Chapter 7

Other eCos Architecture Components

This chapter details the other software components that are part of the core eCos architecture, including Timing components, Assert and Tracing functionality, and the I/O Control System. The timing components provide different mechanisms for periodic events and are comprised of counters, clocks, alarms, and timers. Asserts and traces provide additional debug functionality so you can build robust embedded systems. Finally, the I/O Control System describes the I/O communication scheme and device driver support.

7.1
Counters, Clocks, Alarms, and Timers

Most processor architectures provide a clock or timer mechanism, typically a programmable register, which generates a periodic interrupt. This register is programmed with an initial value that determines how often the interrupt occurs. If the processor architecture does not support an onboard timer mechanism, the platform will have an external source for generating the periodic interrupt.

eCos uses the hardware timer mechanism to drive its timing features, which consist of:


•


Counters


•


Clocks


•


Alarms


•


Timers

The kernel uses these timing features to provide time-out, delay, and scheduling services for executing threads. Applications can use the timing features for specific timing-related needs as well.

The HAL provides macros to initialize, reset, and read the hardware device used for the kernel timing features. The implementation of the HAL macros and hardware device used is platform specific. Item List 7.1 describes the HAL clock control macros used for the kernel timing functions.

	N O T E 
Care must be taken if the HAL_CLOCK_XXX macros are used while using the eCos kernel. The eCos kernel uses these macro calls for its own timing-related functions.


Item List 7.1
HAL Clock Control Macros

Syntax:

HAL_CLOCK_INITIALIZE(

 _period_

 )

Parameters:

_period_—initial value to set the timing device to achieve the desired interrupt rate.

Description:

Set the timing device to interrupt at the specified period.

Syntax:

HAL_CLOCK_RESET(

 _vector_,

 _period_

 )

Parameters:

_vector_—timing device interrupt vector. On most HAL packages, this parameter is not used.

_period_—initial value to set the timing device to achieve the desired interrupt rate.

Description:

Reset the timing device with the specified period. This is only necessary for devices that require a reset after the interrupt occurs.

Syntax:

HAL_CLOCK_READ(

 _pvalue_

 )

Parameters:

_pvalue_—pointer to counter value read from the timing device.

Description:

Reads the current value of the timing device counter since the last interrupt. The hardware counter value is returned in the location pointed to by _pvalue_. This macro is hardware dependent and the definition here is the case for most hardware platforms.

The HAL architecture-specific configuration components contain a read-only configuration option describing the real-time clock constants. The HAL real-time clock configuration options can be overridden in the kernel package.

The HAL real-time clock configuration option is located under the platform-specific package and is called Real-Time Clock Constants. The read-only suboptions are Real-Time Clock Numerator (CYGNUM_HAL_RTC_NUMERATOR), Real-Time Clock Denominator (CYGNUM_HAL_RTC_ DENOMINATOR), and Real-Time Clock Period (CYGNUM_HAL_RTC_PERIOD). Dividing the Real-Time Clock Numerator by the Real-Time Clock Denominator gives the number of nanoseconds per tick. The Real-Time Clock Period is the value that is programmed into the processor’s hardware timer such that the timer overflows once per kernel tick. This overflow generates a hardware interrupt. The Real-Time Clock Period is the value passed in the _period_ parameter in the macros shown in Item List 7.1.

The values for these configuration suboptions are calculated based on the clock source used on the specific target platform. When using an eCos-supported target platform, it is usually not necessary to modify these values.

It might be necessary to modify the real-time clock constants when porting to a new hardware platform. These options can be modified, as described later in this section, using the Override Default Clock Settings configuration option located under the eCos Kernel package. If this is the case, the Real-Time Clock Period is modified according to the specifications of the processor and/or hardware platform. The Real-Time Clock Numerator and Real-Time Clock Denominator are also modified to reflect the new timer resolution. For example, to increase the frequency by a factor of 10, the Real-Time Clock Period is changed in some hardware-defined way. Generally, the period is decreased by a factor of 10 and then the Real-Time Clock Denominator is increased by a factor of 10.

The kernel uses its tick to determine the timeslicing interval (CYGNUM_KERNEL_SCHED_ TIMESLICE_TICKS). The default setting uses five clock ticks per timeslice interval. The kernel real-time clock settings can be overridden by enabling the Override Default Clock Settings (CYGPKG_KERNEL_COUNTERS_CLOCK_OVERRIDE) configuration option, which is located under the Counters and Clocks component in the eCos Kernel package. Timeslicing is described further in the Multilevel Queue Scheduler section of Chapter 5, The Kernel.

Since all kernel-level clock-related operations, such as delays and time-outs, use units of ticks rather than seconds, let’s look at the steps for a simple conversion.

1. Determine the delay in nanoseconds. In our example, we want a delay of 60 milliseconds, which is the same as 60,000,000 nanoseconds.

2. Next, we need the clock frequency. In this case, we assume a clock running at 100Hz, which corresponds to 1 tick every 10 milliseconds, or 1 tick every 10,000,000 nanoseconds. This corresponds to a numerator of 100 and a denominator of 1,000,000,000.

3. Finally, we can calculate the tick value we need to use in the call using the equation

Delay (in nanoseconds) x Numerator / Denominator = Clock ticks

Therefore, in our example we plug in the values and get 

6000000 x 100 / 1000000000 = 6

4. We then call the clock-related kernel function and pass it the parameter 6 for our 60-millisecond delay.

One more thing to remember, these conversion calculations can sometimes be computation intensive. Therefore, it is usually a good idea in an embedded system to perform these calculations whenever possible at compile time rather than at run time.

The kernel can be configured to provide a Real-Time Clock (RTC) for the system. The RTC is necessary to support clock- and alarm-related functions such as cyg_thread_delay. It is also needed for the multilevel queue scheduler when using timeslicing. Item List 7.2 details the kernel clock configuration options.

The kernel uses the HAL_CLOCK_INITIALIZE macro when it initializes the real-time clock. HAL_CLOCK_RESET is used in the ISR for the real-time clock.

Item List 7.2
Kernel Clock Configuration Options

Option Name

Provide Real-Time Clock

CDL Name

CYGVAR_KERNEL_COUNTERS_CLOCK

Description

Allows the kernel to provide the real-time clock for clock- and alarm-related functions and timeslicing (when using the multilevel queue scheduler). The default setting for this option is enabled.

Option Name

Override Default Clock Settings

CDL Name

CYGPKG_KERNEL_COUNTERS_CLOCK_OVERRIDE

Description

Allows overriding of the default clock calculations for a particular platform. The default settings attempt to configure 100 clock interrupts per second. The default setting for this option is disabled.

Option Name

Measure Real-Time Clock Interrupt Latency

CDL Name

CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY

Description

Measures the latency of the real-time clock timer interrupt. This option requires the HAL macro HAL_CLOCK_LATENCY to be defined. The default setting for this option is disabled. This option is only for a performance measurement.

Option Name

Measure Real-Time Clock DSR Latency

CDL Name

CYGVAR_KERNEL_COUNTERS_CLOCK_DSR_LATENCY

Description

Measures the DSR latency for the real-time clock timer interrupt. This option requires the HAL macro HAL_CLOCK_LATENCY to be defined. The default setting for this option is disabled. This option is only for a performance measurement.

The kernel contains default settings for the clock interrupt frequency that are specific to each platform. The default RTC frequency is 100Hz; however, you should consult the documentation for the specific platform you are using to verify this value. The RTC settings are derived from the clock source provided on the target hardware. The configuration option Override Default Clock Settings contains three configuration suboptions:


•
Clock Hardware Initialization Value (CYGNUM_KERNEL_COUNTERS_CLOCK_ OVERRIDE_PERIOD)—initial value programmed into the programmable hardware timer register that generates the periodic interrupts for the kernel timing features.


•
Clock Resolution Numerator (CYGNUM_KERNEL_COUNTERS_CLOCK_OVERRIDE_ NUMERATOR)—numerator value for calculating the resolution of clock interrupts in nanoseconds.


•
Clock Resolution Denominator (CYGNUM_KERNEL_COUNTERS_CLOCK_OVERRIDE_ DENOMINATOR)—denominator value for calculating the resolution of clock interrupts in nanoseconds.

The resolution is represented as a numerator and denominator value to minimize the drift for frequencies that cannot be expressed as an integer. These suboptions allow you to override the default resolution of the hardware timing device. Overriding this value affects the operation of the real-time clock.

7.1.1
Counters

The first eCos timing feature is a counter. A counter is an abstraction, which maintains an increasing value that is driven by a source of ticks. The source of the tick does not have to be from a hardware device, nor does the tick need to be periodic. However, it is up to the owner of the counter to ensure that the counter object is being ticked.

eCos offers two different implementations of the counter object. The first implementation uses a single linked list for maintaining alarms attached to counters. When a tick occurs, the kernel goes through this linked list, usually at the DSR level. Therefore, if there is a sizeable number of alarms attached to a single counter object, the system dispatch latency is affected.

The second implementation uses a table of linked lists for maintaining alarms attached to counters, allowing the size of the table to be set by a configuration suboption. This can improve the responsiveness of the kernel because only one list is searched per tick; however, extra code and data is required. The counter configuration options are described in Item List 7.3.

Item List 7.3
Counter Configuration Options

Option Name

Implement Counters Using a Single List

CDL Name

CYGIMP_KERNEL_COUNTERS_SINGLE_LIST

Description

Uses a single linked list for maintaining alarm objects. This is a more efficient use of memory when a small number of alarms are used in the system. The default setting for this option is enabled.

Option Name

Implement Counters Using a Table of Lists

CDL Name

CYGIMP_KERNEL_COUNTERS_MULTI_LIST

Description

Uses a table of linked lists for alarm objects. This option reduces the amount of computation necessary when a timer triggers, which is useful when many alarms are used in the system. This option is disabled by default. When using a table of lists the suboption Size of Counter List Table, which has a default value of 8, can be configured. The range for the counter list table size is from 1 to 1024.

Option Name

Sort the Counter List

CDL Name

CYGIMP_KERNEL_COUNTERS_SORT_LIST

Description

Allows the list of alarms that are attached to counters to be sorted so that the next alarm to trigger is at the front of the list. This reduces the amount of work that needs to be done when a counter tick is processed. This option causes the operation of adding alarms to the list more expensive because the list must be sorted. The default setting for this option is disabled.

The eCos kernel API provides functions for controlling counters. The counter API functions are detailed in Item List 7.4.

Item List 7.4
Kernel Counter API Functions

Syntax:

void

cyg_counter_create(

 cyg_handle_t *counter,

 cyg_counter *the_counter

 );

Context:

Init/Thread

Parameters:

counter—pointer to new counter handle.

the_counter—pointer to the new counter object.

Description:

Construct a new counter.

Syntax:

void

cyg_counter_delete(

 cyg_handle_t counter

 );

Context:

Init/Thread

Parameters:

counter—handle to the counter.

Description:

Remove the specified counter. A counter should never be deleted if a clock or alarm object is attached.

Syntax:

void

cyg_counter_tick(

 cyg_handle_t counter

 );

Context:

Init/Thread/DSR

Parameters:

counter—handle to the counter.

Description:

Increment the counter value by one tick.

Syntax:

cyg_tick_count_t

cyg_counter_current_value(

 cyg_handle_t counter

 );

Context:

Init/Thread/DSR

Parameters:

counter—handle to the counter.

Description:

Returns the current value, in ticks, of the specified counter.

Syntax:

void

cyg_counter_set_value(

 cyg_handle_t counter,

 cyg_tick_count_t new_value

 );

Context:

Init/Thread/DSR

Parameters:

counter—handle to the counter.

new_value—value, in ticks, to set counter.

Description:

Sets the counter to the tick value specified by new_value.

Code Listing 7.1 shows an example of a counter that causes an alarm to trigger. We discuss alarms later in this chapter.


1

#include <cyg/kernel/kapi.h>


2




3




4

cyg_counter counter_obj;


5

cyg_handle_t counter_hdl;


6




7

cyg_handle_t alarm_hdl;


8

cyg_alarm alarm_obj;


9




10

// Declare the alarm handler function so it can


11

// be passed into the alarm initialize function.


12

cyg_alarm_t alarm_handler;


13




14

unsigned long index = 0;


15




16

//


17

// Counter thread.


18

//


19

void counter_thread( cyg_addrword_t index )


20

{


21




22

   // Run forever.


23

   while ( 1 )


24

   {


25

      // Delay for 10 ticks.


26

      cyg_thread_delay( 10 );


27




28

      // Increment the counter.


29

      cyg_counter_tick( counter_hdl );


30

   }


31

}


32




33

//


34

// Main starting point for the application.


35

//


36

void cyg_user_start( void )


37

{


38

   // Create the counter.


39

   cyg_counter_create( &counter_hdl,


40

                       &counter_obj );


41




42

   // Create the alarm.


43

   cyg_alarm_create( counter_hdl,


44

                     alarm_handler,


45

                     (cyg_addrword_t)index,


46

                     &alarm_hdl,


47

                     &alarm_obj );


48




49

   // Initialize the alarm.


50

   cyg_alarm_initialize( alarm_hdl,


51

                         12,


52

                         6 );


53




54

   // Create and run the counter thread.


55

}


56




57

//


58

// Alarm handler.


59

//


60

void alarm_handler(


61

        cyg_handle_t alarm_handle,


62

        cyg_addrword_t data )


63

{


64

   (unsigned long)data++;


65

}

Code Listing 7.1
Example code using counters and alarms.

In Code Listing 7.1, a counter is created on line 39. Next, the alarm is created using the previously created counter handle, counter_hdl, as shown on line 43. The function that is called when the alarm triggers, alarm_handler, is passed in the parameter on line 44. The variable index, on line 45, is passed to the alarm_handler when the alarm triggers. The alarm handle, alarm_hdl on line 46, and alarm object, alarm_obj on line 47, are returned after the alarm is created successfully.

Now the alarm can be initialized using the alarm handle we just created, as shown on line 50. Line 51 is the value that the counter, counter_hdl, must reach before the alarm first triggers; in this case, the value is 12. On line 52 is the interval that causes the alarm to trigger again. For this alarm initialization, the alarm triggers again when the counter reaches 18, and 24, and 30, and so on—since the interval is set at 6.

The thread creation is eliminated from this code because we covered that in previous examples. After the counter_thread is running, it delays for 10 ticks (line 26) and then increments the counter_hdl counter (line 29) using the cyg_counter_tick function call.

When the counter_hdl counter reaches 12 ticks, the alarm_handler function is called on line 60. In this case, the alarm_handler function simply increments the data parameter passed in as the second parameter, which in turn increments the variable index.

7.1.2
Clocks

A clock is a counter, with an associated resolution, which is driven by a regular source of ticks that represent time periods. The eCos kernel implements a default system clock, the RTC, which tracks real time. Item List 7.5 lists the kernel API functions for clock control. Code Listing 7.2 shows an example using the kernel clock API functions along with the kernel alarm API functions.

Item List 7.5
Kernel Clock API Functions

Syntax:

void

cyg_clock_create(

 cyg_resolution_t resolution,

 cyg_handle_t *handle,

 cyg_clock *clock

 );

Context:

Init/Thread

Parameters:

resolution—numerator and denominator value in nanoseconds per tick.

handle—pointer to the new clock handle.

clock—pointer to the new clock object.

Description:

Construct a new clock with the specified resolution.

Syntax:

void

cyg_clock_delete(

 cyg_handle_t clock

 );

Context:

Init/Thread

Parameters:

clock—handle to the clock.

Description:

Remove the specified clock.

Syntax:

void

cyg_clock_to_counter(

 cyg_handle_t clock,

 cyg_handle_t *counter

 );

Context:

Init/Thread/DSR

Parameters:

clock—handle to the clock.

counter—pointer to the new counter handle.

Description:

Converts a clock handle to counter handle allowing the use of kernel counter API functions. This gives access to the clock’s attached counter.

Syntax:

void

cyg_clock_set_resolution(

 cyg_handle_t clock,

 cyg_resolution_t resolution

 );

Context:

Init/Thread/DSR

Parameters:

clock—handle to the clock.

resolution—numerator and denominator value in nanoseconds per tick.

Description:

Changes the resolution of the specified clock object. This function does not actually change the behavior of the hardware driving the clock. Instead, cyg_clock_set_resolution synchronizes the kernel clock object to match resolution of the underlying hardware clock providing the ticks.

Syntax:

cyg_resolution_t

cyg_clock_get_resolution(

 cyg_handle_t clock

 );

Context:

Init/Thread/DSR

Parameters:

clock—handle to the clock.

Description:

Returns the current resolution of the specified clock.

Syntax:

cyg_handle_t

cyg_real_time_clock(

 void

 );

Context:

Init/Thread/DSR

Parameters:

None

Description:

Returns a handle to the system real-time clock.

Syntax:

cyg_tick_count_t

cyg_current_time(

 void

 );

Context:

Init/Thread/DSR

Parameters:

None

Description:

Returns the real-time clock counter value in ticks.

7.1.3
Alarms

Another eCos timing feature is the alarm. An alarm is attached to a counter and provides a means for generating events based on the value of a counter. The event can be configured to trigger periodically or once.

When an alarm is configured, a handler function is used to perform the necessary processing for handling the event. The alarm handler must follow the same guidelines as other DSR functions, which are detailed in Chapter 3, Exceptions and Interrupts, in the section Interrupt and Scheduler Synchronization.

Item List 7.6 details the kernel alarm API functions. An example, in the file simple-alarm.c, is provided that shows an implementation of an alarm using the real-time clock. The eCos examples are provided as part of the installation process and discussed further in Chapter 12, An Example Application Using eCos.

Item List 7.6
Kernel Alarm API Functions

Syntax:

void

cyg_alarm_create(

 cyg_handle_t counter,

 cyg_alarm_t *alarm_fn,

 cyg_addrword_t data,

 cyg_handle_t *handle,

 cyg_alarm *alarm

 );

Context:

Init/Thread

Parameters:

counter—handle to counter which alarm is attached.

alarm_fn—pointer to alarm handler function.

data—parameter passed into alarm handler.

handle—pointer to the new alarm handle.

alarm—pointer to the new alarm object.

Description:

Construct an alarm object that is attached to the specified counter. The alarm handler is called when the alarm triggers and executes in the context of the function that incremented the counter. The alarm does not run until after the call to cyg_alarm_initialize.

Syntax:

void

cyg_alarm_delete(

 cyg_handle_t alarm

 );

Context:

Init/Thread

Parameters:

alarm—handle to the alarm.

Description:

Disables the specified alarm and detaches it from the counter.

Syntax:

void

cyg_alarm_initialize(

 cyg_handle_t alarm,

 cyg_tick_count_t trigger,

 cyg_tick_count_t interval

 );

Context:

Init/Thread/DSR

Parameters:

alarm—handle to the alarm.

trigger—tick value that causes alarm to occur.

interval—tick value that causes alarm to reoccur. Setting this parameter to zero disables the alarm after it occurs once.

Description:

Initializes the specified alarm to trigger when the tick value is equal to the trigger parameter. If the interval parameter is set to zero, the alarm is disabled after it occurs once. Otherwise, the alarm reoccurs according to the interval parameter setting.

Syntax:

void

cyg_alarm_enable(

 cyg_handle_t alarm

 );

Context:

Init/Thread/DSR

Parameters:

alarm—handle to the alarm.

Description:

Enables the specified alarm, allowing it to occur in phase with the original settings from the cyg_alarm_initialize function.

Syntax:

void

cyg_alarm_disable(

 cyg_handle_t alarm

 );

Context:

Init/Thread/DSR

Parameters:

alarm—handle to the alarm.

Description:

Disables the specified alarm preventing it from occurring. The alarm can be re-enabled using the cyg_alarm_initialize or cyg_alarm_enable functions.

In Code Listing 7.2, we see an example using the kernel clock API along with the kernel alarm API.


1

#include <cyg/kernel/kapi.h>


2




3

cyg_handle_t counter_hdl;


4

cyg_handle_t sys_clk;


5

cyg_handle_t alarm_hdl;


6

cyg_tick_count_t ticks;


7

cyg_alarm_t alarm_handler;


8

cyg_alarm alarm_obj;


9




10

unsigned long index;


11




12

//


13

// Main starting point for the application.


14

//


15

void cyg_user_start( void )


16

{


17

   sys_clk = cyg_real_time_clock();


18




19

   cyg_clock_to_counter( sys_clk,


20

                         &counter_hdl );


21




22

   cyg_alarm_create( counter_hdl,


23

                     alarm_handler,


24

                     (cyg_addrword_t)&index,


25

                     &alarm_hdl,


26

                     &alarm_obj );


27




28

   cyg_alarm_initialize( alarm_hdl,


29

                         cyg_current_time() + 100,


30

                         100 );


31

}


32




33

//


34

// Alarm handler.


35

//


36

void alarm_handler(


37

        cyg_handle_t alarm_handle,


38

        cyg_addrword_t data )


39

{


40

   (unsigned long)data++;


41

}

Code Listing 7.2
Example code using clocks and alarms.

Code Listing 7.2 is an example of how to use an alarm with the system real-time clock. In the cyg_user_start function, shown on line 15, a handle to the real-time clock is stored in sys_clk using the function cyg_real_time_clock, as shown on line 17.

Next, we get access to the real-time clock’s attached counter, on line 19. The handle is stored in the variable counter_hdl, as we see on line 20. On line 22, we use the handle to the system real-time clock to create an alarm. When the alarm triggers, the function passed in on line 23, alarm_handler, is called and the function is passed the variable index, shown on line 24. The alarm handle is returned in the parameter passed in on line 25, alarm_hdl. The alarm object is stored in the parameter passed on line 26, alarm_obj.

Finally, we initialize the alarm on line 28 using the alarm handle we just created. In the cyg_alarm_initialize function call, we set the initial trigger of the alarm on line 29. In this case, we use the cyg_current_time function call, which returns the current real-time clock counter value, and add 100 to the tick value. This causes the alarm to trigger in 100 ticks from the current time. The parameter on line 30 determines the interval to trigger the alarm after the initial trigger. In this case, the alarm_handler function is called every 100 real-time clock ticks.

The alarm_handler function is shown on lines 36 through 41, which simply increments the data parameter passed into the function and in turn increments the index variable setup when the alarm was created on line 24.

7.1.4
Timers

A timer is an alarm that is attached to a clock. There is a timer object defined by the kernel. However, eCos does not provide a formal implementation, or kernel API functions, for the timer object.

Timers in the eCos system are used within the ITRON compatibility layer package. The ITRON package uses the timer object attached to the real-time clock for performing its needed timing related functions.

7.2
Asserts and Tracing

eCos supports two mechanisms to aid in debugging—asserts and tracing. An assert is a piece of code that checks, at run time, whether a condition is expected. If the condition is not expected, an error message can be output and the application is halted. Assertions can determine if there is a bug in the code and isolate the problem immediately, rather than having the application fail later during execution. 

Tracing allows the output of text messages at various points in the application’s execution. This output enables you to follow the execution flow of a program or check a particular status when certain events occur.

The eCos assert support is complementary to the ISO C standard assert functionality contained in the Assertions Implementation Header (CYGBLD_ISO_ASSERT_HEADER) configuration option under the ISO C and POSIX Infrastructure package.

Both asserts and traces are defined as macros. The first parameter to the macro is a Boolean that determines whether the message is output. Leaving the assertion and tracing code enabled can cause performance degradation in a released image. Using macros allows the code to be compiled in during application debug, however, the associated overhead is easily removed for a released image. The assert macros are defined in the file cyg_ass.h within the infra package. The trace macros are defined in the file cyg_trac.h, also within the infra package. This file also contains additional details in the comments at the top of the file about the trace macros and their usage.

Assert and tracing messages are output on the port configured with the Diagnostic Serial Port (CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL) configuration option located in the architecture-specific eCos HAL package.

There are three basic assertion macros defined by eCos that can be used within an application when assertions are enabled. Each offers control over the output message content. The first text output by all assert macros is a standard message “ASSERT FAIL”, which might be followed by a possible additional text message. The three basic assert macros are:


•
CYG_FAIL—does not accept a condition as its first parameter. Instead, this macro outputs the standard message along with a possible user-defined message regardless of any conditions being met.


•
CYG_ASSERT—daccepts a condition as its first parameter. Depending on the value of the condition, this macro outputs the standard message along with a possible user-defined message.


•
CYG_ASSERTC—dcompact version of the assertion macro that outputs the standard message along with the resulting value of the first parameter.

eCos supports four different modes for assert and trace messages. These modes determine the format of the information that is output. The four modes are:


•
Null


•
Simple


•
Fancy


•
Buffered

The buffered tracing mode does not output the message until CYG_TRACE_PRINT is called. Item List 7.7 gives a description of the output messages for each type of message output mode.

There is also a mechanism for obtaining the kernel state using the CYG_TRACE_DUMP macro, which is also defined in the file cyg_trac.h.

eCos defines five different types of trace macros. The various macros provide standard mechanisms for outputting different trace messages. The trace macros have the form CYG_TRACE#%%%, where # defines the number of arguments (zero through nine) passed into the macro for outputting with the trace message, and %%% defines the format for the argument output. eCos defines trace macros to allow up to eight arguments for output. Table 7.1 shows the different trace macros along with a description.
	Table 7.1
Trace Macros



	Macro Name
	Description

	CYG_TRACE0 through CYG_TRACE8
	First parameter is a Boolean that determines whether the trace message is output. The other possible arguments are output using printf-style formatting.

	CYG_TRACE1X through CYG_TRACE8X

CYG_TRACE1Y through CYG_TRACE8Y

CYG_TRACE1D through CYG_TRACE8D
	First parameter is a Boolean that determines whether the trace message is output. 

X—outputs arguments using %08x format.

Y—outputs arguments using %x format.

D—outputs arguments using %d format.

	CYG_TRACE1XV through CYG_TRACE8XV

CYG_TRACE1YV through CYG_TRACE8YV

CYG_TRACE1DV through CYG_TRACE8DV
	First parameter is a Boolean that determines whether the trace message is output. X, Y, and D have the same formats as defined previously. V causes the argument name to be output in the trace message. For example:

CYG_TRACE1XV(var);

would output the following trace message:

TRACE:file.c[8]rout(): var=12

	CYG_TRACE1XB through CYG_TRACE8XB

CYG_TRACE1YB through CYG_TRACE8YB

CYG_TRACE1DB through CYG_TRACE8DB
	B means that there is no first parameter Boolean; therefore, using this trace macro always results in a message output. X, Y, and D have the same formats as defined previously.

	CYG_TRACE1XVB through CYG_TRACE8XVB

CYG_TRACE1YVB through CYG_TRACE8YVB

CYG_TRACE1DVB through CYG_TRACE8DVB
	B means that there is no first parameter Boolean; therefore, using this trace macro always results in a message output. X, Y, and D have the same formats as defined previously. V causes the argument name to be output in the trace message.


The trace macros provide a means for tailoring the level of trace messages within an application. This allows control of the amount of output messages during runtime. The trace level can be controlled by the first parameter passed into the trace macro. Code Listing 7.3 shows an example of using the trace-level macros to control the output messages during debugging.


1

#include <cyg/infra/cyg_trac.h>


2




3

static int trace_level = 1;


4




5

#define TL1 ( 0 < trace_level )


6

#define TL2 ( 1 < trace_level )


7




8

void my_routine(


9

        unsigned long index)


10

{


11

   unsigned char v1, v2, v3;


12




13

   index++;


14




15

   // Processing using local variables v1, v2, and v3.


16




17

   CYG_TRACE1( TL1, "Index: %d", index );


18




19

   CYG_TRACE3( TL2, "Locals: %d %d %d", v1, v2, v3 );


20

}

Code Listing 7.3
Trace output runtime control example.

As we see from Code Listing 7.3, the variable trace_level, shown on line 3, controls which trace messages are output. The different TLX macros, on lines 5 and 6, define the trace levels for the messages.

The function my_routine is passed in a parameter named index, which is incremented on line 13. The local variables are used in some processing as shown on line 15. The two trace messages on lines 17 and 19 allow different levels of information to be output depending on the trace-level setting.

In this example, the CYG_TRACE1 message on line 17 is output because the TL1 macro (on line 5) has a value of 1 when trace_level is set to 1. However, the CYG_TRACE3 message on line 19 is not output because the TL2 macro (on line 6) has a value of 0 when trace_level is set to 1.

Changing the value of trace_level to a value of 2, which can be done at run time, allows the CYG_TRACE3 message to be output the next time my_routine is called.

The main configuration option Asserts & Tracing (CYGPKG_INFRA_DEBUG), located within the Infrastructure package, determines whether any assert or trace messages are included in the application image. By default, asserts and tracing are disabled. Item List 7.7 lists the assert and trace configuration options available in the eCos system.

Item List 7.7
Assertion and Tracing Configuration Options

Option Name

Use Asserts

CDL Name

CYGDBG_USE_ASSERTS

Description

Enables assertion code checking and output messages.

Option Name

Use Tracing

CDL Name

CYGDBG_USE_TRACING

Description

Enables trace code output messages.

Option Name

Null Output

CDL Name

CYGDBG_INFRA_DEBUG_TRACE_ASSERT_NULL

Description

Disables output messages for tracing and assertion functions. This enables breakpoints to be placed in the trace and assert routines during a debug session instead of interpreting output messages.

Option Name

Simple Output

CDL Name

CYGDBG_INFRA_DEBUG_TRACE_ASSERT_SIMPLE

Description

Specifies the message format for assert and trace output. This format includes the thread identification number, the filename, line number, routine name, and any additional text message.

Option Name

Fancy Output

CDL Name

CYGDBG_INFRA_DEBUG_TRACE_ASSERT_FANCY

Description

Specifies the message format for assert and trace output. This format includes the thread identification number, the filename, line number, routine name, and any additional text message.

Option Name

Buffered Tracing

CDL Name

CYGDBG_INFRA_DEBUG_TRACE_ASSERT_BUFFER

Description

Allows tracing and assertion messages to be stored in a buffer. These messages are output when CYG_TRACE_PRINT is called. Suboptions define the buffer size and whether the buffer wraps, halts, or outputs when it is full. The trace buffer can also be configured to output when an assertion occurs.

Option Name

Use Function Names

CDL Name

CYGDBG_INFRA_DEBUG_FUNCTION_PSEUDOMACRO

Description

Allows trace and assert macros to include the function name in output messages. Although this is helpful to read during debug, this option increases the code size.

The Use Asserts configuration option defines four suboptions that enable different forms of the assert macro. The first suboption is called Preconditions (CYGDBG_INFRA_ DEBUG_PRECONDITIONS), which is used to determine if a condition is met prior to proceeding.

The second suboption is called Postconditions (CYGDBG_INFRA_DEBUG_POST​CONDITIONS), which checks that a condition is met at the end of a piece of code, typically before a function returns.

Another suboption is called Loop Invariants (CYGDBG_INFRA_DEBUG_LOOP_ INVARIANTS), which is used to determine if a condition is true for every iteration through a loop.

The final suboption is called Use Assert Text (CYGDBG_INFRA_DEBUG_ASSERT_ MESSAGE). This option allows you to insert your own message within the assert macro output to aid in debugging.

	N O T E 
It is important to realize that outputting text messages using the tracing functionality in eCos can cause a significant increase in your application code size.


The Use Tracing configuration option also defines suboptions. The first suboption is called Trace Function Reports (CYGDBG_INFRA_DEBUG_FUNCTION_REPORTS). This suboption enables individual trace output messages for entry and exit of functions.

The other suboption is called Use Trace Text (CYGDBG_INFRA_DEBUG_TRACE_ MESSAGE), which, similar to the assert suboption, allows additional text to be embedded into the trace output message.

7.3
ISO C and Math Libraries

The eCos ISO C library package provides compatibility with the International Organization for Standardization (ISO) 9899:1990 (also known as American National Standards Institute (ANSI) C3.159-1989) specification for the standard C library. This library does not include mathematical functions. Instead, eCos provides a separate math library that incorporates these mathematical functions. These libraries allow you to use well-known standard C functions. By default, all ISO C support is thread safe.

The ISO C standard output uses the diagnostic console device provided by the HAL. This is controlled by the Default Console Device (CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE) configuration option. The HAL diagnostic device uses a polling mode for communication. This means that output can be slow especially when communicating with a GDB host, which involves utilizing the GDB remote protocol. Input can be processing intensive, meaning that other threads might not have an opportunity to run.

For better performance, an interrupt driven driver should be used. Enabling the proper hardware device driver, such as “/dev/ser0”, using the Hardware Serial Device Drivers (CYGPKG_IO_SERIAL_DEVICES) configuration package and then layering a TTY-mode driver, such as “/dev/tty0”, over the hardware device driver accomplishes this. The TTY-Mode Serial Device Drivers (CYGPKG_IO_SERIAL_TTY) configuration package controls the TTY-mode drivers. The serial device drivers are located under the Serial Device Drivers (CYGPKG_IO_SERIAL) package. The Default Console Device configuration option is then set to use “/dev/tty0”. The serial and TTY device driver names might vary based on the hardware platform.

It is currently not possible to receive console input when using GDB to debug an application; for example, using scanf. Instead, either GDB should not be used or a different HAL diagnostic device needs to be used for communication.

The source code for the ISO C library package is found under the subdirectory languages\c\libc. The math library source code is found under the languages\c\libm subdirectory.

eCos provides configuration option packages for the ISO C library, which are described in Item List 7.8. These configuration option packages are found under the ISO C Library package.

Item List 7.8
ISO C Library Configuration Option Packages

Option Name

ISO C Library Internationalization Functions

CDL Name

CYGPKG_LIBC_I18N

Description

Allows configuration of ISO C internationalization functions such as ctype.h and locale-related functions.

Option Name

ISO C Library setjmp/longjmp Functions

CDL Name

CYGPKG_LIBC_SETJMP

Description

Allows configuration of the build options for the setjmp.h functions.

Option Name

ISO C Library Signal Functions

CDL Name

CYGPKG_LIBC_SIGNALS

Description

Specifies the configuration of the signal functionality within the ISO C library, such as the signal and raise functions.

Option Name

ISO C Environment Startup/Termination Functions

CDL Name

CYGPKG_LIBC_STARTUP

Description

Controls the configuration of startup, such as the main entry point, and termination, such as exit, for full ISO C compatibility.

Option Name

ISO C Library Standard Input/Output Functions

CDL Name

CYGPKG_LIBC_STDIO

Description

Allows configuration of the input/output functions found in the stdio.h library file.

Option Name

ISO C Library General Utility Functions

CDL Name

CYGPKG_LIBC_STDLIB

Description

Specifies the configuration options for the utility functions found in the stdlib.h library file.

Option Name

ISO C Library String Functions

CDL Name

CYGPKG_LIBC_STRING

Description

Controls the configuration options for the string functions found in the string.h library file.

Option Name

ISO C Library Date and Time Functions

CDL Name

CYGPKG_LIBC_TIME

Description

Configures the ISO C date and time functions.

There are four compatibility modes, which deal with how errors are handled, available for the math library:


•
ANSI/POSIX 1003.1—the function matherr is never called; warning messages are not printed out on the stderr output stream; errno is set correctly.


•
IEEE-754—the function matherr is never called; warning messages are not printed out on the stderr output stream; errno is never set.


•
X/Open Portability Guide Issue 3 (XPG3)—the function matherr is called; warning messages are not printed out on the stderr output stream; errno is set correctly.


•
System V Interface Definition Edition 3—the function matherr is called; warning messages are printed out on the stderr output stream; errno is set correctly; functions that overflow return a value, which is the maximum single precision floating-point value.

The math library compatibility mode configuration options are found in the Compatibility Mode component under the Math Library package. The default compatibility mode is POSIX. The compatibility mode can be set at run time. The Compatibility Mode Setting configuration option under the Thread Safety component allows the setting of the math library compatibility mode, a thread-safe operation. This option is disabled by default.

7.4
I/O Control System

The eCos I/O control system is comprised of two modules, the I/O Sub-System and the Device Drivers. The eCos design supports multiple instances of the same type of device present in the system; for example, certain platforms might contain two serial or Ethernet ports. However, platforms that do not contain multiple devices do not incur any additional overhead in the system. The eCos I/O control system is written entirely in C.

The eCos I/O control system modules are comprised of packages that are configured like other components. These packages can be added or removed to support the specific hardware device needs for the application. The steps for adding and removing packages are covered in Chapter 11, The eCos Toolset.

The I/O Sub-System packages are located in the io subdirectory, and the device driver packages are in the devs subdirectory. Each device type contains a subdirectory under both modules. For example, the Ethernet subsystem package is located in the io\eth subdirectory, and the different Ethernet device driver packages are located under the devs\eth subdirectory.

The device driver package subdirectories are generally separated by architecture and device; for example, the PowerPC Fast Ethernet Controller device driver package is located under the devs\eth\powerpc\fec subdirectory. Figure 1.3, in Chapter 1 shows the structure of the two I/O control system subdirectories. The devices supported are for specific target platform hardware; however, the code can be adapted to other more generic devices. The device driver packages include support for:


•
Ethernet


•
Flash


•
Compaq IPAQ Platform-Specific Keyboard


•
Compaq IPAQ Platform-Specific Touch Screen


•
Personal Computer Memory Card International Association (PCMCIA)


•
Serial 


•
Universal Serial Bus (USB)


•
Watchdog


•
Wallclock

The I/O control system design uses a layered approach. This enables each module to offer basic and device-specific I/O functionality and present it to higher-level software components. Components can be layered on top of each other, in some cases, to extend the functionality of a particular device.

An example of this, shown in Figure 7.1, is the Terminal I/O Interface that makes use of the simple Serial I/O Interface. The Terminal I/O Interface extends the simple serial functionality by providing line buffering and editing. This modularized design also allows individual packages to be configured independently of other device components in the system. In Figure 7.1, we can see an example of an I/O control system configuration. This example is not of any particular platform; it is intended to show the software layers within the I/O control system. In this example, there are three hardware devices in the system—Ethernet, serial, and flash.

	Figure 7.1
Example eCos I/O control system.


Starting at the lowest level are the hardware devices. In some cases, such as a serial port, the device might be contained within the processor itself. Above the hardware are the device drivers. These contain the specific software implementations for controlling their respective devices. Next is the I/O Sub-System, which presents a generalized interface to the application level for controlling individual hardware devices. At the top is the application level, which contains components such as the networking stack that might use the Ethernet or serial ports, or a file system that might make use of the flash device. The application-level components can be optionally implemented based on the functionality needed in the system. The application-level components present their own programming interface.

7.4.1
I/O Sub-System

The I/O Sub-System provides a standard API for accessing low-level hardware devices. Access to the device drivers is accomplished through functions called handlers. Device drivers define specific handlers, within their device I/O table entry, based on the type of hardware device supported. These functions are contained in a device I/O table.

The I/O Sub-System functions use a handle to access the device driver. This handle is retrieved from the device I/O table using the cyg_io_lookup function, which takes the device name as a parameter. Device names, such as “/dev/serial0” or “/dev/eth1”, are set up using configuration options. Once the handle for a particular device driver is retrieved, it can be used with the I/O Sub-System API functions. Item List 7.9 defines the I/O Sub-System API functions. These functions return eCos standard error codes that are defined in the file codes.h under the error subdirectory.

The I/O Sub-System (CYGPKG_IO) package only has two configuration options available. The first is Debug I/O Sub-System (CYGDBG_IO_INIT), which enables diagnostic message output during the initialization of the I/O Sub-System interface packages. This option is disabled by default.

The second configuration option, Basic Support for File Based I/O (CYGPKG_IO_ FILE_SUPPORT), enables simple file I/O functions to support configurations that include the networking stack. This option is disabled when the File I/O (CYGPKG_IO_FILEIO) package is incorporated into a configuration. This option is enabled by default. The suboption Number of Open Files (CYGPKG_IO_NFILE) controls the total number of open files in the system.

Item List 7.9
I/O Sub-System API Functions

Syntax:

Cyg_ErrNo

cyg_io_lookup(

 const char *name,

 cyg_io_handle_t *handle

 );

Parameters:

name—device name, typically has the form "/dev/serial0".

handle—returned pointer to handle of the device.

Description:

Looks up the device specified by the name parameter in the device table and returns a pointer to the handle, in the handle parameter, for the device. If the device is not found in the table, the error ENOENT is returned.

Syntax:

Cyg_ErrNo

cyg_io_write(

 cyg_io_handle_t handle,

 const void *buf,

 cyg_uint32 *len

 );

Parameters:

handle—handle to the device.

buf—pointer to data buffer.

len—pointer to the size of data to send. When the function returns, this parameter contains the actual size of data sent.

Description:

Send data to the device specified by the handle parameter. If ENOERR is returned, the write operation completed successfully. The actual number of bytes written is returned in the len parameter.

Syntax:

Cyg_ErrNo

cyg_io_read(

 cyg_io_handle_t handle,

 void *buf,

 cyg_uint32 *len

 );

Parameters:

handle—handle to the device.

buf—pointer to the buffer to store the data.

len—pointer to the size of data to receive. When the function returns, this parameter contains the actual size of data received.

Description:

Receive data from the device specified by the handle parameter. If ENOERR is returned, the write operation completed successfully. The actual number of bytes read is returned in the len parameter.

Syntax:

Cyg_ErrNo

cyg_io_get_config(

 cyg_io_handle_t handle,

 cyg_uint32 key,

 void *buf,

 cyg_uint32 *len

 );

Parameters:

handle—handle to the device.

key—type of information to retrieve. The key values differ for each driver and are defined in the file config_keys.h under the io subdirectory.

buf—pointer to buffer where data is placed.

len—pointer to size of data to retrieve. When the function returns, this parameter contains the actual size of data retrieved.

Description:

Retrieve the run-time configuration for the device specified by the handle parameter. The type of information retrieved is specified by the key parameter.

Syntax:

Cyg_ErrNo

cyg_io_set_config(

 cyg_io_handle_t handle,

 cyg_uint32 key,

 const void *buf,

 cyg_uint32 *len

 );

Parameters:

handle—handle to the device.

key—type of information to set. The key values differ for each driver and are defined in the file config_keys.h under the io subdirectory.

buf—pointer to data to configure the device.

len—pointer to size of data to set. When the function returns, this parameter contains the actual size of data retrieved.

Description:

Set the run-time configuration for the device specified by the handle parameter. The type of configuration information is specified by the key parameter.

Code Listing 7.4 shows an example using the I/O Sub-System API.


1

#include <cyg/kernel/kapi.h>


2

#include <cyg/io/io.h>


3

#include <cyg/infra/diag.h>


4




5

//


6

// Main starting point for the application.


7

//


8

void cyg_user_start( void )


9

{


10

   cyg_io_handle_t tty_hdl;


11

   int err;


12

   char output_string[] = "Hello There!!!\n";


13

   cyg_uint32 output_len = sizeof( output_string );


14




15

   err = cyg_io_lookup( "/dev/tty0", &tty_hdl );


16




17

   if ( err )


18

   {


19

      diag_printf( "ERROR opening device tty0.\n" );


20

      return;


21

   }


22




23

   err = cyg_io_write( tty_hdl, output_string, &output_len );


24




25

   if ( err )


26

   {


27

      diag_printf( "ERROR writing to device tty0.\n" );


28

      return;


29

   }

30 
}

Code Listing 7.4
I/O Sub-System API example code.

In Code Listing 7.4 we see an example of writing a string to an I/O device. This example assumes the "/dev/tty0" device (CYGPKG_IO_SERIAL_TTY_TTY0) was enabled, and configured properly for use with a hardware serial port, under the Serial Device Drivers (CYGPKG_IO_SERIAL) package. We include the I/O Sub-System API in the header file io.h as shown on line 2.

The first step to use an I/O device is to obtain a handle to the specified device using the cyg_io_lookup function, as shown on line 15. This function is passed the name of the device—in this case, "/dev/tty0"—which was configured in the CYGPKG_IO_SERIAL_TTY_TTY0 configuration option. A handle to the device is returned upon successful completion of the function call and stored in the variable tty_hdl. Before proceeding, we ensure that a valid device handle was returned in our device lookup by checking the error code returned as we see on line 16. If an error occurred, we print out an error message on the diagnostic port (line 19) and return (line 20).

Next, we use the device handle to write out the message string in the variable output_string on line 23. The function cyg_io_write outputs the number of bytes passed in the third parameter, output_len, using the tty_hdl device. Again, we check to ensure that the data was written out successfully by checking the return value from the cyg_io_write function, as shown on lines 25 through 29.

7.4.2
Device Drivers

A device driver is a piece of code that controls a specific hardware component. eCos device driver design focuses on efficiency, eliminating any unnecessary complex layering. It is the job of the device driver to isolate and encapsulate the component-specific implementation. This allows the I/O Sub-System to present a standard interface to higher-level software modules using the device I/O table.

The device I/O table is a structure defined as cyg_devio_table_t in the file devtab.h. This structure defines write, read, get configuration, and set configuration functions for accessing device drivers. The device I/O table is initialized by the cyg_io_init function, which is defined in iosys.c. This function is called during the HAL startup along with the other constructors. In turn, each device driver initialization function, defined in the driver’s device I/O table entry, is called.

For example, when an application needs to output a text message on a serial port, the application simply calls the I/O Sub-System API write function, which in turn uses the appropriate device driver to manipulate the hardware for transmission of each character on the serial line. The application does not need to be aware of any hardware-specific details, such as the registers to program in order to transmit a character out the serial port. Using separate device driver modules in this manner allows the software to be portable across different hardware platforms because the higher-level application code is not dependent on the specific hardware implementation. This modular approach also eases the understanding and debugging of the software.

A device I/O table entry describes eCos device drivers. This structure, cyg_devtab_entry_t located in the file devtab.h, defines the device name, the device name layered below (if applicable), a pointer to the device I/O table handler functions, the device initialization function, the device I/O table lookup function, and a placeholder for device specific data.

Along with the standard control routines supplied by the device driver, additional functions are provided that are specific to the type of device supported. The device driver also contains the ISR and DSR functions for the device it manages.

Device drivers use an API for interacting with the kernel and HAL. The function parameters and definitions are the same as the non-driver-specific kernel API functions, which do not contain _drv_ in the function name. The cyg_drv_isr_lock and cyg_drv_isr_unlock functions are defined the same as the cyg_interrupt_disable and cyg_interrupt_enable functions, respectively. The function cyg_drv_dsr_lock is defined the same as cyg_scheduler_ lock, and cyg_drv_dsr_unlock is defined the same as cyg_scheduler_unlock.

For device driver API syntax and function definitions, refer to the kernel API function tables in the previous chapters. The difference between using the kernel API and the driver API is that the driver API is guaranteed to be present in configurations where the eCos kernel is not present. This makes the drivers more portable. The device driver API definitions are located in the file drv_api.c and drv_api.h under the hal subdirectory. Item List 7.10 details the list of device driver API functions.

Item List 7.10
Device Driver API Functions

cyg_drv_isr_lock

cyg_drv_isr_unlock

cyg_drv_dsr_lock

cyg_drv_dsr_unlock

cyg_drv_spinlock_init

cyg_drv_spinlock_destroy

cyg_drv_spinlock_spin

cyg_drv_spinlock_clear

cyg_drv_spinlock_try

cyg_drv_spinlock_test

cyg_drv_spinlock_spin_intsave

cyg_drv_spinlock_clear_intsave

cyg_drv_mutex_init

cyg_drv_mutex_destroy

cyg_drv_mutex_lock

cyg_drv_mutex_trylock

cyg_drv_mutex_unlock

cyg_drv_mutex_release

cyg_drv_cond_init

cyg_drv_cond_destroy

cyg_drv_cond_wait

cyg_drv_cond_signal

cyg_drv_cond_broadcast

cyg_drv_interrupt_create

cyg_drv_interrupt_delete

cyg_drv_interrupt_attach

cyg_drv_interrupt_detach

cyg_drv_interrupt_mask

cyg_drv_interrupt_unmask

cyg_drv_interrupt_acknowledge

cyg_drv_interrupt_configure

cyg_drv_interrupt_level

cyg_drv_interrupt_set_cpu

cyg_drv_interrupt_get_cpu

7.5
Summary

In this chapter, we began by looking into the different timing features provided in the eCos system. This gave us an understanding of how counters, clocks, and timers are used in our application. We also explored the assert and tracing functionality and how we can use these features during the application debug cycle. We got a basic understanding of the libraries (C and math) included with eCos. Finally, we looked at the I/O Control System and how to use it with the existing device drivers provided with eCos.







