

29

Chapter

2

The Basic Web Services Stack

Many of the challenges presented in the previous chapter revolve
around interoperability challenges on multiple operating systems and/
or middleware packages. These include high integration costs, lack of
industry standards, and high deployment costs. Web Services have the
potential of addressing many of these issues, and this chapter discusses
the cornerstone technologies that are essential for Web Services. These
include Extensible Markup Language (XML), Service-Oriented Access
Protocol (SOAP), Web Services Definition Language (WSDL), and Uni-
versal Description, Discovery and Integration (UDDI). Chapter 3 then
follows with emerging standards around security, scalability, and so
on. This chapter concludes with a discussion on how Web Services can
augment the technologies discussed in Chapter 1.

Before delving into the underlying technologies, let’s take a broad view
of the various roles of a Web Services architecture, which is also some-
times referred to as a service-oriented architecture.

Service-Oriented Architecture (SOA)

An

SOA

 is called service oriented because the central idea is that a client
(which can be a person or a computer) needs a particular set of services
to be fulfilled. Of course, before the client can request the service, it
needs to find the provider (which previously published the service); this

Prentice Hall PTR
This is a sample chapter of IT Web Services: A Roadmap for the EnterpriseISBN: 0-13-009719-5For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

30

Chapter

2

 | The Basic Web Services Stack

location service is provided by a

service broker,

who typically operates
a repository. Upon request, the service broker returns a document that
allows the client to first locate and then

bind

 to the provider. Thus, the
three key roles in an SOA are

�

Client

�

Service broker

�

Service provider

Figure 2–1 illustrates the roles and the sequence of events in an SOA.

The role of the broker may not be immediately obvious, especially for
a small set of services. However, keep in mind that a client may ask for
multiple services, each of which may have a different provider. Regis-
tering the services in a central registry that can be searched by clients
provides them with the flexibility needed to perform queries based on a
dynamically changing set of criteria—they do not have to statically
bind themselves to the provider. Without a registry, the client would
have to hard-code the location of the service provider, which can obvi-
ously lead to maintenance difficulties.

Figure 2–1

The roles in an SOA.

Repository

Location
Info

Bind

Find

Service
Desc.

Publish

Client Provider

Broker

Extensible Markup Language (XML)

31

SOAs have been present for a number of years, but, again, they have been
used with proprietary protocols and technologies. For example, both
CORBA and DCOM provide a naming service and a location service.
With the advent of Web Services, the idea has been more widely
adopted because of the use of standards-based technologies. The most
fundamental standard of all is a common language for describing
data—this is the role of XML.

Extensible Markup Language (XML)

To say that XML has been popular with the industry press is an
understatement. At the moment, every major vendor has announced
support for XML in one form or another, and innovative uses for XML
are emerging almost daily.

But what is exactly is XML? It is not a programming language like
Java, C++, or C#; that is, it cannot be used to write applications per se.
Rather, it is a

meta-language

 that can be used to create self-describing,
modular documents (data), programs, and even other languages, com-
monly referred to as

XML grammars

.

1

 These documents are often used
for data exchange between otherwise incompatible systems.

XML is incredibly diverse and includes a host of other technologies
including

XPointer

,

XLink

, and Resource Description Framework
(

RDF)

. Our intent here is not to give an in-depth discussion of XML,
but to provide enough background information to help you under-
stand the implications of how XML is being used in the context of
other technologies such as SOAP, WSDL, and UDDI—the foundation
of Web Services. Strictly speaking, Web Services can be implemented
by using only XML, but for the purposes of our discussion, we are
defining Web Services to be built on XML, SOAP, WSDL, and UDDI
over a transport protocol such as HTTP. This definition will become
clearer as our discussions progress.

The

Worldwide Web Consortium

 (

W3C

), an international standards
body, began working on XML in mid-1996 and released XML 1.0 in
1998. XML was heavily inspired by the

Standard Generalized Markup
Language (SGML

), but, in many ways, XML is more readable and

1. An example of an XML grammar is wireless markup language (WML), a popular language for creating
(appropriately enough) wireless applications. WSDL and UDDI are also XML grammars.

32

Chapter

2

 | The Basic Web Services Stack

simpler. The real value of XML is not in its innovativeness as much as
its industry acceptance as a common way of describing and exchanging
data (and, as we will see later with WSDL and SOAP, XML can also be
used to describe applications and invoke them as well).

XML Syntax

As a markup language, XML uses tags to describe information (the
tags are highlighted in bold in the following example).

<?xml version=”1.0” encoding=”UTF-8”?>
<Order>

<Customer>

<name>

John Doe

</name>
<street>

1111 AnyStreet

</street>
<city>

AnyTown

</city>
<state>

GA

</state>
<zip>

10000

</zip>

</Customer>
</Order>

A tag, enclosed in brackets (<>), is a label or a description (e.g.,

street

in our example) of the data that follows, which is called an

element

(the element for

street

 in our example is

1111 AnyStreet

). The element
is delimited by a similar tag preceded by a slash (

/

), to indicate the end
of the element. In our example, the element

1111 AnyStreet

 is termi-
nated by the closing tag <

/street

>.

The first line in our example is a convention used to signal the XML
parser (the program that has to parse the XML document) that the
incoming document is an XML document. Also, the

Customer

 element
has several child elements:

John Doe
1111 AnyStreet
AnyTown
GA
10000

You may have already noticed one advantage of XML—since it is a
text-based language, XML is fairly verbose and therefore human read-
able. However, this advantage can also be a disadvantage: because they

Extensible Markup Language (XML)

33

are verbose, XML documents can quickly become very large for com-
plex data sets. There are other points worth noting about XML:

�

XML is extensible.

 Unlike HTML, which has a fixed number of
tags, XML allows the developer to define any number of tags—
whatever is necessary to solve the problem. In our example, the
document represents an abstraction of a customer and includes
fields to describe the customer.

�

XML is hierarchical.

 Elements can have subordinate elements
under them. In the example, the

Customer

 element contains
several child elements.

�

XML is modular.

 By allowing documents to reference other doc-
uments, XML provides for modular designs and promotes reuse.

�

XML does not include built-in typing.

 This data enforcement
and validation is provided through document type definitions
(DTDs) and XML schemas, two concepts that will be discussed
in further detail later.

�

XML does not make any assumptions about the presentation
mechanism.

 This is unlike HTML, which does make these
assumptions. In fact, XML has to be coupled with another tech-
nology (such as

XSLT

 or

Cascading Style Sheets

) to be dis-
played. This separation stems from one of XML’s primary goals
of being a way of exchanging data; oftentimes data is exchanged
between systems and hence may not need to be displayed at all.

�

XML is programming language independent.

 Since XML is not
a programming language per se, it can be used as a common
mechanism for data exchange between programming languages
and, as we will see later, a common way of connecting applica-
tions as well (via SOAP).

�

XML provides validation mechanisms.

 Through the use of
DTDs and XML schema, XML documents can be validated to
determine whether the elements are correct (i.e., whether the
values are within a specified range).

Some of the main XML concepts that are especially relevant to Web
Services include parsers, namespaces, DTDs, and XML schemas.

34

Chapter

2

 | The Basic Web Services Stack

XML Parsers

Processing an XML document requires the use of an XML parser, a
program that can decompose the XML document into its individual
elements. There are two major categories of XML parsers:

Document
Object Model

 (

DOM

) and

Simple API for XML

 (

SAX

).

DOM is a language-neutral API for accessing and modifying tree-based
representations of documents such as HTML or XML documents.
Developers can use language-specific DOM parsers to programmati-
cally build and process XML documents.

DOM parsers have two major shortcomings:

�

The entire XML document is represented in memory; this can
lead to performance issues if the XML document is exceedingly
large.

�

Since the API is language independent, it is quite generic; there-
fore more steps are often required to process an XML docu-
ment than would be the case if it were optimized for a
particular implementation language. This has led to language-
specific variants such as the

JDOM

 parser, which is tuned for
the Java language.

The SAX parser is an event-based parser and can be used only for read-
ing an XML document. A SAX parser works from event registration.
The developer registers event handlers, which are then invoked as the
XML document is processed. Each event handler is a small block of
code that performs a specific task. The main advantage of a SAX
parser over a DOM parser is that the former does not require the entire
document to be in memory—the XML document is processed as a
stream of data, and the event handlers are invoked. While SAX is eas-
ier to work with than DOM, there are some disadvantages:

�

Once the XML document has been read, there is no internal rep-
resentation of the document in memory. Thus, any additional
processing requires the document to be parsed again.

�

A SAX parser cannot modify the XML document.

Thus it is important to understand the needs of the application before
selecting an XML parser.

Extensible Markup Language (XML)

35

Well-Formed and Valid XMLs

XML documents must conform to a certain set of guidelines before
they can be processed. This leads to two terms that are used to describe
the state of a document: well formed and valid.

A

well-formed

 XML document is one that follows the syntax of XML
and that can be

completely

 processed by an XML parser. If there are
syntax errors in the document, then the parser rejects the entire docu-
ment. As far as an XML parser is concerned, there is no such thing as a
partially well-formed XML document.

A

valid

 XML document is a well-formed document that can also be
verified against a DTD, which defines constraints for the individual ele-
ments—the order of the elements, the range of the values, and so on. A

validating

 XML parser is one that can validate an XML document
against a DTD or XML schema, which are described next.

DTDs and Schemas

XML offers two mechanisms for verifying whether or not a document
is valid. A DTD is an external document that acts as a template against
which an XML document is compared. The XML document references
this DTD in its declaration, and the XML parser (assuming it is a vali-
dating parser) then validates the elements of the XML document with
the DTD. A DTD can specify the order of the elements, the frequency
at which elements can occur (for example, an order can contain 0–

n

line items), etc.

While a powerful concept, DTDs have many shortcomings.

�

The concept of a DTD predates that of XML (it originated from
SGML) and does not conform to XML syntax. This increases
the learning curve and can lead to some confusion.

�

A DTD does not support data types; this means it is impossible
to specify that a given element must be bound to a type. Using
the order example under “XML Syntax” earlier in this chapter,
there is no way to specify that the line item count needs to be a
positive integer.

�

An XML document can reference only one DTD; this limits how
much validation can occur.

36 Chapter 2 | The Basic Web Services Stack

� A DTD cannot enforce data formats; i.e., there is no way to
specify that a date must be of the mm/dd/yyyy format.

� DTDs were invented before the standardization of namespaces
and consequently do not support namespaces, which can lead to
many element name collisions. For more on namespaces, see the
next section.

Because of these limitations, applications that have to process XML
documents include a lot of error checking functionality. Additionally,
SOAP, one of the cornerstone technologies of Web Services, prohibits
the use of DTDs in the document declarations.

To address the shortcoming of DTDs, the W3C produced the XML
schema specifications. XML schemas provide the following advan-
tages:

� The XML schema grammar supports namespaces.

� XML schemas include a predefine set of types including string,
base64 binary, integer, positive integer, negative integer, date,
and time, along with acceptable ranges and data formats.

� XML schemas also allow for the creation of new types (simple
and complex) by following a well-established set of rules.

XML Namespaces

An enterprise system consists of dozens if not hundreds of XML docu-
ments. As these XML documents are merged from other sources, inev-
itably there will be duplicate element names. This can cause problems
because each element must have a unique name. XML resolves this
name collision issue through the use of namespaces (Java provides a
similar feature through packages). Each element is prefixed with a
namespace and therefore has to be unique only for that given
namespace rather than globally. In practice, the prefix is usually the
name of the company, although any Uniform Resource Locator (URL)
will do.2 Thus, an element name is composed of two parts: the
namespace and the name of the element. By qualifying the name of
each element with a qualifier, the likelihood of a name collision is
greatly reduced. Consider the file system, for example. For a given

2. Technically, the identifier is usually a Uniform Resource Identifier (URI). For our purposes, we will ignore
the distinction between a URI and a URL.

Extensible Markup Language (XML) 37

directory, a filename must be unique. However, there can be multiple
identical filenames as long as each exists in a different directory. In a
sense, the directory provides the namespace and qualifies the filename
to resolve filename conflicts.

Service-Oriented Access Protocol (SOAP)
One of the challenges of performing integration using traditional mid-
dleware is the lack of a universal protocol. By being XML based and
not tied to any particular language, SOAP has evolved to become the
primary de facto standard protocol for performing integration between
multiple platforms and languages.

SOAP originally meant Simple Object Access Protocol, but the term
has been unofficially redefined to mean Service-Oriented Access Proto-
col because SOAP is not simple and certainly not object oriented; the
latter point is important because not all languages are object oriented.

This flexibility in the protocol allows a program that is written in one
language and running on one operating system to communicate with a
program written in another language running on a different operating
system (i.e., a program written in perl running on Solaris can commu-
nicate with another program written in Java running on Windows
2000). There is at least one SOAP implementation for each of the pop-
ular programming languages including perl, Java, C++, C#, and Visual
Basic.

Advantages of SOAP

Before discussing the characteristics of SOAP, let’s examine why it has
become so popular.

� SOAP is a fairly lightweight protocol. Some of the earlier dis-
tributed computing protocols (CORBA, RMI, DCOM, etc.)
contain fairly advanced features such as registering and locating
objects. At its core, SOAP defines only how to connect systems
and relies on additional technologies to provide registration fea-
tures (UDDI) and location features (WSDL).

� SOAP is language and operating system independent. In this
respect, SOAP is unlike many other middleware technologies

38 Chapter 2 | The Basic Web Services Stack

(such as RMI, which works only with Java, and DCOM, which
works only on Microsoft Windows and NT).

� SOAP is XML based. Instead of relying on proprietary binary
protocols (as is the case with CORBA and DCOM), SOAP is
based on XML, a ubiquitous standard. As previously noted,
XML is fairly readable.

� SOAP can be used with multiple transport protocols. These
include HTTP, Simple Mail Transfer Protocol (SMTP), file trans-
fer protocol (FTP), and Java Message Service (JMS). Most of the
examples in this book will focus on HTTP since it is the most
commonly used protocol with SOAP-based systems.

� SOAP can traverse firewalls. SOAP needs no additional modifi-
cations to do this. Contrast this with CORBA- or DCOM-based
systems, which require that a port be opened on the firewall.
This is a key requirement for building distributed systems that
have to interact with external systems beyond the firewall. (This
is also a disadvantage, as we will see later.)

� SOAP is supported by many vendors. All major vendors includ-
ing IBM, Microsoft, BEA, and Apache provide support for
SOAP in the form of SOAP toolkits (the IBM and Apache SOAP
toolkits are two of the most popular).

� SOAP is extensible. The header values (specified in the Header
element) in the XML document can be used to provide addi-
tional features such as authentication, versioning, and optimiza-
tion. These features are discussed further in the next chapter.

Disadvantages of SOAP

On the down side, SOAP does have some disadvantages.

� There are interoperability issues between the SOAP toolkits. It
seems ironic that there would be interoperability issues with a
technology that promotes interoperability, but this is mostly
attributable to the infancy of the SOAP specifications. These
have been identified and documented, and the various vendors
have been quite cooperative in resolving these differences.

� SOAP lacks many advanced features. Much has been written
about the advantages of SOAP as a lightweight protocol, but

Extensible Markup Language (XML) 39

there are a host of missing features such as guaranteed messag-
ing and security policies.

Many of these issues can be addressed through third-party technolo-
gies such as Web Services networks, which are discussed in further
detail in later chapters.

SOAP Basics

SOAP is built on a messaging concept of passing XML documents
from a sender to a receiver (also called the endpoint). The XML docu-
ment becomes known as a SOAP document and is composed of three
sections: Envelope, Header, and Body. Figure 2–2 illustrates the struc-
ture of a SOAP document.

Figure 2–2 The structure of a SOAP document.

Envelope (required)

Header (optional)

Body (required)

SOAP Document

40 Chapter 2 | The Basic Web Services Stack

The SOAP standards define three major parameters:

� Envelope body structure. The envelope contains information
such as which methods to invoke, optional parameters, return
values, and, where something did not execute successfully,
optional exceptions (known as SOAP faults).

� Data encoding rules. Since SOAP has to support multiple lan-
guages and operating systems, it has to define a universally
accepted representation for different data types such as float,
integer, and arrays. More complex data types (such as Cus-
tomer) require custom coding, although some toolkits, such as
GLUE, inherently provide this mapping.

� Usage conventions. SOAP can be used in a multitude of ways,
but they are all variations of the same actions: a sender sends an
XML document, and the receiver, optionally, returns a response
in the form of an XML document (this is the case of a two-way
message exchange). As mentioned previously, the XML docu-
ment may contains faults if errors occurred during processing.

By allowing receivers to be chained together, SOAP-based architec-
tures can be quite sophisticated. Figure 2–3 shows five common
architectures that are used with SOAP-based systems—Fire and For-
get, Request Response, Notification, Broadcast, and Workflow/
Orchestration.

Any link in the processing chain that is not the endpoint is referred to
as an intermediary. The SOAP specifications allow an intermediary to
process a SOAP message partially before passing it to the next link in
the processing chain (which can be another intermediary or the end-
point). You will see an example of this in the discussion of the SOAP
header later in the chapter.

Migrating from XML to SOAP

Migrating from XML to SOAP is a fairly straightforward procedure.
The migration includes these steps:

� Adding optional Header elements
� Wrapping the body of the XML document in the SOAP body,

which in turn is included in the SOAP envelope
� Declaring the appropriate SOAP namespaces

Extensible Markup Language (XML) 41

� Adding optional exception handling
� Specifying the protocol that should be used

For example, converting our earlier XML document to SOAP involves
adding the following parts (highlighted in bold; for the sake of simplic-
ity, the HTTP fragment has been stripped away):
<?xml version=”1.0” encoding=”UTF-8”?>
<SOAP-ENV:Envelope

xmnls:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope”
xmnls:xsi=”http://www.w3.org/1999/XMLSchema-instance”
xmnls:xsi=”http://www.w3.org/1999/XMLSchema”>

<SOAP-ENV:Header>
. . . [optional header information]

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<Order>

Figure 2–3 Common SOAP architectures.

Sender Endpoint Sender Endpoint

Sender

Endpoint 1 Endpoint 2 Endpoint 3

Sender

Endpoint 3 Endpoint 1

Endpoint 2

Fire and Forget Request Response

Broadcast Workflow/Orchestration

Sender Endpoint

Notification

42 Chapter 2 | The Basic Web Services Stack

<Customer>
<name>John Doe</name>
<street>1111 AnyStreet<street>
<city>AnyTown</city>
<state>GA<state>
<zip>10000</zip>

</Customer>
</Order>
<SOAP-ENV:Body>
<SOAP-ENV:Envelope>

The next sections describe these additional parts.

SOAP Envelope

The SOAP envelope is the container for the other elements in the SOAP
message. A server-side process called a SOAP handler can use the avail-
ability of the SOAP envelope (along with the http://schemas.xmlsoap.org/
soap/envelope/ namespace declaration) to determine whether the incom-
ing XML document is a SOAP message or not. The handler can be part of
the application server, or it can be an external product such as Cape Clear
CapeConnect. SOAP handlers are explained in more detail later in the sec-
tion on adding SOAP support.

SOAP Header

As part of their extensibility design goal, the architects of SOAP pro-
vided the Header element to allow SOAP messages to be extended
generically while still conforming to the SOAP specifications. If a
SOAP Header element is present (and there can be more than one
Header element present), it has to be the first child of the Envelope ele-
ment. Each Header element can in turn have child elements.

Two examples of using header information to provide extensibility
include

� embedding authentication information
� specifying an account number for use with a pay-per-use SOAP

service

A SOAP intermediary can use this header information to determine
whether the incoming message is properly authorized before forward-
ing it (to either another intermediary or the endpoint).

Extensible Markup Language (XML) 43

Exception Handling

In cases where a SOAP handler cannot decipher a message, a SOAP
fault is generated, identified by the Fault element. Its child element,
faultcode, identifies the category of errors that can happen. SOAP 1.1
defines four values for the faultcode element:

� VersionMismatch. The recipient of the message found an invalid
namespace for the SOAP envelope element.

� MustUnderstand. The recipient encountered a mandatory
Header element it could not understand. Remember, header ele-
ments are optional.

� Client. The fault was in the message being received. Possible
causes: missing elements, malformed elements, and the like.

� Server. The fault occurred on the recipient side, i.e., a server
error.

Note that an application is free to extend these values using a (.) nota-
tion. For example, a value of Client.Login can be used to specify that
there was a problem with a client login.

In addition to the faultcode element, there are two other elements that
can be used to provide further clarification on the fault:

� faultstring. This element provides a readable explanation on
why the fault occurred.

� detail. The value of the detail element indicates that the problem
occurred while processing the body element. If the detail ele-
ment is not present, then the fault occurred outside of the body
of the message.

Adding SOAP Support

One of the advantages of adopting SOAP is that the support can be
built on top of existing technologies. Figure 2–4 shows a typical J2EE
Web-based architecture without support for SOAP.3 Adding SOAP
support to such a system typically requires the addition of a SOAP

3. This deployment shows the servlet engine separated from the application server, a format that provides
more scalability. A simpler, albeit less scalable, deployment would be to use the servlet engine that is built
into the application server.

44 Chapter 2 | The Basic Web Services Stack

handler (if the application server cannot support SOAP requests),
which parses incoming SOAP requests and then calls the appropriate
native method in the implementation language. Recall that SOAP is a
protocol, not a programming language; hence, the request must be
mapped to an entry point in an executing application. The entry point
can be a method in a class (for object-oriented systems such as Java,
C++, or C#) or a function name (for systems such as perl, which are
not object oriented).

Common SOAP handlers include CapeConnect from Cape Clear,
Iona’s XMLBus (see Appendix D for a more detailed discussion), and
Apache Axis. In summary, a system is said to be SOAP compliant if it
can take an incoming SOAP request, forward it to the appropriate end-
point, and package the result back in a SOAP response.

Figure 2–5 illustrates the addition of a SOAP handler to the J2EE envi-
ronment shown in Figure 2–4.4

While SOAP provides many useful features, it is still incomplete
because it does not address this issue: how does an endpoint
unambiguously describe its services? Likewise, another outstand-
ing issue: how does a requester locate the endpoint? These two
features are provided by two other key technologies—WSDL and
UDDI.

Figure 2–4 Typical J2EE deployment.

4. Many of the application servers have announced SOAP support, which means the SOAP handler may be
part of the application server as well.

Application Server

Client

EJB Container

EJB EJBHTTP RMI/IIOP

Servlet Engine

Servlet

Servlet

EJB = Enterprise Java Beans
IIOP = Internet Inter-Orb Protocol

Extensible Markup Language (XML) 45

Web Services Definition Language (WSDL)

To enable a client to use a Web Service effectively, there first has to be a
mechanism for describing that Web Service. At first glance, this may
seem difficult, but the challenges are many. We can provide a descrip-
tion in prose format (such as a README file), but it would not be
practical to describe all the different ways a Web Service can be used in
prose. We can also list some examples of how the Web Service can be
used effectively, but, again, that may not adequately describe all the
combinations for which a Web Service can be invoked.

The problem of succinctly and unambiguously describing a Web Serv-
ice is similar to the challenge faced by compiler writers—the conven-
tional solution is to use a grammar tree to describe the syntax of a
language. While quite effective, a grammar tree is rarely decipherable
for those without a strong background in compiler theory.

WSDL was created in response to the need for unambiguously describ-
ing the various characteristics of a Web Service. As an XML grammar,
WSDL is not easy to learn, but it is considerably less intimidating than
a programming language (such as C or C++).

A WSDL document is a well-formed XML document that lists the fol-
lowing characteristics for one or more Web Services.

Figure 2–5 Adding SOAP support to J2EE environment.

Application Server

Servlet Engine

SOAP Client

SOAP
msg

SOAP
msg

EJB Container

EJB EJB
RMI/IIOPServlet

Servlet

SOAP
Handler

HTTP

HTTP

46 Chapter 2 | The Basic Web Services Stack

Publicly accessible functions.5 A WSDL lists all the operations a client
can expect a Web Service to support.

� Input and output parameters along with associated types. In
order to invoke each operation, the client needs to know the
expected parameters for each input operation and the expected
output of each operation. Again, this is identical to a normal
function declaration. In order to support portability between
languages and operating systems, all data types are defined in
XML schema format.

� Binding and address information for each Web Service. To
allow loose coupling between a requester and a Web Service,
WSDL specifies where the service can be found (usually a URL)
and the transport protocol that should be used to invoke the
service (remember that a Web Service can be used with multiple
protocols).

In essence, WSDL defines a contract that a provider is committed to
supporting, and, in the spirit of separating implementation from inter-
face, WSDL does not specify how each Web Service is implemented. As
a point of comparison, WSDL can best be likened to CORBA’s IDL.

Most of the existing toolkits (GLUE, IBM Web Services Toolkit
[WSTK], BEA Web Services Workshop, Cape Clear CapeStudio, etc.)
have built-in functionality to automatically parse and generate WSDL
files (although, due to the immaturity of the tools, the generated files
still require some manual tweaking). Even so, it is still worthwhile to
understand the structure of a WSDL document.

WSDL Syntax

The WSDL specifications list six major elements:

� The definitions element is the root element containing the five
remaining elements; it defines the name of the service and
declares the namespaces used throughout the document.

5. The astute reader will notice the use of the term “functions” rather than “methods.” SOAP is not object-
oriented and does not support object-oriented terminology; therefore, WSDL is the same.

Extensible Markup Language (XML) 47

– The message element represents a single piece of data moving
between the requester and the provider (or vice versa). It
declares the name of the message along with zero or more
part elements, each of which represents either a single param-
eter (if this is a request) or a single return value (if it is a
response). If there is no part, then the request requires no
parameter or there is no return value, depending on whether
the message represents a request or a response. Note that each
message element declares only the name (which is used by the
operation element below), value(s), and the type of each
value; it does not specify whether the message is for input or
output—that is the role of the next element.

– The portType element represents a collection of one or more
operations, each of which has an operation element. Each
operation element has a name value and specifies which mes-
sage (from the message element) is the input and which is the
output. If an operation represents a request/response interac-
tion (a method invocation with a return value), then the oper-
ation would include two messages. If an operation represents
only a request with no response or a response with no request
(e.g., an automatic notification from the provider with no
request from the requester), it would include only a single
message. In Java terms, a portType can best be thought of as
an interface; an operation can best be thought of as a single
method declaration; a message can best be thought of as a
individual piece of an operation, with each message represent-
ing (if the operation is an input) a parameter name and the
associated type or (if the operation is an output) return value
name and the associated type.

– The types element is used to declare all the types that are used
between the requester and the provider for all the services
declared in the WSDL document.

– The binding element represents a particular portType imple-
mented using a specific protocol such as SOAP. If a service
supports more than one protocol (SOAP, CORBA, etc.), the
WSDL document includes a listing for each.

– The service element represents a collection of port elements,
each of which represents the availability of a particular bind-
ing at a specified endpoint, usually specified as a URL where
the service can be invoked.

48 Chapter 2 | The Basic Web Services Stack

Invoking Existing Web Services: A Sample
To invoke a Web Service, we can either write a SOAP client or use an
existing generic one. The www.soapclient.com site provides a Web
interface that allows us to enter the WSDL file and invoke the service.
Before we can launch the service, we need to find the WSDL file. In this
case, we can find some sample WSDL files at www.xmethods.net, a
public repository of Web Services. For our example, we will invoke a
Web Service that can print the traffic conditions of a specified Califor-
nia highway. Use the following instructions:

� Visit the www.soapclient.com/soaptest.html site.
� Type www.xmethods.net/sd/2001/CATrafficService.wsdl in the

WSDL address field.
� Select HTML instead of XML for the output.
� Click Retrieve, which loads the WSDL file from across the Inter-

net.
� In the textfield, type 101 (for Highway 101) and click Invoke to

invoke the service.
� The resulting screen should print text that explains the current

conditions for Highway 101.

This example illustrates how straightforward it is to invoke a Web
Service from a browser. The user, in most cases, will not even be
aware that Web Services are being used to return the values. Of
course, the user can just as easily be a program, in which case the pro-
gram would programmatically pass the appropriate parameters.

Universal Description, Discovery, and
Integration (UDDI)

The vision behind UDDI is to provide a distributed repository that cli-
ents can search (during design time and runtime) to find Web Services.
Originally launched as a collaboration among Microsoft, IBM, and
Ariba in September 2000, the UDDI consortium has since grown to
include hundreds of members.

UDDI can be thought of as two major concepts:

Universal Description, Discovery, and Integration (UDDI) 49

� The specifications. These standards describe how such reposito-
ries should work and include three major concepts: white pages,
yellow pages, and green pages. These will be described further
below.

� The implementations of the specifications. Microsoft and IBM
are UDDI operators of two public repositories, called business
registries, which are the first public implementations of the
UDDI specifications. A company can register at one repository
and be confident that the entry will be replicated to the other
repository (currently, the entries are replicated every 24 hours).
However, for security reasons, any updates must be performed
at the repository where the service was first registered. Of
course, like everything else that is related to Web Services, the
entries in the UDDI repositories are XML data. As mentioned,
the business registries are examples of public registries; we will
discuss private registries in detail below.

UDDI Categories

A UDDI repository contains entries about businesses, the services these
businesses provide, and information on how those services can be
accessed. Modeled after a phone book, a UDDI directory has three cat-
egories:

� White pages contain basic information about a service provider,
including the provider’s name, a text description of the business
(potentially in multiple languages), contact information (phone
number, address, etc.), and other unique identifiers such as the
Dun & Bradstreet (D&B) rating and the D&B D-U-N-S Num-
ber.

� Yellow pages include the classification of either the provided
service or the registered company using standard taxonomies.
Examples include

– Standard Industrial Code (SIC)

– North American Industrial Classification System (NAICS): a
classification scheme specific to the United States, Canada,
and Mexico

50 Chapter 2 | The Basic Web Services Stack

– Universal Standards Products and Services Classifications
(UNSPSC): an open global standard used extensively by cata-
log and procurement systems

– Geographic taxonomies: location-based classifications; for
example, US-CA indicates a business in California

� Green pages contain the technical entries for the Web Services—
the address of the Web Service, the parameters, etc.

The entries in a UDDI directory are not limited to Web Services; UDDI
entries can be for services based on email, FTP, CORBA, RMI, or even
the telephone.

UDDI Data Model

The UDDI data model includes an XML schema that provides four
major elements:

� The businessEntity element represents the owner of the services
and includes the business name, description, address, contact
information categories, and identifiers. Upon registration, each
business receives a unique businessKey value that is used to cor-
relate with the business’s published service. The categories and
identifiers can be used to specify details about a business, such
as its NAICS, UNSPSC, and D-U-N-S codes—values that can be
useful when performing searches.

� The businessService element has information about a single Web
Service or a group of related ones, including the name, descrip-
tion, owner (cross-referenced with a unique businessKey value
of the associated businessEntity element), and a list of optional
bindingTemplate elements. Each service is uniquely identified by
a serviceKey value.

� The bindingTemplate element represents a single service and
contains all the required information about how and where to
access the service (e.g., the URL if it is a Web Service). Each
binding template is uniquely identified by a bindingKey value.

Universal Description, Discovery, and Integration (UDDI) 51

The service does not have to be a Web Service; it can be based
on email (SMTP), FTP, or even the fax.

� The tModel element (shortened from “technical model” and
also known as the service type) is primarily used to point to the
external specification of the service being provided. For a Web
Service, this element (more specifically, the overviewURL child
element) should ideally point to the WSDL document that pro-
vides all the information needed to unambiguously describe the
service and how to invoke it. If two services have the same
tModel key value, then the services can be considered equivalent
(thus allowing the requester potentially to switch from one serv-
ice provider to another). Here is a useful metaphor: a tModel
that can be thought of as an interface for which there can be
multiple implementations, presumably from different companies
since it does not make sense for a firm to implement more than
one service for a given tModel (just as it would not make
sense for a single class to implement the same interface in differ-
ent ways).

UDDI Usage Scenarios

As mentioned earlier, a service-oriented architecture involves three
roles: client, provider, and service broker. To illustrate the flexibility of
the UDDI model, we’ll use the example of the MegaBucks Consortium.

MegaBucks Consortium (a financial consortium) wants to create a
standard way of valuing small retail businesses and then publish this
information so that its member firms can implement Web Services to
conform to that standard. In this example, the consortium operates a
private registry (see the next section on types of UDDI registries for
more information on private versus public registries). To allow its
members to access this standard, the consortium needs to

� Produce a WSDL file to define the specifications to which a valu-
ation service should adhere. The provider of the valuation serv-
ice would most likely be a member of the financial consortium.

� Publish the WSDL file at a public location (for example,
www.megabucks.org/valuation.wsdl on its server, or any pub-
licly accessible location).

52 Chapter 2 | The Basic Web Services Stack

� Create a tModel to represent the valuation service specifications
(these specifications are described in the WSDL file mentioned in
our first bullet point).

� Publish the tModel in its registry. As part of the publishing pro-
cess, the registry issues a unique key for the tModel (5000X, for
example6) and stores the URL of the WSDL file in the over-
viewURL child element of the tModel element.

Figure 2–6 illustrates this sequence of events.

6. The value of a tModel key is considerably more complex than this, but this simplification is adequate for
our purposes.

Figure 2–6 Creating a tModel.

value = 5000X
overviewURL = www.megabucks.org/valuation.wsdl

Publish

WSDL

Publish

MegaBucks
Consortium

UDDI
Repository

tModel
Publish

WSDL Server

Universal Description, Discovery, and Integration (UDDI) 53

A firm that wants to publish a Web Service to comply with this stan-
dard (presumably a member of the MegaBucks Consortium) needs to
do the following (see Figure 2–7 for the sequence of events outlined in
the bullets):

� Publish its business to the private registry operated by
MegaBucks Consortium.

� Publish the Web Service with a bindingTemplate, access point of
which is the URL of the firm’s Web Services implementation and
whose tModel’s value (5000X) is that of the tModel published
by MegaBucks Consortium. In essence, this member firm is
advertising that its valuation service complies with a set of spec-
ifications (captured in the tModel) established by a consortium
(in this case, Mega-Bucks Consortium).

As mentioned earlier, multiple firms can publish Web Services that
implement the same tModel.

A firm that actually wants to invoke the valuation service (e.g., a hold-
ing company that buys other businesses) first has to know the value

Figure 2–7 Using the tModel.

value = 5000X
overviewURL = www.megabucks.org/valuation.wsdl

Publish

WSDL

UDDI
Repository

tModel

Publish
Service

WSDL Server

Valuation Firm
Server

Valuation
Service

54 Chapter 2 | The Basic Web Services Stack

that represents the valuation service (in this case, 5000X) and must use
this value to locate the Web Service either statically (by browsing the
operator nodes via the Web) or programmatically. If the search results
in more than one service, then the client can use other criteria (price,
location, etc.) before selecting a provider.

In our example:

� MegaBucks Consortium is a publisher (because it is publishing a
service—the tModel) and a service broker (because it is hosting
a repository that requester firms are searching).

� The member firm—the one that is providing the actual valuation
service—is the provider.

� The holding company is the client.

Figure 2–8 illustrates the requester locating the valuation service and
invoking it.

Figure 2–8 Locating and invoking a Web Service.

value = 5000X
overviewURL = www.megabucks.org/valuation.wsdl

Publish

WSDL

UDDI
Repository

tModel

WSDL Server

Valuation Firm
Server

valuation
serviceHolding

Company

1. Query
UDDI server

2. Read
WSDL

3. Invoke
service

BROKER

PROVIDER

CLIENT

Universal Description, Discovery, and Integration (UDDI) 55

Types of UDDI Registries

UDDI registries can be categorized into two major groups:

� Public. Anyone can publish an entry in a public registry, which
has no process to ensure the validity of its entries. (The business
registries operated by IBM and Microsoft are examples of pub-
lic registries.) Because an entry is not validated, there may be
questions as to whether the business actually exists, whether the
services are even provided, and whether the services are deliv-
ered at an acceptable level. For these and other reasons, many
believe that public registries will not be feasible for a long time.

� Private. A private registry is a more likely scenario for the
majority of the firms because each firm can enforce certain crite-
ria on an entry before it is published to the repository. There are
different variations of private registries including

– EAI registry. This is useful for large organizations that want
to publish commonly used services by various departments or
divisions. Without a central repository, these services are
often duplicated. An example would be a service for accessing
the human resource legacy system.

– Portal UDDI. The registry is located behind a firewall. There-
fore, the external users can search for entries, but only the
operators of the portal can publish or update the entries in
the portal. In a sense, this is the model of the portals today.
Users can browse and invoke services (such as stock quotes),
but they cannot add new services (although they can person-
alize the views).

– Marketplace UDDI. Only members of the marketplace (typi-
cally a closed environment) can publish and search for serv-
ices. This type of registry is appropriate for vertical industries.
The marketplace operator can establish qualifying criteria
before an entry is added to the repository and can then pro-
vide additional fee-based services such as certification, billing,
and nonrepudiation.

56 Chapter 2 | The Basic Web Services Stack

Web Services and Other Technologies

Now that we have explained the basics of Web Services, it is worth
reviewing whether Web Services will coexist or whether they will
replace many of the technologies we’ve discussed. Remember, a WSDL
document advertises the methods that can be invoked, and SOAP pro-
vides the mechanism for invoking the methods. However, there is still a
need to have back-end applications take the SOAP request and per-
form the processing. This functionality is still provided by some appli-
cations, which can be written in a client-server or n-tier architecture.
The following scenarios elaborate how existing technologies can be
affected by the adoption of Web Services.

� Application servers, middleware, and object-oriented technolo-
gies. Recall that application servers are written predominantly
in Java; it follows that applications using application servers
must be written in Java as well. Without SOAP, Java applica-
tions must use either RMI (which allows communications only
with other Java programs) or CORBA (fairly expensive and dif-
ficult to learn) for integration to legacy systems. Most popular
application servers now provide SOAP support. Furthermore,
through SOAP, applications built with an application server
(i.e., Java applications) can now communicate with programs in
other languages, regardless of the language in which they are
written (provided that language has SOAP support). However,
keep in mind that, in many cases, CORBA is still the only viable
solution for connecting systems speaking different languages
and/or on different operating systems because it defines many
features (real-time extensions, etc.) that are not available with
Web Services. The key is to determine what needs to be done
and address the missing functionality. In many cases, a viable
option is to use third party products, such as Web Services net-
works, to address some of the gaps in the existing standards.
We’ll talk more about Web Services networks in Chapter 6.

� ERP, CRM, and EAI systems. ERP and CRM systems provide
the core functionality for many firms and will continue to do so
even with the emergence of Web Services. In some cases, Web
Services may replace the simpler integration scenarios between
CRM and ERP currently addressed by the lower-end EAI solu-
tions. However, as of now, the base Web Services do not address

Phases of Adoption 57

many of the advanced features found in the higher-end EAI solu-
tions—transaction control, message integrity, queuing, to name
a few. For an in-depth look at the types of cases in which it can
be beneficial to use Web Services in place of traditional integra-
tion, see the case studies in Appendix B. For a more thorough
discussion how EAI and Web Services will coexist, see the JCA
section of Chapter 4.

� EDI. There are conflicting points of view about whether Web
Services will make EDI obsolete; quite a few believe that EDI
will be around for a long time. First, a lot of money has been
invested in EDI by major corporations such as Wal-Mart and
General Motors. Furthermore, EDI provides a data exchange
mechanism and a set of predefined business processes. As of this
writing, without the adoption of ebXML or something similar,
Web Services do not address the issue of business processes. For
more information on ebXML, see Appendix A.

Phases of Adoption
In most surveys conducted by leading analyst firms (Gartner Group,
Forrester, IDC, and others) with IT decision makers, many respondents
have consistently ranked Web Services as a technology that will be
adopted in their enterprises. However, the adoption will not happen in
a single large wave. According to these same firms, the adoption will
happen in the three distinct phases described in the next three sections
(for other perspectives on the phases of adoption, see Appendix C,
which includes in-depth interviews with executives at Web Services
firms).

Phase I (2002–2003+)
In this phase, organizations will adopt Web Services as a more afford-
able way of performing application integration behind the firewall;
they will launch pilot projects to gain some hands-on experience. A
natural point of entry will be when a firm chooses to use Web Services
instead of conventional middleware to integrate enterprise informa-
tion portals (EIPs) from multiple disparate data sources. Because

58 Chapter 2 | The Basic Web Services Stack

most firms already have a portal strategy and/or deployment, this
would be a low-risk incremental strategy to save on integration costs.
The lack of Web Services transactional standards will not be a huge
deterrent here since many information portals are not transactional in
nature.

Figure 2–9 illustrates how Web Services are used with an enterprise
portal.

Figure 2–9 Portal integration via SOAP.

SOAP

Legacy
System HR Financials

Portal

Summary 59

Phase II (2003–2005)
As the standards mature (especially regarding security, messaging, and
transaction control), organizations will start integrating business pro-
cesses and applications beyond the firewall. Workflow standards will
also mature to the point where organizations can build sophisticated,
collaborative systems with trading partners. For a more thorough dis-
cussion of workflow standards, see the Silver Stream interview in
Appendix C.

Phase III (2006+)
By this time, the repositories should contain a critical mass of publicly
available Web Services. This will allow business analysts to start build-
ing complex applications by statically assembling these available Web
Services, which were once the exclusive province of developers. This
may even include using software agents—programs that can act on
behalf of a user—to dynamically change the behavior of the system by
dynamically reconfiguring the workflow to react to changing business
conditions.

Summary
The term Web Services defines a set of lightweight protocols and stan-
dards (SOAP, WSDL, and UDDI) that facilitate integration. Adding a
thin layer on top of standard XML, SOAP provides a lightweight pro-
tocol for exchanging data, invoking applications remotely, and han-
dling exceptions. SOAP does not provide the functionality itself, but
instead provides a platform- and language-neutral way of forwarding
an incoming request (frequently an HTTP request, although FTP and
SMTP are also supported) to the appropriate method or function in an
existing application and then returning the value to the requester.

WSDL provides a way for service providers to advertise the list of
operations they are willing to support. WSDL is quite verbose and is
often generated by tools rather than being written by developers.

UDDI provides a set of specifications for companies to use when regis-
tering their services. Major companies, including IBM and Microsoft,

60 Chapter 2 | The Basic Web Services Stack

are also hosting public repositories, which are currently not being
audited. For most organizations, it is more practical to build private
registries that can be updated and searched only by trusted parties.

In many cases, Web Services will not replace the existing technologies
(application servers, EDI, EAI, etc.); they will instead coexist with
them. The next chapter discusses outstanding issues that need to be
addressed in rolling out Web Services at an enterprise level.

