

There is a finite amount of clue
in the Universe...
and the Universe is expanding.

— Unknown
(thanks to John Ladwig
and Marcus Ranum)

Hold on to your hoopskirts everyone, we’re not there yet. We have a few more
things to learn about the Network Neighborhood.

Running an Election23.1

Elections may be called whenever a Consumer is unable to find a Local Master
Browser, or when a jealous rival (known as a Preferred Master Browser) shows
up. An election can also be forced by sending a zero-filled RequestElection
frame.

When a RequestElection frame is received by a Potential Browser
(including Backup Browsers, the LMB, and the DMB), the Potential Browser
switches into election mode. The browser stays in election mode until a winner
declares itself by sending a LocalMasterAnnouncement frame.

While in election mode, the browser sends and receives Request-
Election frames. If another browser’s credentials are better, then the
browser knows that it has lost the election and will politely shut up, not partic-
ipating further in the current election.

23

The Better Browser
Bureau

411

Voting23.1.1

There is a bit of timing involved in the election process. If all Potential Browsers
were to respond at once, things could get a little noisy.1 So, as with the
AnnouncementRequest frame, when a browser receives a Request-
Election frame it will wait a random amount of time before sending its re-
sponse. The amount of time to wait varies by the status of the node, however.
A Potential Browser that is more likely to win the election will send its response
to the RequestElection frame sooner than one that is less likely.

It’s supposed to work like this:

Browser election timings

Node CredentialsResponse Delay

Local and Domain Master Browsers0–100 ms

Backup Browsers200–600 ms

All others800–3000 ms

The goal here is to cut down on network broadcast traffic. If the likely
candidate votes first, the chances are good that the others won’t have to
vote at all.

After sending a RequestElection frame, a candidate should wait two
or three seconds to be sure that all other candidates have voted. After that, if
the candidate has won the round it can send another RequestElection
frame. This marks the start of another round. The election runs four rounds,
after which the browser still standing (there should be only one) declares itself
the winner by sending a LocalMasterAnnouncement frame.

The timings above are provided in the Leach/Naik Browser draft. Whether
existing implementations follow these guidelines or not is a question for
further study.

1. It is possible that the reason behind this is that some older IP implementations would
overflow their buffers if too many UDP packets all arrived at once. There is anecdotal evidence
that such a problem did, at one time, exist.

Part III The Browse Service412

The Ballot23.1.2

The ballot is contained within the RequestElection frame which, just to
review, looks like this:

struct
 {
 uchar Opcode;
 uchar Version;
 ulong Criteria;
 ulong UpTime;
 ulong Reserved;
 uchar *ServerName;
 } RequestElection;

The Opcode and Reserved fields can be ignored. The rest comprise
the election ballot. The winner of the election is determined by comparing the
ballots using a somewhat arcane formula. Here, plain and simple, is how
it works:

Test 1
The higher Version wins. If they are the same, continue. The only
values for Version seen on the wire are 0 and 1. Zero is only used when
initiating an election by sending a zero-filled election request.

Test 2
Compare the Criteria. The higher value wins. If they are equal, con-
tinue. The contents of the Criteria field still need to be analyzed.

Test 3
The station that has the greatest UpTime wins. If they are equal, continue.
The UpTime is measured in milliseconds,2 so there is very little chance
that two ballots will have the same value.

Test 4
Compare the ServerName strings. The first, in comparison order, wins.
(E.g. “EARTH” would win over “OIL”.)

2. The maximum UpTime is a little less than 50 days, after which the 32-bit counter will wrap
around to zero again.

41323 The Better Browser Bureau

There is one more test suggested in the Leach/Naik Browser draft. It
might be “Test 0” in the list above. Test 0 says, essentially, that a browser that
has recently lost an election is still a loser and should remain a loser until sev-
eral seconds have passed.

Let’s rip apart that Criteria field, shall we?
The Criteria field is handled like an unsigned long integer, but it can

also be divided into four subfields, like so:

struct
 {
 uchar OSlevel;
 uchar BroMajorVers;
 uchar BroMinorVers;
 uchar Role;
 } Criteria;

The OSlevel is the highest order byte and, therefore, has the most im-
pact when Criteria values are compared as unsigned longs. There are some
known, predefined values, as shown:

0x01 = Windows for Workgroups and Windows 9x
0x10 = Windows NT Workstation
0x14 = Samba default
0x20 = Windows NT Server

The higher you crank the OSlevel, the better your chances of winning
an election.

Moving along, the next subfields are the major and minor Browser Proto-
col Version numbers. In theory, they should have the values 15 and 1,
respectively, but Windows 9x systems use 21 and 4 instead.

The final subfield is known as the Role field. It is a bitflag field. There
seems to be some disagreement regarding the bits, though. Different sources
provide different interpretations. The table below provides reasonable
approximations.

Browser roles

DescriptionBit

Set by the Primary Domain Controller (PDC).0x80

The node is an NBNS client (a P, M, or H node).0x20

Part III The Browse Service414

Browser roles

DescriptionBit

This is the “Preferred Master” bit. It can be enabled manually in Windows
via a registry setting, and in Samba by using the PREFERRED MASTER option
in the smb.conf file.

0x08

Set by the current Local Master Browser.0x04

Set by a Backup Browser that was until recently the Local Master, but which
has been downgraded after losing an election.3

0x02

Set by Backup Browsers.0x01

It was stated earlier that the LMB election can be rigged so that a specific
node always wins. For example, it is necessary that the DMB become the LMB
for the LAN.

Higher OS level
In the Windows world, only an NT or W2K server can become a PDC
and, therefore, only these can be DMBs. These systems will set the highest
defined OS level which, as shown above, is 0x20. Thus, in a purely
Windows environment, the only competition will be from other NT and
W2K servers.

Preferred Master
To further bias the LMB election, the “Preferred Master” Role bit may
be set. This provides an edge over otherwise identical servers. Preferred
Master Browsers also force an election whenever they join a LAN.

NBNS Clients
The NBNS client bit is higher order than the Preferred Master bit. Setting
this helps because only an NBNS client can contact a remote Domain
Master browser to synchronize lists. Thus, an NBNS client is a better
choice as an LMB than a B mode node (even a preferred master).

The DMB
The PDC bit is set to ensure that a PDC will win over any other NT or
W2K server on the LAN. From a Windows perspective, the PDC must

3. Chances are good that this node is still bitter.

41523 The Better Browser Bureau

also be the DMB so setting this bit should ensure that the DMB will win
the Local Master Browser election.

The thing is, there is no guarantee that a third-party browse server will
obey the criteria conventions used in Windows. For example, a Samba server
can be configured to have an OS level of 255 which would cause it to win the
election over the Domain Master. Ouch.

Timing Is Everything23.2

Several different Microsoft documents provide Browse Service timing informa-
tion, much of which has already been presented. For the sake of clarity, the
Browse Service timings are collected in the table below. These values may be
verified against the Microsoft article Browsing and Windows 95 Networking as
well as the Leach/Naik draft.

Browser Service timings

OperationPeriod

Backup Browser Sync. The Backup Browser performs a
NetServerEnum2 operation with the Local Master Browser.

15 minutes

Local Master Browser Sync. The Domain Master Browser performs
a NetServerEnum2 operation with a Local Master Browser when it
receives a MasterAnnouncement from the LMB, and then repeats
the sync every 15 minutes.

15 minutes

Domain Master Browser Sync. Local Master Browsers will contact
their Domain Master Browser and perform a NetServerEnum2
operation to retrieve the merged Browse List.

15 minutes

Host and Local Master Announcements. These announcements are
sent one minute apart at first. The period typically increases in the
following sequence: 1, 2, 4, 8, 12, 12, 12...

1 minute,
increasing
to 12

Domain Announcements. Similar to the previous kind, except that they
peg at 15 minutes instead of 12 and the series is reported to be: 1, 1,
1, 1, 1, 15, 15...

1 minute,
increasing
to 15

The timeout period for a Host entry to time out of the local Browse
List. It should be 3 × the announcement period, but in testing, some
Providers listed their Periodicity incorrectly.

36 minutes

Part III The Browse Service416

Browser Service timings

OperationPeriod

The timeout period for a Domain entry to time out of a foreign
workgroup’s Browse List.

45 minutes

The average amount of time required before a Backup Browser discovers
that its Local Master is missing, and calls another election. Elections
may also be called if a Preferred Master shows up on the LAN or if a
Consumer gets no response to a GetBackupListRequest.

15/2 minutes

If you like playing with numbers (and really, who doesn’t) you can spend
some time going through the mental exercise of figuring out how long it takes
for Host and Domain entries to time out across subnets.

...or you could take a nice quiet walk in the forest. The forest sounds
good. Yep. Forest.

41723 The Better Browser Bureau

