Chapter 2

The Hardware Abstraction Layer

his is the first of eight chapters that describe the eCos architecture and its components. The eight eCos architecture chapters provide an explanation of the core software components, which are the building blocks for the eCos system. Many of these building blocks are common to several real-time operating systems; however, we need to understand how these components operate and interact with each other in the eCos system. This will prepare us for the next part of the book, which enables us to set up and configure the eCos tools to build an image for use in your applications.

In this chapter, we get into the details of the Hardware Abstraction Layer (HAL). It is particularly important to understand the architecture of the HAL, because when the time comes to port eCos onto your own hardware, the HAL is the software component that will need to be adapted to support the new hardware platform.

In Chapter 3, we cover exceptions and interrupts. Chapter 4 describes virtual vectors. In Chapter 5, we look at the core of the eCos system: the kernel. Chapter 6 details threads and synchronization mechanisms. Chapter 7 covers the other eCos components such as counters, timers, libraries, and the I/O control system. Next, Chapter 8 describes other functionality and contributions available for eCos, such as networking support, file systems, and PCI support. Finally, we conclude the eCos architecture with Chapter 9, which details the RedBoot ROM Monitor.

2.1
Overview

The HAL isolates architectural-dependent features and presents them in a general form to allow portability of other infrastructure components. Basically, the HAL is a software layer, with generalized Application Programming Interfaces (API), which encapsulates the specific hardware operations needed to complete the desired function.

An example that demonstrates how the HAL abstracts hardware-specific implementations for the same API call is shown in Code Listing 2.1 for the ARM architecture, and in Code Listing 2.2 for the PowerPC architecture.


1

#define HAL_ENABLE_INTERRUPTS()        \


2

    asm volatile (                     \


3

        "mrs r3,cpsr;"                 \


4

        "bic r3,r3,#0xC0;"             \


5

        "msr cpsr,r3"                  \


6

        :                              \


7

        :                              \


8

        : "r3"                         \


9

        );

Code Listing 2.1
ARM architecture implementation of HAL_ENABLE_INTERRUPTS() macro.


1

#define HAL_ENABLE_INTERRUPTS()         \


2

    CYG_MACRO_START                     \


3

    cyg_uint32 tmp1, tmp2;              \


4

    asm volatile (                      \


5

        "mfmsr  %0;"                    \


6

        "ori    %1,%1,0x8000;"          \


7

        "rlwimi %0,%1,0,16,16;"         \


8

        "mtmsr  %0;"                    \


9

        : "=r" (tmp1), "=r" (tmp2));    \


10

    CYG_MACRO_END

Code Listing 2.2
PowerPC architecture implementation of HAL_ENABLE_INTERRUPTS() macro.

In Code Listings 2.1 and 2.2, we see that the call HAL_ENABLE_INTERRUPTS(), as shown on line 1 of both listings, is the same regardless of the architecture. However, the process for actually executing an interrupt enable varies from architecture to architecture, as shown on lines 2 through 9 in Code Listing 2.1 and on lines 2 through 10 in Code Listing 2.2. The HAL allows the application layer to directly access hardware and any architectural features and does not assume it is the only controller of all hardware in the system.

General design principles were followed during the architecting of the HAL. First, the entire HAL is implemented in C and assembly language. This allows the HAL to have the widest range of applicability.

Second, interfaces to the HAL are implemented in C macros. This allows the most efficient implementation to be used and yet the interface is not affected. The interfaces can be implemented as inline assembly code, inline C code, or external function calls to C or assembler code. By using the inline approach, the run-time overhead associated with a function call is eliminated; however, the size of the code can grow.

Finally, an emphasis on the ease of platform porting was made because the developers themselves typically perform this task.

The HAL consists of three separate modules (or submodules); however, the boundary between each module is intentionally fuzzy:


•


Architecture


•


Platform


•


Variant

The first HAL submodule defines the architecture. Each processor family supported by eCos is considered a different architecture. Each architecture submodule contains the code necessary for CPU startup, interrupt delivery, context switching, and other functionality specific to the instruction set architecture of the associated processor family.

A second HAL submodule defines the variant. A variant is a specific processor within the processor family described by the architecture. An example of a feature that might be included at this level is support for an on-chip peripheral such as a Memory Management Unit (MMU).

The third HAL submodule defines the platform. A platform is a specific piece of hardware that includes the selected processor architecture and, possibly, a variant. This module typically includes code for platform startup, chip select configuration, interrupt controllers, and timer devices.

2.1.1
HAL Directory Structure

All HAL packages included in the repository are found under the hal subdirectory. Figure 2.1 shows a snapshot of the HAL directory structure for eCos version 2. At this point, the architectures included in the directory structure are not important; however, it is important to get an overview of where files containing certain HAL functionality are located within the repository. It is also important to understand that not all HAL architectures follow the same directory structure. We discuss the details about specific files within the directory structure in Chapter 11, The eCos Toolset.

	Figure 2.1
HAL directory structure snapshot.


The subdirectories under the HAL are broken down by processor architecture. As seen in Figure 2.1, the architecture subdirectories include:


•


arm


•


calmrisc16 (for the Samsung CalmRISC16)


•


calmrisc32 (for the Samsung CalmRISC32)


•


frv (for the Fujitsu FR-V)


•


h8300 (for the Hitachi H8/300)


•


i386 (for the Intel x86)


•


mips


•


mn10300 (for the Matsushita AM3x)


•


powerpc


•


sh (for the Hitachi SuperH)


•


sparc


•


sparclite


•


synth (for the i386 Linux kernel)


•


v85x (for the NEC V8xx)

Each architecture subdirectory includes the platform and variant support related to that particular processor.

For example, under the powerpc subdirectory is the mbx subdirectory that contains the platform package for the Motorola PowerPC MBX860 development board support. Included in the MBX package subdirectory is the code needed for platform-specific initialization such as the memory layout files, clock configuration, and chip select programming. In addition, under the powerpc subdirectory is the mpc8xx subdirectory, which contains files necessary for the different series of MPC8xx variants (including the MPC823, MPC850, and MPC860). The MPC8xx variants of the PowerPC contain code for MMU and interrupt control.

As new platform and architecture ports are developed, the package contents are inserted in the appropriate place in the HAL directory structure. Since new ports are made available at various times, the directory structure can change often to accommodate new additions.

A few subdirectories, and a description of their contents, within the HAL structure are worth noting. First is the subdirectory common, located under the main HAL directory. This subdirectory contains the package configuration files general to all HAL architectures, including files for general interrupt configuration, virtual vector layout, and HAL debugging control. Function wrappers are contained in this subdirectory to create the commonality found among all HAL implementations.

Another subdirectory to notice is arch, located under every architecture tree. The arch subdirectory contains files for generic support for the processor architecture. Functionality included in this generic support consists of exception vector initialization, ROM and RAM startup configuration, common interrupt and exception handling, thread context switch handling, a generic linker script file, and common debugging functions.

Some HAL architectures include a subdirectory to contain the variant code. This subdirectory is named var. An example of an architecture that contains this subdirectory is the ARM SA11x0.

Last is the sim subdirectory, which can be found under the architecture trees that support processor simulators. The architecture simulators provide a simple model of the processor rather than detailed operation of a particular evaluation board. When using a simulator, it is impossible to use any of the device drivers. The simulators are best used as interim targets when you need to start testing application functionality. The simulators can keep the software development task on schedule while an evaluation board or your own hardware target is under development. The architectures that have simulators are:


•


Hitachi H8/300


•


MIPS


•


Matsushita AM3x


•


PowerPC


•


SPARClite

2.1.1.1
Example HAL Function Call Trace

To get a better understanding of the relationship of the submodules in the HAL and how the different functionality is split among the directory structure, let us trace a function call into the HAL. The function call we will trace is the __reset() function defined in the common subdirectory of the HAL. For this example, we will use the MIPS Atlas Evaluation board as the target hardware platform. The submodules that implement the functionality of the reset function can vary for different HAL architectures. Figure 2.2 is a graphical representation of the __reset() function call trace. 

	Figure 2.2
HAL reset function call trace.


A description for each of the steps numbered in Figure 2.2 follows.


1.


The __reset() routine is the generically defined reset function for all HAL packages. The source code for this routine is found in the hal_stub.c file under the common\current\src subdirectory.


2.


Next, the hal_atlas_reset() routine, defined in plf_misc.c under the mips\atlas\current\src subdirectory, is executed for the MIPS Atlas platform.


3.


Finally, the platform reset routine uses the architecture macros defined in plf_io.h under the mips\atlas\current\include subdirectory to toggle the appropriate register within the processor. The HAL_REG() macro causes the write to the MIPS Atlas reset register.

The execution trace of this reset call shows us how the implementation is split from the generic definition of the reset function common to all HAL architectures—to the platform-specific reset code—and finally, to the specific processor register manipulation code.

2.1.2
HAL Macro Definitions

The HAL defines architecture macros that make a common API for encapsulating the processor-specific implementation functionality. The HAL macros are used to control the interrupt, cache, memory management, I/O, diagnostics, debugging, and architectural features for the processor, given that the processor provides the functionality. This section gives a general overview of these HAL macros and their location within the HAL architectures. Additional detailed descriptions of the HAL macros containing specific functionality (e.g., exception, interrupt, and clock macros) are described in their associated chapters.

Generally, HAL architecture macros are enclosed within #ifndef statements to allow the macro to be overridden in the platform or variant submodules. Code Listing 2.3 shows an example of this.


1

#ifndef CYGHWR_HAL_INTERRUPT_VECTORS_DEFINED


2




3

   #define CYGNUM_HAL_INTERRUPT_0             0


4

   #define CYGNUM_HAL_INTERRUPT_1             1


5

   #define CYGNUM_HAL_INTERRUPT_2             2


6

   #define CYGNUM_HAL_INTERRUPT_3             3


7

   #define CYGNUM_HAL_INTERRUPT_4             4


8

.


9

.


10

.


11

#endif

Code Listing 2.3
Example HAL interrupt vector macro definitions.

In Code Listing 2.3 we see part of the interrupt vector definitions; in this case, for the MIPS processor architecture. Line 1 checks for the definition of the macro CYGHWR_HAL_ INTERRUPT_VECTORS_DEFINED. The variant or platform-specific code within the HAL can override the interrupt vector definitions provided by the architecture submodule, shown on lines 3 through 7, by simply defining CYGHWR_HAL_INTERRUPT_VECTORS_DEFINED. The variant or platform submodule can then define the interrupt vectors appropriately.

The location of the HAL architecture code is under the arch subdirectory, as we see in Figure 2.1. Typically, the macros are located in .h files under the include subdirectory; however, the specific location of this functionality might differ for different HAL architectures. Table 2.1 lists some of the general HAL architecture macro filenames and describes the functionality included in the file.
	Table 2.1
HAL Architecture Macro Descriptions



	Filename
	Description

	hal_arch.h
	Abstracts the architecture-specific functionality that includes macros for breakpoint support, thread control, and stack control. The HAL_SavedRegisters structure is also defined in this file. This structure defines the processor-specific registers to store the machine state. These registers are stored during context switches, exception handling, and interrupt handling.

	hal_cache.h

	Provides instruction and data cache control macros, such as size definitions, synchronization, enable/disable, lock/unlock, and flushing.

	hal_intr.h
	Contains the interrupt and clock support macros. The interrupt macros include interrupt vector definitions, exception vector definitions, enable/disable control, attach/detach control, and mask/unmask control. The clock macros include control for initialization, reset, and reading.

	hal_io.h
	Includes the I/O register reading and writing macros. For example, HAL_READ_XXX and HAL_WRITE_XXX, where XXX defines the size of the read or write operation.

	hal_mem.h or hal_mmu.ha
	Contains the macros for defining and controlling the MMU.

	xxx-stub.h or xxx_stub.h, where xxx defines the architecture; for example, mips-stub.h.
	Provides the definition and control macros for GDB support. This includes functionality for getting trap information, get/set register contents, setting the program counter, single stepping, and various breakpoint controls.


2.1.3
HAL Configuration

As mentioned in Chapter 1, eCos uses source-level configuration control, which determines the software components included in a particular eCos image. Source-level configuration sets values for specific macros based on options you select. Then, the HAL is built according to the specifications set in the configuration.

The HAL configuration options can be split into two different parts, common and architecture-specific components. The common configuration components contain general options for most or all HAL packages within the eCos system. The architecture-specific configuration components can be further broken down into general architecture options and platform-specific options, which are relevant to a particular hardware target.

2.1.3.1
Common Configuration Components

The common configuration components are standard across all HAL packages. There are six components included in the HAL common configuration. Each component contains configuration options for setting up the HAL to meet the needs of a specific application. Item List 2.1 gives a description of the six components. The CDL component name is also shown in the list for reference. More information about the CDL and how it is used within a package can be found in Chapter 11.

Item List 2.1
HAL Common Configuration Components

Component Name

Platform-Independent HAL Options

CDL Name

CYGPKG_HAL_COMMON

Description

Controls the general interfacing to the kernel and other broad options, including HAL exception support, MMU table installation, and diagnostic output routing control.

Component Name

HAL Interrupt Handling

CDL Name

CYGPKG_HAL_COMMON_INTERRUPTS

Description

Allows overall configuration of the interrupt structure, such as using separate interrupt stacks maintained by the HAL, whether nested interrupts are enabled, and interrupt stack size configuration.

Component Name

HAL Context Switch Support

CDL Name

CYGPKG_HAL_COMMON_CONTEXT

Description

Enables context switch code to exploit the calling conventions for a specific architecture to reduce the amount of state information saved during a context switch.

Component Name

Cache Startup Behavior

CDL Name

CYGPKG_HAL_CACHE_CONTROL

Description

Allows data and instruction cache enabling during the startup process. If additional platform-specific cache configuration is needed, these options should be disabled.

Component Name

Source-Level Debug Support

CDL Name

CYGPKG_HAL_DEBUG

Description

Determines the level of debug support included in the HAL. This allows the GDB debug support to be provided by a ROM monitor or contained in the HAL build itself.

Component Name

ROM Monitor Support

CDL Name

CYGPKG_HAL_ROM_MONITOR

Description

Defines the interaction between the application and a ROM monitor. The application can either be built to work with a ROM monitor or behave as a ROM monitor. This determines the initialization process for exceptions, interrupts, and virtual vectors between the ROM monitor and the application.

2.1.3.2
Architecture-Specific Configuration Components

The architecture-specific components can vary greatly from platform to platform. The architecture-specific components present for configuration are dependent on the template hardware selected.

For example, using the graphical configuration tool and selecting the Motorola MBX860/821 board hardware template enables the following packages to be enabled for configuration (CDL package names are in parentheses):


•


PowerPC Architecture (CYGPKG_HAL_POWERPC)


•


PowerPC MPC8xx Variant HAL (CYGPKG_HAL_POWERPC_MPC8xx)


•


Motorola MBX PowerPC Evaluation Board (CYGPKG_HAL_POWERPC_MBX)


•


Motorola MBX PowerQUICC Support (CYGPKG_HAL_QUICC)

Some configuration suboptions for this hardware template include the development board clock speed selection and the ROM boot device to use.

In another case, selecting the ARM PID Development Board as the hardware template enables the following packages (CDL package names are in parentheses):


•


ARM Architecture (CYGPKG_HAL_ARM)


•


ARM PID Evaluation Board (CYGPKG_HAL_ARM_PID)

Configuration suboptions such as Thumb instruction set enabling, processor endian mode selection, and hardware diagnostic port control are available under the ARM architecture components.

One configuration suboption present for all architecture-specific components is the Startup Type (CYG_HAL_STARTUP). The Startup Type imposes constraints on the ROM Monitor Support common configuration component, and vice versa, which might cause conflicts when configuring these configuration suboptions. The Startup Type can be either ROM or RAM, and for some platforms ROMRAM—where the code is stored in ROM but copied to RAM at startup for execution.

HAL configurations with ROM startup selected must be self-contained, meaning that all initialization of the hardware is performed by the HAL contained in the application. Two general development scenarios use a ROM Startup Type. In the first, the eCos library is built for use within a ROM monitor, allowing applications to be loaded into RAM for debug. The other scenario is typically used after the application has been debugged and is ready for release.

HAL configurations with RAM startup selected typically assume the existence of a debug environment or ROM monitor. In this startup configuration, the application can rely on the ROM monitor to provide support for various interrupt and exception handling processes. You can find more information about the RedBoot ROM Monitor and how it uses the HAL in Chapter 9, The RedBoot ROM Monitor.

2.1.4
HAL Startup

To get a better understanding of the functionality provided by the HAL, we need to take a look at the startup process the software goes through to initialize the hardware. The different submodules of the HAL take care of different aspects of the initialization process, such as coordinating operation with a ROM monitor, invoking static and C++ constructors, and jumping to the start of the application code.

Figure 2.3 is a flowchart of the routines involved during the initialization of the HAL for the PowerPC-based Motorola MBX860 development board. The startup procedure might differ slightly depending on the architecture and platform used, as far as when certain initialization steps are completed and the name of the routine that accomplishes the initialization task. In addition, note that the startup procedure might also deviate from what is shown in the flowchart depending on the configuration options selected for the HAL. The routines described in Figure 2.3 are implemented in either assembly language or C.

	Figure 2.3
HAL startup procedure.


A description of each step numbered in the HAL startup process shown in Figure 2.3 follows:


1.


The starting point for the system startup is after a power cycle has occurred, labeled Hardware Powerup. This startup process also applies for a soft reset startup.


2.


After a hard or soft reset occurs, the processor jumps to its reset vector (cleverly called reset_vector in the diagram). The reset vector is found in the file vectors.S under the arch subdirectory for each HAL architecture. This file contains the starting point for all HAL packages. The reset vector performs the minimum processor register configuration to allow the system to continue with the initialization process.


3.


Next, the reset vector jumps to _start. This is also found in vectors.S and is the main starting point for all HAL initialization.


4.


Next, the routine hal_cpu_init is called, which is located in either variant.inc or arch.inc depending on the architecture. This function handles setting processor-specific registers, such as disabling instruction and data caches, to ensure that the processor is in a known state for the remainder of the initialization process.


5.


The next routine called is hal_hardware_init. The functionality contained in this routine is platform specific and therefore found in the platform assembly file (for the Motorola MBX board, this is the mbx.S file). Hardware setup in this routine includes 
5.
cache configuration, setting interrupt registers to a default state, disabling the processor watchdog, setting real-time clock registers, and configuring chip select registers based on the platform-specific hardware.


6.


The next step is to set up an interrupt stack area. This reserves a storage area for saving processor state information when an interrupt occurs. The amount of space to reserve is configurable in the common configuration component. The startup context temporarily uses the interrupt stack to perform its initialization; for example, to make calls into C routines. Since interrupts are not enabled during this startup procedure, this does not create a conflict.


7.


The code executed in the hal_mon_init function, which is located in the file variant.inc or platform.inc, is configuration dependent. When executing as a ROM monitor or ROM application, the main task for this routine is to ensure that default exception handlers are installed for every exception condition supported by the processor. You can find more information on exception vector configuration in Chapter 3, Exceptions and Interrupts.


8.


The next step in the HAL initialization process is to clear the BSS section, which contains all noninitialized local and global variables with static storage class.


9.


The stack is then set up so that C function calls can be made from within the vectors.S assembly code.


10.


Next, the hal_platform_init routine is called, located in the hal_aux.c file, for a specific platform. This, in turn, calls hal_if_init, found in the file hal_if.c of the HAL common subdirectory. hal_if_init initializes the virtual vector table based on the configuration options selected. See Chapter 4, Virtual Vectors, for detailed information on the virtual vector table initialization and how it is used within the eCos system.


11.


Initialization of the MMU, which handles translations of logical addresses to physical addresses also providing protection and caching mechanisms, is handled in the routine hal_MMU_init located in the file hal_misc.c. This file is under the arch subdirectory.


12.


The next step is to enable the data and instruction caches. This is done in hal_enable_caches, which can be found in the file hal_misc.c under the arch subdirectory for the given processor.


13.


Now, the routine hal_IRQ_init is executed in order to set up the Communications Processor Module (CPM), which accepts and prioritizes internal and external interrupts. This is specific to the PowerPC processor and is located in the file hal_intr.c under the arch subdirectory.


14.


Next, all global C++ constructors are called from cyg_hal_invoke_constructors. This routine is in the file hal_misc.c under the arch subdirectory. The linker handles the generation of the list of global constructors. The file cyg_type.h, under the infra subdirectory, contains macros that define the order in which constructors are called.


15.


If the configuration is set up for a debug environment and a ROM monitor is not providing debug support, the next routine called is initialize_stub, located in the HAL common subdirectory in the file generic_stub.c. initialize_stub, which installs the standard trap handlers and initializes the hardware for debug.


16.


Finally, the last step in the HAL initialization process is to turn control over to the kernel for its initialization. The routine cyg_start is the place for the HAL-to-kernel transition. We discuss the kernel initialization process in Chapter 5, The Kernel.

2.2
Summary

In this chapter, we focused on the HAL, which gives our application a generalized API to the underlying hardware. We looked at the HAL directory structure, the macros supplied by the HAL, and the configuration of the HAL. Finally, we went through the startup procedure of the HAL, allowing us to see how a target platform is initialized.







�Might not be supported by all HAL architectures.





