
...they have weapons
of mass confusion
and aren’t afraid to use them.

— iomud on Slashdot

Looking back over our shoulders, we see that we have performed only two
SMB exchanges so far: the NEGOTIATE PROTOCOL and the SESSION
SETUP. There may be a TREE CONNECT shoved into the packet with the
SESSION SETUP as an AndX, but we haven’t really described the TREE
CONNECT in detail.

So, although we have covered a tremendous amount of material, our
progress seems rather pathetic doesn’t it? What if the rest of SMB is just as te-
dious, verbose, and difficult?

Relax. It’s not.
Certainly there are other difficulties lying in wait, but the biggest ones

have already been identified and we are carefully avoiding them. If you pursue
your dream of creating a complete and competitive CIFS implementation then
you may, some day, need to know how things like MS-RPC and Extended
Security really work inside. Fortunately, you can do without them for now.

Let’s just be clear on this before we move along:

There is a lot you can do with CIFS without implementing any of
the extended sub-protocols that SMB supports, but if you want to
build a complete and competitive CIFS client/server implementation
you will need to go well beyond the SMB protocol itself.

309

16

Building Your SMB
Vocabulary

That’s why it has taken the Samba Team (with help from hundreds if not
thousands of people across the Internet) more than ten years to make Samba
the industrial-strength server system it is today. Tridge worked out the basics
of NBT and SMB in a couple of weeks back in 1991, but new things keep
getting tacked on to the system.

When implementing CIFS, the rule of thumb is this: Implement as little
as possible to do the job you need to do.

The minute you cross the border into uncharted territory, you open up
a whole new world to explore and discover. Sometimes, you just don’t want
to go there. Other times, you must.

Anyway, in the spirit of keeping things simple we will cover only a few
more SMB messages, and those in much less depth than we have done so far.
There really is no need to study every message, longword, bit, and string. If
you’ve come this far, you should know how to read packet captures and inter-
pret the message definitions in the SNIA doc. It is time to take the training
wheels off and learn to ride.

That TREE CONNECT Thingy16.1

We have talked a lot about the TREE CONNECT ANDX REQUEST SMB.
There was even an example way back in Section 11.4 on page 188. The example
looked like this:

SMB_PARAMETERS
 {
 WordCount = 4
 AndXCommand = SMB_COM_NONE (0xFF)
 AndXOffset = 0
 Flags = 0x0000
 PasswordLength = 1
 }
SMB_DATA
 {
 ByteCount = 22
 Password = ""
 Path = "\\SMEDLEY\HOME"
 Service = "?????" (yes, really)
 }

Notice that the TREE CONNECT includes a Password field, but that
in this example the Password field is almost empty (it contains a nul byte).

Part II SMB: The Server Message Block Protocol310

If the server negotiates Share Level security, then the password that would
otherwise be in the SESSION_SETUP_ANDX.CaseInsensitive-
Password field will show up in the TREE_CONNECT_ANDX.Password
field instead. The password may be plaintext, or it may be one of the response
values we calculated earlier.

The TREE_CONNECT_ANDX.Path field is also worth mentioning. It
contains the UNC pathname of the share to which the client is trying to con-
nect. In this example, the client is attempting to access the HOME share on node
SMEDLEY. Note that the Path will be in Unicode if negotiated.

Finally there is that weird quintuple question mark string in the
TREE_CONNECT_ANDX.Service field. There are, as it turns out, five pos-
sible values for that field:

MeaningString

A filesystem shareA:

A shared printerLPT1:

An interprocess communications named pipeIPC

A serial or other communications deviceCOMM

Wildcard?????

It’s annoying for the client to need to know the kind of share to which it
is connecting, which is probably why the wildcard option is available. The
server will return the service type in the Service field of the Response.
Note that the Service strings are always in 8-bit ASCII characters —
never Unicode.

The response (for LANMAN2.1 and above) looks like this:

SMB_PARAMETERS
 {
 WordCount = 3
 AndXCommand = <Next ANDX command>
 AndXOffset = <Next ANDX block offset>
 OptionalSupport = <A bitfield>
 }

31116 Building Your SMB Vocabulary

SMB_DATA
 {
 ByteCount = <variable>
 Service = <"A:" | "LPT1:" | "IPC" | "COMM">
 NativeFileSystem = <"" | "FAT" | "NTFS">
 }

The example above shows the empty string, “FAT”, or “NTFS” as the
valid values for the NativeFileSystem field. Other values are possible.
(Samba, for instance, has a configuration option that allows you to put in
anything you like.) The empty string is used for the hidden IPC$ share.

There are two bits defined in the OptionalSupport bitfield:

MeaningBit

The meaning of this bit is explained in the LANMAN2.1
documentation. Basically, it indicates that the server
knows how to perform directory searches that filter out
some entries based on specific file attributes — for
example, the DOS archive bit, the directory attribute, etc.
This is old stuff and all current implementations should
support it.

SMB_SUPPORT_SEARCH_BITS

0x0001

This bit, if set, indicates that the UNC name is in the
Distributed File System (DFS) namespace. DFS is yet to
be covered.

SMB_SHARE_IS_IN_DFS

0x0002

There is a note in the SNIA doc that states that some servers will leave
out the OptionalSupport field even if the LANMAN2.1 or later dialect
is negotiated. It does not say whether SMB_SUPPORT_SEARCH_BITS should
be assumed in such cases.

SMB Echo16.2

Here’s a toy we can play with.
ECHO is really as simple as it sounds. It’s sort of the SMB equivalent of

ping. The client sends a packet with a data block full of bytes, and the server
echoes the block back. Simple.

...but this is CIFS we’re talking about.

Part II SMB: The Server Message Block Protocol312

Although the ECHO itself is simple, there are many quirks to be found in
existing implementations. We will dig into this just a tiny bit to give you a
taste of the kinds of problems you are likely to encounter. Let’s start with a
quick look at the ECHO REQUEST structure:

SMB_PARAMETERS
 {
 WordCount = 1
 EchoCount = <In theory, anything from 0 to 65535>
 }
SMB_DATA
 {
 ByteCount = <Number of data bytes to follow>
 Bytes = <Your favorite soup recipe?>
 }

The EchoCount field is a multiplier. It tells the server to respond
EchoCount times. If EchoCount is zero, you shouldn’t get any reply at all.
If EchoCount is 9,999, then you are likely to get nine thousand, nine hundred,
and ninety-nine replies. We say likely because of the wide variety of weirdity
that can be seen in testing.

One bit of weirdation is that all of the systems that were tested would
respond to an ECHO REQUEST even if no SESSION SETUP had been sent
and no authentication performed. This behavior is, in fact, per design, but it
means that any client that can talk to your server from anywhere can ask for
EchoCount replies to a single request. (It would probably be safer for the
server to send a ERRSRV/ERRnosupport error message in response to an
un-authenticated ECHO REQUEST.)

Other strangisms of note:

In testing, Windows 9x systems returned an “Invalid TID” error unless
the TID was set to 0xFFFF. Also, these systems sent back at most a single
reply, handling EchoCount as if it were a boolean.

Windows NT 4.0 and Windows 2000 would try to send as many replies
as specified in EchoCount. If the data block (SMB_DATA.Bytes) was
very large (4K was tested) and the EchoCount very high (e.g., 20,000),
the server would eventually give up and reset the connection.

Samba has an upper limit of 100 repetitions. Also, Samba sends the replies
fast enough that multiple replies will be batched together in a single TCP
packet. (That’s normal behavior for a TCP stream.)

31316 Building Your SMB Vocabulary

The Windows NT 4.0 (Service Pack 6) system used in testing failed to
respond if the payload was greater than 4323 bytes. Windows 2000 seems
to have an upper limit of 16611 bytes, above which it resets the
TCP connection.

Email

 From: Conrad Minshall, Apple Computer
 To: Chris Hertel
 Cc: Samba Technical Mailing List
Subject: Re: Bizarre limit alert.

I saw the same "packet drop" with an overlong WRITE_ANDX. The
maximum buffer size an NT SP6 claims on the NEGOTIATE response
is 0x1104 (4356). This limit is not on the data, the limit
includes the SMB header (32 bytes) and the SMB command. Based
upon the size of an ECHO command I'd expect you could send
4319 bytes, not 4323, so on this topic you'll have to have the
last word... sorry.

No apologies. This is CIFS we’re talking about.

The ECHO SMB may be one of those things that get coded up just because
they’re in the documentation and they seem easy. It also appears as though
ECHO hasn’t been tested much. Certainly, the more it is stressed, the more
variation can be seen. There is, however, something to note in the last example
in the above list and in the message from Conrad: Once you know what you’re
looking at, you will find common themes that appear and reappear across a
given implementation. These common themes are derived from common in-
ternals, and they can provide many clues about the inner workings of
the implementation.

Another fine point highlighted by our quick look at the ECHO SMB is
that TCP is designed to carry streams of data — not discrete packets. This can
be seen in the results of the tests against Samba, in which multiple replies were
contained in a single TCP packet. At the other extreme, several TCP packets
are needed to transfer a single ECHO if it has a very large data payload. As a
result, a single read operation may or may not return one and only one complete
SMB message.

Part II SMB: The Server Message Block Protocol314

Oversimplification Alert
The RecvTimeout() function (provided way back in Listing 10.1) makes the as-
sumption that one complete SMB message will be returned per call to the recv()
function. That’s a weak assumption. It works well enough for the simple testing we
have done so far, but it is not sufficient for a real SMB implementation.

A better version of RecvTimeout() would verify the received data length
against the NBT SESSION_MESSAGE.LENGTH field value to ensure that only
one message is read at a time, and that the complete message is read before it
is returned.

Readin’, Writin’, and ’Rithmatic16.3

Here is a quick run-down on some of the basic essentials of SMB.

OPEN_ANDX

This SMB is discussed in examples given throughout the SNIA doc, but
there is no actual writeup given there. That’s because it was labeled as
“obsolescent” in the Leach/Naik CIFS draft. The NT_CREATE_ANDX
SMB is now considered the more fashionable choice. Servers must still
support the OPEN_ANDX SMB, however, and there are certainly clients
that still send it (even under the NT LM 0.12 dialect).

It’s times like these that the earlier documentation comes in
really handy.

The OPEN_ANDX SMB is used to gain access to a file for further
processing (reading, writing, that sort of thing). The open file is identified
by a FID (File ID). The FID, of course, is returned by a successful
OPEN_ANDX call.

READ_ANDX

It seems fairly obvious. This one lets you read blocks of data from a file
(or device) on the server. The READ_ANDX request supports 64-bit file
offsets if the OffsetHigh field is present (if it is present, the
WordCount will be 12).

An oddity of the READ_ANDX is the MaxCountHigh field, which
is only used if the CAP_LARGE_READX capability has been set.
MaxCountHigh is an unsigned long (four bytes) that is supposed to

31516 Building Your SMB Vocabulary

hold the upper 16 bits (two bytes) of the unsigned short (two byte)
MaxCount field. Two problems with this:

1. Why use a 32-bit field to hold 16 bits worth of data?

2. Even with CAP_LARGE_READX set, the maximum SMB large read
is 64K. That should fit into the MaxCount field with no need
for MaxCountHigh.

Play with it and see what happens. Should be interesting.

WRITE_ANDX

Allows writing to a file or device. This SMB can also be extended by two
words to include an OffsetHigh field, thus providing 64-bit offsets.
There is also a DataLengthHigh field that is comparable to the
MaxCountHigh from the READ_ANDX. In this case, though, the
DataLengthHigh field is given as an unsigned short. That’s only two
bytes, which makes more sense.

SEEK_ANDX

This one may be considered deprecated. Newer clients probably don’t
need to send the SEEK_ANDX, but servers may need to support it just
in case.

Email

From: Charles Caldarale
 To: jCIFS Mailing List

SMB_COM_SEEK is a useless SMB, since all of the read and write
functions require a file relative address. It's not surprising
it wasn't used; it would have been a waste of network bandwidth
if it had been sent.

- Chuck

See also the SNIA doc’s comments regarding this SMB.

FLUSH

The SMB_COM_FLUSH has nothing to do with plumbing. It is sent by
the client to ask the server to write all data and metadata for an open file

Part II SMB: The Server Message Block Protocol316

(specified by its FID) to disk. If a FID value of 0xFFFF is given, the
server is being asked to flush all open files relative to the TID.

NT_CREATE_ANDX

This SMB is used to open, create, or overwrite a file or directory. It offers
a myriad of options for file attributes, file sharing, security, etc. As the
“NT” in the name implies, the NT_CREATE_ANDX SMB is closely tied
to the feature set offered by Windows NT filesystem calls. Here’s where
you start needing to know more about Windows itself.

One problem with complex calls such as this is that the number of
permutations gets to be very high, and it quickly becomes very difficult
to test them all.1 There are various reports describing combinations of
values that can cause a Windows NT client or server to go BSOD (Blue
Screen Of Death). Have fun with your testing.

There is yet another version of this SMB known as the
NT_TRANSACT_CREATE, which is implemented as a sub-command of
the SMB_COM_NT_TRANSACTION SMB. It is used to apply Extended
Attributes (EAs) or Security Descriptors (SDs) to a file or directory.

CLOSE

All good things must come to an end. Close the file, say goodnight, sing
one more song, and get some rest.

Remember earlier when we talked about SMB messages as if we were
dissecting some strange, new species of multi-legged critter? Well, we’ve moved
beyond Entomology, Invertebrate Zoology, Taxonomy, and such. We’re now
studying really complex stuff like Sociology, Psychology, and Numismatics,
and we get to put the little critters into Skinner boxes and see how they react
to various stimuli. It’s important research, and there are all sorts of interesting
things to discover.

Consider, for example, the SMB_COM_COPY command. It’s supposed to
allow you to copy a file from one location on the server to another location.

1. I vaguely remember a presentation given by David Korn, author of the Korn Shell (ksh),
regarding AT&T’s UWIN project. At the end of the presentation there was some discussion
regarding the differences between standard Posix APIs and Win32 APIs. It was pointed out
that there were hundreds or possibly thousands of permutations of parameter values that could
be passed to the Posix open() function. The permutations for the equivalent Win32 function,
it was reported, was on the order of millions. How the heck do you test all those possibilities?

31716 Building Your SMB Vocabulary

That saves the client from having to read the data over the wire and write it
back again. A good idea, eh? Unfortunately, no one seems to be able to get it
to work — at least, not against Windows servers. There has been some limited
success in the laboratory...

Email

 From: Greg McCain
 To: Chris Hertel
Subject: CIFS and SMB_COPY

Chris,

I found that smb_copy will in fact copy a file iff:
 - the src file is in the root of the share
 - you do not specify the full path to the file src and dest files
in the smb_copy command. Instead, just specify the names of the
files (this is out of spec.).

The resulting destination file will be named like the source
file, minus the first character. It will NOT be named as specified
in the dest parameter. Hence "smb_copy wanda -> fred" results in
a second file "anda" in the root of the share.

This works on the .NET server RC1 and Windows 2000 servers
that I've tried. Hope it helps.

SMB is an old protocol, and it has gotten sloppy over the years. As you
work your way through the SMB messages, implementing first the easy ones
and then the more difficult ones, keep this thought in mind: It’s not your fault.

Say it to yourself now: “It’s not my fault.”
Very good.
That will prevent you from getting frustrated and doubting your own

skill. It’s really not your fault.

Transaction SMBs16.4

We are going to blast through this, so you’d better get your running shoes on.
The purpose of the Transaction SMBs is to carry specialized sub-protocols.

Examples include the Remote Administration Protocol (RAP) and Microsoft’s

Part II SMB: The Server Message Block Protocol318

implementation of DCE/RPC (MS-RPC). There are other, more esoteric
sets of calls as well. We will play with some of them when we get to the
Browse Service.

Think of these sub-protocols as sets of function calls that are stretched
across the network. As suggested in Figure 16.1, a function call is made on the
client side and the parameters and data are packed up and shoved across the
network. The call is then completed at the remote end and the results (if any)
are packed up and shoved back. In CIFS jargon, that’s called a transaction.

result = fn(foo, &bar);

int fn(long val,
 char *str)
 {
 ...
 } /* fn */

Trans Req
.SMB..foo
..bar....

Trans Resp
.SMB....r
esult....

Figure 16.1: Remote Procedure Call via transaction

Software on the client calls the function fn().

The parameters and pass-by-reference data are packed into an SMB Transaction and
sent to the server.

The server processes the function call.

If results are expected, the server packs the return value(s) and any pass-by-reference
data into a reply transaction.

31916 Building Your SMB Vocabulary

Transactions are designed to be able to transfer more data than the limit
imposed by the negotiated buffer size. They do so by fragmenting the payload.
The protocol for sending large Protocol Data Units (PDUs) is described in a
variety of documents, but here is a quick run-down:

1. A primary Transaction SMB is sent. It includes the total expected size of
the transaction (so that the server can prepare to receive the data). It also
contains as much of the data as will fit in a single SMB message. If every-
thing fits, skip to step 4.

2. The server sends back an interim response. If the interim response contains
an error code then the transaction will be aborted. Otherwise, it is a signal
telling the client to continue. The WORDCOUNT and BYTECOUNT fields
are both zero in this message (it’s a disembodied header).

3. The client sends as many secondary Transaction SMBs as necessary to
complete the transaction request.

4. The server executes the called function.

5. The server sends as many response messages as necessary to return the
results. In some cases the request does not generate results, and no response
is required.

There are three primary Transaction SMBs:

SMB_COM_TRANSACTION == 0x25
SMB_COM_TRANSACTION2 == 0x32
SMB_COM_NT_TRANSACT == 0xA0

Those are really long names, so folks on the various mailing lists tend to
shorten them to “SMBtrans,” “Trans2,” and “NTtrans,” respectively. Each of
these also has a matching secondary:

SMB_COM_TRANSACTION_SECONDARY == 0x26
SMB_COM_TRANSACTION2_SECONDARY == 0x33
SMB_COM_NT_TRANSACT_SECONDARY == 0xA1

There is very little difference between these three transaction types, except
that the NTtrans SMB has 32-bit fields where the other two have 16-bit fields.
That means that NTtrans can handle a lot more data (that is, much larger
transactions). Besides that, the real difference between these three is the set of
functions that are traditionally carried over each.

Part II SMB: The Server Message Block Protocol320

The SNIA doc and the Leach/Naik CIFS draft provide examples of
transactions that use Trans2 and NTtrans. Calls that use SMBtrans are docu-
mented elsewhere. Places to look include Luke’s book (DCE/RPC over SMB),
the Leach/Naik Browser and RAP Internet Drafts, and the X/Open documen-
tation (particularly IPC Mechanisms for SMB). These (as you already know)
are listed in the References section.

Mailslots and Named Pipes16.4.1

Just to simplify things even further, SMBtrans supports yet another layer
of abstraction.

Mailslots and Named Pipes are used to access specific sets of remote
functions. For example, the “LANMAN” pipe (which is identified as
\PIPE\LANMAN) is always used for RAP calls.

Named Pipes are two-way inter-process communications channels. Once
opened, they can be read from or written to as if they were files. In contrast,
Mailslots are used for one-way, connectionless communications.

...and this is where something unexpected happens. Mailslot messages are
sent using SMBs transported via the NBT Datagram Service. You’ll have to see
it to believe it, but that is easily arranged. All you need to do is grab a packet
capture of port 138 on an active LAN, one with a few local servers that an-
nounce themselves to the working Network Neighborhood. If you don’t like
to wait, reboot something. A Windows 9x system that offers shares will
do nicely.

This topic will be revisited in Part III on page 335. If you want to do
some extra-curricular reading, the X/Open IPC Mechanisms for SMB document
is recommended.

32116 Building Your SMB Vocabulary

