

You are a cornflakes-vert.

— Something my friend Kathy
said to me in High School
(and I still don’t get it)

Enough descriptive hyperbole. Let’s get to work.
SMBtrans is an SMB message with the SMB_COM_TRANSACTION

command byte specified in the header. It is also the transport for all Browse
Service messages. The on-the-wire layout of the body of the SMBtrans, in
C-style notation, is as follows:

typedef struct
 {
 uchar WordCount; /* SetupCount + 14 */
 struct /* SMB-layer parameters */
 {
 ushort TotalParamCount; /* Total param bytes to send */
 ushort TotalDataCount; /* Total data bytes to send */
 ushort MaxParameterCount; /* Max param bytes to return */
 ushort MaxDataCount; /* Max data bytes to return */
 ushort MaxSetupCount; /* Max setup words to return */
 ushort Flags; /* Explained below */
 ulong Timeout; /* Operation timeout */
 ushort Reserved; /* Unused word */
 ushort ParameterCount; /* Param bytes in this msg */
 ushort ParameterOffset; /* Param offset within SMB */
 ushort DataCount; /* Data bytes in this msg */
 ushort DataOffset; /* Data offset within SMB */

22

The Talk on the Street

367

 ushort SetupCount; /* Setup word count */
 ushort Setup[]; /* Setup words */
 } Words;
 ushort ByteCount; /* Number of SMB data bytes */
 struct /* SMB-layer data */
 {
 uchar Name[]; /* Transaction service name */
 uchar Pad[]; /* Pad to word boundary */
 uchar Parameters[]; /* Parameter bytes */
 uchar Pad1[]; /* Pad to word boundary */
 uchar Data[]; /* Data bytes */
 } Bytes;
 } smb_Trans_Req;

We can, in fact, make some sense of all that... really we can.

Making Sense of SMBtrans22.1

As has already been pointed out, we are dealing with layered protocols and
layered protocols can cause some terminology confusion. For example, earlier
in the book SMB messages were described as having a header, a parameter
section, and a data section (and there was a cute picture of an insect to highlight
the anatomy). SMB transactions — half a protocol layer up — also have pa-
rameters and data. The terms get recycled, as demonstrated by the structure
presented above in which the Parameters[] and Data[] fields are both
carried within the SMB_DATA block (the Bytes) of the SMB message.

SMB transaction messages generally represent some sort of network
function call. In an SMB transaction:

The Parameters represent the values passed directly to the function that
was called.

The Data represents any indirect values, such as objects indicated by
pointers passed as parameters (i.e. objects passed by reference).

That’s a very general description, and it may be slightly inaccurate in
practice. It works well enough in theory, though, and it provides a conceptual
foothold. If you want, you can go one step further and think of the
SetupCount and Setup[] fields as the transaction header.

Okay, now that we have that out of the way, here’s what the SMBtrans
fields are all about:

Part III The Browse Service368

SMB Parameters
TotalParamCount

You may recall from earlier discussions that the SMBtrans transaction
has the ability to carry a total payload of 64 Kbytes — potentially
much more than the SMB buffer size will allow. It does this by
sending zero or more secondary transaction messages which contain
the additional parameters and/or data.

The TotalParamCount field indicates the total number of
parameter bytes that the server should expect to receive over the
course of the transaction. It may take multiple messages to get them
all there.

TotalDataCount

Similar to the previous field, this indicates the total number of data
bytes the server should expect to receive.

If you think about it, you will see that the theoretical SMBtrans
data transfer limit is actually 2 × (216 – 1). Both the Parameter
and Data lengths are 16-bit values so, in theory, SMBtrans can send
128 Kbytes (minus two bytes), which is double the 64K we’ve
been claiming.

MaxParameterCount, MaxDataCount, and MaxSetupCount
These fields let the client inform the server of the maximum number
of Parameter[], Data[], and Setup[] bytes, respectively,
that the client is willing to receive in the server’s reply. These are
total bytes for the transaction, not per-message bytes.

A note regarding the MaxSetupCount field: The X/Open
documentation lists this as a 16-bit field, but in the Leach/Naik
CIFS draft it is given as a single byte followed by a one-byte nul pad.
Because the value is given in SMB byte order (and because it will
not exceed 255), either way works.

Flags

There are two flags defined in this field, but they don’t appear to be
used much in Browser Protocol messages.

36922 The Talk on the Street

SMBtrans flags

DescriptionBitmaskBit

<Reserved> (must be zero)0xFFFC15–2

If set, this is a one-way transaction and the server should
not send a response. In theory, this bit should be set in
all Class 2 Mailslot messages, but in packet captures this
bit always seems to be clear.

0x00021

If set, it indicates that the client wishes to disconnect from
the share indicated by the TID field in the SMB header
when the transaction completes.

Mailslot messages will have a zero TID value, so this
bit should not be set. RAP calls always use the IPC$ share,
which will have been opened using an earlier TREE
CONNECT message. So, in theory, this bit could be set in
RAP calls... but it was clear in all of the packets captured
during testing.

0x00010

Timeout

The documentation is scattered. The X/Open docs provide only a
few words regarding this particular field. The SNIA doc has a small
section (Section 3.2.9) that covers timeouts in general, and some
additional information can be found in various places throughout
each of those references.

The field indicates the number of milliseconds (1/1000ths of
a second) that the server should wait for a transaction to complete.
A value of zero indicates that the server should return immediately,
sending an error code if it could not obtain required resources right
away. A value of –1 indicates that the client is willing to have the
server wait forever. The documentation doesn’t make it clear, but
the correct DOS error code in the case of a timeout is probably
ERRSRV/ERRtimeout (0x02/0x0058).

ParameterCount

The number of bytes in the Parameter[] block of this message.
Keep in mind that this may be lower than the TotalParamCount

Part III The Browse Service370

value. If it is, then the rest of the parameters will follow in secondary
transaction messages.

ParameterOffset

The offset from the beginning of the SMB message at which the
parameter block starts.

DataCount

The number of bytes in the Data[] block of this message. Once
again, this may be lower than the TotalDataCount value. If so,
the rest of the data will follow in additional messages.

DataOffset

The offset from the beginning of the SMB message at which the
data block starts.

SetupCount

The number of setup words. As with the MaxSetupCount field,
SetupCount is presented as an unsigned short in the X/Open
document but is given as an unsigned byte followed by a one-byte
pad in the Leach/Naik draft.

Setup[]

An array of 16-byte values used to “set up” the transaction
(the transaction, not the function call). This might be considered
the header portion of the transaction.

SMB Data
Name[]

The name of the Named Pipe or Mailslot to which the transaction
is being sent (for example, “\PIPE\LANMAN”).

Parameters[]

The marshalled parameters.

Data[]

The marshalled data. A little later on, we will carefully avoid
explaining how the parameters and data get packaged.

37122 The Talk on the Street

Pad and Pad1
Some (but not all) clients and servers will add padding bytes (typi-
cally, but not necessarily, nul) to force word or longword alignment
of the Parameters[] and Data[] sections. That really messes
things up. You must:

Be sure to use ByteCount to figure out how large the
SMB_DATA section really is.

Use ParameterOffset and ParameterCount to figure
out where the transaction parameters begin and how many
bytes there are.

Use DataOffset and DataCount to figure out where the
transaction data begins and how many bytes there are.

Gotta love this stuff...

There is a lot more information in both the X/Open documentation and
the Leach/Naik CIFS drafts. For some reason, specific details regarding
SMBtrans were left out of the SNIA doc, although there is a discussion of
Mailslots and Named Pipes (and the other transaction types are covered). All
of the listed docs do explain how secondary transaction messages may be used
to transfer Setup[], Parameter[], and/or Data[] blocks that are larger
than the allowed SMB buffer size.

There are also some warnings given in the SNIA doc regarding variations
in implementation. It seems you need to be careful with CIFS (no surprise
there). See the last paragraph of Section 3.15.3 in the SNIA doc if’n
your curious.

...but now it’s time for some code.
Listing 22.1 is a bit dense, but it does a decent job of putting together an

SMBtrans message from parts. It doesn’t fill in the NBT or SMB headers, but
there are code examples and descriptions elsewhere in the book that cover those
issues. What it does do is provide a starting point for managing SMBtrans
transactions, particularly those that might exceed the server’s SMB buffer limit
and need to be fragmented.

Part III The Browse Service372

Listing 22.1: SMBtrans messages

typedef struct
 {
 ushort SetupCount; /* Setup word count */
 ushort *Setup; /* Setup words */
 ushort Flags; /* 0x1=Disconnect;0x2=oneway */
 ulong Timeout; /* Server timeout in ms */
 ushort MaxParameterCount; /* Max param bytes to return */
 ushort MaxDataCount; /* Max data bytes to return */
 ushort MaxSetupCount; /* Max setup words to return */
 ushort TotalParamCount; /* Total param bytes to send */
 ushort TotalDataCount; /* Total data bytes to send */
 ushort ParamsSent; /* Parameters already sent */
 ushort DataSent; /* Data already sent */
 uchar *Name; /* Transaction service name */
 uchar *Parameters; /* Parameter bytes */
 uchar *Data; /* Data bytes */
 } smb_Transaction_Request;

int SetStr(uchar *dst, int offset, char *src)
 /* -- **
 * Quick function to copy a string into a buffer and
 * return the *total* length, including the terminating
 * nul byte. Does *no* limit checking (bad).
 * Input: dst - Destination buffer.
 * offset - Starting point within destination.
 * src - Source string.
 * Output: Number of bytes transferred.
 * -- **
 */
 {
 int i;

 for(i = 0; '\0' != src[i]; i++)
 dst[offset+i] = src[i];
 dst[offset+i] = '\0';

 return(i+1);
 } /* SetStr */

int smb_TransRequest(uchar *bufr,
 int bSize,
 smb_Transaction_Request *Request)
 /* -- **
 * Format an SMBtrans request message.
 * -- **
 */

37322 The Talk on the Street

 {
 int offset = 0;
 int keep_offset;
 int bcc_offset;
 int result;
 int i;

 /* See that we have enough room for the SMB-level params:
 * Setup + 14 bytes of SMB params + 2 bytes for Bytecount.
 */
 if(bSize < (Request->SetupCount + 14 + 2))
 Fail("Transaction buffer too small.\n");

 /* Fill the SMB-level parameter block.
 */
 bufr[offset++] = (uchar)(Request->SetupCount + 14);
 smb_SetShort(bufr, offset, Request->TotalParamCount);
 offset += 2;
 smb_SetShort(bufr, offset, Request->TotalDataCount);
 offset += 2;
 smb_SetShort(bufr, offset, Request->MaxParameterCount);
 offset += 2;
 smb_SetShort(bufr, offset, Request->MaxDataCount);
 offset += 2;
 smb_SetShort(bufr, offset, Request->MaxSetupCount);
 offset += 2;
 smb_SetShort(bufr, offset, (Request->Flags & 0x0003));
 offset += 2;
 smb_SetLong(bufr, offset, Request->Timeout);
 offset += 4;
 smb_SetShort(bufr, offset, 0); /* Reserved word */
 offset += 2;
 keep_offset = offset; /* Remember ParamCount location */
 offset += 8; /* Skip ahead to SetupCount. */
 smb_SetShort(bufr, offset, Request->SetupCount);
 offset += 2;
 for(i = 0; i < Request->SetupCount; i++)
 {
 smb_SetShort(bufr, offset, Request->Setup[i]);
 offset += 2;
 }

 /* Fill the SMB-level data block...
 * We skip the ByteCount field until the end.
 */
 bcc_offset = offset; /* Keep the Bytecount offset. */
 offset += 2;

Part III The Browse Service374

 /* We need to have enough room to specify the
 * pipe or mailslot.
 */
 if(strlen(Request->Name) >= (bSize - offset))
 Fail("No room for Transaction Name: %s\n",
 Request->Name);

 /* Start with the pipe or mailslot name.
 */
 offset += SetStr(bufr, offset, Request->Name);

 /* Now figure out how many SMBtrans parameter bytes
 * we can copy, and copy them.
 */
 result = bSize - offset;
 if(result > Request->TotalParamCount)
 result = Request->TotalParamCount;
 Request->ParamsSent = result;
 if(result > 0)
 (void)memcpy(&bufr[offset],
 Request->Parameters,
 result);
 /* Go back and fill in Param Count and Param Offset.
 */
 smb_SetShort(bufr, keep_offset, result);
 keep_offset += 2;
 smb_SetShort(bufr, keep_offset, SMB_HDR_SIZE + offset);
 keep_offset += 2;
 offset += result;

 /* Now figure out how many SMBtrans data bytes we
 * can copy, and copy them.
 */
 result = bSize - offset;
 if(result > Request->TotalDataCount)
 result = Request->TotalDataCount;
 Request->DataSent = result;
 if(result > 0)
 (void)memcpy(&bufr[offset],
 Request->Data,
 result);
 /* Go back and fill in Data Count and Data Offset.
 */
 smb_SetShort(bufr, keep_offset, result);
 keep_offset += 2;
 smb_SetShort(bufr, keep_offset, SMB_HDR_SIZE + offset);

37522 The Talk on the Street

 keep_offset += 2; /* not really needed any more */
 offset += result;

 /* Go back and fill in the byte count.
 */
 smb_SetShort(bufr, bcc_offset, offset - (bcc_offset+2));

 /* Done.
 */
 return(offset);
 } /* smb_TransRequest */

The smb_Transaction_Request structure in the listing differs from
the wire-format version. The former is designed to keep track of a transaction
while it is being built and until it has been completely transmitted. With a little
more code, it should be able to compose secondary transaction messages too.
Fortunately, all of the Browse Service requests are small enough to fit into a
typical SMB buffer, so you shouldn’t have to worry about sending secondary
SMB transaction messages. At least not right away. On the other hand, a Browse
Server’s reply to a NetServerEnum2 call can easily exceed the SMB buffer
size so you may need to know how to rebuild a fragmented response. With
that in mind, we will explain how multi-part messages work when we cover
NetServerEnum2.

It is probably worth noting, at this point, just how many layers of
abstraction we’re dealing with. If you look at a packet capture of an
NetServerEnum2 request, you’ll find that it is way the heck down at the
bottom of a large pile:

Ethernet II
+ IP
 + TCP
 + NBT Session Service
 + SMB (SMB_COM_TRANSACTION)
 + SMB Pipe Protocol
 + Microsoft Windows Remote Administration Protocol
 + NetServerEnum2

It sure is getting deep around here...
All those layers make things seem more complicated than they really are,

but if we chip away at it one small workable piece at a time it will all be easier
to understand.

Part III The Browse Service376

Browse Service Mailslot Messages22.2

The vast bulk of the Browser Protocol consists of Mailslot messages. These are
also relatively simple, which is why we are starting with them instead of RAP.
Still, there are a lot of layers to go through in order to get a Mailslot message
out onto the wire. Let’s get chipping...

The NBT layer
Browser Mailslot messages are transported by the NBT Datagram Service,
which was covered in Chapter 5 on page 115. We will ignore most of the
fields at the NBT layer, since their values are host specific (things like
source IP address and Sending Node Type). The important fields, from
our persective, are:

NBT_Datagram
 {
 MsgType = <unicast, multicast, broadcast, etc.>
 SourceName = <NBT Source Name>
 DestinationName = <NBT Destination Name>
 UserData = <The SMBTrans Message>
 }

The values assigned to the SourceName and DestinationName
fields may be written as machine<xx> or workgroup<yy>, where machine
and workgroup are variable and dependent upon the environment.

The SourceName field will contain the name registered by the
service sending the request. In practice, this is either the Mailslot Service
name (machine<00>) or the Server Service name (machine<20>). Both
have been seen in testing. In most cases it does not matter.

UserData will be indicated indirectly by detailing the SMBtrans
and Mailslot layers.

The SMB layer
The NBT Datagram Service is connectionless, and Class 2 Mailslots don’t
send replies. At the SMB level, however, the header fields are used to
maintain state or return some sort of error code or security token. Such
values have no meaning in a Mailslot message, so almost all of the SMB
header fields are pointless in this context. Only the first five bytes are ac-
tually used. That would be the "\xffSMB" string and the one byte
command code, which is always SMB_COM_TRANSACTION (0x25).

37722 The Talk on the Street

The rest are all zero. We will not bother to specify the contents of the
SMB header in our discussion.

The SMBtrans layer
The SMBtrans transaction fields will be filled in via the smb_Transac-
tion_Request structure from Listing 22.1. That way you can map
the discussions directly to the code.

For example, if the Data block contains ten bytes, the
TotalDataCount would be filled in like so:

smb_Transaction_Request
 {
 TotalDataCount = 10
 }

The SetupCount and Setup fields are constant across all
Browser Mailslot messages. The values are specified here so that they don’t
have to be specified for every message:

SetupCount = 3
Setup[]
 {
 0x0001, (Mailslot Opcode = Mailslot Write)
 0x0001, (Transact Priority = Normal)
 0x0002, (Mailslot Class = Unreliable/Bcast)
 }

Finally, any remaining fields (the values of which have not been
otherwise specified or explicitly ignored) should be assumed zero (NULL,
nul, nada, non, nerp, nyet, etc.). For example, the MaxParameter-
Count, MaxDataCount, and MaxSetupCount fields will not be
listed because they are always zero in Class 2 Mailslot messages.

The Mailslot Layer
Browser Mailslot messages are carried in the Data[] block of the
SMBtrans message. They each have their own structure, which will be
described using C-style notation.

A few more general notes about Mailslot messages before we forge ahead...

Browser Mailslots don’t use the SMBtrans Parameters[] block, so
the TotalParamCount is always zero.

Part III The Browse Service378

The Mailslot OpCode in the Setup[] field is set to 0x0001, which
indicates a Mailslot Write operation. There are no other operations
defined for Mailslots, which kinda makes it pointless. This field has
nothing to do with the OpCode contained within the Mailslot message
itself (described below), which identifies the Browse Service function being
performed.

The Transact Priority in the Setup[] is supposed to contain a
value in the range 0..9, where 9 is the highest. The X/Open docs say that
if two messages arrive (practically) simultaniously, the higher priority
message should be processed first. The SNIA doc says that this field is
ignored. The latter is probably correct, but it doesn’t matter much. Most
of the captures taken in testing show a priority value of 0 or 1.

The Mailslot Class, also in the Setup[], should always contain
0x0002, indicating a Class 2 Mailslot. The SNIA doc says that this field
is ignored too.1

Yet one more additional general note regarding Mailslot messages: the
first byte of the Data block is always an OpCode indicating which of the
\MAILSLOT\BROWSE (or \MAILSLOT\LANMAN) functions is being called.
Here’s a list of the available functions:

FunctionOpCode

HostAnnouncement1

AnnouncementRequest2

RequestElection8

GetBackupListRequest9

GetBackupListResponse10

BecomeBackupRequest11

DomainAnnouncement12

MasterAnnouncement13

ResetBrowserState14

LocalMasterAnnouncement15

1. It is possible that Class 1 Mailslots are not used. At all.

37922 The Talk on the Street

The next step is to describe each of those functions.
Let’s get to it...

Announcement Request22.2.1

The AnnouncementRequest frame is fairly simple, so it’s a good place to
start. The message structure (carried in the smb_Trans_Req.Bytes.Data
section) looks like this:

struct
 {
 uchar OpCode;
 uchar Unused;
 uchar *ResponseName;
 } AnnouncementRequest;

which means that the AnnouncementRequest frame is made up of an
OpCode, an unused byte, and a character string. (The unused byte may have
been reserved for use as a flags field at one time.)

The following values are assigned:

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<00>
 }
smb_Transaction_Request
 {
 TotalDataCount = 3 + strlen(ResponseName)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x02 (AnnouncementRequest)
 ResponseName = <NetBIOS machine name, no suffix>
 }
 }

This frame may also be sent to the MSBROWSE<01> name to request
responses from LMBs for foreign workgroups.

The TotalDataCount is calculated by adding:

Part III The Browse Service380

one byte for the OpCode,

one for the Unused byte,

the string length of the ResponseName field, and

one byte for the ResponseName nul terminator.

Don’t forget those string terminators.
There is no direct reply to this request, so the SourceName and

ResponseName fields in the packet are ignored. Providers that receive this
message are expected to broadcast a HostAnnouncement frame (described
next) to re-announce their services. They are supposed to wait a random amount
of time between 0 and 30 seconds before sending the announcement, to avoid
network traffic congestion. In testing, however, many systems ignored
this message.

Under the older LAN Manager style browsing, a similar message was sent
to the \MAILSLOT\LANMAN Mailslot. The LAN Manager Announce-
Request and Announce frame formats are described in Section 5.3.3 of the
X/Open doc IPC Mechanisms for SMB.

Host Announcement22.2.2

The HostAnnouncement is a bit more complicated than the Announce-
mentRequest. Here’s its structure:

struct
 {
 uchar Opcode;
 uchar UpdateCount;
 ulong Periodicity;
 uchar *ServerName;
 uchar OSMajorVers;
 uchar OSMinorVers;
 ulong ServerType;
 uchar BroMajorVers;
 uchar BroMinorVers;
 ushort Signature;
 uchar *Comment;
 } HostAnnouncement;

...and here’s how it all pans out:

38122 The Talk on the Street

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1D>
 }
smb_Transaction_Request
 {
 TotalDataCount = 18 + strlen(ServerName + Comment)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x01 (HostAnnouncement)
 UpdateCount = <Incremented after each announcement>
 Periodicity = <Time until next announcement, in ms>
 ServerName = <NetBIOS machine name, no suffix>
 OSMajorVers = 4 <Windows OS version to mimic>
 OSMinorVers = 5 <Windows OS point version to mimic>
 ServerType = <Discussion below>
 BroMajorVers = 15
 BroMinorVers = 1
 Signature = 0xaa55
 Comment = <Server description, max 43 bytes>
 }
 }

That needs a once-over.
The announcement is broadcast at the IP level, but the Destination-

Name is the local LMB name so the message should only be picked up by the
Local Master. Other nodes could, in theory, listen in and keep their own local
Browse List copies up-to-date.

The Leach/Naik Browser Draft says that the UpdateCount should be
zero and should be ignored by recipients. In practice, it appears that many
systems increment that counter for each HostAnnouncement frame that
they send. No harm done.

The Periodicity field announces the amount of time, in milliseconds,
that the sender plans to wait until it sends another HostAnnouncement
frame. As described earlier, the initial period is one minute, but it doubles for
each announcement until it would exceed 12 minutes, at which point it is
pegged at 12 minutes. In theory, the LMB should remove a host from the
Browse List if it has not heard an update from that host after 3 periods have
elapsed. In practice, some systems get this value wrong so the LMB should
wait 36 minutes.

Part III The Browse Service382

The ServerType field is a complex bitmap. We will dissect it later, as
it is also used by the NetServerEnum2 RAP call.

The Browser version number (15.1) and the Signature field are
specified in the Leach/Naik Browser draft. Some Windows systems (particularly
the Windows 9x family) use a Browser version number of 21.4. No one, it
seems, knows why and it doesn’t appear that there are any protocol differences
between the two versions.

Election Request22.2.3

The RequestElection frame is used to start or participate in a Browser
Election. It looks like this:

struct
 {
 uchar Opcode;
 uchar Version;
 ulong Criteria;
 ulong UpTime;
 ulong Reserved;
 uchar *ServerName;
 } RequestElection;

In its simplest form, the RequestElection can be filled in with zeros.
This gives it the lowest possible election criteria. All Potential Browsers in the
same workgroup on the same LAN will be able to out-bid the zero-filled request,
so a full-scale election will ensue as all Potential Browsers are eligible
to participate.

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1E>
 }
smb_Transaction_Request
 {
 TotalDataCount = 15
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x08 (RequestElection)
 }
 }

38322 The Talk on the Street

In testing, it was discovered that some Potential Browsers are willing to
receive RequestElection frames on just about any registered NetBIOS
name, including the MSBROWSE<01> name.

Once the election gets going, the particpants will all try to out-vote their
competition. The details of the election process are convoluted, so they will
be set aside for just a little while longer. In the meantime, here is a complete
election message, with election criteria filled in.

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1E>
 }
smb_Transaction_Request
 {
 TotalDataCount = 15 + strlen(ServerName)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x08 (RequestElection)
 Version = 1
 Criteria = <Another complex bitmap>
 UpTime = <Time since last reboot, in milliseconds>
 ServerName = <NetBIOS machine name, no suffix>
 }
 }

The Criteria bitmap will be covered along with the election details.
Basically, though, it is read as an unsigned long integer and higher values “win.”

Get Backup List Request22.2.4

Another simple one. The message looks like this:

struct
 {
 uchar OpCode;
 uchar ReqCount;
 ulong Token;
 } GetBackupListRequest;

Part III The Browse Service384

The Ethereal Network Protocol Analyzer and its many authors should be
given a good heaping helping of appreciation just about now. The primary
reference for the Browse Service data structures is the expired Leach/Naik
Browser Internet Draft, but that document was a draft and is now expired. It
cannot be expected that it will be completely accurate. It doesn’t include the
ReqCount field in its description, and it lists the Token as an unsigned short.
That doesn’t match what’s on the wire. Thankfully, Ethereal knows better.

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1D>
 }
smb_Transaction_Request
 {
 TotalDataCount = 6
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x09 (GetBackupListRequest)
 ReqCount = <Number of browsers requested>
 Token = <Whatever>
 }
 }

The ReqCount field lets the LMB know how large a list of Backup
Browsers the client (the Consumer) would like to receive.

The Token field is echoed back by the LMB when it sends the Get-
BackupListResponse. Echoing back the Token is supposed to let the
Consumer match the response to the request. This is necessary because the
SourceName in the GetBackupListResponse is generally the LMB’s
machine name, so there is nothing in the response that indicates the workgroup.
If the Consumer is trying to query multiple workgroups it could easily
lose track.

Get Backup List Response22.2.5

This message is sent in response (but not as a reply) to a GetBackupList-
Request. The structure is fairly straightforward:

38522 The Talk on the Street

struct
 {
 uchar OpCode;
 uchar BackupCount;
 ulong Token;
 uchar *BackupList;
 } GetBackupListResponse;

NBT_Datagram
 {
 MsgType = 0x10 (DIRECT_UNIQUE DATAGRAM)
 SourceName = machine<00>
 DestinationName = <Source name from the request>
 }
smb_Transaction_Request
 {
 TotalDataCount = 7 + <length of BackupList>
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x0A (GetBackupListResponse)
 BackupCount = <Number of browser names returned>
 Token = <Echo of the request Token>
 BackupList = <List of Backup Browsers, nul-delimited>
 }
 }

At the IP level this message is unicast, and at the NBT level it is sent as
a DIRECT_UNIQUE DATAGRAM. This is the closest thing to a Mailslot “reply”
that you’ll see.

The Token is a copy of the Token that was sent in the GetBackup-
List Request that triggered the response. The BackupCount value rep-
resents the number of names listed in the BackupList field, which may be
less than the number requested.

The BackupList will contain a string of nul-delimited substrings. For
example, you might get something like this:

Data
 {
 OpCode = 0x0A (GetBackupListResponse)
 BackupCount = 2
 Token = 0x61706C65
 BackupList = "STEFFOND\0CONRAD"
 }

Part III The Browse Service386

which indicates that nodes STEFFOND and CONRAD are both Backup Browsers
(and one of them may also be the LMB) for the workgroup. Oh... that string
is, of course, nul-terminated as well. Note that you can’t use a normal
strlen() call to calculate the length of the BackupList. It would just re-
turn the length of the first name.

Local Master Announcement22.2.6

The LocalMasterAnnouncement is broadcast by the Local Master
Browser. Other nodes, particularly Backup Browsers, can listen for this message
and use it to keep track of the whereabouts of the LMB service. If the Local
Master Browser for a workgroup hears another node announce itself as the
LMB for the same workgroup, then it can call for a new election.

This message is also used to end a Browser Election. The winner declares
itself by sending a LocalMasterAnnouncement frame.

The LocalMasterAnnouncement is identical in structure to the
HostAnnouncement frame except for its OpCode:

smb_Transaction_Request
 {
 Data
 {
 OpCode = 0x0F (LocalMasterAnnouncement)
 }
 }

The Leach/Naik draft says that LMBs do not need to send Host-
Announcement frames because the LocalMasterAnnouncement accom-
plishes the same thing. The real reason that the LMB doesn’t need to send
HostAnnouncement frames is that HostAnnouncement frames are sent
to the LMB, and there’s no reason for an LMB to announce itself to itself.

Master Announcement22.2.7

The MasterAnnouncement is sent by the LMB to the DMB to let the
DMB know that the LMB exists. The message contains the OpCode field and
the SMB Server Service name of the LMB. The Server Service name will be
registered with the NBNS, so the DMB will be able to look it up as needed.

38722 The Talk on the Street

struct
 {
 uchar OpCode;
 uchar *ServerName;
 } MasterAnnouncement;

NBT_Datagram
 {
 MsgType = 0x10 (DIRECT_UNIQUE DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1B>
 }
smb_Transaction_Request
 {
 TotalDataCount = 2 + strlen(ServerName)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x0D (MasterAnnouncement)
 ServerName = <NetBIOS machine name, no suffix>
 }
 }

When the DMB receives a MasterAnnouncement, it should perform
a NetServerEnum2 synchronization with the LMB. It should also keep
track of remote LMBs in its workgroup and periodically (every 15 minutes)
synchronize Browse Lists with them. Likewise, an LMB will periodically query
the DMB. This is how the Browse List is propagated across multiple subnets.

Note that this message is unicast. A broadcast datagram would not reach
a remote DMB.

Domain Announcement22.2.8

The DomainAnnouncement has the same structure as the HostAnnounce-
ment and LocalMasterAnnouncement frames. The difference is in
the content.

The DomainAnnouncement is sent to the MSBROWSE<01> name, so
that all of the foreign LMBs on the subnet will receive it. Instead of the Net-
BIOS machine name, the ServerName field contains the workgroup name.
The NetBIOS machine name is also reported, but it is placed into the
Comment field.

Part III The Browse Service388

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = "\01\02__MSBROWSE__\02<01>"
 }
smb_Transaction_Request
 {
 TotalDataCount = 18 + strlen(ServerName + Comment)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x0C (DomainAnnouncement)
 UpdateCount = <Incremented after each announcement>
 Periodicity = <Time until next announcement, in ms>
 ServerName = <NetBIOS workgroup name, no suffix>
 OSMajorVers = 4 <Windows OS version to mimic>
 OSMinorVers = 5 <Windows OS point version to mimic>
 ServerType = <Discussion below>
 BroMajorVers = 15
 BroMinorVers = 1
 Signature = 0xaa55
 Comment = <LMB NetBIOS machine name, no suffix>
 }
 }

A note of caution on this one. Some Windows systems send what appears
to be garblage in the BroMajorVers, BroMinorVers, and Signature
fields. Ethereal compensates by combining these three into a single longword
which it calls “Mysterious Field.”

Become Backup Request22.2.9

This message is sent by the LMB when it wants to promote a Potential
Browser to Backup Browser status.

struct
 {
 uchar OpCode;
 uchar *BrowserName;
 } BecomeBackupRequest;

38922 The Talk on the Street

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1E>
 }
smb_Transaction_Request
 {
 TotalDataCount = 2 + strlen(BrowserName)
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x0B (BecomeBackupRequest)
 BrowserName = <NetBIOS machine name of promoted node>
 }
 }

The message is an NBT multicast datagram sent to all Potential Browsers
in the workgroup. The BrowserName field contains the name of the node
that is being promoted (no suffix byte). That node will respond by sending a
new HostAnnouncement frame and obtaining a fresh copy of the Browse
List from the LMB. The newly promoted Backup Browser should refresh its
Browse List copy every 15 minutes.

The Undocumented Reset22.2.10

It is difficult to find documentation on this message — it’s not written up in
the Leach/Naik draft — but there is some information hiding around the web
if you dig a little... and, of course, we’re describing it here.

Big things come in small packages. Here’s the ResetBrowserState
frame:

struct
 {
 uchar OpCode;
 uchar Command;
 } ResetBrowserState;

Not much to it, but it can have an impact. This is how it’s filled in:

Part III The Browse Service390

NBT_Datagram
 {
 MsgType = 0x11 (DIRECT_GROUP DATAGRAM)
 SourceName = machine<00>
 DestinationName = workgroup<1D>
 }
smb_Transaction_Request
 {
 TotalDataCount = 2
 Name = "\MAILSLOT\BROWSE"
 Data
 {
 OpCode = 0x0E (ResetBrowserState)
 Command = <Bitfield - see below>
 }
 }

The ResetBrowserState message can mess with a Local Master
Browser’s mind. There are three bits defined for the Command field, and here’s
what they do:

ResetBrowserState command bits

DescriptionName / BitmaskBit

<Reserved> (must be zero)0xF87–3

Tells the Local Master Browser not to be a
browser any more. The LMB will de-register
its <1D> and <1E> names and sulk in a
corner. Many implementations ignore this
command, even if they respect the others.
DMBs should never accept this command.

RESET_STATE_STOP
0x04

2

Causes the LMB to clear its Browse List and
start over.

RESET_STATE_CLEAR_ALL
0x02

1

Causes the LMB to demote itself to a Backup
Browser. This will, eventually, cause a new
election (which may be won by the very same
system).

RESET_STATE_STOP_MASTER
0x01

0

39122 The Talk on the Street

It’s All in the Delivery22.2.11

Would a little more code be useful?
The code gets rather dull at this level because all we are really doing is

packing and unpacking bytes. Unfortunately, that’s what network protocols
are all about. Not very glamorous, is it?

Listing 22.2 packs a RequestElection message into a byte block so
that it can be handed to the smb_TransRequest() function via the
smb_Transaction_Request structure. Sending election requests to a
busy LAN can be kinda fun... and possibly a little disruptive.

Listing 22.2: SMBtrans messages

#define BROWSE_REQUEST_ELECTION 0x08

static smb_Transaction_Request TReqs[1];

static const ushort MailSlotSetup[3]
 = { 0x0001, 0x0001, 0x0002 };
static const uchar *MailSlotName
 = "\\MAILSLOT\\BROWSE";

int ElectionRequest(uchar *bufr,
 int bSize,
 ulong Criteria,
 ulong Uptime,
 uchar *ServerName)
 /* -- **
 * Marshal an Election Request record.
 *
 * Returns the number of bytes used.
 * -- **
 */
 {
 size_t len;
 uchar buildData[32];

 /* Initialize the TReqs block.
 */
 (void)memset(TReqs, 0, sizeof(smb_Transaction_Request));
 TReqs->SetupCount = 3;
 TReqs->Setup = MailSlotSetup;
 TReqs->Name = MailSlotName;

Part III The Browse Service392

 /* Build the Browser message in 'buildData'. */
 (void)memset(buildData, '\0', 32);
 buildData[0] = BROWSE_REQUEST_ELECTION;
 len = 15;

 /* If the ServerName is empty, assume that the
 * request is for a zero-filled election message.
 * Otherwise, fill in the rest of the message.
 */
 if(NULL != ServerName && '\0' != *ServerName)
 {
 buildData[1] = 1; /* Version. */
 smb_SetLong(buildData, 2, Criteria); /* Criteria. */
 smb_SetLong(buildData, 6, Uptime); /* Uptime. */
 /* Skip 4 reserved bytes. */

 /* Copy the ServerName, and make sure there's a nul.
 * Count the nul in the total.
 */
 (void)strncpy(&(buildbufr[15]), ServerName, 15);
 bufr[31] = '\0';
 len += 1 + strlen(&(buildbufr[15]));
 }

 /* Finish filling in the transaction request structure.
 */
 TReqs->TotalDataCount = (ushort)len;
 TReqs->Data = buildData;

 /* Write the transaction into the buffer.
 * Return the transaction message size.
 */
 len = smb_TransRequest(bufr, bSize, TReqs);
 return(len);
 } /* ElectionRequest */

RAPture22.3

Understand this at the outset: Examining a function of the RAP protocol is
like studying the runic carvings on the lid of Pandora’s box. They might just
be large friendly letters... or they could be the manufacturer’s warning label.

We are not going to open the box.

39322 The Talk on the Street

The NetServerEnum2 function can be implemented without having
to fully understand the inner workings of RAP, so there really is no need. If
you want to, you can rummage around in the RAP functions by reading through
Appendix B of the X/Open book Protocols for X/Open PC Interworking: SMB,
Version 2. After that, there is yet again another additional further Leach/Naik
draft already. You can find the Leach/Naik CIFS Remote Administration Protocol
Preliminary Draft under the filename cifsrap2.txt on Microsoft’s FTP
server. It is definitely a draft, but it provides a lot of good information if you
read it carefully. One more resource a die-hard RAP-per will want to check is
Remoted Net API Format Strings, which is an email message that was sent to
Microsoft’s CIFS mailing list by Paul Leach. It provides details on the format-
ting of RAP messages. All of these sources are, of course, listed in the
References section.

One of the downsides of RAP, from our perspective, is that it defines yet
another layer of parameters and data... and there’s a heap, too.

Gotta love layers.
RAP provides a formula for marshalling its parameters, data, and heap,

passing them over a network connection, and then passing the results back
again. A complete RAP implementation would most likely automate the mar-
shalling and unmarshalling process, and the human eye would never need to
see it. That would be overkill in our case, so we’re stuck doing things the easy
way — by hand.

RAP functions are sent via a Named Pipe, not a Mailslot, so the whole
communications process is different. Like the Mailslot-based functions, RAP
functions are packed into an SMBtrans transaction, but that’s just about all
that’s really the same. The steps which must be followed in order to execute a
RAP call are:

Open a TCP session.

NBT Session Request.

SMB Negotiate Protocol.

SMB Session Setup.

SMB Tree Connect (to \\machine\IPC$).

RAP call and reply.

Part III The Browse Service394

SMB Tree Disconnect (optional).

SMB Logoff (optional).

Close TCP session.

You can see all of this very clearly in a packet capture. Having a sniff
handy as you read through this section is highly recommended, by the
way. Don’t forget to listen on 139/TCP instead of (or in addition to)
138/UDP.___

NetServerEnum2 Request22.3.1

You can generate a NetServerEnum2 exchange in a variety of ways. For
example, you can refresh the server list in the Windows Network Neighborhood
or use the jCIFS List.java utility with the URL “smb://workgroup/”.
The request, as displayed by the packet sniffer, should look something
like this:___

+ Transmission Control Protocol
+ NetBIOS Session Service
+ SMB (Server Message Block Protocol)
 SMB Pipe Protocol
- Microsoft Windows Lanman Remote API Protocol
 Function Code: NetServerEnum2 (104)
 Parameter Descriptor: WrLehDz
 Return Descriptor: B16BBDz
 Detail Level: 1
 Receive Buffer Length: 65535
 Server Type: 0xffffffff
 Enumeration Domain: WORKGROUP

The Descriptor fields are a distinctive feature of RAP requests. These
are the cryptic runes of which we spoke earlier. They are format strings, used
to define the structure of the parameters and data being sent as well as that
expected in the reply. They can be used to automate the packing and unpacking
of the packets, or they can be stuffed into the packet as constants with no regard
to their meaning. The latter is the simpler course. With that in mind, here is
the (simplified, but still correct) C-style format of a NetServerEnum2
request:

39522 The Talk on the Street

struct
 {
 ushort RAPCode;
 uchar *ParamDesc;
 uchar *DataDesc;
 struct
 {
 ushort InfoLevel;
 ushort BufrSize;
 ulong ServerType;
 uchar *Workgroup;
 } Params;
 } NetServerEnum2Req;

So, given the above structure, the NetServerEnum2 request is filled in
as shown below. Note that, at the SMBtrans-level, there are no Setup[]
words, the Data[] section is empty, and all of the above structure is bundled
into the Parameter[] block.

smb_Transaction_Request
 {
 TotalParamCount = 27 + strlen(Workgroup)
 MaxParameterCount = 8
 MaxDataCount = <Size of the reply buffer>
 Name = "\PIPE\LANMAN"
 Data
 {
 RAPCode = 104 (0x0068)
 ParamDesc = "WrLehDz"
 DataDesc = "B16BBDz"
 RAP_Params
 {
 InfoLevel = 1 <See below>
 BufrSize = <Same as MaxDataCount>
 ServerType = <See below>
 Workgroup = <Name of the workgroup to list>
 }
 }
 }

A few of those fields need a little discussion.

TotalParamCount

The value 27 includes three short integers, one long integer, two constant
strings (with lengths of 8 bytes each), and one nul byte to terminate the
Workgroup field. That adds up to 27 bytes.

Part III The Browse Service396

MaxDataCount and BufrSize
Samba allocates the largest size buffer it can (64 Kbytes minus one byte)
to receive the response data. Other clients seem to have trouble with a
64K buffer, and will subtract a few bytes from the size. 64K minus
360 bytes has been seen, and jCIFS uses 64K minus 512 bytes.

Email

From: Allen, Michael B
 To: jcifs@samba.org

I think I just made it up. I found 0xFFFF would result in
errors. I never really investigated why.

InfoLevel

There are two InfoLevels available: 0 and 1. Level 0 is not very inter-
esting. Note that if you want to try level 0, you will need to change the
DataDesc string as well.

ServerType

There are two common values used in the request message. They are:

SV_TYPE_DOMAIN_ENUM == 0x80000000
SV_TYPE_ALL == 0xFFFFFFFF

The first is used to query the browser for the list of all known
workgroups. The second is used to query for a list of all known Providers
in the specified (or default) workgroup.

Note that these are not the only allowed values. When we cover the
reply message (next section) there will be a table of all known bit values.
Queries for specific subsets of Providers can be generated using these bits.

Workgroup

In many cases, this will be an empty string (just a nul byte). An empty
Workgroup field represents a request to list the Providers that are
members of the browser’s default workgroup. That means, of course, that
the browser being queried must have a default workgroup.

This results in an interesting problem. Since the workgroup name
is not always specified, a single system cannot (on a single IP address) be

39722 The Talk on the Street

the LMB for more than one workgroup. If a node were to become the
LMB for multiple workgroups, then it would not know which set of
servers to report in response to a NetServerEnum2 query with an
empty workgroup name.

...and that is “all you need to know” about the NetServerEnum2
request message.

NetServerEnum2 Reply22.3.2

The response message is a bit more involved, so you may want to take notes.
A packet capture, once again, is a highly recommended visual aide.

Starting at the top... The TotalParamCount field in the SMBtrans
reply message will have a value of 8, indicating the size of the SMBtrans-level
Parameter[] block. Those bytes fall out as follows:

struct
 {
 ushort Status; /* Error Code */
 ushort Convert; /* See below */
 ushort EntryCount; /* Entries returned */
 ushort AvailCount; /* Entries available */
 }

Status

An error code. Available codes are listed in the Leach/Naik Browser draft.

Convert

More on this in a moment, when we get to the Data[] block.

EntryCount

The number of entries returned in the reply.

AvailCount

The number of available entries. This may be more than the number in
EntryCount, in which case there are more entries than will fit in the
data buffer length given in the request.

That’s all there is to the Parameter[] block. It’s nicely simple, but
things get a little wilder as we move on. Do keep track of that Convert value...

Part III The Browse Service398

The SMB-level Data[] block will start with a series of ServerInfo_1
structures, as described below:

struct
 {
 uchar Name[16]; /* Provider name */
 uchar OSMajorVers; /* Provider OS Rev */
 uchar OSMinorVers; /* Provider OS Point */
 ulong ServerType; /* See below */
 uchar *Comment; /* Pointer */
 } ServerInfo_1;

There will be <EntryCount> such structures packed neatly together.
It is fairly easy to parse them out, because the Name field is a fixed-length, nul-
padded string and the Comment field really is a pointer. The Leach/Naik
Browser draft suggests that the Comment strings themselves may follow each
ServerInfo_1 structure, but all examples seen on the wire show four bytes.
Hang on to those four bytes... we’ll explain in a moment.

Anywhich, the above structure has a fixed length — 26 bytes, to be
precise. That makes it easy to parse ServerInfo_1 structures from the
Data[] block.

The values in the ServerInfo_1 are the same ones announced by the
Provider in its HostAnnouncement or DomainAnnouncement frames.
They are stored in an internal database on the browser node. Some of these
fields have been discussed before, but a detailed description of the
ServerType field has been postponed at every opportunity. Similarly, the
pointer value in the Comment field really needs some clarification.

Let’s start with the Comment pointer...
The Comment pointer may just possibly be a relic of the long lost days

of DOS. Those who know more about 16-bit DOS internals may judge. In
any case, what you need to do is this:

Read the Comment pointer from the ServerInfo_1 structure.

Remove the two higher-order bytes: Comment & 0x0000FFFF.

Subtract the value of the Convert field: offset = (Comment &
0x0000FFFF) - Convert.

Use the resulting offset to find the actual Comment string. The offset is
relative to the start of the SMBtrans Data[] block.

39922 The Talk on the Street

Well that was easy. This stuff is so lovable you just want to give it a hug,
don’t you?

Some further notes:

The Comment strings are stored in the RAP-level heap.

The ServerInfo_1 blocks are considered RAP-level “data.”

Both of those are collected into the SMBtrans-level Data[] block.

Just to make things simple, the RAP-level parameters are gathered into
the SMBtrans Parameter[] block.

Right... Having tilted that windmill, let’s take a look at the (more sensible,
but also much more verbose) ServerType field. We have delayed describing
this field for quite a while. Here, finally, it is... well, mostly. The list below is
based on Samba sources. It is close to Ethereal’s list, and less close to the list
given in the Leach/Naik draft. Let the buyer beware.

Browser Provider type bits

DescriptionName / BitmaskBit

Enumerate Domains. This bit is used in the
request to ask for a list of known workgroups
instead of a list of Providers in a workgroup.

SV_TYPE_DOMAIN_ENUM

0x80000000
31

This bit identifies entries for which the browser
is authoritative. That is, it is set if the Provider
(or workgroup) entry was received via an
announcement message, and clear if the entry is
the result of a sync with the DMB.

SV_TYPE_LOCAL_LIST_ONLY

0x40000000
30

No one seems to remember where this came
from or what it means. Ethereal doesn’t know
about it.

SV_TYPE_ALTERNATE_XPORT

0x20000000
29

Unused.0x1F00000028–24

The Provider offers DFS shares. Possibly a DFS
root.

SV_TYPE_DFS_SERVER

0x00800000
23

Indicates a Provider that considers itself to be in
the Windows 9x family.

SV_TYPE_WIN95_PLUS

0x00400000
22

Indicates a VMS (Pathworks) server.SV_TYPE_SERVER_VMS

0x00200000
21

Part III The Browse Service400

Browser Provider type bits

DescriptionName / BitmaskBit

Indicates an OSF Unix server.SV_TYPE_SERVER_OSF

0x00100000
20

Indicates a Domain Master Browser (DMB).SV_TYPE_DOMAIN_MASTER

0x00080000
19

Indicates a Local Master Browser (LMB).SV_TYPE_MASTER_BROWSER

0x00040000
18

Indicates a Backup Browser...SV_TYPE_BACKUP_BROWSER

0x00020000
17

...and, of course, a Potential Browser.SV_TYPE_POTENTIAL_BROWSER

0x00010000
16

Indicates a Windows NT Server.SV_TYPE_SERVER_NT

0x00008000
15

Unknown. Ethereal ignores this one, and it’s not
listed in the Leach/Naik Browser draft.

SV_TYPE_SERVER_MFPN

0x00004000
14

Windows for Workgroups.SV_TYPE_WFW

0x00002000
13

A Windows NT client.SV_TYPE_NT

0x00001000
12

An SMB server running Xenix or Unix. Samba
will set this bit when announcing its services.

SV_TYPE_SERVER_UNIX

0x00000800
11

The Provider offers dial-up services (e.g. NT
RAS).

SV_TYPE_DIALIN_SERVER

0x00000400
10

The Provider has printer services available.SV_TYPE_PRINTQ_SERVER

0x00000200
9

The Provider is a member of an NT Domain.
That means that the Provider itself has
authenticated to the NT Domain.

SV_TYPE_DOMAIN_MEMBER

0x00000100
8

The Provider is a Novell server offering SMB
services. This is probably used with SMB over
IPX/SPX, but may be set by Novell’s SMB
implementation as well.

SV_TYPE_NOVELL

0x00000080
7

The Provider is an Apple system. Thursby’s Dave
product and Apple’s SMB implementation may
set this bit.

SV_TYPE_AFP

0x00000040
6

40122 The Talk on the Street

Browser Provider type bits

DescriptionName / BitmaskBit

The Provider offers SMB time services. (Yes,
there is an SMB-based time sync service.)

SV_TYPE_TIME_SOURCE

0x00000020
5

The Provider is a Backup Domain Controller
(BDC).

SV_TYPE_DOMAIN_BAKCTRL

0x00000010
4

The Provider is a Domain Controller.SV_TYPE_DOMAIN_CTRL

0x00000008
3

The Provider offers SQL services.SV_TYPE_SQLSERVER

0x00000004
2

The Provider offers SMB file services.SV_TYPE_SERVER

0x00000002
1

This bit indicates that the system is a
workstation. (Just about everything sets this bit.)

SV_TYPE_WORKSTATION

0x00000001
0

Just to polish this subject off, here’s a little code that can parse a
NetServerEnum2 response message and print the results:

Listing 22.3: Parsing NetServerEnum2 Replies

#define NERR_Success 0

#define SV_TYPE_ALL 0xFFFFFFFF
#define SV_TYPE_UNKNOWN 0x1F000000

#define SV_TYPE_DOMAIN_ENUM 0x80000000
#define SV_TYPE_LOCAL_LIST_ONLY 0x40000000
#define SV_TYPE_ALTERNATE_XPORT 0x20000000
#define SV_TYPE_DFS_SERVER 0x00800000
#define SV_TYPE_WIN95_PLUS 0x00400000
#define SV_TYPE_SERVER_VMS 0x00200000
#define SV_TYPE_SERVER_OSF 0x00100000
#define SV_TYPE_DOMAIN_MASTER 0x00080000
#define SV_TYPE_MASTER_BROWSER 0x00040000
#define SV_TYPE_BACKUP_BROWSER 0x00020000
#define SV_TYPE_POTENTIAL_BROWSER 0x00010000
#define SV_TYPE_SERVER_NT 0x00008000
#define SV_TYPE_SERVER_MFPN 0x00004000
#define SV_TYPE_WFW 0x00002000
#define SV_TYPE_NT 0x00001000
#define SV_TYPE_SERVER_UNIX 0x00000800

Part III The Browse Service402

#define SV_TYPE_DIALIN_SERVER 0x00000400
#define SV_TYPE_PRINTQ_SERVER 0x00000200
#define SV_TYPE_DOMAIN_MEMBER 0x00000100
#define SV_TYPE_NOVELL 0x00000080
#define SV_TYPE_AFP 0x00000040
#define SV_TYPE_TIME_SOURCE 0x00000020
#define SV_TYPE_DOMAIN_BAKCTRL 0x00000010
#define SV_TYPE_DOMAIN_CTRL 0x00000008
#define SV_TYPE_SQLSERVER 0x00000004
#define SV_TYPE_SERVER 0x00000002
#define SV_TYPE_WORKSTATION 0x00000001

typedef struct
 {
 ushort Status;
 ushort Convert;
 ushort EntryCount;
 ushort AvailCount;
 } NSE2_ReplyParams;

void PrintBrowserBits(ulong ServerType)
 /* -- **
 * Itemize Browse Service Provider Type Bits.
 * This is boring, and could probably be done better
 * using an array and a for() loop.
 * -- **
 */
 {
 if(SV_TYPE_ALL == ServerType)
 {
 printf(" All/Any Server types.\n");
 return;
 }

 if(SV_TYPE_UNKNOWN & ServerType)
 printf(" Warning: Undefined bits set.\n");

 if(SV_TYPE_DOMAIN_ENUM & ServerType)
 printf(" Enumerate Domains\n");
 if(SV_TYPE_LOCAL_LIST_ONLY & ServerType)
 printf(" Local List Only\n");
 if(SV_TYPE_ALTERNATE_XPORT & ServerType)
 printf(" Alternate Export (Unknown type)\n");
 if(SV_TYPE_DFS_SERVER & ServerType)
 printf(" DFS Support\n");
 if(SV_TYPE_WIN95_PLUS & ServerType)
 printf(" Windows 95+\n");

40322 The Talk on the Street

 if(SV_TYPE_SERVER_VMS & ServerType)
 printf(" VMS (Pathworks) Server\n");
 if(SV_TYPE_SERVER_OSF & ServerType)
 printf(" OSF Unix Server\n");
 if(SV_TYPE_DOMAIN_MASTER & ServerType)
 printf(" Domain Master Browser\n");
 if(SV_TYPE_MASTER_BROWSER & ServerType)
 printf(" Local Master Browser\n");
 if(SV_TYPE_BACKUP_BROWSER & ServerType)
 printf(" Backup Browser\n");
 if(SV_TYPE_POTENTIAL_BROWSER & ServerType)
 printf(" Potential Browser\n");
 if(SV_TYPE_SERVER_NT & ServerType)
 printf(" Windows NT (or compatible) Server\n");
 if(SV_TYPE_SERVER_MFPN & ServerType)
 printf(" MFPN (Unkown type)\n");
 if(SV_TYPE_WFW & ServerType)
 printf(" Windows for Workgroups\n");
 if(SV_TYPE_NT & ServerType)
 printf(" Windows NT Workstation\n");
 if(SV_TYPE_SERVER_UNIX & ServerType)
 printf(" Unix/Xenix/Samba Server\n");
 if(SV_TYPE_DIALIN_SERVER & ServerType)
 printf(" Dialin Server\n");
 if(SV_TYPE_PRINTQ_SERVER & ServerType)
 printf(" Print Server\n");
 if(SV_TYPE_DOMAIN_MEMBER & ServerType)
 printf(" NT Domain Member Server\n");
 if(SV_TYPE_NOVELL & ServerType)
 printf(" Novell Server\n");
 if(SV_TYPE_AFP & ServerType)
 printf(" Apple Server\n");
 if(SV_TYPE_TIME_SOURCE & ServerType)
 printf(" Time Source\n");
 if(SV_TYPE_DOMAIN_BAKCTRL & ServerType)
 printf(" Backup Domain Controller\n");
 if(SV_TYPE_DOMAIN_CTRL & ServerType)
 printf(" Domain Controller\n");
 if(SV_TYPE_SQLSERVER & ServerType)
 printf(" SQL Server\n");
 if(SV_TYPE_SERVER & ServerType)
 printf(" SMB Server\n");
 if(SV_TYPE_WORKSTATION & ServerType)
 printf(" Workstation\n");
 } /* PrintBrowserBits */

Part III The Browse Service404

void PrintNetServerEnum2Reply(uchar *ParamBlock,
 int ParamLen,
 uchar *DataBlock,
 int DataLen)
 /* -- **
 * Parse a NetServerEnum2 Reply and print the contents.
 * -- **
 */
 {
 NSE2_ReplyParams Rep;
 int i;
 int offset;
 uchar *pos;

 /* Check for an obvious error.
 */
 if(ParamLen != 8)
 Fail("Error parsing NetServerEnum2 reply.\n");

 /* Grab all of the parameter words.
 */
 Rep.Status = smb_GetShort(ParamBlock, 0);
 Rep.Convert = smb_GetShort(ParamBlock, 2);
 Rep.EntryCount = smb_GetShort(ParamBlock, 4);
 Rep.AvailCount = smb_GetShort(ParamBlock, 6);

 /* Check for problems (errors and warnings).
 */
 if(Rep.Status != NERR_Success)
 Fail("NetServerEnum2 Error: %d.\n", Rep.Status);
 if(Rep.EntryCount < Rep.AvailCount)
 printf("Warning: The list is incomplete.\n");

 /* Dump the ServerInfo_1 records. */
 pos = DataBlock;
 for(i = 0; i < Rep.EntryCount; i++)
 {
 printf("%-15s V%d.%d\n", pos, pos[16], pos[17]);
 PrintBrowserBits(smb_GetLong(pos, 18));
 offset = 0x0000FFFF & smb_GetLong(pos, 22);
 offset -= Rep.Convert;
 if(offset >= DataLen)
 Fail("Packet offset error.\n");
 printf(" Comment: %s\n", (DataBlock + offset));
 pos += 26;
 }
 } /* PrintNetServerEnum2Reply */

40522 The Talk on the Street

On the Outskirts of Town22.3.3

There is another RAP call that you need to know about. It comes in handy at
times. It doesn’t really belong to the Browse Service, but you may have heard
its name mentioned in that context. It lives on the edge, somewhere between
browsing and filesharing, and it goes by the name NetShareEnum.

The NetShareEnum RAP call does the job of listing the shares offered
by a server. The shares, as you already know, are the virtual roots of the direc-
tory trees made available via SMB.

The wire format of the request is as follows:

struct
 {
 ushort RAPCode;
 uchar *ParamDesc;
 uchar *DataDesc;
 struct
 {
 ushort InfoLevel;
 ushort BufrSize;
 } Params;
 } NetShareEnumReq;

and it is filled in like so:

NetShareEnumReq
 {
 RAPCode = 0 (NetShareEnum)
 ParamDesc = "WrLeh"
 DataDesc = "B13BWz"
 Params
 {
 InfoLevel = 1 (No other values defined)
 BufrSize = <Same as smb_Transaction_Request.MaxDataCount>
 }
 }

Yes, the RAP code for NetShareEnum is zero (0).
There’s not much to that call, particularly once you’ve gotten the

NetServerEnum2 figured out. The response also contains some familiar
concepts. In fact, the Parameter[] section is exactly the same.

The RAP-level data section is supposed to contain an array of
ShareInfo_1 structures, which look like this:

Part III The Browse Service406

struct
 {
 uchar ShareName[13];
 uchar pad;
 ushort ShareType;
 uchar *Comment;
 } ShareInfo_1;

Again, there are many similarities to what we have seen before. In this
case, though, the ShareType field has a smaller set of possible values than
the comparable ServerType field.

Share type values

DescriptionValueName

A disk share (root of a directory tree).0STYPE_DISKTREE

A print queue.1STYPE_PRINTQ

A communications device (e.g. a modem).2STYPE_DEVICE

An Inter-Process Communication (IPC) share.3STYPE_STYPE

...and that is “all you need to know” about the NetShareEnum call.
Oh, wait... There is one more thing...

Can't Get It Out Of My Head Alert
There is one great big warning regarding the NetShareEnum response. Some
Windows systems have been seen returning parameter blocks that are very large
(e.g. 1024 bytes). The first eight bytes contain the correct values. The rest appear to
be left-over cruft from the buffer on the server side. The server is returning the buffer
size (and the whole buffer) rather than the Parameter[] block size.

Other transactions may exhibit similar behavior.

Transaction Fragmentation22.3.4

A promise is a promise, and we did promise to cover fragmented transactions.2

The idea is fairly simple. If you have twenty-five sacks of grain to bring
to town, and a wagon that can hold only twelve sacks, then you will need to

2. Maybe we could cover them with leaves and fallen branches and just let them compost
themselves quietly in an out-of-the-way place or something.

40722 The Talk on the Street

make a few trips. Likewise with transactions. Due to the limits of the negotiated
buffer size, a transaction may attempt to transfer more data than can be carried
in a single SMB. The solution is to split up the data and send it using multiple
SMB messages.

The mechanism used is the same for SMBtrans, Trans2, and NTtrans.
There are slight differences between the transaction request and transaction
response, though, so pay attention.

Sending a fragmented transaction request works like this:

1. Fill in the transaction SMB, packing as many Parameter[] and
Data[] bytes into the transaction as possible. Parameter[] bytes
have precedence over Data[] bytes.

2. Send the initial message and wait for a reply (known as the “Interim
Server Response”). This step is a shortcut. It gives the server a chance to
reject the transaction before it has been completely transferred. Only the
response header has any meaning. If there is no error, the transaction
may proceed.

3. Send as many secondary transaction messages as necessary to transfer the
remaining Parameter[] and Data[] bytes. Note that the SMB
command and structure of secondary transactions is not the same as those
of the initial message.

4. Wait for the server to execute the transaction and return the results.

Now go back and take a look at Listing 22.1. Note that the
smb_Transaction_Request structure keeps track of the number of
Parameter[] and Data[] bytes already packed for shipping. That makes
it easy to build the secondary messages should they be needed.

Fragmenting a transaction response is a simpler process. The response
SMBs all have the same structure (no special secondary messages) and they all
have an SMB header, which may contain an error code if necessary. So, the
server can just send as many transaction response SMBs as needed to transfer
all of the results. That’s it.

RAP Annoyances22.3.5

RAP can be quite annoying — that’s just its nature. There are two particular
annoyances of which you should be aware:

Part III The Browse Service408

Authentication
It is common for a server to deny a NetShareEnum request on an
anonymous SMB connection. A valid username/password pair may be
required. Some servers also require non-anonymous authentication for
the NetServerEnum2 request, though this is less common.

Limitations and Permutations
Grab a capture of a NetShareEnum request and take a look at the data
descriptor string for the returned data (which should be “B13BWz”, as
described above). The number 13 in the string indicates the maximum
length of the share names to be returned, and it includes the terminating
nul byte.

“B13BWz” means that the NetShareEnum function will not return
share names with a string length greater than 12 characters each. Of
course, there are many systems that can offer shares with names longer
than 12 characters. Thus, we have a problem.

One way to solve the problem would be to change the field size in
the descriptor string to, for example, something like “B256BWz”. That
trick isn’t likely to work against all servers, however, because the descriptor
strings are constant enough that some implementations probably ignore
them. Another option is to use short share names, but that only works if
you have control over all of the SMB servers in the network.

The prescribed solution is to use a different function, called
NetrShareEnum. Note that there’s an extra letter ’r’ hidden in there.
Also note that the NetrShareEnum function is an MS-RPC call, not
a RAP call, and thus is beyond the scope of this book. You can watch for
it in packet captures, however, and possibly consider it as a starting point
should you decide to explore the world of MS-RPC.

So, now you know.

40922 The Talk on the Street

