
The best way to eliminate the problem
is to remove Scopes completely.

— John Terpstra, Samba Team,
in a message to the
Samba-Technical mailing list

This is the last big chunk of NBT. It is also the easiest, which should bring a
great sigh of relief. We have already covered all of the background material we
need to cover, so there is no need to waste any time with preliminaries. Let’s
dive right in...

Session Service Header6.1

The Session Service header, as presented in RFC 1002, is as follows:

1514131211109876543210

FLAGSTYPE

LENGTH

The FLAGS field breaks down further into:

76543210

Ereserved

129

6

The Session Service
in Detail

The reserved bits are always supposed to be zero, and the E bit is an addi-
tional high-order bit which is prepended to the LENGTH field. Another way
to look at the layout is like this:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

LENGTH (17 bits)reservedTYPE

We will stick with the latter, simpler format and ignore the FLAGS field,
which is never really used.

The LENGTH field contains the number of bytes of payload, and the TYPE
field is used to distinguish between the six different Session Service message
types, which are:

0x00 == Session Message
0x81 == Session Request
0x82 == Positive Session Response
0x83 == Negative Session Response
0x84 == Retarget Session Response
0x85 == Session Keepalive

Each of these message types is explained below.

Creating an NBT Session6.2

The first step in setting up an NBT session is to discover the IP address of the
remote node. The IP address is, of course, required in order to create the TCP
session that will carry the NBT session. The NBT Name Service is generally
used to find the remote host’s IP address, though several implementations
support kludges which bypass the Name Service. Once the TCP session
is established (something we assume you know how to do) the NBT
session is initiated using a SESSION REQUEST message, which looks like this:

Part I NBT: NetBIOS over TCP/IP130

SESSION REQUEST
 {
 HEADER
 {
 TYPE = 0x81 (Session Request)
 LENGTH = 68 (See discussion below)
 }
 CALLED_NAME = <Destination Level 2 Encoded NetBIOS name>
 CALLING_NAME = <Source Level 2 Encoded NetBIOS name>
 }

One oddity of the Session Service is that the Scope ID is dropped from
the name fields in the SESSION REQUEST message. That results in a fixed
length of 34 bytes per name. That’s one byte for the leading label (always
0x20), 32 bytes for the First Level Encoded NetBIOS name, and one more
byte for the trailing label (always 0x00). The payload of a SESSION REQUEST
message is, therefore, fixed at 2 × 34 = 68 bytes.

Caveat Alert
The RFCs do not specify whether the Scope ID should or should not be included in the
CALLED or CALLING NAME. It would make sense to assume that the Scope ID
should be included, since both the Name Service and Datagram Service require the
Scope ID, but that’s not how things actually work on the wire.

As it is, the behavior of the Session Service is inconsistent with the rest of the
NBT system. Fortunately, Scope is enforced by the Name Service, so it is not critical
that it be enforced by the Session Service.

There are three possible replies to the SESSION REQUEST message:

0x82: POSITIVE SESSION RESPONSE

The remote node has accepted the session request, and the session is es-
tablished. Kewl!

POSITIVE SESSION RESPONSE
 {
 HEADER
 {
 TYPE = 0x82
 LENGTH = 0
 }
 }

1316 The Session Service in Detail

0x83: NEGATIVE SESSION RESPONSE

Something went wrong, and the remote node has rejected the
session request.

NEGATIVE SESSION RESPONSE
 {
 HEADER
 {
 TYPE = 0x83
 LENGTH = 1
 }
 ERROR_CODE = <A Session Service Error Code>
 }

The one-byte ERROR_CODE field is supposed to indicate the cause
of the trouble. Possible values are:

0x80: Not Listening On Called Name
The remote node has registered the CALLED NAME, but no appli-
cation or service is listening for session connection requests on
that name.

0x81: Not Listening For Calling Name
The remote node has registered the CALLED NAME and is listening
for connections, but it doesn’t want to talk to you. It is expecting a
call from some other CALLING NAME.

There are some interesting implications to this. It means that
a server could, potentially, be selective about which nodes may
connect. On the other hand, it would be trivial to spoof the
CALLING NAME.

0x82: Called Name Not Present
The remote node has not even registered the CALLED NAME. Better
re-try your name resolution.

0x83: Insufficient Resources
The remote node is busy and cannot take your call at this time.

0x8F: Unspecified Error
Something is wrong on the far end, but we are not quite sure what
the problem is.

Part I NBT: NetBIOS over TCP/IP132

It is annoying that the error code values overlap the Session Service
message type values.

0x84: RETARGET SESSION RESPONSE

This Session Service message tells the calling node to try a different IP
address and/or port number, something like a Redirect directive on a
web page. When a client receives a RETARGET SESSION RESPONSE
message in response to a SESSION REQUEST, it is supposed to close
the existing TCP connection and open a new one using the IP address
and port number provided.

RETARGET SESSION RESPONSE
 {
 HEADER
 {
 TYPE = 0x84
 LENGTH = 6
 }
 RETARGET_IP_ADDRESS = <New IP address>
 PORT = <New TCP port number>
 }

This feature opens up some interesting possibilities. Retargeting
could be used for load balancing, fault tolerance, or to allow unprivileged
users to run their own SMB servers on high-numbered ports.

Of course, client support for this feature is inconsistent. Based on
some simple tests, it seems that Samba’s smbclient handles retargeting
just fine, as do Windows 95 and Windows 98. In contrast, Windows
2000 deals with the RETARGET SESSION RESPONSE as if it were an
error message of some sort. W2K will retry the original IP address and
port number, and then give up.

Listing 6.1: Session retargeting

#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

1336 The Session Service in Detail

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

void PrintL1Name(uchar *src, int max)
 /* -- **
 * Decode and pretty-print an L1-encoded NetBIOS name.
 * -- **
 */
 {
 int suffix;
 static char namestr[16];

 suffix = L1_Decode(namestr, src, 1, max);
 Hex_Print(namestr, strlen(namestr));
 printf("<%.2x>", suffix);
 }/* PrintL1Name */

int Get_SS_Length(uchar *hdr)
 /* -- **
 * Read the length field from an SMB Session Service
 * header.
 * -- **
 */
 {
 int tmp;

 tmp = (hdr[1] & 1) << 16;
 tmp |= hdr[2] << 8;
 tmp |= hdr[3];
 return(tmp);
 } /* Get_SS_Length */

int OpenPort139(void)
 /* -- **
 * Open port 139 for listening.
 * Note: this requires root privilege, and Samba's
 * SMBD daemon must not be running on its
 * default port.
 * -- **
 */
 {
 int result;
 int sock;
 struct sockaddr_in sox;

Part I NBT: NetBIOS over TCP/IP134

 /* Create the socket. */
 sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 if(sock < 0)
 {
 printf("Failed to create socket(); %s.\n",
 strerror(errno));
 exit(EXIT_FAILURE);
 }

 /* Bind the socket to any interface, port TCP/139. */
 sox.sin_addr.s_addr = INADDR_ANY;
 sox.sin_family = AF_INET;
 sox.sin_port = htons(139);
 result = bind(sock,
 (struct sockaddr *)&sox,
 sizeof(struct sockaddr_in));
 if(result < 0)
 {
 printf("Failed to bind() socket; %s.\n",
 strerror(errno));
 exit(EXIT_FAILURE);
 }

 /* Post the listen request. */
 result = listen(sock, 5);
 if(result < 0)
 {
 printf("Failed to listen() on socket; %s.\n",
 strerror(errno));
 exit(EXIT_FAILURE);
 }

 /* Ready... */
 return(sock);
 } /* OpenPort139 */

void Listen(struct in_addr trg_addr, int trg_port)
 /* -- **
 * Accepts incoming connections, sends a retarget
 * message, and then disconnects.
 * -- **
 */
 {
 int listen_sock;
 int reply_sock;
 int result;
 struct sockaddr_in remote_addr;

1356 The Session Service in Detail

 socklen_t addr_len;
 uchar recvbufr[1536];
 uchar replymsg[10];

 listen_sock = OpenPort139();

 /* Fill in the redirect message. */
 replymsg[0] = 0x84; /* Retarget code. */
 replymsg[1] = 0;
 replymsg[2] = 0;
 replymsg[3] = 6; /* Remaining length. */
 (void)memcpy(&(replymsg[4]), &trg_addr.s_addr, 4);
 trg_port = htons(trg_port);
 (void)memcpy(&(replymsg[8]), &trg_port, 2);

 printf("Waiting for connections...\n");
 for(;;) /* Until killed. */
 {
 /* Wait for a connection. */
 addr_len = sizeof(struct sockaddr_in);
 reply_sock = accept(listen_sock,
 (struct sockaddr *)&remote_addr,
 &addr_len);

 /* If the accept() failed exit with an error message. */
 if(reply_sock < 0)
 {
 printf("Error accept()ing a connection: %s\n",
 strerror(errno));
 exit(EXIT_FAILURE);
 }

 result = recv(reply_sock, recvbufr, 1536, 0);
 if(result < 0)
 {
 printf("Error receiving packet: %s\n",
 strerror(errno));
 }
 else
 {
 printf("SESSION MESSAGE\n {\n");
 printf(" TYPE = 0x%.2x\n", recvbufr[0]);
 printf(" LENGTH = %d\n", Get_SS_Length(recvbufr));

Part I NBT: NetBIOS over TCP/IP136

 if(0x81 == recvbufr[0])
 {
 int offset;

 printf(" CALLED_NAME = ");
 PrintL1Name(&recvbufr[4], result);
 offset = 5 + strlen(&(recvbufr[4]));
 printf("\n CALLING_NAME = ");
 PrintL1Name(&recvbufr[offset], result);
 printf("\n }\nSending Retarget message.\n");
 (void)send(reply_sock, (void *)replymsg, 10, 0);
 }
 else
 printf(" }\nPacket Dropped.\n");
 }
 close(reply_sock);
 }
 } /* Listen */

int main(int argc, char *argv[])
 /* -- **
 * Simple daemon that listens on port TCP/139 and
 * redirects incoming traffic to another IP and port.
 * -- **
 */
 {
 int target_port;
 struct in_addr target_address;

 if(argc != 3)
 {
 printf("Usage: %s <IP> <PORT>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 if(0 == inet_aton(argv[1], &target_address))
 {
 printf("Invalid IP.\n");
 printf("Usage: %s <IP> <PORT>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 target_port = atoi(argv[2]);

1376 The Session Service in Detail

 if(0 == target_port)
 {
 printf("Invalid Port number.\n");
 printf("Usage: %s <IP> <PORT>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 Listen(target_address, target_port);
 return(EXIT_SUCCESS);
 } /* main */

One more note regarding the Retarget message: there are NetBIOS
name issues to consider. The CALLED NAME must be in the name table
of the node that sends the RETARGET SESSION RESPONSE message,
but it must also be accepted by the node to which the session is retargeted.
That may take some juggling to get right.

Ruby Teru

Andor

Calling ANDOR<20>

ANDOR<20>’s at 192.168.208.43

ANDOR<00>: 192.168.208.43
Local Name Table:

TERU<00>: 192.168.208.41
TERU<03>: 192.168.208.41
TERU<20>: 192.168.208.41

ANDOR<20>: 192.168.208.43

Local Name Table:

Figure 6.1: Naming and session retargeting

Node Ruby is trying to open a connection to a service named ANDOR<20>. Node
Teru has the name ANDOR<20> in its local name table, so Ruby tries to connect
to node Teru. Teru retargets Ruby to IP address 192.168.208.43 which (we hope)
will accept the connection from Ruby.

The RETARGET SESSION RESPONSE message does not work well with
normal NetBIOS name management.

For those interested in playing with retargeting, it is fairly easily
done. Samba’s smbd daemon can be told to listed on a non-standard port
and, as a bonus, it ignores the CALLED NAME in the session request. You
can run the retarget daemon listed above in combination with the Samba

Part I NBT: NetBIOS over TCP/IP138

nmbd Name Service daemon, and retarget connections to smbd running
on a high port on the same machine, or running on a remote machine.

Maintaining an NBT Session6.3

There are two more Session Service message types to cover:

0x00: SESSION MESSAGE

Once you have established a session (by sending a SESSION REQUEST
and receiving a POSITIVE SESSION RESPONSE) you are ready to
send messages. Each message is prefixed with a SESSION MESSAGE
header, which looks like this:

HEADER
 {
 TYPE = 0x00
 LENGTH = <Length of data to follow>
 }

Since the TYPE byte has a value of 0x00, and the next seven bits
are always supposed to be zero as well, the Session Message header may
be viewed simply as a long integer length value.

length = ntohl(*(ulong *)packet);

It might be wise to mask out the unused FLAGS bits, just in case.

0x85: SESSION KEEPALIVE

The Keepalive is used to detect a lost connection. Basically, if one node
hasn’t sent anything to the other node for a while (typically five to six
minutes), it will send a SESSION KEEPALIVE, just to make sure the
remote end is still listening. The receiver simply discards the message.

HEADER
 {
 TYPE = 0x85
 LENGTH = 0
 }

TCP is a connection-oriented protocol, so the Keepalive should
generate an ACKnowledgement, or possibly a series of retries if the TCP

1396 The Session Service in Detail

ACK doesn’t show up right away. The Keepalive message forces TCP to
verify that the connection is still working, and to report back if there is
a problem. If a problem is detected, the client or server can gracefully shut
down its end of the connection.

RFC 1001 makes it clear that sending the NBT Session Service
Keepalive message is optional. TCP itself also has a keepalive mechanism,
which should be used instead, if possible.

Closing an NBT Session6.4

Nothing to it. Once all activity across the session has stopped, simply shut
down the TCP connection. At the NBT level, there are no special messages to
send when closing the session.

Part I NBT: NetBIOS over TCP/IP140

