Appendix D

Building the GNU Cross-Development Tools
The procedure detailed in this appendix was used to build the i386 GNU cross-development tools contained on the CD-ROM. The commands in this section are specific to configuring and building the i386 GNU cross-development tools, although the commands for other processors are very similar.

The configure and build process for each group of GNU cross-development tools can take a large amount of time to complete. The amount of time to configure and build the cross-development tools directly depends on the speed of your PC.

	N O T E
The steps detailed in this build procedure assume that a new host development platform is being used. Therefore, some of the steps—for example, the mount command in step 4—might not be necessary if new development tools are being built on an existing platform.

STEP 1

Open the bash command shell. This can be done by clicking on the Cygwin shortcut on the desktop, if created in the Cygwin native tools installation, or through the menu Start –> Programs –> Cygnus Solutions –> Cygwin Bash Shell.

When the shell is opened, the present working directory is D:\cygwin\home\xxx, where xxx is your username. We want to change to the root Cygwin directory, which in our case is D:\cygwin, by entering the following command at the bash prompt ($):

$ cd /

STEP 2

Next, we need to create subdirectories for each of the three groups of cross-development tools. When using the Cygwin bash shell, the “/” refers to the root Cygwin installation directory, which in our case is D:\cygwin. To create the necessary directories, enter the following command:

$ mkdir –p /src/binutils /src/gcc /src/gdb

Verify that these directories are created correctly under the D:\cygwin root directory.

STEP 3
	N O T E
The CD-ROM drive is mounted as /cygdrive/e/ by default when Cygwin is installed. The drive letter for your CD-ROM should be substituted in place of /e/ in the following tar commands. If you are uncertain of the drive mountings for your system, enter the command mount at the bash shell prompt to get a listing of the current system mounts.

GNU Binary Utilities Unzip

Now we need to unzip the source code files from the CD-ROM. First, we change to the GNU Binutils directory with the command:

$ cd /src/binutils

Then, we unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/binutils-2.11.2a.tar.bz2

This creates the subdirectory binutils-2.11.2a, under the src/binutils directory, which contains the GNU Binutils source files.

GNU C/C++ Compiler Unzip

Next, we change to the GNU C/C++ Compiler subdirectory at the bash shell prompt with the command:

$ cd /src/gcc

Then, unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/gcc-2.95.2a.tar.bz2

This creates the subdirectory gcc-2.95.2a, under the src/gcc directory, containing the GCC and G++ source files.

GNU Debugger with Insight Unzip

Finally, we change to the GNU Debugger with Insight subdirectory with the command:

$ cd /src/gdb

Unzip the file with the command:

$ tar xjvf /cygdrive/e/gnu/source/insight-5.1a.tar.bz2

This creates the subdirectory insight-5.1a under the src/gdb directory with the GNU Debugger with Insight source files.

	N O T E
It is possible to install the GNU Debugger without the Insight GUI; however, the Insight source code is a superset of the GDB source code. In addition, you always have the option of running the GNU Debugger with the command-line interface using the –nw option.

STEP 4

Before building the cross-development tools, we need to make sure that the temporary directory is mounted properly on our system. This ensures that the cross development tools build properly. The command to do this is:

$ mount –f –b d:/cygwin/tmp /tmp

STEP 5

Now we are ready to build the cross-development tools.

	N O T E
In the following configure and build steps, entering the commands exactly as shown is very important. The slightest typo in entering these commands can cause the entire GNU cross-development tool chain to fail to work.

If there are problems during the build, the bash shell history is a good place to start to see if the GNU cross-development tools were built properly. The bash command history can be displayed by entering the following command:

 $ history

The bash command history can also be found in the file .bash_history in the D:\cygwin\home\username directory, where username is your computer user name.

We start with the GNU Binutils. First, we need to create a temporary directory for the build using the bash shell command:

$ mkdir –p /tmp/build/binutils

We should verify that the directory D:\cygwin\tmp\build\binutils is created. Change to the subdirectory we just created with the command:

$ cd /tmp/build/binutils

Next, we configure the system to build the GNU Binutils with the command:

	N O T E
In the following commands, the backslash (\) at the end of each line is used to break up the commands entered into the bash shell. After pressing Enter at the end of a line with a backslash, a new line is output in the bash shell with a greater than (>) sign prompt, allowing us to continue entering the remaining command lines.

$ /src/binutils/binutils-2.11.2a/configure –-target=i386-elf \

 --prefix=/tools \

 --exec-prefix=/tools/H-i686-pc-cygwin \

 -v 2>&1 | tee configure.out

The output messages from the configuration process are contained in the file configure.out located in the D:\cygwin\tmp\build\binutils subdirectory should you need to refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The configuration populates the D:\cygwin\tmp\build\binutils subdirectory with the necessary files to build the GNU Binutils.

Now we can build the GNU Binutils with the command:

$ make –w all install 2>&1 | tee make.out

The output from the make process is contained in the file make.out located in the D:\cygwin\tmp\build\binutils subdirectory should you need to refer to a particular message.

 After this step is complete, in which case we are returned to the bash shell prompt, we have the GNU Binutils created for the Intel x86 platform. These files are located in the D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of one of the GNU Binutils files for the Intel x86 platform is i386-elf-as.exe.

STEP 6

Before we proceed with the build process, we need to make sure that the path is configured properly and that the binary utilities are at the head of the path. To do this, we use the bash shell command:

$ PATH=/tools/H-i686-pc-cygwin/bin:$PATH ; export PATH

We also need to add the GNU Intel x86 tools directory to the Windows environment path. The path is altered by right-clicking on the My Computer icon on the desktop. This brings up a drop-down list of options. Select Properties from the drop-down list.

The System Properties dialog box is displayed. Select the Environment tab. Under the User Variables, select path. In the Value edit box, to the front of the path, add:

D:\cygwin\tools\H-i686-pc-cygwin\bin;

Then, click the Set button. Finally, click the OK button.

STEP 7

Now we verify that the GNU Binutils were built properly and that the PATH is set up correctly before proceeding with the build. To do this, we enter the command:

$ i386-elf-as –-version

The following message is output if everything is set up properly:

GNU assembler 2.11.2

Copyright 2001 Free Software Foundation, Inc.

This program is free software; you may redistribute it under the terms of the GNU General Public License. This program has absolutely no warranty.

This assembler was configured for a target of `i386-elf'.

If the message is incorrect, go back and verify that the PATH is configured properly. If so, you need to verify that the GNU Binutils configure and make commands were entered correctly. If they were entered incorrectly, it is best to remove the contents under the D:\cygwin\tmp\ build\binutils directory before attempting to configure and make the GNU Binutils again.

STEP 8

Next, we build the GNU C/C++ Compiler. Then, we create a temporary directory for the GNU C/C++ Compiler build with the command:

$ mkdir –p /tmp/build/gcc

We should verify that the directory D:\cygwin\tmp\build\gcc is created. Change to the directory we just created using the command:

$ cd /tmp/build/gcc

Now we can configure to build the GNU C/C++ Compiler using the command:

$ /src/gcc/gcc-2.95.2a/configure –-target=i386-elf \

 --prefix=/tools \

 --exec-prefix=/tools/H-i686-pc-cygwin \

 --with-gnu-as –-with-gnu-ld –-with-newlib \

 -v 2>&1 | tee configure.out

The output messages from the GNU C/C++ Compiler configuration process are contained in the file configure.out located in the D:\cygwin\tmp\build\gcc subdirectory should you need to refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The configuration populates the D:\cygwin\tmp\build\gcc subdirectory with the necessary files to build the GNU C/C++ Compiler.

Now we can build the GNU C/C++ Compiler with the command:

$ make –w all-gcc install-gcc \

 LANGUAGES="c c++" 2>&1 | tee make.out

The output from the GNU C/C++ Compiler make process is contained in the file make.out located in the D:\cygwin\tmp\build\gcc subdirectory should you need to refer to a particular message.

 After this step is complete, in which case we are returned to the bash shell prompt, we have the GNU C/C++ Compiler created for the Intel x86 platform. These files are located in the D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of one of the GNU C/C++ Compiler files for the Intel x86 platform is i386-elf-gcc.exe.

STEP 9

Now we verify that the GNU C/C++ Compiler was built properly. To do this, we enter the command:

$ i386-elf-gcc –-version

The following message is output if everything is set up properly:

2.95.2

If the message is incorrect, you need to verify that the GNU C/C++ Compiler configure and make commands were entered correctly. If they were entered incorrectly, it is best to remove the contents under the D:\cygwin\tmp\build\gcc directory before attempting to configure and make the GNU C/C++ Compiler again.

STEP 10

Finally, we build the GNU Debugger with Insight. First, we create a temporary directory for the GNU Debugger build with the command:

$ mkdir –p /tmp/build/gdb

We should verify that the directory D:\cygwin\tmp\build\gdb is created. Change to the directory we just created using the command

$ cd /tmp/build/gdb

Now we can configure to build the GNU Debugger with Insight using the command:

$ /src/gdb/insight-5.1a/configure –-target=i386-elf \

 --prefix=/tools \

 --exec-prefix=/tools/H-i686-pc-cygwin \

 -v 2>&1 | tee configure.out

The output messages from the configuration process are contained in the file configure.out located in the D:\cygwin\tmp\build\gdb subdirectory should you need to refer to a particular message.

 After the configuration has completed, we are returned to the bash shell prompt. The configuration populates the D:\cygwin\tmp\build\gdb subdirectory with the necessary files to build the GNU Debugger with Insight.

Now we can build the GNU Debugger with Insight with the command:

$ make –w all install CC='gcc –mwin32' 2>&1 | tee make.out

The output from the make process is contained in the file make.out located in the D:\cygwin\tmp\build\gdb subdirectory should you need to refer to a particular message.

 After this step is complete, in which case we are returned to the bash shell prompt, we have the GNU Debugger with Insight Interface created for the Intel x86 platform. These files are located in the D:\cygwin\tools\H-i686-pc-cygwin\bin subdirectory. An example of one of the GNU Debugger with Insight files for the Intel x86 platform is i386-elf-gdb.exe.

STEP 11

Now we verify that the GNU Debugger with Insight was built properly. To do this, we enter the command:

$ i386-elf-gdb –-version

The following message is output if everything is set up properly:

GNU gdb 5.1

Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "--host=i686-pc-cygwin --target=i386-elf".

If the message is incorrect, you need to verify that the GNU Debugger with Insight configure and make commands were entered correctly. If they were entered incorrectly, it is best to remove the contents under the D:\cygwin\tmp\build\gdb directory before attempting to configure and make the GNU Debugger with Insight again.

Other Processor Tools

As mentioned previously, the configure and make commands given for building the cross-compiler tools are specific for the Intel x86 processor, although the commands for the other supported processors are very similar. The installation procedures of the GNU cross-development tools for other processors can be found online at:

http://sources.redhat.com/ecos/getstart.html

The GNU cross-development tools for other processors can coexist with each other as long as the tool executable files are not the same. This might be necessary if you are developing eCos applications for multiple processor architectures. Additional information about selecting the build and user tools with the Configuration Tool can be found in Chapter 11, The eCos Toolset.

Conserving Space

If conserving disk space is an issue, you can delete the directories used during the build procedure. The directories that can be safely removed are:

•

D:\cygwin\src\binutils

•

D:\cygwin\src\gcc

•

D:\cygwin\src\gdb

The following directories can also be deleted; however, it might be useful to save the configure and make output files generated during the build:

•

D:\cygwin\tmp\build\binutils

•

D:\cygwin\tmp\build\gcc

•

D:\cygwin\tmp\build\gdb

D

