interface also has a method to tell you the index of the current
position. In fact, because Java iterators conceptually point between elements, it
has two of them: the nextIndex method returns the integer index of the element
that would be returned by the next call to next; the previousIndex method
returns the index of the element that would be returned by the next call to
previous. Of course, that is simply one less than nextIndex. These methods are
efficient—the iterators keep a count of the current position. Finally, if you have an
integer index n, then list.listIterator(n) returns an iterator that points just
before the element with index n. That is, calling next yields the same element as
list.get(n). Of course, obtaining that iterator is inefficient.

If you have a linked list with only a handful of elements, then you don’t have to
be overly paranoid about the cost of the get and set methods. But then why use
a linked list in the first place? The only reason to use a linked list is to minimize
the cost of insertion and removal in the middle of the list. If you only have a few
elements, you can just use an array or a collection such as ArrayList.

We recommend that you simply stay away from all methods that use an integer
index to denote a position in a linked list. If you want random access into a collec-
tion, use an array or ArrayList, not a linked list.

The program in Example 2–1 puts linked lists to work. It simply creates two lists,
merges them, then removes every second element from the second list, and finally
tests the removeAll method. We recommend that you trace the program flow
and pay special attention to the iterators. You may find it helpful to draw dia-
grams of the iterator positions, like this:

|ACE |BDFG
A|CE |BDFG
AB|CE B|DFG
. . .

Note that the call

System.out.println(a);

prints all elements in the linked list a.

Example 2–1: LinkedListTest.java

import java.util.*;

public class LinkedListTest
{ public static void main(String[] args)

Core Java90

 { List a = new LinkedList();
 a.add("Angela");
 a.add("Carl");
 a.add("Erica");

 List b = new LinkedList();
 b.add("Bob");
 b.add("Doug");
 b.add("Frances");
 b.add("Gloria");

 // merge the words from b into a

 ListIterator aIter = a.listIterator();
 Iterator bIter = b.iterator();

 while (bIter.hasNext())
 { if (aIter.hasNext()) aIter.next();
 aIter.add(bIter.next());
 }

 System.out.println(a);

 // remove every second word from b

 bIter = b.iterator();
 while (bIter.hasNext())
 { bIter.next(); // skip one element
 if (bIter.hasNext())
 { bIter.next(); // skip next element
 bIter.remove(); // remove that element
 }
 }

 System.out.println(b);

 // bulk operation: remove all words in b from a

 a.removeAll(b);

 System.out.println(a);

 }
}

912 • Collections

• ListIterator listIterator()

returns a list iterator for visiting the elements of the list.
• ListIterator listIterator(int index)

returns a list iterator for visiting the elements of the list whose first call to
next will return the element with the given index.

• void add(int i, Object element)

adds an element at the specified position.

• void addAll(int i, Collection elements)

adds all elements from a collection to the specified position.

• Object remove(int i)

removes and returns an element at the specified position.

• Object set(int i, Object element)

replaces the element at the specified position with a new element and returns
the old element.

• int indexOf(Object element)

returns the position of the first occurrence of an element equal to the specified
element, or −1 if no matching element is found.

• int lastIndexOf(Object element)

returns the position of the last occurrence of an element equal to the specified
element, or −1 if no matching element is found.

java.util.List

Parameters: index the position of the next visited element

Parameters: index the position of the new element

element the element to add

Parameters: index the position of the first new element

elements the elements to add

Parameters: index the position of the element to remove

Parameters: index the replacement position

element the new element

Parameters: element the element to match

Parameters: element the element to match

Core Java92

• void add(Object element)

adds an element before the current position.

• void set(Object element)

replaces the last element visited by next or previous with a new element.
Throws an IllegalStateException if the list structure was modified since
the last call to next or previous.

• boolean hasPrevious()

returns true if there is another element to visit when iterating backwards
through the list.

• Object previous()

returns the previous object. Throws a NoSuchElementException if the
beginning of the list has been reached.

• int nextIndex()

returns the index of the element that would be returned by the next call to next.

• int previousIndex()

returns the index of the element that would be returned by the next call to
previous.

• LinkedList()

constructs an empty linked list.
• LinkedList(Collection elements)

constructs a linked list and adds all elements from a collection.

• void addFirst(Object element)

• void addLast(Object element)

add an element to the beginning or the end of the list.

• Object getFirst()

• Object getLast()

return the element at the beginning or the end of the list.

java.util.ListIterator

Parameters: element the element to add

Parameters: element the new element

java.util.LinkedList

Parameters: elements the elements to add

Parameters: element the element to add

932 • Collections

• Object removeFirst()

• Object removeLast()

remove and return the element at the beginning or the end of the list.
Array Lists

In the preceding section, you saw the List interface and the LinkedList class
that implements it. The List interface describes an ordered collection in which
the position of elements matters. There are two protocols for visiting the elements:
through an iterator and by random access with methods get and set. The latter
are not appropriate for linked lists, but of course they make a lot of sense for
arrays. The collections library supplies an ArrayList class that implements the
List interface. An ArrayList is similar to a Vector: it encapsulates a dynami-
cally reallocated Object[] array.

Why use an ArrayList instead of a Vector? There is one simple reason. All meth-
ods of the Vector class are synchronized. It is safe to access a Vector object from
two threads. But if you only access a vector from a single thread—by far the more
common case—your code wastes quite a bit of time with synchronization. In con-
trast, the ArrayList methods are not synchronized. We recommend that you use
an ArrayList instead of a Vector whenever you don’t need synchronization.

Using an ArrayList is as simple as using a Vector. Just keep in mind that you
need to use the short method names get and set instead of the elementAt and
setElementAt methods.

Hash Sets

Linked lists and arrays let you specify in which order you want to arrange the
elements. However, if you are looking for a particular element and you don’t
remember its position, then you need to visit all elements until you find a match.
That can be time-consuming if the collection contains many elements. If you don’t
care about the ordering of the elements, then there are data structures that let you
find elements much faster. The drawback is that those data structures give you no
control over the order in which the elements appear. The data structures organize
the elements in an order that is convenient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A hash
table computes an integer, called the hash code, for each object. We see in the next
section how these hash codes are computed. What’s important for now is that
hash codes can be computed quickly and that the computation only depends on
the state of the object that needs to be hashed, and not on the other objects in the
hash table.

Core Java94

A hash table is an array of linked lists. Each list is called a bucket (see Figure 2–8). To find
the place of an object in the table, compute its hash code and reduce it modulo the total
number of buckets. The resulting number is the index of the bucket that holds the ele-
ment. For example, if an object has hash code 345 and there are 101 buckets, then the
object is placed in bucket 42 (because the remainder of the integer division 345/101 is
42). Perhaps you are lucky and there is no other element in that bucket. Then, you sim-
ply insert the element into that bucket. Of course, it is inevitable that you sometimes hit
a bucket that is already filled. This is called a hash collision. Then, you need to compare
the new object with all objects in that bucket to see if it is already present. Provided that
the hash codes are reasonably randomly distributed and the number of buckets is large
enough, only a few comparisons should be necessary.

Figure 2–8: A hash table

If you want more control over the performance of the hash table, you can specify the ini-
tial bucket count. The bucket count gives the number of buckets that are used to collect
objects with identical hash values. If too many elements are inserted into a hash table,
the number of collisions increases and retrieval performance suffers.

If you know approximately how many elements will eventually be in the table,
then you should set the initial bucket count to about 150 percent of the expected
element count. Some researchers believe that it is a good idea to make the size of
the hash table a prime number to prevent a clustering of keys. The evidence for
this isn’t conclusive, but it certainly can’t hurt. For example, if you need to store
about 100 entries, set the initial bucket size to 151.

Of course, you do not always know how many elements you need to store, or
your initial guess may be too low. If the hash table gets too full, it needs to be

952 • Collections

rehashed. To rehash the table, a table with more buckets is created, all elements
are inserted into the new table, and the original table is discarded. In the Java
programming language, the load factor determines when a hash table is rehashed.
For example, if the load factor is 0.75 (which is the default) and the hash table
becomes more than 75 percent full, then the table is automatically rehashed, using
twice as many buckets. For most applications, it is reasonable to leave the load
factor at 0.75.

Hash tables can be used to implement several important data structures. The sim-
plest among them is the set type. A set is a collection of elements without dupli-
cates. The add method of a set first tries to find the object to be added and only
adds it if it is not yet present.

The Java collections library supplies a HashSet class that implements a set based
on a hash table. At the time of this writing, the default constructor HashSet con-
structs a hash table with 101 buckets and a load factor of 0.75. These values may
change in future releases. If you at all care about these values, you should specify
your own, with the constructors

HashSet(int initialCapacity)
HashSet(int initialCapacity, float loadFactor)

You add elements with the add method. The contains method is redefined to
make a quick lookup to find if an element is already present in the set. It only checks
the elements in one bucket and not all elements in the collection. The hash set itera-
tor visits all buckets in turn. Since the hashing scatters the elements around in the
table, they are visited in seemingly random order. You would only use a hash set if
you don’t care about the ordering of the elements in the collection.

The sample program at the end of this section (Example 2–2) reads words from
System.in, adds them to a set and finally prints out all words in the set. For
example, you can feed the program the text from Alice in Wonderland (which you
can obtain from www.gutenberg.net) by launching it from a command shell as

java SetTest < alice30.txt

The program reads all words from the input and adds them to the hash set. It then
iterates through the unique words in the set and finally prints out a count. (Alice
in Wonderland has 5,909 unique words, including the copyright notice at the
beginning.) The words appear in random order.

Example 2–2: SetTest.java

import java.util.*;
import java.io.*;

public class SetTest
{ public static void main(String[] args)

Core Java96

 { Set words = new HashSet(59999);
 // set to HashSet or TreeSet
 long totalTime = 0;

 try
 { BufferedReader in = new
 BufferedReader(new InputStreamReader(System.in));
 String line;
 while ((line = in.readLine()) != null)
 { StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens())
 { String word = tokenizer.nextToken();
 long callTime = System.currentTimeMillis();
 words.add(word);
 callTime = System.currentTimeMillis() - callTime;
 totalTime += callTime;
 }
 }
 }
 catch (IOException e)
 { System.out.println("Error " + e);
 }

 Iterator iter = words.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 System.out.println(words.size()
 + " distinct words. " + totalTime + " milliseconds.");
 }
}

• HashSet()

constructs an empty hash set.
• HashSet(Collection elements)

constructs a hash set and adds all elements from a collection.

• HashSet(int initialCapacity)

constructs an empty hash set with the specified capacity.

• HashSet(int initialCapacity, float loadFactor)

constructs an empty hash set with the specified capacity and load factor.

java.util.HashSet

Parameters: elements the elements to add

Parameters: initialCapacity the initial number of buckets

972 • Collections

Hash functions

You can insert strings into a hash set because the String class has a hashCode
method that computes a hash code for a string. A hash code is an integer that is
somehow derived from the characters in the string. Table 2–1 lists a few examples
of hash codes that result from the hashCode function of the String class.

The hashCode method is defined in the Object class. Therefore, every object has
a default hash code. That hash code is derived from the object’s memory address.
In general, the default hash function is not very useful because objects with iden-
tical contents may yield different hash codes. Consider this example.

String s = "Ok";
StringBuffer sb = new StringBuffer(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
String t = "Ok";
StringBuffer tb = new StringBuffer(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 2–2 shows the result.

Note that the strings s and t have the same hash value because, for strings, the
hash values are derived from their contents. The string buffers sb and tb have dif-
ferent hash values because no special hash function has been defined for the
StringBuffer class and the default hash code function in the Object class
derives the hash code from the object’s memory address.

Parameters: initialCapacity the initial number of buckets

loadFactor a number between 0.0 and 1.0 that
determines at what percentage of
fullness the hash table will be
rehashed into a larger one

Table 2–1: Hash codes resulting from the hashCode function

String Hash code

Hello 140207504

Harry 140013338

Hacker 884756206

Table 2–2: Hash codes of objects with identical contents

"Ok" String hash code "Ok" StringBuffer hash code

3030 20526976

3030 20527144

Core Java98

You should always define the hashCode method for objects that you insert into a
hash table. This method should return an integer (which can be negative). The
hash table code will later reduce the integer by dividing by the bucket count and
taking the remainder. Just scramble up the hash codes of the data fields in some
way that will give the hash codes for different objects a good chance of being
widely scattered.

For example, suppose you have the class Item for inventory items. An item con-
sists of a description string and a part number.

anItem = new Item("Toaster", 49954);

If you want to construct a hash set of items, you need to define a hash code.
For example,

class Item
{ . . .
 public int hashCode()
 { return 13 * description.hashCode() + 17 * partNumber;
 }
 . . .
 private String description;
 private int partNumber;
}

As a practical matter, if the part number uniquely identifies the item, you don’t
need to incorporate the hash code of the description.

Furthermore, you also need to make sure that the equals method is well defined.
The Object class defines equals, but that method only tests whether or not two
objects are identical. If you don’t redefine equals, then every new object that you
insert into the table will be considered a different object.

You need to redefine equals to check for equal contents.

class Item
{ . . .
 public boolean equals(Object other)
 { if (other != null && getClass() == other.getClass())
 { Item otherItem = (Item)other;
 return description.equals(otherItem.description)
 && partNumber == otherItem.partNumber;
 }
 else
 return false;
 }
 . . .
}

992 • Collections

CAUTION: Your definitions of equals and hashCode must be compatible: if
x.equals(y) is true, then x.hashCode() must be the same value as
y.hashCode().

• boolean equals(Object obj)

compares two objects for equality; returns true if both objects are equal;
false otherwise.

• int hashCode()

returns a hash code for this object. A hash code can be any integer, positive or
negative. Equal objects need to return identical hash codes.

Tree Sets

The TreeSet class is similar to the hash set, with one added improvement. A tree
set is a sorted collection. You insert elements into the collection in any order. When
you iterate through the collection, the values are automatically presented in
sorted order. For example, suppose you insert three strings and then visit all ele-
ments that you added.

TreeSet sorter = new TreeSet();
sorter.add("Bob");
sorter.add("Angela");
sorter.add("Carl");
Iterator iter = sorter.iterator();
while (iter.hasNext()) System.println(iter.next());

Then, the values are printed in sorted order: Angela Bob Carl. As the name of
the class suggests, the sorting is accomplished by a tree data structure. (The cur-
rent implementation uses a red-black tree. For a detailed description of red-black
trees, see, for example, Introduction to Algorithms by Thomas Cormen, Charles
Leiserson, and Ronald Rivest [The MIT Press 1990].) Every time an element is
added to a tree, it is placed into its proper sorting position. Therefore, the iterator
always visits the elements in sorted order.

Adding an element to a tree is slower than adding it to a hash table, but it is still
much faster than adding it into the right place in an array or linked list. If the tree
contains n elements, then an average of log2 n comparisons are required to find
the correct position for the new element. For example, if the tree already contains
1,000 elements, then adding a new element requires about 10 comparisons.

java.lang.Object

Parameters: obj the object to compare with the first object
(may be null, in which case the method
should return false)

Core Java100

Thus, adding elements into a TreeSet is somewhat slower than adding into a
HashSet —see Table 2–3 for a comparison—but the TreeSet automatically sorts
the elements.

• TreeSet()

constructs an empty tree set.
• TreeSet(Collection elements)

constructs a tree set and adds all elements from a collection.

Object comparison

How does the TreeSet know how you want the elements sorted? By default, the
tree set assumes that you insert elements that implement the Comparable inter-
face. That interface defines a single method:

int compareTo(Object other)

The call a.compareTo(b) must return 0 if a and b are equal, a negative integer if
a comes before b in the sort order, and a positive integer if a comes after b. The
exact value does not matter; only its sign (>0, 0, or < 0) matters. Several standard
Java platform classes implement the Comparable interface. One example is the
String class. Its compareTo method compares strings in dictionary order (some-
times called lexicographic order).

If you insert your own objects, you need to define a sort order yourself by
implementing the Comparable interface. There is no default implementation of
compareTo in the Object class.

For example, here is how you can sort Item objects by part number.

 class Item implements Comparable
 { public int compareTo(Object other)
 { Item otherItem = (Item)other;
 return partNumber - otherItem.partNumber;
 }
 . . .
 }

Table 2–3: Adding elements into hash and tree sets

Document Total num-
ber of words

Number of
distinct words

HashSet TreeSet

Alice in Wonderland 28195 5909 5 sec 7 sec

The Count of Monte Cristo 466300 37545 75 sec 98 sec

java.util.TreeSet

Parameters: elements the elements to add

1012 • Collections

Note that the explicit argument of the compareTo method has type Object, not
Comparable. If the object is not of the correct type, then this compareTo method
simply throws a ClassCastException. (The compareTo methods in the stan-
dard library behave in the same way when presented with illegal argument types.)

If you compare two positive integers, such as part numbers in our example, then
you can simply return their difference—it will be negative if the first item
should come before the second item, zero if the part numbers are identical, and
positive otherwise.

CAUTION: This trick does not work if the integers can be negative. If x is a large positive
integer and y is a large negative integer, then the difference x - y can overflow.

However, using the Comparable interface for defining the sort order has obvious
limitations. You can only implement the interface once. But what can you do if
you need to sort a bunch of items by part number in one collection and by
description in another? Furthermore, what can you do if you need to sort objects
of a class whose creator didn’t bother to implement the Comparable interface?

In those situations, you tell the tree set to use a different comparison method, by
passing a Comparator object into the TreeSet constructor. The Comparator
interface has a single method, with two explicit parameters:

int compare(Object a, Object b)

Just like the compareTo method, the compare method returns a negative integer
if a comes before b, zero if they are identical, or a positive integer otherwise.

To sort items by their description, simply define a class that implements the
Comparator interface:

class ItemComparator implements Comparator
{ public int compare(Object a, Object b)
 { Item itemA = (Item)a;
 Item itemB = (Item)b;
 String descrA = itemA.getDescription();
 String descrB = itemB.getDescription();
 return descrA.compareTo(descrB);
 }
}

You then pass an object of this class to the tree set constructor:

ItemComparator comp = new ItemComparator();
TreeSet sortByDescription = new TreeSet(comp);

If you construct a tree with a comparator, it uses this object whenever it needs to
compare two elements.

Core Java102

Note that the item comparator has no data. It is just a holder for the comparison
method. Such an object is sometimes called a function object.

Function objects are commonly defined “on the fly,” as instances of anonymous
inner classes:

TreeSet sortByDescription = new TreeSet(
 new Comparator()
 { public int compare(Object a, Object b)
 { Item itemA = (Item)a;
 Item itemB = (Item)b;
 String descrA = itemA.getDescription();
 String descrB = itemB.getDescription();
 return descrA.compareTo(descrB);
 }
 });

Using comparators, you can sort elements in any way you wish.

If you look back at Table 2–3, you may well wonder if you should always use a
tree set instead of a hash set. After all, adding elements does not seem to take
much longer, and the elements are automatically sorted. The answer depends on
the data that you are collecting. If you don’t need the data sorted, there is no rea-
son to pay for the sorting overhead. More importantly, with some data it is very
difficult to come up with a sort order. Suppose you collect a bunch of rectangles.
How do you sort them? By area? You can have two different rectangles with dif-
ferent positions but the same area. If you sort by area, the second one is not
inserted into the set. The sort order for a tree must be a total ordering: Any two ele-
ments must be comparable, and the comparison can only be zero if the elements
are equal. There is such a sort order for rectangles (the lexicographic ordering on
its coordinates), but it is unnatural and cumbersome to compute. In contrast, hash
functions are usually easier to define. They only need to do a reasonably good job
of scrambling the objects, whereas comparison functions must tell objects apart
with complete precision.

The program in Example 2–3 builds two tree sets of Item objects. The first one is
sorted by part number, the default sort order of item objects. The second set is
sorted by description, using a custom comparator.

Example 2–3: TreeSetTest.java

import java.util.*;

public class TreeSetTest
{ public static void main(String[] args)

1032 • Collections

 { SortedSet parts = new TreeSet();
 parts.add(new Item("Toaster", 1234));
 parts.add(new Item("Widget", 4562));
 parts.add(new Item("Modem", 9912));
 System.out.println(parts);

 SortedSet sortByDescription = new TreeSet(
 new Comparator()
 { public int compare(Object a, Object b)
 { Item itemA = (Item)a;
 Item itemB = (Item)b;
 String descrA = itemA.getDescription();
 String descrB = itemB.getDescription();
 return descrA.compareTo(descrB);
 }
 });

 sortByDescription.addAll(parts);
 System.out.println(sortByDescription);
 }
}

class Item implements Comparable
{ public Item(String aDescription, int aPartNumber)
 { description = aDescription;
 partNumber = aPartNumber;
 }

 public String getDescription()
 { return description;
 }

 public String toString()
 { return "[description=" + description
 + ", partNumber=" + partNumber + "]";
 }

 public boolean equals(Object other)
 { if (getClass() == other.getClass())
 { Item otherItem = (Item)other;
 return description.equals(otherItem.description)
 && partNumber == otherItem.partNumber;
 }
 else
 return false;
 }

 public int hashCode()

Core Java104

 { return 13 * description.hashCode() + 17 * partNumber;
 }

 public int compareTo(Object other)
 { Item otherItem = (Item)other;
 return partNumber - otherItem.partNumber;
 }

 private String description;
 private int partNumber;
}

• int compareTo(Object other)

compares this object with another object and returns a negative value if this
comes before other, zero if they are considered identical in the sort order,
and a positive value if this comes after other.

• int compare(Object a, Object b)

compares two objects and returns a negative value if a comes before b, zero if they
are considered identical in the sort order, and a positive value if a comes after b.

• Comparator comparator()

returns the comparator used for sorting the elements, or null if the elements
are compared with the compareTo method of the Comparable interface.

• Object first()

• Object last()

return the smallest or largest element in the sorted set.

• TreeSet(Comparator c)

constructs a tree set and uses the specified comparator for sorting its elements.

• TreeSet(SortedSet elements)

constructs a tree set, adds all elements from a sorted set, and uses the same
element comparator as the given sorted set.

java.lang.Comparable

Parameters: other the object to compare

java.util.Comparator

Parameters: a, b the objects to compare

java.util.SortedSet

java.util.TreeSet

Parameters: c the comparator to use for sorting

1052 • Collections

Maps

A set is a collection that lets you quickly find an existing element. However, to
look up an element, you need to have an exact copy of the element to find. That
isn’t a very common lookup—usually, you have some key information, and you
want to look up the associated element. The map data structure serves that pur-
pose. A map stores key/value pairs. You can find a value if you provide the key.
For example, you may store a table of employee records, where the keys are the
employee IDs and the values are Employee objects.

The Java library supplies two general purpose implementations for maps:
HashMap and TreeMap. A hash map hashes the keys, and a tree map uses a total
ordering on the keys to organize them in a search tree. The hash or comparison
function is applied only to the keys. The values associated with the keys are not
hashed or compared.

Should you choose a hash map or a tree map? As with sets, hashing is a bit faster,
and it is the preferred choice if you don’t need to visit the keys in sorted order.

Here is how you set up a hash map for storing employees.

HashMap staff = new HashMap();
Employee harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);
. . .

Whenever you add an object to a map, you must supply a key as well. In our case,
the key is a string, and the corresponding value is an Employee object.

To retrieve an object, you must use (and, therefore, remember) the key.

String s = "1411-16-2536";
e = (Employee)staff.get(s); // gets harry

If no information is stored in the map with the particular key specified, then get
returns null.

Keys must be unique. You cannot store two values with the same key. If you call
the put method twice with the same key, then the second value replaces the first
one. In fact, put returns the previous value stored with the key parameter. (This
feature is useful; if put returns a non-null value, then you know you replaced a
previous entry.)

The remove() method removes an element from the map. The size() method
returns the number of entries in the map.

Parameters: elements the sorted set with the elements to add
and the comparator to use

Core Java106

The collections framework does not consider a map itself as a collection. (Other
frameworks for data structures consider a map as a collection of pairs, or as a
collection of values that is indexed by the keys.) However, you can obtain views of the
map, objects that implement the Collection interface or one of its subinterfaces.

There are three views: the set of keys, the collection of values (which is not a set),
and the set of key/value pairs. The keys and key/value pairs form a set because
there can be only one copy of a key in a map. The methods

Set keySet()
Collection values()
Set entrySet()

return these three views. (The elements of the entry set are objects of the inner
class Map.Entry.)

Note that the keySet is not a HashSet or TreeSet, but it is an object of some
other class that implements the Set interface. We discuss the Set interface and its
purpose in detail in the next section. The Set interface extends the Collection
interface. In fact, as you will see, it does not add any new methods. Therefore, you
can use it exactly as you use the Collection interface.

For example, you can enumerate all keys of a map:

Set keys = map.keySet();
Iterator iter = keys.iterator();
while (iter.hasNext())
{ Object key = iter.next();
 do something with key
}

TIP: If you want to look at both keys and values, then you can avoid value lookups by
enumerating the entries. Use the following code skeleton:

Set entries = staff.entrySet();
Iterator iter = entries.iterator();
while (iter.hasNext())
{ Map.Entry entry = (Map.Entry)iter.next();
 Object key = entry.getKey();
 Object value = entry.getValue();
 do something with key, value
}

If you invoke the remove method of the iterator, you actually remove the key and
its associated value from the map. However, you cannot add an element to the key
set view. It makes no sense to add a key without also adding a value. If you try to
invoke the add method, it throws an UnsupportedOperationException. The

1072 • Collections

key/value set view has the same restriction, even though it would make concep-
tual sense to add a new key/value pair.

NOTE: The legacy Hashtable class (which we cover later in this chapter) has meth-
ods that return enumeration objects—the classical analog to iterators—that traverse
keys and values. However, having collection views is more powerful since they let you
operate on all keys or values at once.

Example 2–4 illustrates a map at work. We first add key/value pairs to a map.
Then, we remove one key from the map, which removes its associated value as
well. Next, we change the value that is associated with a key and call the get
method to look up a value. Finally, we iterate through the entry set.

Example 2–4: MapTest.java

import java.util.*;

public class MapTest
{ public static void main(String[] args)
 { Map staff = new HashMap();
 staff.put("144-25-5464", new Employee("Angela Hung"));
 staff.put("567-24-2546", new Employee("Harry Hacker"));
 staff.put("157-62-7935", new Employee("Gary Cooper"));
 staff.put("456-62-5527", new Employee("Francesca Cruz"));

 // print all entries

 System.out.println(staff);

 // remove an entry

 staff.remove("567-24-2546");

 // replace an entry

 staff.put("456-62-5527", new Employee("Francesca Miller"));

 // look up a value

 System.out.println(staff.get("157-62-7935"));

 // iterate through all entries

 Set entries = staff.entrySet();
 Iterator iter = entries.iterator();
 while (iter.hasNext())
 { Map.Entry entry = (Map.Entry)iter.next();

Core Java108

 Object key = entry.getKey();
 Object value = entry.getValue();
 System.out.println("key=" + key + ", value=" + value);
 }
 }
}

class Employee
{ public Employee(String n)
 { name = n;
 salary = 0;
 }

 public String toString()
 { return "[name=" + name + ", salary=" + salary + "]";
 }

 public void setSalary(double s)
 { salary = s;
 }

 private String name;
 private double salary;
}

Weak Hash Maps

The WeakHashMap class was designed to solve an interesting problem. What
happens with a value whose key is no longer used anywhere in your program?
Suppose the last reference to a key has gone away. Then, there is no longer any
way to refer to the value object. But since no part of the program has the key any
more, the key/value pair cannot be removed from the map. Why can’t the gar-
bage collector remove it? Isn’t it the job of the garbage collector to remove
unused objects?

Unfortunately, it isn’t quite so simple. The garbage collector traces live objects. As
long as the map object is live, then all buckets in it are live and they won’t be
reclaimed. Thus, your program should take care to remove unused values from
long-lived maps. Or, you can use a WeakHashMap instead. This data structure
cooperates with the garbage collector to remove key/value pairs when the only
reference to the key is the one from the hash table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses weak ref-
erences to hold keys. A WeakReference object holds a reference to another object,
in our case, a hash table key. Objects of this type are treated in a special way by the
garbage collector. Normally, if the garbage collector finds that a particular object

1092 • Collections

has no references to it, it simply reclaims the object. However, if the object is
reachable only by a WeakReference, the garbage collector still reclaims the
object, but it places the weak reference that led to it onto a queue. The operations
of the WeakHashMap periodically check that queue for newly arrived weak
references. When a weak reference arrives in the queue, this is an indication that
the key was no longer used by anyone and that it has been collected. The
WeakHashMap then removes the associated entry.

• Object get(Object key)

gets the value associated with the key; returns the object associated with the
key, or null if the key is not found in the map.

• Object put(Object key, Object value)

puts the association of a key and a value into the map. If the key is already
present, the new object replaces the old one previously associated with the
key. This method returns the old value of the key, or null if the key was not
previously present.

• void putAll(Map entries)

adds all entries from the specified map to this map.

• boolean containsKey(Object key)

returns true if the key is present in the map.

• boolean containsValue(Object value)

returns true if the value is present in the map.

• Set entrySet()

returns a set view of Map.Entry objects, the key/value pairs in the map. You
can remove elements from this set, and they are removed from the map, but
you cannot add any elements.

java.util.Map

Parameters: key the key to use for retrieval (may be null)

Parameters: key the key to use for retrieval (may be null)

value the associated object (may not be null)

Parameters: entries the map with the entries to be added

Parameters: key the key to find

Parameters: value the value to find

Core Java110

• Set keySet()

returns a set view of all keys in the map. You can remove elements from this
set, and the key and associated values are removed from the map, but you
cannot add any elements.

• Collection values()

returns a collection view of all values in the map. You can remove elements
from this set, and the removed value and its key are removed from the map,
but you cannot add any elements.

• Object getKey()

• Object getValue()

return the key or value of this entry.
• Object setValue(Object value)

changes the value in the associated map to the new value and returns the old value.

• HashMap()

constructs an empty hash map.
• HashMap(Map entries)

constructs a hash map and adds all entries from a map.

• HashMap(int initialCapacity)

• HashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load factor.

java.util.Map.Entry

Parameters: value the new value to associate with
the key

java.util.HashMap

Parameters: entries the entries to add

Parameters: initialCapacity the initial number of buckets

loadFactor a number between 0.0 and 1.0 that
determines at what percentage of
fullness the hash table will be
rehashed into a larger one. The
default is 0.75

1112 • Collections

• WeakHashMap()

constructs an empty weak hash map.
• WeakHashMap(int initialCapacity)

• WeakHashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load factor.

• Comparator comparator()

returns the comparator used for sorting the keys, or null if the keys are com-
pared with the compareTo method of the Comparable interface.

• Object firstKey()

• Object lastKey()

return the smallest or largest key in the map.

• TreeMap(Comparator c)

constructs a tree set and uses the specified comparator for sorting its keys.

• TreeMap(Map entries)

constructs a tree map and adds all entries from a map.

• TreeMap(SortedMap entries)

constructs a tree set, adds all entries from a sorted map, and uses the same
element comparator as the given sorted map.

The Collections Framework
A framework is a set of classes that form the basis for building advanced function-
ality. A framework contains superclasses with useful functionality, policies, and
mechanisms. The user of a framework forms sublasses to extend the functionality

java.util.WeakHashMap

Parameters: initialCapacity the initial number of buckets

loadFactor a number between 0.0 and 1.0 that
determines at what percentage of full-
ness the hash table will be rehashed
into a larger one. The default is 0.75

java.util.SortedMap

java.util.TreeMap

Parameters: c the comparator to use for sorting

Parameters: entries the entries to add

Parameters: entries the sorted set with the entries to
add and the comparator to use

Core Java112

without having to reinvent the basic mechanisms. For example, Swing is a frame-
work for user interfaces.

The Java collections library forms a framework for collection classes. It defines a
number of interfaces and abstract classes for implementors of collections (see
Figure 2–9), and it prescribes certain mechanisms, such as the iteration protocol.
You can use the collection classes without having to know much about the frame-
work—we did just that in the preceding sections. However, if you want to imple-
ment generic algorithms that work for multiple collection types, or if you want to
add a new collection type, then it is helpful to understand the framework.

Figure 2–9: The interfaces of the collections framework

There are two fundamental interfaces for containers: Collection and Map. You
insert elements into a collection with a method:

boolean add(Object element)

However, maps hold key/value pairs, and you use the put method to insert them.

boolean put(Object key, Object value)

To read elements from a collection, you visit them with an iterator. However, you
can read values from a map with the get method:

Object get(Object key)

A List is an ordered collection. Elements are added into a particular position in the
container. An object can be placed into its position in two ways: by an integer index
and by a list iterator. The List interface defines methods for random access:

List Set SortedMap

Iterator

ListIterator

SortedSet

Collection Map

1132 • Collections

void add(int index, Object element)
Object get(int index)
void remove(int index)

The ListIterator interface defines a method for adding an element before the
iterator position:

void add(Object element)

To get and remove elements at a particular position, you simply use the next and
remove methods of the Iterator interface.

NOTE: From a theoretical point of view, it would have made sense to have a separate
Array interface that extends the List interface and declares the random access
methods. If there was a separate Array interface, then those algorithms that require
random access would use Array parameters and you could not accidentally apply
them to collections with slow random access. However, the designers of the collections
framework chose not to define a separate interface. They wanted to keep the number
of interfaces in the library small. Also, they did not want to take a paternalistic attitude
toward programmers. You are free to pass a linked list to algorithms that use random
access—you just need to be aware of the performance costs.

The Set interface is identical to the Collection interface, but the behavior of
the methods is more tightly defined. The add method of a set should reject
duplicates. The equals method of a set should be defined so that two sets are
identical if they have the same elements, but not necessarily in the same order.
The hashCode method should be defined such that two sets with the same ele-
ments yield the same hash code.

NOTE: For sets and lists, there is a well-defined notion of equality. Two sets are equal if
they contain the same elements in some order. Two lists are equal if they contain the
same elements in the same order. However, there is no well-defined notion of equality
for collections. You should therefore not use the equals method on Collection
references.

Why make a separate interface if the method signatures are the same? Conceptu-
ally, not all collections are sets. Making a Set interface enables programmers to
write methods that only accept sets.

Finally, the SortedSet and SortedMap interfaces expose the comparison object
used for sorting, and they define methods to obtain views of subsets of the con-
tainers. We discuss these views in the next section.

Now, let us turn from the interfaces to the classes that implement them. We
already discussed that the collection interfaces have quite a few methods that can

Core Java114

be trivially implemented from more fundamental methods. There are five abstract
classes that supply many of these routine implementations:

AbstractCollection
AbstractList
AbstractSequentialList
AbstractSet
AbstractMap

If you implement your own collection class, then you probably want to extend one of
these classes so that you can pick up the implementations of the routine operations.

The Java library supplies six concrete classes:

LinkedList
ArrayList
HashSet
TreeSet
HashMap
TreeMap

Figure 2–10 shows the relationships between these classes.

Figure 2–10: Classes in the collections framework

Abstract
SequentialList

ArrayList

HashSet

AbstractMap

AbstractSet

AbstractCollecton

TreeSet

LinkedList

AbstractList HashMap TreeMap

1152 • Collections

Finally, there are a number of “legacy” container classes that have been present
since the beginning, before there was a collections framework:

Vector
Stack
Hashtable
Properties

They have been integrated into the collections framework—see Figure 2–11. We
discuss these classes later in this chapter.

Figure 2–11: Legacy classes in the collections framework

Views and Wrappers

If you look at Figure 2–9 and Figure 2–10, you might think it is overkill to have six
interfaces and five abstract classes to implement six concrete collection classes.
However, these figures don’t tell the whole story. By using views, you can obtain
other objects that implement the Collection or Map interfaces. You saw one

Vector

Stack

List

AbstractList

Hashtable

Properties

Map

Dictionary

Core Java116

example of this with the keySet method of the map classes. At first glance, it
appears as if the method creates a new set, fills it with all keys of the map, and
returns it. However, that is not the case. Instead, the keySet method returns an
object of a class that implements the Set interface and whose methods manipulate
the original map. Such a collection is called a view. You have no way of knowing,
and you need not know, exactly what class the library uses to implement the view.

The technique of views has a number of useful applications in the collections frame-
work. Here is the most compelling one. Recall that the methods of the Vector class
are synchronized, which is unnecessarily slow if the vector is only accessed from a
single thread. For that reason, we recommended the use of the ArrayList instead
of the Vector class. However, if you do access a collection from multiple threads, it
is very important that the methods are synchronized. For example, it would be
disastrous if one thread tried to add to a hash table while another thread is rehash-
ing the elements. The library designers could have implemented companion classes
with synchronized methods for all data structures. But they did something more
useful. They supplied a mechanism that produces synchronized views for all inter-
faces. For example, the static synchronizedMap class in the Collections class
can turn any Map into a Map with synchronized access methods:

HashMap hashMap = new HashMap();
map = Collections.synchronizedMap(hashMap);

Now, you can access the map object from multiple threads. The methods such as
get and put are synchronized—each method call must be finished completely
before another thread can call another method.

There are six methods to obtain synchronized collections:

Collections.synchronizedCollection
Collections.synchronizedList
Collections.synchronizedSet
Collections.synchronizedSortedSet
Collections.synchronizedMap
Collections.synchronizedSortedMap

The views that are returned by these methods are sometimes called wrappers.

You should make sure that no thread accesses the data structure through the orig-
inal unsynchronized methods. The easiest way to ensure this is not to save any
reference to the original object, but to simply pass the constructed collection to the
wrapper method:

map = Collections.synchronizedMap(new HashMap());

There is one caveat when accessing a collection from multiple threads. Recall that
you can either have multiple iterators that read from a collection or have a single
thread that modifies the collection. For that reason, you will want to make sure
that any iteration—

1172 • Collections

Iterator iter = collection.iterator();
while (iter.hasNext())
 do something with iter.next();

—does not occur at a time when another thread modifies the collection. If it did,
then the next method would throw a ConcurrentModificationException.
One way to ensure exclusive access is to place the iteration inside a block that
locks the container:

synchronized (container)
{ Iterator iter = collection.iterator();
 while (iter.hasNext())
 do something with iter.next();
}

Since the wrappers wrap the interface and not the actual collection object, you only
have access to those methods that are defined in the interface. For example, the
LinkedList class has convenience methods, addFirst and addLast, that are
not part of the List interface. These methods are not accessible through the syn-
chronization wrapper.

CAUTION: The synchronizedCollection method (as well as the unmodifi-
ableCollection method discussed later in this section) returns a collection whose
equals method does not invoke the equals method of the underlying collection.
Instead, it inherits the equals method of the Object class, which just tests whether
the objects are identical. If you turn a set or list into just a collection, you can no longer
test for equal contents. The wrapper acts in this way because equality testing is not well
defined at this level of the hierarchy.

However, the synchronizedSet and synchronizedList class do not hide
the equals methods of the underlying collections.

The wrappers treat the hashCode method in the same way.

The Collections class has another potentially useful set of wrappers to produce
unmodifiable views of collections. These wrappers add a runtime check to an
existing collection. If an attempt to modify the collection is detected, then an
exception is thrown and the collection remains untouched.

For example, suppose you want to let some part of your code look at, but not
touch, the contents of a collection. Here is what you could do.

List staff = new LinkedList();
. . .
lookAt(new Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class
implementing the List interface. Its accessor methods retrieve values from the

Core Java118

staff collection. Of course, the lookAt method can call all methods of the List
interface, not just the accessors. But all mutator methods (such as add) have been
redefined to throw an UnsupportedOperationException instead of forward-
ing the call to the underlying collection. There are similar methods to obtain
unmodifiable wrappers to the other collection interfaces.

NOTE: In the API documentation, certain methods of the collection interfaces, such as
add, are described as “optional operations.” This is curious—isn’t the purpose of an
interface to lay out the methods that a class must implement? Indeed, it would have
made sense to separate the read-only interfaces from the interfaces that allow full
access. But that would have doubled the number of interfaces, which the designers of
the library found unacceptable.

The Arrays class has a static asList method that returns a List wrapper
around a plain Java array. This method lets you pass the array to a method that
expects a list or collection argument. For example,

Card[] cardDeck = new Card[52];
. . .
List cardList = Arrays.asList(cardDeck);

The returned object is not an ArrayList. It is a view object whose get and set
methods access the underlying array. All methods that would change the size of
the array (such as add and the remove method of the associated iterator) throw
an UnsupportedOperationException.

Subranges

You can form subrange views for a number of collections. For example, suppose
you have a list staff and want to extract elements 10 to 19. You use the subList
method to obtain a view into the subrange of the list.

List group2 = staff.subList(10, 20);

The first index is inclusive, the second exclusive—just like the parameters for the
substring operation of the String class.

You can apply any operations to the subrange, and they automatically reflect the
entire list. For example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements are now automatically cleared from the staff list.

For sorted sets and maps, you use the sort order, not the element position, to form
subranges. The SortedSet interface declares three methods:

subSet(from, to)
headSet(to)
tailSet(from)

1192 • Collections

These return the subsets of all elements that are larger than or equal to from and
strictly smaller than to. For sorted maps, there are similar methods

subMap(from, to)
headMap(to)
tailMap(from)

that return views into the maps consisting of all entries where the keys fall into the
specified ranges.

Lightweight collection wrappers

The method call

Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the
illusion of having n elements, each of which appears as anObject. There is very
little storage cost—the object is only stored once. This is a cute application of the
wrapper technique. You can use such a list to initialize a concrete container. For
example, the following call creates an ArrayList containing 100 strings, all set
to "DEFAULT":

ArrayList settings
 = new ArrayList(Collections.nCopies(100, "DEFAULT"));

The method call

Collections.singleton(anObject)

returns a wrapper object that implements the Set interface (unlike ncopies
which produces a List). The returned object implements an immutable single-
element set without the overhead of a hash table or tree. The constants Collec-
tions.EMPTY_LIST and Collections.EMPTY_SET return objects that imple-
ment the List and Set interfaces and contain no elements. The advantage is
similar to that of the singleton method: the returned objects do not have the
overhead of a data structure. Singletons and empty objects are potentially useful
as parameters to methods that expect a list, set, or container.

NOTE: JDK 1.3 adds methods singletonList and singletonMap and a
constant EMPTY_MAP.

A final note on optional operations

We’d like to end this section with a few words about the “optional” or unsup-
ported operations in the collection and iterator interfaces. This is undoubtedly the
most controversial design decision in the collections framework. The problem is
caused by the undeniably powerful and convenient views. Views are good because
they lead to efficient code, and their “plug and play” nature means you only need

Core Java120

to learn a few basic concepts. A view usually has some restriction—it may be read-
only, it may not be able to change the size, or it may support removal, but not
insertion, as is the case for the key view of a map. The restriction is different for
each view. Making a separate interface for each restricted view would lead to a
bewildering tangle of interfaces that would be unusable in practice.

Should you extend the technique of “optional” methods to your own interfaces?
We think not. Even though collections are used very frequently, the coding style for
implementing them is not typical for other problem domains. The designers of a
collection class library have to resolve a particularly brutal set of conflicting
requirements. Users want the library to be easy to learn, convenient to use, com-
pletely generic, idiot-proof, and at the same time as efficient as hand-coded algo-
rithms. It is plainly impossible to achieve all these goals simultaneously, or even to
come close. Look at a few other libraries, such as the JGL library from ObjectSpace
(www.objectspace.com), to see a different set of trade-offs. Or, even better, try
your hand at designing your own library of collections and algorithms. You will
soon run into the inevitable conflicts and feel much more sympathy with the folks
from Sun. But in your own programming problems, you will rarely encounter such
an extreme set of constraints. You should be able to find solutions that do not rely
on the extreme measure of “optional” interface operations.

• static Collection synchronizedCollection(Collection c)

• static List synchronizedList(List c)

• static Set synchronizedSet(Set c)

• static SortedSet synchronizedSortedSet(SortedSet c)

• static Map synchronizedMap(Map c)

• static SortedMap synchronizedSortedMap(SortedMap c)

construct a view of the collection whose methods are synchronized.

• static Collection unmodifiableCollection(Collection c)

• static List unmodifiableList(List c)

• static Set unmodifiableSet(Set c)

• static SortedSet unmodifiableSortedSet(SortedSet c)

• static Map unmodifiableMap(Map c)

• static SortedMap unmodifiableSortedMap(SortedMap c)

construct a view of the collection whose mutator methods throw an
UnsupportedOperationException.

java.util.Collections

Parameters: c the collection to wrap

Parameters: c the collection to wrap

1212 • Collections

• static List nCopies(int n, Object value)

• static Set singleton(Object value)

construct a view of the object as either an unmodifiable list with n identical
elements or a set with a single element.

• static final List EMPTY_LIST

• static final Set EMPTY_SET

An unmodifiable wrapper for an empty list or set.

• static List asList(Object[] array)

returns a list view of the elements in an array that is modifiable but not resizable.

• List subList(int from, int to)

returns a list view of the elements within a range of positions.

• SortedSet subSet(Object from, Object to)

• SortedSet headSet(Object to)

• SortedSet tailSet(Object from)

return a view of the elements within a range.

• SortedMap subMap(Object from, Object to)

• SortedMap headMap(Object to)

• SortedMap tailMap(Object from)

return a map view of the entries whose keys are within a range.

Parameters: n the number of times to repeat the value in
the list

value the element value in the collection

java.util.Arrays

Parameters: array the array to wrap

java.util.List

Parameters: from the first position to include in the view

to the first position to exclude in the view

java.util.SortedSet

Parameters: from the first element to include in the view

to the first element to exclude in the view

java.util.SortedMap

Parameters: from the first key to include in the view

to the first key to exclude in the view

Core Java122

Bulk Operations

So far, most of our examples used an iterator to traverse a collection, one element
at a time. However, you can often avoid iteration by using one of the bulk opera-
tions in the library.

Suppose you want to find the intersection of two sets, the elements that two sets
have in common. First, make a new set to hold the result.

Set result = new HashSet(a);

Here, you use the fact that every collection has a constructor whose parameter is
another collection that holds the initialization values.

Now, use the retainAll method:

result.retainAll(b);

It retains all elements that also happen to be in b. You have formed the intersec-
tion without programming a loop.

You can carry this idea further and apply a bulk operation to a view. For example,
suppose you have a map that maps employee IDs to employee objects, and you
have a set of the IDs of all employees that are to be terminated.

Map staffMap = . . .;
Set terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.

staffMap.keySet().removeAll(terminatedIDs);

Because the key set is a view into the map, the keys and associated employee
names are automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and subsets.
For example, suppose you want to add the first ten elements of a list to another
container. Form a sublist to pick out the first ten:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.

staff.subList(0, 10).clear();

Interfacing with Legacy APIs

Since large portions of the Java platform API were designed before the collections
framework was created, you occasionally need to translate between traditional
arrays and vectors and the more modern collections.

First, consider the case where you have values in an array or vector and you want
to put them into a collection. If the values are inside a Vector, simply construct
your collection from the vector:

Vector values = . . .;
HashSet staff = new HashSet(values);

1232 • Collections

All collection classes have a constructor that can take an arbitrary collection
object. Since the Java 2 platform, the Vector class implements the List interface.

If you have an array, you need to turn it into a collection. The Arrays.asList
wrapper serves this purpose:

String[] values = . . .;
HashSet staff = new HashSet(Arrays.asList(values));

Conversely, if you need to call a method that requires a vector, you can construct a
vector from any collection:

Vector values = new Vector(staff);

Obtaining an array is a bit trickier. Of course, you can use the toArray method:

Object[] values = staff.toArray();

But the result is an array of objects. Even if you know that your collection con-
tained objects of a specific type, you cannot use a cast:

String[] values = (String[])staff.toArray(); // Error!

The array returned by the toArray method was created as an Object[] array,
and you cannot change its type. Instead, you need to use a variant of the toArray
method. Give it an array of length 0 of the type that you’d like. Then, the returned
array is created as the same array type, and you can cast it:

String[] values = (String[])staff.toArray(new String[0]);

NOTE: You may wonder why you don’t simply pass a Class object (such as
String.class) to the toArray method. However, as you can see from the API
notes, this method does “double duty,” both to fill an existing array (provided it is long
enough) and to create a new array.

• Object[] toArray(Object[] array)

checks if the array parameter is larger than the size of the collection. If so, it
adds all elements of the collection into the array, followed by a null termina-
tor, and it returns the array. If the length of array equals the size of the collec-
tion, then the method adds all elements of the collection to the array but does
not add a null terminator. If there isn’t enough room, then the method cre-
ates a new array, of the same type as the incoming array, and fills it with the ele-
ments of the collection.

java.util.Collection

Parameters: array the array that holds the collection elements,
or whose element type is used to create a new
array to hold the collection elements

Core Java124

Algorithms
Generic collection interfaces have a great advantage—you only need to implement
your algorithms once. For example, consider a simple algorithm to compute the
maximum element in a collection. Traditionally, programmers would implement
such an algorithm as a loop. Here is how you find the largest element of an array.

if (a.length == 0) throw new NoSuchElementException();
Comparable largest = a[0];
for (int i = 1; i < a.length; i++)
 if (largest.compareTo(a[i]) < 0) largest = a[i];

Of course, to find the maximum of a vector, the code would be slightly different.

if (v.size() == 0) throw new NoSuchElementException();
Comparable largest = (Comparable)v.get(0);
for (int i = 1; i < v.size(); i++)
 if (largest.compareTo((Comparable)v.get(i)) < 0)
 largest = v.get(i);

What about a linked list? You don’t have random access in a linked list. But you
can use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();
Iterator iter = l.iterator();
Comparable largest = (Comparable)iter.next();
while (iter.hasNext())
{ Comparable next = (Comparable)iter.next();
 if (largest.compareTo(next) < 0) largest = next;
}

These loops are tedious to write, and they are just a bit error-prone. Is there an
off-by-one error? Do the loops work correctly for empty containers? For contain-
ers with only one element? You don’t want to test and debug this code every time,
but you also don’t want to implement a whole slew of methods such as these:

Object max(Comparable[] a)
Object max(Vector v)
Object max(LinkedList l)

That’s where the collection interfaces come in. Think of the minimal collection
interface that you need to efficiently carry out the algorithm. Random access with
get and set comes higher in the food chain than simple iteration. As you have
seen in the computation of the maximum element in a linked list, random access
is not required for this task. Computing the maximum can be done simply by iter-
ating through the elements. Therefore, you can implement the max method to take
any object that implements the Collection interface.

public static Object max(Collection c)
{ if (c.isEmpty()) throw new NoSuchElementException();
 Iterator iter = c.iterator();

1252 • Collections

 Comparable largest = (Comparable)iter.next();
 while (iter.hasNext())
 { Comparable next = (Comparable)iter.next();
 if (largest.compareTo(next) < 0) largest = next;
 }
 return largest;
}

Now you can compute the maximum of a linked list, a vector, or an array, with a
single method.

LinkedList l;
Vector v;
Employee[] a;
. . .
largest = max(l);
largest = max(v);
largest = max(Arrays.asList(a));

That’s a powerful concept. In fact, the standard C++ library has dozens of useful
algorithms, each of which operates on a generic collection. The Java library is not
quite so rich, but it does contain the basics: sorting, binary search, and some util-
ity algorithms.

Sorting and Shuffling

Computer old-timers will sometimes reminisce about how they had to use
punched cards and how they actually had to program sorting algorithms by hand.
Nowadays, of course, sorting algorithms are part of the standard library for most
programming languages, and the Java programming language is no exception.

The sort method in the Collections class sorts a collection that implements
the List interface.

List staff = new LinkedList();
// fill collection . . .;
Collections.sort(staff);

This method assumes that the list elements implement the Comparable interface.
If you want to sort the list in some other way, you can pass a Comparator object
as a second parameter. (We discussed comparators in the section on sorted sets.)
Here is how you can sort a list of employees by increasing salary.

Collections.sort(staff,
 new Comparator()
 { public compare(Object a, Object b)
 { double salaryDifference = (Employee)a.getSalary()
 - (Employee)b.getSalary();
 if (salaryDifference < 0) return -1;
 if (salaryDifference > 0) return 1;
 return 0;

Core Java126

 }
 });

If you want to sort a list in descending order, then use the static convenience
method Collections.reverseOrder(). It returns a comparator that returns
b.compareTo(a). (The objects must implement the Comparable interface.)
For example,

Collections.sort(staff, Collections.reverseOrder())

sorts the elements in the list staff in reverse order, according to the ordering
given by the compareTo method of the element type.

You may wonder how the sort method sorts a list. Typically, when you look at
a sorting algorithm in a book on algorithms, it is presented for arrays and uses
random element access. But random access in a list can be inefficient. You can
actually sort lists efficiently by using a form of merge sort (see, for example, Algo-
rithms in C++, Parts 1– 4, by Robert Sedgwick [Addison-Wesley 1998, p. 366–369]).
However, the implementation in the Java programming language does not do
that. It simply dumps all elements into an array, sorts the array, using a different
variant of merge sort, and then copies the sorted sequence back into the list.

The merge sort algorithm used in the collections library is a bit slower than quick
sort, the traditional choice for a general-purpose sorting algorithm. However, it
has one major advantage: it is stable, that is, it doesn’t switch equal elements. Why
do you care about the order of equal elements? Here is a common scenario. Sup-
pose you have an employee list that you already sorted by name. Now you sort
by salary. What happens to employees with equal salary? With a stable sort, the
ordering by name is preserved. In other words, the outcome is a list that is sorted
first by salary, then by name.

Because collections need not implement all of their “optional” methods, all methods
that receive collection parameters need to describe when it is safe to pass a collection
to an algorithm. For example, you clearly cannot pass an unmodifiableList list to
the sort algorithm. What kind of list can you pass? According to the documentation,
the list must be modifiable but need not be resizable.

These terms are defined as follows:

• A list is modifiable if it supports the set method.

• A list is resizable if it supports the add and remove operations.

The Collections class has an algorithm shuffle that does the opposite of sort-
ing—it randomly permutes the order of the elements in a list. You supply the list
to be shuffled and a random number generator. For example,

1272 • Collections

ArrayList cards = . . .;
Collections.shuffle(cards);

The current implementation of the shuffle algorithm requires random access to
the list elements, so it won’t work too well with a large linked list.

The program in Example 2–5 fills an array list with 49 Integer objects containing
the numbers 1 through 49. It then randomly shuffles the list and selects the first 6
values from the shuffled list. Finally, it sorts the selected values and prints them out.

Example 2–5: ShuffleTest.java

import java.util.*;

public class ShuffleTest
{ public static void main(String[] args)
 { List numbers = new ArrayList(49);
 for (int i = 1; i <= 49; i++)
 numbers.add(new Integer(i));
 Collections.shuffle(numbers);
 List winningCombination = numbers.subList(0, 6);
 Collections.sort(winningCombination);
 System.out.println(winningCombination);
 }
}

• static void sort(List elements)

• static void sort(List elements, Comparator c)

sort the elements in the list, using a stable sort algorithm. The algorithm is
guaranteed to run in O(n log n) time, where n is the length of the list.

• static void shuffle(List elements)

• static void shuffle(List elements, Random r)

randomly shuffles the elements in the list. This algorithm runs in O(n a(n))
time, where n is the length of the list and a(n) is the average time to access
an element.

• static Comparator reverseOrder()

returns a comparator that sorts elements in the reverse order of the one given
by the compareTo method of the Comparable interface.

java.util.Collections

Parameters: elements the list to sort

c the comparator to use for sorting

Parameters: elements the list to shuffle

r the source of randomness for shuffling

Core Java128

Binary Search

To find an object in an array, you normally need to visit all elements until you find
a match. However, if the array is sorted, then you can look at the middle element
and check if it is larger than the element that you are trying to find. If so, you keep
looking in the first half of the array; otherwise, you look in the second half. That
cuts the problem in half. You keep going in the same way. For example, if the
array has 1024 elements, you will locate the match (or confirm that there is none)
after 10 steps, whereas a linear search would have taken you an average of 512
steps if the element is present and 1024 steps to confirm that it is not.

The binarySearch of the Collections class implements this algorithm. Note
that the collection must already be sorted or the algorithm will return the wrong
answer. To find an element, supply the collection (which must implement the
List interface—more on that in the note below) and the element to be located. If
the collection is not sorted by the compareTo element of the Comparable inter-
face, then you need to supply a comparator object as well.

i = Collections.binarySearch(c, element);
i = Collections.binarySearch(c, element, comparator);

If the return value of the binarySearch method is ≥ 0, it denotes the index of the
matching object. That is, c.get(i) is equal to element under the comparison
order. If the value is negative, then there is no matching element. However, you
can use the return value to compute the location where you should insert element
into the collection to keep it sorted. The insertion location is

insertionPoint = -i - 1;

It isn’t simply -i because then the value of 0 would be ambiguous. In other
words, the operation

if (i < 0)
 c.add(-i - 1, element);

adds the element in the correct place.

To be worthwhile, binary search requires random access. If you have to iterate one
by one through half of a linked list to find the middle element, you have lost all
advantage of the binary search. Therefore, the binarySearch algorithm reverts
to a linear search if you give it a linked list.

NOTE: Unfortunately, since there is no separate interface for an ordered collection with
efficient random access, the binarySearch method employs a very crude device
to find out whether to carry out a binary or a linear search. It checks whether the list
parameter implements the AbstractSequentialList class. If it does, then the
parameter is certainly a linked list, because the abstract sequential list is a skeleton
implementation of a linked list. In all other cases, the binarySearch algorithm makes
the assumption that the collection supports efficient random access and proceeds with
a binary search.

1292 • Collections

• static int binarySearch(List elements, Object key)

• static int binarySearch(List elements, Object key, Comparator c)

search for a key in a sorted list, using a linear search if elements extends the
AbstractSequentialList class, a binary search in all other cases. The
methods are guaranteed to run in O(a(n) log n) time, where n is the length of
the list and a(n) is the average time to access an element. The methods return
either the index of the key in the list, or a negative value i if the key is not
present in the list. In that case, the key should be inserted at index -i - 1 for
the list to stay sorted.

Simple Algorithms

The Collections class contains several simple but useful algorithms. Among
them is the example from the beginning of this section, finding the maximum
value of a collection. Others include copying elements from one list to another,
filling a container with a constant value, and reversing a list. Why supply such
simple algorithms in the standard library? Surely most programmers could easily
implement them with simple loops. We like the algorithms because they make life
easier for the programmer reading the code. When you read a loop that was imple-
mented by someone else, you have to decipher the original programmer’s inten-
tions. When you see a call to a method such as Collections.max, you know
right away what the code does.

The following API notes describe the simple algorithms in the Collections class.

• static Object min(Collection elements)

• static Object max(Collection elements)

• static Object min(Collection elements, Comparator c)

• static Object max(Collection elements, Comparator c)

return the smallest or largest element in the collection.

java.util.Collections

Parameters: elements the list to search

key the object to find

c the comparator used for sorting the list
elements

java.util.Collections

Parameters: elements the collection to search

c the comparator used for sorting the
elements

Core Java130

• static void copy(List to, List from)

copies all elements from a source list to the same positions in the target list.
The target list must be at least as long as the source list.

• static void fill(List l, Object value)

sets all positions of a list to the same value.

• static void reverse(List l)

reverses the order of the elements in a list. This method runs in O(n) time,
where n is the length of the list.

Writing Your Own Algorithms

If you write your own algorithm (or in fact, any method that has a collection as a
parameter), you should work with interfaces, not concrete implementations,
whenever possible. For example, suppose you want to fill a JComboBox with a set
of strings. Traditionally, such a method might have been implemented like this:

void fillComboBox(JComboBox comboBox, Vector choices)
{ for (int i = 0; i < choices.size(); i++)
 comboBox.addItem(choices.get(i));
}

However, you now constrained the caller of your method—the caller must supply
the choices in a vector. If the choices happened to be in another container, they
need to first be repackaged. It is much better to accept a more general collection.

You should ask yourself what is the most general collection interface that can do
the job. In this case, you just need to visit all elements, a capability of the basic
Collection interface. Here is how you can rewrite the fillComboBox method
to accept collections of any kind.

void fillComboBox(JComboBox comboBox, Collection choices)
{ Iterator iter = choices.iterator();
 while (iter.hasNext())
 comboBox.addItem(iter.next());
}

Parameters: to the target list

from the source list

Parameters: l the list to fill

value the value with which to fill the list

Parameters: l the list to reverse

1312 • Collections

Now, anyone can call this method with a vector or even with an array, wrapped
with the Arrays.asList wrapper.

NOTE: If it is such a good idea to use collection interfaces as method parameters, why
doesn’t the Java library follow this rule more often? For example, the JComboBox class
has two constructors:

JComboBox(Object[] items)
JComboBox(Vector items)

The reason is simply timing. The Swing library was created before the collections library.
You should expect future APIs to rely more heavily on the collections library. In particular,
vectors should be “on their way out” because of the synchronization overhead.

If you write a method that returns a collection, you don’t have to change the
return type to a collection interface. The user of your method might in fact have a
slight preference to receive the most concrete class possible. However, for your
own convenience, you may want to return an interface instead of a class, because
you can then change your mind and reimplement the method later with a differ-
ent collection.

For example, let’s write a method getAllItems that returns all items of a combo
box. You could simply return the collection that you used to gather the items, say,
an ArrayList.

ArrayList getAllItems(JComboBox comboBox)
{ ArrayList items = new ArrayList(comboBox.getItemCount());
 for (int i = 0; i < comboBox.getItemCount(); i++)
 items.set(i, comboBox.getItemAt(i));
 return items;
}

Or, you could change the return type to List.

List getAllItems(JComboBox comboBox)

Then, you are free to change the implementation later. For example, you may
decide that you don’t want to copy the elements of the combo box but simply
provide a view into them. You achieve this by returning an anonymous subclass
of AbstractList.

List getAllItems(final JComboBox comboBox)
{ return new
 AbstractList()
 { public Object get(int i)
 { return comboBox.getItemAt(i);
 }
 public int size()

Core Java132

 { return comboBox.getItemCount();
 }
 };
}

Of course, this is an advanced technique. If you employ it, be careful to document
exactly which “optional” operations are supported. In this case, you must advise
the caller that the returned object is an unmodifiable list.

Legacy Collections
In this section, we discuss the collection classes that existed in the Java program-
ming language since the beginning: the Hashtable class and its useful Proper-
ties subclass, the Stack subclass of Vector, and the BitSet class.

The Hashtable Class

The classic Hashtable class serves the same purpose as the HashMap and has
essentially the same interface. Just like methods of the Vector class, the
Hashtable methods are synchronized. If you do not require synchronization
or compatibility with legacy code, you should use the HashMap instead.

NOTE: The name of the class is Hashtable, with a lowercase t. Under Windows, you’ll
get strange error messages if you use HashTable, because the Windows file system is
not case sensitive but the Java compiler is.

Enumerations

The legacy collections use the Enumeration interface for traversing sequences of
elements. The Enumeration interface has two methods, hasMoreElements and
nextElement. These are entirely analogous to the hasNext and next methods
of the Iterator interface.

For example, the elements method of the Hashtable class yields an object for
enumerating the values in the table:

Enumeration e = staff.elements();
while (e.hasMoreElements())
{ Employee e = (Employee)e.nextElement();
 . . .
}

You will occasionally encounter a legacy method that expects an enumeration
parameter. The static method Collections.enumeration yields an enumera-
tion object that enumerates the elements in the collection. For example,

ArraySet streams = . . .; // a sequence of input streams
SequenceInputStream in
 = new SequenceInputStream(Collections.enumeration(streams));
 // the SequenceInputStream constructor expects an enumeration

1332 • Collections

NOTE: In C++, it is quite common to use iterators as parameters. Fortunately, in program-
ming for the Java platform, very few programmers use this idiom. It is much smarter to
pass around the collection than to pass an iterator. The collection object is more useful.
The recipients can always obtain the iterator from it when they need it, plus they have
all the collection methods at their disposal. However, you will find enumerations in some
legacy code since they were the only available mechanism for generic collections until
the collections framework appeared in the Java 2 platform.

• boolean hasMoreElements()

returns true if there are more elements yet to be inspected.
• Object nextElement()

returns the next element to be inspected. Do not call this method if
hasMoreElements() returned false.

• Enumeration keys()

returns an enumeration object that traverses the keys of the hash table.
• Enumeration elements()

returns an enumeration object that traverses the elements of the hash table.

• Enumeration elements()

returns an enumeration object that traverses the elements of the vector.

Property Sets

A property set is a map structure of a very special type. It has three particular
characteristics.

• The keys and values are strings.

• The table can be saved to a file and loaded from a file.

• There is a secondary table for defaults.

The Java platform class that implements a property set is called Properties.

Property sets are useful in specifying configuration options for programs. The
environment variables in UNIX and DOS are good examples. On a PC, your
AUTOEXEC.BAT file might contain the settings:

java.util.Enumeration

java.util.Hashtable

java.util.Vector

Core Java134

SET PROMPT=pg
SET TEMP=C:\Windows\Temp
SET CLASSPATH=c:\jdk\lib;.

Here is how you would model those settings as a property set in the Java pro-
gramming language.

Properties settings = new Properties();
settings.put("PROMPT", "pg");
settings.put("TEMP", "C:\\Windows\\Temp");
settings.put("CLASSPATH", "c:\\jdk\\lib;.");

Use the store method to save this list of properties to a file. Here, we just print
the property set to the standard output. The second argument is a comment that is
included in the file.

settings.store(System.out, "Environment settings");

The sample table gives the following output.

#Environment settings
#Sun Jan 21 07:22:52 1996
CLASSPATH=c:\\jdk\\lib;.
TEMP=C:\\Windows\\Temp
PROMPT=pg

System information

Here’s another example of the ubiquity of the Properties set: information about
your system is stored in a Properties object that is returned by a method of the
System class. Applications have complete access to this information, but applets
that are loaded from a Web page do not—a security exception is thrown if they try
to access certain keys. The following code prints out the key/value pairs in the
Properties object that stores the system properties.

import java.util.*;

public class SystemInfo
{ public static void main(String args[])
 { Properties systemProperties = System.getProperties();
 Enumeration enum = systemProperties.propertyNames();
 while (enum.hasMoreElements())
 { String key = (String)enum.nextElement();
 System.out.println(key + "=" +
 systemProperties.getProperty(key));
 }
 }
}

1352 • Collections

Here is an example of what you would see when you run the program. You can
see all the values stored in this Properties object. (What you would get will, of
course, reflect your machine’s settings):

java.specification.name=Java Platform API Specification
awt.toolkit=sun.awt.windows.WToolkit
java.version=1.2.1
java.awt.graphicsenv=sun.awt.Win32GraphicsEnvironment
user.timezone=America/Los_Angeles
java.specification.version=1.2
java.vm.vendor=Sun Microsystems Inc.
user.home=C:\WINDOWS
java.vm.specification.version=1.0
os.arch=x86
java.awt.fonts=
java.vendor.url=http://java.sun.com/
user.region=US
file.encoding.pkg=sun.io
java.home=C:\JDK1.2.1\JRE
java.class.path=.
line.separator=

java.ext.dirs=C:\JDK1.2.1\JRE\lib\ext
java.io.tmpdir=C:\WINDOWS\TEMP\
os.name=Windows 95
java.vendor=Sun Microsystems Inc.
java.awt.printerjob=sun.awt.windows.WPrinterJob
java.vm.specification.vendor=Sun Microsystems Inc.
sun.io.unicode.encoding=UnicodeLittle
file.encoding=Cp1252
java.specification.vendor=Sun Microsystems Inc.
user.language=en
user.name=Cay
java.vendor.url.bug=http://java.sun.com/cgi-bin/bugreport.cgi
java.vm.name=Classic VM
java.class.version=46.0
java.vm.specification.name=Java Virtual Machine Specification
sun.boot.library.path=C:\JDK1.2.1\JRE\bin
os.version=4.10
java.vm.version=1.2.1
java.vm.info=build JDK-1.2.1-A, native threads, symcjit
java.compiler=symcjit
path.separator=;
file.separator=\
user.dir=C:\temp

Core Java136

NOTE: For security reasons, applets can only access a small subset of these properties.

Property defaults

A property set is also a useful gadget whenever you want to allow the user
to customize an application. Here is how your users can customize the
NotHelloWorld program to their hearts’ content. We’ll allow them to specify
the following in the configuration file CustomWorld.ini:

• window size

• font

• point size

• background color

• message string

If the user doesn’t specify some of the settings, we will provide defaults.

The Properties class has two mechanisms for providing defaults. First, when-
ever you look up the value of a string, you can specify a default that should be
used automatically when the key is not present.

String font = settings.getProperty("FONT", "Courier");

If there is a "FONT" property in the property table, then font is set to that string.
Otherwise, font is set to "Courier".

If you find it too tedious to specify the default in every call to getProperty, then
you can pack all the defaults into a secondary property set and supply that in the
constructor of your lookup table.

Properties defaultSettings = new Properties();
defaultSettings.put("FONT", "Courier");
defaultSettings.put("SIZE", "10");
defaultSettings.put("MESSAGE", "Hello, World");
. . .
Properties settings = new Properties(defaultSettings);
FileInputStream sf = new FileInputStream("CustomWorld.ini");
settings.load(sf);
. . .

Yes, you can even specify defaults to defaults if you give another property set
parameter to the defaultSettings constructor, but it is not something one
would normally do.

1372 • Collections

Figure 2–12 is the customizable "Hello World" program. Just edit the .ini file
to change the program’s appearance to the way you want (see Figure 2–12).

Figure 2–12: The customized Hello World program
Here are the current property settings.

#Environment settings
#Sun Jan 21 07:22:52 1996
FONT=Times New Roman
SIZE=400 200
MESSAGE=Hello, Custom World
COLOR=0 50 100
PTSIZE=36

NOTE: The Properties class extends the Hashtable class. That means, all methods
of Hashtable are available to Properties objects. Some functions are useful. For
example, size returns the number of possible properties (well, it isn’t that nice—it doesn’t
count the defaults). Similarly, keys returns an enumeration of all keys, except for the defaults.
There is also a second function, called propertyNames, that returns all keys. The put
function is downright dangerous. It doesn’t check that you put strings into the table.

Does the is-a rule for using inheritance apply here? Is every property set a hash table?
Not really. That these are true is really just an implementation detail. Maybe it is better to
think of a property set as having a hash table. But then the hash table should be a pri-
vate data field. Actually, in this case, a property set uses two hash tables, one for the
defaults and one for the nondefault values.

We think a better design would be the following:

 class Properties
 { public String getProperty(String) { . . . }
 public void put(String, String) { . . . }
 . . .
 private Hashtable nonDefaults;
 private Hashtable defaults;
 }

We don’t want to tell you to avoid the Properties class in the Java library. Provided
you are careful to put nothing but strings in it, it works just fine. But think twice before
using “quick and dirty” inheritance in your own programs.

Core Java138

Example 2–6: CustomWorld.java

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import javax.swing.*;

public class CustomWorld
{ public static void main(String[] args)
 { JFrame frame = new CustomWorldFrame();
 frame.show();
 }
}

class CustomWorldFrame extends JFrame
{ public CustomWorldFrame()
 { addWindowListener(new WindowAdapter()
 { public void windowClosing(WindowEvent e)
 { System.exit(0);
 }
 });

 Properties defaultSettings = new Properties();
 defaultSettings.put("FONT", "Monospaced");
 defaultSettings.put("SIZE", "300 200");
 defaultSettings.put("MESSAGE", "Hello, World");
 defaultSettings.put("COLOR", "0 50 50");
 defaultSettings.put("PTSIZE", "12");

 Properties settings = new Properties(defaultSettings);
 try
 { FileInputStream sf
 = new FileInputStream("CustomWorld.ini");
 settings.load(sf);
 }
 catch (FileNotFoundException e) {}
 catch (IOException e) {}

 StringTokenizer st = new StringTokenizer
 (settings.getProperty("COLOR"));
 int red = Integer.parseInt(st.nextToken());
 int green = Integer.parseInt(st.nextToken());
 int blue = Integer.parseInt(st.nextToken());

1392 • Collections

 Color foreground = new Color(red, green, blue);

 String name = settings.getProperty("FONT");
 int size = Integer.parseInt(settings.getProperty("PTSIZE"));
 Font f = new Font(name, Font.BOLD, size);

 st = new StringTokenizer(settings.getProperty("SIZE"));
 int hsize = Integer.parseInt(st.nextToken());
 int vsize = Integer.parseInt(st.nextToken());
 setSize(hsize, vsize);
 setTitle(settings.getProperty("MESSAGE"));

 getContentPane().add(new HelloWorldPanel(getTitle(),
 foreground, f), "Center");
 }
}

class HelloWorldPanel extends JPanel
{ public HelloWorldPanel(String aMessage, Color aForeground,
 Font aFont)
 { message = aMessage;
 foreground = aForeground;
 font = aFont;
 }

 public void paintComponent(Graphics g)
 { super.paintComponent(g);
 g.setColor(foreground);
 g.setFont(font);

 FontMetrics fm = g.getFontMetrics(font);
 int w = fm.stringWidth(message);

 Dimension d = getSize();
 int cx = (d.width - w) / 2;
 int cy = (d.height + fm.getHeight()) / 2 - fm.getDescent();

 g.drawString(message, cx, cy);
 }

 private Color foreground;
 private Font font;
 private String message;
}

Core Java140

• Properties()

creates an empty property list.
• Properties(Properties defaults)

creates an empty property list with a set of defaults.

• String getProperty(String key)

gets a property association; returns the string associated with the key, or the
string associated with the key in the default table if it wasn’t present in the table.

• String getProperty(String key, String defaultValue)

gets a property with a default value if the key is not found; returns the string
associated with the key, or the default string if it wasn’t present in the table.

• void load(InputStream in) throws IOException

loads a property set from an InputStream.

• void push(Object item)

pushes an item onto the stack.

• Object pop()

pops and returns the top item of the stack. Don’t call this method if the stack
is empty.

• Object peek()

returns the top of the stack without popping it. Don’t call this method if the
stack is empty.

Bit Sets

The Java platform BitSet class stores a sequence of bits. (It is not a set in the
mathematical sense—bit vector or bit array would have been more appropriate
terms.) Use a bit set if you need to store a sequence of bits (for example, flags)

java.util.Properties

Parameters: defaults the defaults to use for lookups

Parameters: key the key whose associated string to get

Parameters: key the key whose associated string to get

defaultValue the string to return if the key is not present

Parameters: in the input stream

java.util.Stack

Parameters: item the item to be added

1412 • Collections

efficiently. Because a bit set packs the bits into bytes, it is far more efficient to use a
bit set than to use an ArrayList of Boolean objects.

The BitSet class gives you a convenient interface for reading, setting, or resetting
individual bits. Use of this interface avoids the masking and other bit-fiddling oper-
ations that would be necessary if you stored bits in int or long variables.

For example, for a BitSet named bucketOfBits,

bucketOfBits.get(i)

returns true if the i’th bit is on, and false otherwise. Similarly,

bucketOfBits.set(i)

turns the i’th bit on. Finally,

bucketOfBits.clear(i)

turns the i’th bit off.

C++ NOTE: The C++ bitset template has the same functionality as the
Java platform BitSet.

• BitSet(int nbits)

constructs a bit set.

• int length()

returns the “logical length” of the bit set: one plus the index of the highest set bit.
• boolean get(int bit)

gets a bit.

• void set(int bit)

sets a bit.

• void clear(int bit)

clears a bit.

• void and(BitSet set)

logically ANDs this bit set with another.

java.util.BitSet

Parameters: nbits the initial number of bits

Parameters: bit the position of the requested bit

Parameters: bit the position of the bit to be set

Parameters: bit the position of the bit to be cleared

Core Java142

• void or(BitSet set)

logically ORs this bit set with another.

• void xor(BitSet set)

logically XORs this bit set with another.

• void andNot(BitSet set)

clears all bits in this bitset that are set in the other bit set..

The sieve of Eratosthenes benchmark

As an example of using bit sets, we want to show you an implementation of the
“sieve of Eratosthenes” algorithm for finding prime numbers. (A prime number is
a number like 2, 3, or 5 that is divisible only by itself and 1, and the sieve of Era-
tosthenes was one of the first methods discovered to enumerate these fundamen-
tal building blocks.) This isn’t a terribly good algorithm for finding the number of
primes, but for some reason it has become a popular benchmark for compiler per-
formance. (It isn’t a good benchmark either, since it mainly tests bit operations.)

Oh well, we bow to tradition and include an implementation. This program
counts all prime numbers between 2 and 1,000,000. (There are 78,498 primes, so
you probably don’t want to print them all out.) You will find that the program
takes a little while to get going, but eventually it picks up speed.

Without going into too many details of this program, the key is to march through
a bit set with one million bits. We first turn on all the bits. After that, we turn off
the bits that are multiples of numbers known to be prime. The positions of the bits
that remain after this process are, themselves, the prime numbers. Example 2–7
illustrates this program in the Java programming language, and Example 2–8 is
the C++ code.

NOTE: Even though the sieve isn’t a good benchmark, we couldn’t resist timing the two
implementations of the algorithm. Here are the timing results on a Pentium-166 with 96
megabytes of RAM, running Windows 98.

Borland C++ 5.4: 3750 milliseconds

JDK 1.2.1: 1640 milliseconds

We have run this test for four editions of Core Java, and this is the first time that the Java
programming language beat C++. However, in all fairness, we should point out that the
culprit for the bad C++ result is the lousy implementation of the standard bitset tem-

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

Parameters: set the bit set to be combined with this bit set

1432 • Collections

plate in the Borland compiler. When we reimplemented bitset, the time for C++ went
down to 1090 milliseconds.

Of course, these are perfect benchmark results because they allow you to put on any
spin that you like. If you want to “prove” that the Java programming language is 50 per-
cent slower than C++, make use of the latter results. Or you can “prove” that it has now
overtaken C++. Point out that it is only fair to compare the language implementation as
a whole, including standard class libraries, and quote the first set of numbers.

Example 2–7: Sieve.java

import java.util.*;

public class Sieve
{ public static final boolean PRINT = false;

 public static void main(String[] s)
 { int n = 1000000;
 long start = System.currentTimeMillis();
 BitSet b = new BitSet(n);
 int count = 0;
 int i;
 for (i = 2; i <= n; i++)
 b.set(i);
 i = 2;
 while (i * i <= n)
 { if (b.get(i))
 { if (PRINT) System.out.println(i);
 count++;
 int k = 2 * i;
 while (k <= n)
 { b.clear(k);
 k += i;
 }
 }
 i++;
 }
 while (i <= n)
 { if (b.get(i))
 { if (PRINT) System.out.println(i);
 count++;
 }
 i++;
 }
 long end = System.currentTimeMillis();
 System.out.println(count + " primes");
 System.out.println((end - start) + " milliseconds");
 }
}

Core Java144

Example 2–8: Sieve.cpp

#ifndef AVOID_STANDARD_BITSET

#include <bitset>

#else

template<int N>
class bitset
{
public:
 bitset() : bits(new char[(N - 1) / 8 + 1]) {}

 bool test(int n)
 { return (bits[n >> 3] & (1 << (n & 7))) != 0;
 }

 void set(int n)
 { bits[n >> 3] |= 1 << (n & 7);
 }

 void reset(int n)
 { bits[n >> 3] &= ~(1 << (n & 7));
 }

private:
 char* bits;
};

#endif

#include <iostream>
#include <ctime>

using namespace std;

int main()
{ const int N = 1000000;
 clock_t cstart = clock();

 bitset<N + 1> b;
 int count = 0;
 int i;
 for (i = 2; i <= N; i++)
 b.set(i);
 i = 2;
 while (i * i <= N)
 { if (b.test(i))

1452 • Collections

 { int k = 2 * i;
 while (k <= N)
 { b.reset(k);
 k += i;
 }
 }
 i++;
 }
 for (i = 2; i <= N; i++)
 { if (b.test(i))
 {
#ifdef PRINT
 cout << i << "\n";
#endif
 count++;
 }
 }

 clock_t cend = clock();
 double millis = 1000.0
 * (cend - cstart) / CLOCKS_PER_SEC;

 cout << count << " primes\n"
 << millis << " milliseconds\n";

 return 0;
}

