
If a tree falls in the forest,
and no one is there to hear it...

Let’s drill home this key concept one more time:

NBT provides a set of services which combine to create a virtual
NetBIOS LAN over TCP/UPD/IP transport.

This would be a senseless thing to do except for the fact that lots of software
uses (or used to use) the NetBIOS API. The whole point is to maintain the
form and function of the API while completely replacing the guts and machinery
which lie beneath. This point gets lost, however, when we deal with systems
that are not derived from MS-DOS and have no use for NetBIOS itself. On
these systems we work directly with the guts of NBT and, therefore, are easily
confused by the odd behavior of the machinery.

So, to provide a little context, here are the four NetBIOS API functions
which the Datagram Service was designed to support:

Send Specific Datagram

Receive Specific Datagram

Send Broadcast Datagram

Receive Broadcast Datagram

5

The Datagram Service
in Detail

115

Let’s start by looking at the two Send Datagram functions. These two
API calls provide us with three transmission options: unicast, multicast, and
broadcast. Here’s how they work:

Send Specific Datagram

This function requires a NetBIOS name as a parameter.

If the name is unique, the datagram is unicast.

If the name is a group name, then the datagram is multicast.

Send Broadcast Datagram

This function does not accept a NetBIOS name. Broadcast datagrams are
sent the length and breadth of the NetBIOS LAN, and picked up by any
node that is listening.

That was easy. Now let’s look at what happens when we map those
functions onto UDP/IP at the NBT layer...

Send Specific Datagram

A NAME QUERY REQUEST is issued to discover whether the destination
name is a unique or group name.

If it is a unique name, then the message can be encapsulated in a
UDP packet and sent to the IP address given in the NAME QUERY
RESPONSE. In NBT terminology, this is a DIRECT UNIQUE
DATAGRAM.

If it is a group name...

If the sender is operating in B mode, it will broadcast the
packet on the local IP subnet so that all group members can
receive it.

If the sender is not operating in B mode, then the datagram is
forwarded to the NetBIOS Datagram Distribution Server
(NBDD).

In NBT terminology, a multicast datagram is known as a DIRECT
GROUP DATAGRAM.

Send Broadcast Datagram

The wildcard name (with the sender’s Scope ID appended) is used as the
destination name.

Part I NBT: NetBIOS over TCP/IP116

If the sender is operating in B mode, it will broadcast the packet on
the local IP subnet. All NBT nodes within the same scope will be
able to receive the message.

If the sender is not operating in B mode, then the datagram is for-
warded to the NBDD.

As you can see from the description, unicast datagrams are easy, B mode
is easy, but handling multicast or broadcast in P, or M, or H mode is a bit
more complicated. We’ll give that topic a section heading all its own, just to
show that it is a fairly hefty chunk of tofu.

Datagram Distribution over Routed IP
Internetworks

5.1

The NetBIOS Datagram Distribution Server (NBDD) compliments the NBNS.
It assists in extending the virtual NetBIOS LAN across a routed IP internetwork
by relaying multicast and broadcast NetBIOS datagrams to nodes on remote
subnets. The NBDD’s job is to make sure that the datagrams get to where
they’re supposed to go. It works something like a lawn sprinkler — one input
leads to a spray of outputs. Here’s what happens:

A P (or M or H) node sends a datagram to the NBDD.

The NBDD consults the NBNS database and gathers the IP addresses of
all intended recipients.

The NBDD then sends a copy of the message, via unicast UDP datagrams,
to each of the IP addresses in the list.

That seems simple enough, but we claimed earlier that the Datagram
Service is the second least well understood aspect of NBT. What are we missing?

A closer inspection reveals an obvious problem. If the number of destina-
tion nodes is large, a whole bigbunch of traffic will be generated — possibly
enough to bring the NBT virtual LAN to its knees (which might really, really
annoy people). The NBDD design will work well enough for small, trusted
networks but it simply does not scale.

Another problem is that RFC 1001 offers a loophole for implementors:
the NBDD is permitted to silently ignore requests to relay datagrams. If, for
any reason (including laziness on the implementor’s part) the NBDD will not

1175 The Datagram Service in Detail

NBDD Clements
Lindisfarne

Jacka
Lindisfarne

Si
Lindisfarne

Hull
Lindisfarne

Mick
Laidlaw

Lindisfarne

Figure 5.1: The Datagram Distribution Server

Node MICK wants to send a message to all members of group LINDISFARNE, but the
NetBIOS LAN is distributed across a routed IP internetwork. MICK sends the datagram to
the NBDD which relays the message to all group members.

or can not relay a datagram, it simply discards the message without sending
any sort of error message back to the originating node.

This loophole might make the NBDD so unreliable as to be useless, except
that the Datagram Service also supports a query operation that allows the client
to ask the NBDD whether or not it will relay a message. If the NBDD answers
the query with a “yes”, then the client can send the datagram with the assurance
that it will be relayed to all intended recipients. A negative reply means that
the NBDD will not relay the message.

Reminder Alert
Datagrams are not considered reliable. As with the UDP service in an IP network, it is
expected that some NetBIOS datagrams may be lost.

By allowing the NBDD to silently discard datagrams, however, the lack of reliabil-
ity is amplified well beyond what would be expected from simple network packet loss.

One more monkey-wrench to throw into the works... Given a multicast
(not broadcast) datagram, if the NBDD will not relay the message, the client
can give it another shot. The client has already performed a Name Service
NAME QUERY REQUEST operation, and received a NAME QUERY
RESPONSE from the NBNS. It did this to determine that the destination name
was, in fact, a group name rather than a unique name. If the NBNS is
RFC-compliant, then the NAME QUERY RESPONSE will contain a list of all

Part I NBT: NetBIOS over TCP/IP118

the IP addresses of the group members. If the NBDD won’t relay the message,
then the client can unicast the datagram to each entry in the list.

To summarize:

Unicast datagrams are simply sent to the intended recipient.

In B mode, multicast/broadcast datagrams are broadcast on the local
LAN.

For multicast/broadcast datagrams in P, H, and M modes the NBDD
should be queried to see if will relay the datagram.

If a positive response is received, then send the datagram to the
NBDD for distribution.

Else:

If the datagram is multicast and the Name Server returned a
complete IP list, then send the message via unicast datagrams
to each IP in the list.

Else, broadcast the datagram on the local subnet and hope that
some nodes will receive it.

Confused? Don’t be surprised if you are. It isn’t a pretty system... and it
gets worse. Because of the potential network problems and the awkwardness
of the design, very few implementations even try to match the RFC specifica-
tion. Unfortunately, no one has come up with a better solution... which means
that what actually exists in the wild is worse than what was just described.

The NBDD and the Damage Done5.2

To be blunt, Microsoft messed up the Datagram Service. Their NBNS imple-
mentation (WINS) does not report all of the IP addresses associated with a
group name. Instead, group names are mapped to a single IP address — the
limited broadcast address: 255.255.255.255. This is contrary to the RFCs, and
it causes a few problems.

Without a list of IPs for each group name, the NBDD cannot be imple-
mented at all. With no NBDD and no IP list, there is no way to ensure that
multicast and broadcast datagrams will be sent to all group members. This
breaks the continuity of the NetBIOS virtual LAN. On a “real” NetBIOS
LAN, a message sent to a group name would actually reach all members of that

1195 The Datagram Service in Detail

group. That is what should happen under NBT as well, but it doesn’t. The
best that can be done is to broadcast on the local subnet, in which case some
members of the group may get the message.

Microsoft must have realized their mistake, because they later created
what they call “Internet Group” names (also called “Special Group” names).
For names in this category, WINS comes close to behaving like a proper NBNS;
it will store up to 25 IP addresses per name, deleting the oldest entry to make
room if necessary. For these names, a POSITIVE NAME QUERY RESPONSE
from a WINS server will list up to 25 valid IP addresses.

Internet Group names are identified by their suffix. Originally only group
names with the 0x1C suffix were given special treatment, but more recently
(with W2K?) group names with a suffix value of 0x20 can be defined as having
Internet Group status. Note that unique names may also have these suffixes
but, since they are not group names, no special handling is required.

Sadly, most non-Microsoft implementations (including Samba) follow
Microsoft’s example. They map group names to the 255.255.255.255 IP ad-
dress, store only 25 IPs for Special Group names, and fail to implement the
NBDD.1 This can cause trouble for some clients (OS/2, for example) which
expect RFC behavior.

Sigh.

Implementing a Workable Datagram Service5.3

That last section was a bit of a rant. Sorry. Time to pick up the pieces and
move on. Let’s talk about how the parts that work actually work.

As with the Name Service, each Datagram Service packet has a header.
The datagram header is 10 bytes long, arranged as follows:

1. Network Telesystems, which has since been acquired by Efficient Networks, used to have
an NBNS implementation that handled group names correctly and worked quite well with
IBM’s OS/2. Brian Landy has also written a set of patches for Samba’s nmbd daemon which
provide more complete NBDD support. See http://www.landy.cx/.

Part I NBT: NetBIOS over TCP/IP120

1514131211109876543210

FLAGSMSG_TYPE

DGM_ID

SOURCE_IP

SOURCE_PORT

Here is a quick rundown of the fields:

MSG_TYPE (1 byte)
This field is something like the OPCODE field in the Name Service header.
It indicates which type of Datagram Service message is being sent. It has
the following possible values:

0x10 == DIRECT_UNIQUE DATAGRAM
0x11 == DIRECT_GROUP DATAGRAM
0x12 == BROADCAST DATAGRAM
0x13 == DATAGRAM ERROR
0x14 == DATAGRAM QUERY REQUEST
0x15 == DATAGRAM POSITIVE QUERY RESPONSE
0x16 == DATAGRAM NEGATIVE QUERY RESPONSE

The first three of these represent unicast, multicast, and broadcast
datagrams, respectively. The DATAGRAM ERROR packet is used to report
errors within the Datagram Service. (There are only three errors defined
in the RFCs.) The final three types are used in the query mechanism de-
scribed earlier.

FLAGS (1 byte)
This field breaks down into a set of bitwise subfields:

76543210

MFSNTUNUSED

SNT: Sending Node Type
This subfield has the following set of possible values (in binary):

1215 The Datagram Service in Detail

00 == B node
01 == P node
10 == M node
11 == NBDD

Microsoft did not implement the NBDD. They did, however,
introduce H mode. In practice the value 11 is used to indicate that
the sending node is an H node.

F: FIRST flag
Indicates that this is the first (and possibly only) packet in a
fragmented series.

M: MORE flag
Indicates that the message is fragmented, and that the next fragment
should follow.

The F and M flags are used to manage fragmented messages, which
will be described in more detail real soon now.

DGM_ID (2 bytes)
The Datagram ID is similar in purpose to the NAME_TRN_ID field in
Name Service headers. There should be a unique DGM_ID for each
(conceptual) call to the NetBIOS Send Specific Datagram or
Send Broadcast Datagram functions. More about this when we
discuss fragmented messages.

SOURCE_IP (4 bytes)
The IP address of the originating node. If the datagram is being relayed
via the NBDD, then the IP header (at the IP layer of the stack, rather
than the NBT layer) will contain the IP address of the NBDD. The
SOURCE_IP field keeps track of the IP address of the node that actually
composed the datagram.

SOURCE_PORT (2 bytes)
As with the SOURCE_IP field, this field indicates the UDP port used by
the originating node.

The above fields are common to all Datagram Service messages. RFC 1002
includes two more fields in its header layout: the DGM_LENGTH and

Part I NBT: NetBIOS over TCP/IP122

PACKET_OFFSET fields. It is kind of silly to have those fields in the header,
as they are specific to the messages which actually carry a data payload:
the DIRECT_UNIQUE, DIRECT_GROUP, and BROADCAST DATAGRAM
message types.

Since the DGM_LENGTH and PACKET_OFFSET fields are associated with
the datagram transport messages, we will break with tradition and put those
fields together with the message structure. Here is a record layout:

1514131211109876543210

DGM_LENGTH

PACKET_OFFSET

SOURCE_NAME

DESTINATION_NAME

USER_DATA

DGM_LENGTH (2 bytes)
The formula given for calculating the value of the DGM_LENGTH field is:

DGM_LENGTH = length(SOURCE_NAME)
 + length(DESTINATION_NAME)
 + length(USER_DATA)

That is, the number of bytes following the PACKET_OFFSET field.2

PACKET_OFFSET (2 bytes)
Used in conjunction with the F and M flags in the header to allow recon-
struction of fragmented NetBIOS datagrams.

SOURCE_NAME (34..255 bytes)
The encoded NBT name of the sending application. Recall that NBT
names are communication endpoints in much the same way that a UDP
or TCP port is an endpoint. The correct SOURCE_NAME must be supplied
to identify the service or application that sent the datagram.

2. This field is probably not even used by most implementations. For a long time, Samba
miscalculated the DGM_LENGTH field by including the length of the 14-byte RFC header.
This bug (fixed as of 2.2.4) did not seem to cause any trouble.

1235 The Datagram Service in Detail

DESTINATION_NAME (34..255 bytes)
The encoded NBT name of the destination application or service. For
broadcast datagrams, the DESTINATION_NAME will be the wildcard
name — an asterisk (‘*’) followed by fifteen nul bytes. The NBT name
must include the Scope ID (even if it is the default empty scope, "").

USER_DATA (0..512 bytes)
The actual data to be transmitted.

That’s basically all there is to it, with the exception of fragmentation. The
example packet below describes an unfragmented message.

DATAGRAM_HEADER (unfragmented)
 {
 MSG_TYPE = <10 = unicast, 11 = multicast, 12 = broadcast>
 FLAGS
 {
 SNT = <Node type, as shown above>
 F = TRUE (This is the first in the series)
 M = FALSE (No additional fragments follow)
 }
 DGM_ID = <Datagram identifier>
 SOURCE_IP = <IP address of the originating node>
 SOURCE_PORT = <Originating UDP port>
 }
DATAGRAM_DATA
 {
 DGM_LENGTH = <Name lengths plus USER_DATA length>
 PACKET_OFFSET = 0
 SOURCE_NAME = <Fully encoded NBT name of the sender>
 DESTINATION_NAME = <Fully encoded NBT name of the receiver>
 USER_DATA = <Datagram payload>
 }

Some quick notes:

The DGM_ID should be unique with respect to other active datagrams
originating from the same source. With 64K values from which to choose,
this should not be difficult.

Once again, the SOURCE_IP, SOURCE_PORT, and SOURCE_NAME are
all relative to the originator of the datagram. An NBDD does not alter
these fields when it relays a message.

Part I NBT: NetBIOS over TCP/IP124

NBT datagrams are sent within scope. The Scope ID must be present in
the SOURCE_NAME and DESTINATION_NAME fields, even if it is the
empty scope ("").

Fragmenting Datagrams5.3.1

A little way back, we mentioned the NetBIOS API Send Specific
Datagram and Send Broadcast Datagram functions. These functions
each accept up to 512 bytes of data on input. Given that number, the maximum
on-the-wire size of an NBT datagram is:

 10 bytes (Header)
+ 2 bytes (DGM_LENGTH)
+ 2 bytes (PACKET_OFFSET)
+ 255 bytes (maximum size of SOURCE_NAME)
+ 255 bytes (maximum size of DESTINATION_NAME)
+ 512 bytes (maximum size of USER_DATA)

 1036 bytes

and that, of course, does not include the UDP and IP headers. The whole thing
is fairly chunky — easily more than double the size of the data actually
being sent.

The RFC authors were concerned that the UDP transport might not
carry datagrams that big, so they provided a mechanism for breaking the
USER_DATA into smaller fragments, like so:

first fragment
FLAGS.F = TRUE (This is the first fragment)
FLAGS.M = TRUE (Additional fragments follow)
PACKET_OFFSET = 0

middle fragments
FLAGS.F = FALSE (This is the not the first fragment)
FLAGS.M = TRUE (Additional fragments follow)
PACKET_OFFSET = <Data offset of fragment>

final fragment
FLAGS.F = FALSE (This is not the first fragment)
FLAGS.M = FALSE (No more fragments follow)
PACKET_OFFSET = <Data offset of fragment>

1255 The Datagram Service in Detail

The value of the PACKET_OFFSET field is the sum of the lengths of all
previous fragments. This value is included in the message so that the receiver
can keep the fragments in sync as it rebuilds the original USER_DATA. This
is necessary, because datagrams do not always arrive in the order in which they
were sent.

Now that you have learned all of that, you can forget most of it. As is
typical for the Datagram Service, the fragmentation feature is rarely — if ever —
used. The IP layer has its own mechanism for handling large packets so NBT
datagram fragmentation is redundant.

It is possible that someone, somewhere, has implemented fragmentation,
so an NBT implementation should be prepared to deal with it. One simple
option is to discard fragments. This can be considered valid because the Data-
gram Service is considered “unreliable.”

Something else to keep in mind: The 512-byte maximum size for the
USER_DATA field is required at the NetBIOS layer, but not the NBT layer.
Since the NetBIOS API is not required for implementing NBT, you mustn’t
expect that the datagrams you receive will fit within the limit. Code defensively.

Receiving Datagrams5.3.2

NBT receives datagram messages on UDP port 138, so clients must listen on
that port at the UDP level. When a message datagram is received (MSG_TYPE
is one of 0x10, 0x11, or 0x12) the DESTINATION_NAME is checked against
the local name table. If the name is not found, the client should reply with a
DATAGRAM ERROR MESSAGE. The available error codes are:

0x82 == DESTINATION NAME NOT PRESENT
0x83 == INVALID SOURCE NAME FORMAT
0x84 == INVALID DESTINATION NAME FORMAT

The first value is used whenever the DESTINATION_NAME is not in the
local name table at the receiving end. The other two codes are sent whenever
the source or destination NBT names, respectively, cannot be parsed.

If the name is found in the local table, then the datagram may be passed
to any application or service that is listening for the given DESTINA-
TION_NAME. The NetBIOS API provides the Receive Specific
Datagram and Receive Broadcast Datagram calls for this purpose.

Part I NBT: NetBIOS over TCP/IP126

If there are no Receive Datagram requests waiting, the datagram is
quietly discarded.

NBDD processing (for those bold enough to want to implement an
NBDD) is similar. When the NBDD receives a datagram it will search the
NBNS database instead of the local name table. Error messages are returned
as above for missing or malformed names.

One more note: As a safety precaution, the receiving node should probably
verify that the SOURCE_IP field in the datagram header matches either the
source address in the IP header, or the NBDD address (if there is one).

Querying the NBDD5.3.3

The NBDD query message is simply an NBT Datagram Service header with
the DESTINATION_NAME appended:

DATAGRAM_HEADER
 {
 MSG_TYPE = 0x14 (DATAGRAM QUERY REQUEST)
 FLAGS
 {
 SNT = <Node type>
 F = TRUE
 M = FALSE
 }
 DGM_ID = <Datagram identifier>
 SOURCE_IP = <IP address of the originating node>
 SOURCE_PORT = <Originating UDP port>
 }
DATAGRAM_DATA
 {
 DESTINATION_NAME = <Encoded NBT name of the intended receiver>
 }

If there is an NBDD, and if it can relay the request, it will change the
MSG_TYPE field to 0x15 (POSITIVE QUERY RESPONSE) and echo the
packet back to the sender. If the NBDD is unwilling or unable to relay the
message it will set MSG_TYPE to 0x16 (NEGATIVE QUERY RESPONSE)
before sending the reply.

1275 The Datagram Service in Detail

The Second Least Well Understood Aspect of NBT5.3.4

It really should have been much simpler, but given the design flaws and imple-
mentation errors it is no wonder people have trouble with the Datagram Service.
Our hope is that this section has cleared things up a bit, and explained the
problems well enough to make them easier to solve.

Just to finish up, here are a few tips:

The NBDD should never relay datagrams to itself. If the NBDD host is
also an NBT end node, then it must deliver datagrams to itself and then
pass them along to the NBDD. There is no way to know if a received
datagram is intended for the end node or the NBDD.

Likewise, if a host is acting as both end node and NBDD, the end node
processing should not generate DESTINATION NAME NOT PRESENT
(0x82) errors. The datagram should be passed along to the
NBDD instead.

The NBNS should store all IP addresses associated with a group name.
If necessary, it can return the local broadcast IP address (255.255.255.255)
in response to name queries, thus maintaining compatibly with Microsoft’s
WINS. Storing all group name IP addresses is necessary for NBDD
implementation.

Set a limit on the size of the IP list to which an NBDD will relay messages.

Don’t worry about it. If you get the basics right, your system will work
well enough. Very few systems expect a complete and proper NBT
Datagram Service implementation.

Part I NBT: NetBIOS over TCP/IP128

