
...it is a tale
Told by an idiot, full of sound
and fury, signifying nothing.

— Macbeth, Act V, Scene v,
William Shakespeare

Originally, the SESSION SETUP was not required by — or even defined as
part of — the SMB protocol. It was introduced in the LANMAN days in order
to handle User Level authentication and could be skipped if the server was in
Share Level security mode. These days, however, the SESSION SETUP takes
care of a lot of unfinished business, like cleaning up some of the debris left by
the NEGOTIATE PROTOCOL RESPONSE. In the NT LM 0.12 dialect there
must be a SESSION SETUP exchange before a TREE CONNECT may be sent,
even if the server is operating in Share Level security mode.

SESSION SETUP ANDX REQUEST Parameters14.1

The SESSION SETUP SMB is actually a SESSION SETUP ANDX, which
simply means that there’s an AndX block in the parameter section. In the
NT LM 0.12 dialect, the Parameter block is formatted as shown below:

239

14

Session Setup

typedef struct
 {
 uchar WordCount; /* 12 or 13 words */
 struct
 {
 struct
 {
 uchar Command;
 uchar Reserved;
 ushort Offset;
 } AndX;
 ushort MaxBufferSize;
 ushort MaxMpxCount;
 ushort VcNumber;
 ulong SessionKey;
 ushort Lengths[]; /* 1 or 2 elements */
 ulong Reserved;
 ulong Capabilities;
 } Words;
 } smb_SessSetupAndX_Req_Params;

When looking at these C-like structures, keep in mind that they are in-
tended as descriptions rather than specifications. On the wire, the parameters
are packed tightly into the SMB messages, and they are not aligned. Though
the structures show the type and on-the-wire ordering of the fields, the C
programming language does not guarantee that the layout will be retained in
memory. That’s why our example code includes all those functions and macros
for packing and unpacking the packets.1

Many of the fields in the SESSION_SETUP_ANDX.SMB_PARAMETERS
block should be familiar from the NEGOTIATE PROTOCOL RESPONSE
SMB. This time, though, it’s the client’s turn to set the limits.

MaxBufferSize

MaxBufferSize is the size (in bytes) of the largest message that the
client can receive. It is typically less than or equal to the server’s
MaxBufferSize, but it doesn’t need to be.

1. To be pedantic, the correct terms are “marshaling” and “unmarshaling.” “Marshaling”
means collecting data in system-internal format and re-organizing it into a linear format for
transport to another system (virtual, physical, or otherwise). “Unmarshaling,” of course, is the
reverse process. These terms are commonly associated with Remote Procedure Call (RPC)
protocols, but some have argued (not unreasonably) that SMB is a simple form of RPC.

Part II SMB: The Server Message Block Protocol240

MaxMpxCount

This must always be less than or equal to the server-specified
MaxMpxCount. This is the client’s way of letting the server know how
many outstanding requests it will allow. The server might use this value
to pre-allocate resources.

VcNumber

This field is used to establish a Virtual Circuit (VC) with the server. Keep
reading, we’re almost there...

SessionKey

Just echo back whatever you got in the NEGOTIATE PROTOCOL
RESPONSE.

Lengths

For efficiency’s sake the structure above provides the Lengths field,
defined as an array of unsigned short integers and described as having one
or two elements. The SNIA doc and other references go to a lot more
trouble and provide two separate and complete versions of the entire
SESSION SETUP REQUEST structure.

Basically, though, if Extended Security has been negotiated then the
Lengths field is a single ushort, known as SecurityBlobLength
in the SNIA doc. (We touched on the concept of security blobs briefly
back in Section 13.3.2.) If Extended Security is not in use then there will
be two ushort fields identified by the excessively long names:

CaseInsensitivePasswordLength and

CaseSensitivePasswordLength.

Obviously, all of this stuff falls into the general category of authen-
tication, and will be covered in more detail when we finally focus on
that topic.

Reserved

Four bytes of must-be-zero.

Capabilities

This field contains the client capabilities flag bits.

24114 Session Setup

You might notice, upon careful examination, that the client does not send
back a MaxRawSize value. That’s because it can specify raw read/write sizes
in the SMB_COM_RAW_READ and SMB_COM_RAW_WRITE requests, if it sends
them. These SMBs are considered obsolete, so newer clients really shouldn’t
be using them.

There are a couple of fields in the SESSION SETUP REQUEST which
touch on esoteric concepts that we have been promising to explain for quite a
while now — specifically virtual circuits and capabilities — so let’s get it
over with...

Virtual Circuits14.1.1

It does seem as though there’s a good deal of cruft in the SMB protocol. The
SessionKey, for example, appears to be a vestigial organ, the purpose of
which has been mostly forgotten. Originally, such fields may have been intended
to compensate for a limitation in a specific transport or an older implementa-
tion, or to solve some other problem that isn’t a problem any more.

Consider virtual circuits...
The LAN Manager documentation available from Microsoft’s ftp site

provides the best clues regarding virtual circuits (see SMB-LM1X.PS, for in-
stance). According to those docs a virtual circuit (VC) represents a single
transport layer connection, and the VcNumber is a tag used to identify a
specific transport link between a specific client/server pair.

That concept probably needs to be considered in context.
The LANMAN dialects were developed in conjunction with OS/2 (an

honest-to-goodness, really-truly, multitasking OS). OS/2 clients pass SMB
traffic through a redirector — just like DOS and Windows — and it seems as
though there was some concern that multiplexing the SMB traffic from several
processes across a single connection might cause a bit of a bottleneck. So, to
avoid congestion, the redirector could create additional connections to facilitate
faster transfers for individual processes.2 Under this scheme, all of the transport
level connections from a client to a server were considered part of a single logical

2. If you enjoy digging into odd details, this is a great one. See the SMB-LM1X.PS file, also
known as Microsoft Networks/SMB File Sharing Protocol Extensions, Version 2.0, Document
Version 3.3. In particular, see the definition of a VC on page 2, and the description of the
“Virtual Circuit Environment” in Section 4.a on page 10.

Part II SMB: The Server Message Block Protocol242

“session” (we now, officially, have way too many meanings for that term).
Within that logical session there could, conversely, be multiple transport level
connections — aka virtual circuits — up to the limit set in the NEGOTIATE
PROTOCOL RESPONSE.

Server

VC 0 VC 1

SMB
I/O

Client
Redirector

Client

Process 1066
T0

Process 11

T0 T1

Process 10972
T0 T1 T2

SMB
I/O

Figure 14.1: Virtual circuits

Process 11 has the use of virtual circuit number 1 (VC 1). VC 0 and VC 1 are separate TCP/IP
connections, yet both VCs are part of the same logical client/server “session” (and the term
“session” is clearly overused).

Figure 14.1 illustrates the point, and here’s how it’s supposed to work:

Logical Session Creation

The client makes an initial connection to the SMB server, performs
the NEGOTIATE PROTOCOL exchange, and establishes the session
by sending a SESSION SETUP ANDX REQUEST.

The VcNumber in the initial SESSION SETUP ANDX REQUEST
is zero (0).

Additional VC Creation

An additional transport level connection is created.

24314 Session Setup

The client sends a new SESSION SETUP ANDX REQUEST with
a VcNumber greater than zero, but less than the MaxNumberVCs
sent by the server.

The SessionKey field in the SESSION SETUP ANDX REQUEST
must match the SessionKey returned in the initial NEGOTIATE
PROTOCOL RESPONSE. That’s how the new VC is bound to the
existing logical session.

Ah-hahhh! The mystery of the SessionKey field is finally revealed.
Kind of a let-down, isn’t it?

Whenever a new transport-layer connection is created, the client is sup-
posed to assign a new VC number. Note that the VcNumber on the initial
connection is expected to be zero to indicate that the client is starting from
scratch and is creating a new logical session. If an additional VC is given a
VcNumber of zero, the server may assume that any existing connections with
that same client are now bogus, and shut them down.

Why do such a thing?
The explanation given in the LANMAN documentation, the Leach/Naik

IETF draft, and the SNIA doc is that clients may crash and reboot without
first closing their connections. The zero VcNumber is the client’s signal to the
server to clean up old connections. Reasonable or not, that’s the logic behind
it. Unfortunately, it turns out that there are some annoying side-effects that
result from this behavior. It is possible, for example, for one rogue application
to completely disrupt SMB filesharing on a system simply by sending Session
Setup requests with a zero VcNumber. Connecting to a server through a NAT
(Network Address Translation) gateway is also problematic, since the NAT
makes multiple clients appear to be a single client by placing them all behind
the same IP address.3

The biggest problem with virtual circuits, however, is that they are not
really needed any more (if, in fact, they ever were). As a result, they are handled
inconsistently by various implementations and are not entirely to be trusted.
On the client-side, the best thing to do is to ignore the concept and view each
transport connection as a separate logical session, one VC per session. Oh!
...and contrary to the specs the client should always use a VcNumber of one,
never zero.

3. See Microsoft Knowledge Base Article #301673 for more information.

Part II SMB: The Server Message Block Protocol244

On the server side, it is important to keep in mind that the TID, UID,
PID, and MID are all supposed to be relative to the VC. In particular, TID
and UID values negotiated on one VC have no meaning (and no authority)
on another VC, even if both VCs appear to be from the same client. Another
important note is that the server should not disconnect existing VCs upon re-
ceipt of a new VC with a zero VcNumber. As described above, doing so is
impractical and may break things. The server should let the transport layer
detect and report session disconnects. At most, a zero VcNumber might be a
good excuse to send a keep-alive packet.

The whole VC thing probably seemed like a good idea at the time.

Capabilities Bits14.1.2

Remember a little while back when we said that there were subtle variations
within SMB dialects? Well, some of them are not all that subtle once you get
to know them. The Capabilities bits formalize several such variations by
letting the client and server negotiate which special features will be supported.
The server sends its Capabilities field in the NEGOTIATE PROTOCOL
RESPONSE, and the client returns its own set of capabilities in the SESSION
SETUP ANDX REQUEST.

The table below provides a listing of the capabilities defined for servers.
The client set is smaller.

Server capabilities

DescriptionName / BitmaskBit

Set to indicate that Extended Security exchanges
are supported.

CAP_EXTENDED_SECURITY

0x80000000
31

If set, this bit indicates that the server can compress
Data blocks before sending them.4 This might be
useful to improve throughput of large file transfers
over low-bandwidth links. This capability requires

CAP_COMPRESSED_DATA

0x40000000
30

4. There are a few small notes scattered about the SNIA doc that suggest that the prescribed
compression algorithm is something called LZNT. I haven’t been able to find a definitive ref-
erence that explains what LZNT is, but it appears from the name that it is a form of Lempel-
Ziv compression.

24514 Session Setup

Server capabilities

DescriptionName / BitmaskBit

that the CAP_BULK_TRANSFER capability also be
set. Currently, however, there are no known
implementations that support bulk transfer.

If set, the server supports the
SMB_COM_READ_BULK and
SMB_COM_WRITE_BULK SMBs.

There are no known implementations which
support CAP_BULK_TRANSFER and/or
CAP_COMPRESSED_DATA. Samba does not even
bother to define constants for these capabilities.

CAP_BULK_TRANSFER

0x20000000
29

Microsoft reserved this bit based on a proposal (by
Byron Deadwiler at Hewlett-Packard) for a small
set of Unix extensions. The SNIA doc describes
these extensions in an appendix. Note, however,
that the proposal was made and the appendix
written before the extensions were widely
implemented. Samba supports the SMB Unix
extensions, but probably not exactly as specified in
the SNIA doc.

CAP_UNIX

0x00800000
23

If set, the server supports a special mode of the
SMB_COM_WRITE_ANDX SMB which allows the
client to send more data than would normally fit
into the server’s receive buffers, up to a maximum
of 64 Kbytes.

CAP_LARGE_WRITEX

0x00008000
15

Similar to the CAP_LARGE_WRITEX, this bit
indicates whether the server can handle
SMB_COM_READ_ANDX requests for blocks of data
larger than the reported maximum buffer size. The
theoretical maximum is 64 Kbytes, but the client
should never request more data than it can receive.

CAP_LARGE_READX

0x00004000
14

Samba calls this the CAP_W2K_SMBS bit. In testing,
NT 4.0 systems did not set this bit, but W2K
systems did. Basically, it indicates support for some
advanced requests.

CAP_INFOLEVEL_PASSTHROUGH

0x00002000
13

If set, this bit indicates that the server supports
Microsoft’s Distributed File System.

CAP_DFS

0x00001000
12

Part II SMB: The Server Message Block Protocol246

Server capabilities

DescriptionName / BitmaskBit

This is a mystery bit. There is very little
documentation about it and what does exist is not
particularly helpful. The SNIA doc simply says that
this bit is “Reserved,” but the notes regarding the
CAP_NT_SMBS bit state that the latter implies the
former. (Counter-examples have been found in some
references, but not on the wire during testing. Your
mileage may vary.)

Basically, though, if this bit is set it indicates
that the server supports an extended set of function
calls belonging to a class of calls known as
“transactions.”

CAP_NT_FIND

0x00000200
9

If set, the server is reporting that it supports the
obsolete SMB_COM_LOCK_AND_READ SMB.

...but go back and look at the
SMB_HEADER.FLAGS bits described earlier. The
lowest order FLAGS bit is
SMB_FLAGS_SUPPORT_LOCKREAD, and it is also
supposed to indicate whether or not the server
supports SMB_COM_LOCK_AND_READ (as well as
the complimentary
SMB_COM_WRITE_AND_UNLOCK). The thing is,
traces from Windows NT and Windows 2000
systems show the CAP_LOCK_AND_READ bit set
while the SMB_FLAGS_SUPPORT_LOCKREAD
is clear.

That doesn’t make a lot of sense.
Well... it may be that the server is indicating

that it supports the SMB_COM_LOCK_AND_READ
SMB but not the SMB_COM_WRITE_AND_UNLOCK
SMB, or it may be that the server may be using the
Capabilities field in preference to the FLAGS
field.

Avoid the use of the
SMB_COM_LOCK_AND_READ and
SMB_COM_WRITE_AND_UNLOCK SMBs and
everything should turn out alright.

CAP_LOCK_AND_READ

0x00000100
8

24714 Session Setup

Server capabilities

DescriptionName / BitmaskBit

If set, Level II OpLocks are supported in addition
to Exclusive and Batch OpLocks.

CAP_LEVEL_II_OPLOCKS

0x00000080
7

If set, this bit indicates that the server supports the
32-bit NT_STATUS error codes.

CAP_STATUS32

0x00000040
6

If set, this bit indicates that the server permits
remote management via Remote Procedure Call
(RPC) requests. RPC is way beyond the scope of
this book.

CAP_RPC_REMOTE_APIS

0x00000020
5

If set, this bit indicates that the server supports some
advanced SMBs that were designed for use with
Windows NT and above. These are, essentially, an
extension to the NT LM 0.12 dialect.

According to the SNIA doc, the
CAP_NT_SMBS implies CAP_NT_FIND.

CAP_NT_SMBS

0x00000010
4

If set, this bit indicates that the server can handle
64-bit file sizes. With 32-bit file sizes, files are
limited to 4 GB in size.

CAP_LARGE_FILES

0x00000008
3

Set to indicate that the server supports Unicode.CAP_UNICODE

0x00000004
2

If set, the server supports the (obsolete)
SMB_COM_READ_MPX and SMB_COM_WRITE_MPX
SMBs.

CAP_MPX_MODE

0x00000002
1

If set, the server supports the (obsolete)
SMB_COM_READ_RAW and SMB_COM_WRITE_RAW
SMBs.

CAP_RAW_MODE

0x00000001
0

On the server side, the implementor’s rule of thumb regarding capabilities
is to start by supporting as few as possible and add new ones one at a time.
Each bit is a cornucopia — or Pandora’s box — of new features and require-
ments, and most represent a very large development effort. As usual, if there
is documentation it is generally either scarce or encumbered.

Things are not quite so bad if you are implementing a client, though the
client also has a list of capabilities that it can declare. The client list is as follows:

Part II SMB: The Server Message Block Protocol248

Client capabilities

DescriptionName / BitmaskBit

Set to indicate that Extended Security exchanges are
supported.

The SNIA doc and the older IETF Draft do not
list this as a capability set by the client. On the wire,
however, it is clearly used as such by Windows, Samba,
and by Steve French’s CIFS VFS for Linux. If the server
indicates Extended Security support in its
Capabilities field, then the client may set this bit
to indicate that it also supports Extended Security.

CAP_EXTENDED_SECURITY

0x80000000
31

If set, this bit indicates that the client is capable of
utilizing the CAP_NT_FIND capability of the server.

CAP_NT_FIND

0x00000200
9

If set, this bit indicates that the client understands Level
II OpLocks.

CAP_LEVEL_II_OPLOCKS

0x00000080
7

Indicates that the client understands 32-bit
NT_STATUS error codes.

CAP_STATUS32

0x00000040
6

Likewise, I’m sure.
As with the CAP_NT_FIND bit, the client will set

this to let the server know that it, too, understands the
extended set of SMBs and function calls that are
available if the server has set the CAP_NT_SMBS bit.

CAP_NT_SMBS

0x00000010
4

The client sets this to let the server know that it can
handle 64-bit file sizes and offsets.

CAP_LARGE_FILES

0x00000008
3

Set to indicate that the client understands Unicode.CAP_UNICODE

0x00000004
2

The client should not set any bits that were not also set by the server.
That is, the Capabilities bits sent to the server should be the intersection
(bitwise AND) of the client’s actual capabilities and the set sent by the server.

The Capabilities bits are like the razor-sharp barbs on a government
fence. Attempting to hurdle any one of them can shred your implementation.

24914 Session Setup

Consider adding Unicode support to a system that doesn’t already have it.
Ooof! That’s going to be a lot of work.5

Some Capabilities bits indicate support for sets of function calls
that can be made via SMB. These function calls, which are sometimes referred
to as “sub-protocols,” fall into two separate (but similar) categories:

Remote Administration Protocol (RAP),

Remote Procedure Call (RPC).

Of the two, the RAP sub-protocol is older and (relatively speaking) sim-
pler. Depending upon the SMB dialect, server support for some RAP calls is
assumed rather than negotiated. Fortunately, much of RAP is documented...
if you know where to look.6

Microsoft’s RPC system — known as MS-RPC — is newer, and has a
lot in common with the better-known DCE/RPC system. MS-RPC over SMB
allows the client to make calls to certain Windows DLL library functions on
the server side which, in turn, allows the client to do all sorts of interesting
things. Of course, if you are building a server and you want to support the
MS-RPC calls you have to implement all of the required functions in addition
to SMB itself. Unfortunately, much of MS-RPC is undocumented.7

The MS-RPC function call APIs are defined using a language called
Microsoft Interface Definition Language (MIDL). There is a fair amount of in-
formation about MIDL available on the web and some of the function interface
definitions have been published. CIFS implementors have repeatedly asked
Microsoft for open access to all of the CIFS-relevant MIDL source files. Unen-
cumbered access to the MIDL source would go a long way towards
opening up the CIFS protocol suite. Since MIDL provides only the interface

5. It was, in fact, a lot of work for the Samba Team. Those involved did a tremendous job,
and they deserve several rounds of applause. Things were much easier for jCIFS because Java
natively supports Unicode.

6. Information on RAP calls is scattered among several sources, including the archives of Mi-
crosoft’s CIFS mailing list. The SNIA doc has enough to get you started with the basics of
RAP, but see also the file cifsrap2.txt which can be found on Microsoft’s aforementioned
FTP site.

7. Luke Kenneth Casson Leighton’s book DCE/RPC over SMB: Samba and Windows NT Do-
main Internals is an essential reference for CIFS developers who need to know more about
MS-RPC.

Part II SMB: The Server Message Block Protocol250

specifications and not the function internals, Microsoft could release them
without exposing their proprietary DLL source code.

Both the RAP and MS-RPC sub-protocols provide access to a large set
of features, and both are too big to be covered in detail here. Complete docu-
mentation of all of the nooks and crannies of CIFS would probably require a
set of books large enough to cause an encyclopedia to cringe in awe, so it would
seem that our attempt to clean up the mess we made with the NEGOTIATE
PROTOCOL exchange has instead created an even bigger mess and left some
permanent stains on the carpet. Ah, well. Such is the nature of CIFS.

SESSION SETUP ANDX REQUEST Data14.2

The dissection of the SMB_PARAMETERS portion of the SESSION SETUP
ANDX REQUEST cleared up a few issues and exposed a few others. Now we
get to look at the SMB_DATA block and see what further mysteries may lie
uncovered.

Fortunately, the Data block is much less daunting. It contains a few fields
used for authentication and the rest is just useful bits of information about the
client’s operating environment. The structure looks like this:

typedef struct
 {
 ushort ByteCount;
 struct
 {
 union
 {
 uchar SecurityBlob[];
 struct
 {
 uchar CaseInsensitivePassword[];
 uchar CaseSensitivePassword[];
 uchar Pad[];
 uchar AccountName[];
 uchar PrimaryDomain[];
 } non_ext_sec;
 } auth_stuff;
 uchar NativeOS[];
 uchar NativeLanMan[];
 uchar Pad2[];
 } Bytes;
 } smb_SessSetupAndx_Req_Data;

25114 Session Setup

auth_stuff

As you may by now have come to expect, the structure of the
auth_stuff field depends upon whether or not Extended Security has
been negotiated. We have shown it as a union type just to emphasize the
point. Under Extended Security, the blob will contain a structure specific
to the type of Extended Security being used. The Security-
BlobLength value in the Parameter block indicates the size (in bytes)
of the SecurityBlob.

If Extended Security has not been negotiated, the structure will
contain the following fields:

CaseInsensitivePassword and CaseSensitivePassword
If these names seem familiar it’s because the associated length fields
were in the Parameter block, described above. These fields are, of
course, used in authentication. Chapter 15 on page 257 covers au-
thentication in detail.

Pad

If Unicode is in use, then the Pad field will contain a single nul byte
(0x00) to force two-byte alignment of the following fields (which
are Unicode strings).

As you know, the Parameter block is made up of a single byte
followed by an array of zero or more words. It starts on a word
boundary, but the WordCount byte knocks it off balance, so it
never ends on a word boundary. That means that the Data block
always starts misaligned.8 Typically, that’s not considered a problem
for data in SMB messages. It is not clear why, but it seems that when
Unicode support was added to SMB it was decided that Unicode
strings should be word-aligned within the SMB message (even though
they are likely to be copied out of the message before they’re fiddled).
That’s why the Pad byte is there.

8. I vaguely remember a conversation with Tridge in which he indicated that there was an
obscure exception to the misalignment of the Data block. I’m not sure which SMB, or which
dialect, but if I recall correctly there’s one SMB that has an extra byte just before the
ByteCount field. Keep your eyes open.

Part II SMB: The Server Message Block Protocol252

Note that if Unicode support is enabled the password fields
will always contain an even number of bytes. Strange but true.
Here’s why:

On Windows server systems, plaintext passwords and Unicode
are mutually exclusive. The password hashes used for authenti-
cation are always an even number of bytes.

Unlike Windows, Samba can be configured to use plaintext
passwords and Unicode. In that configuration, the
CaseInsensitivePassword field will be empty and the
CaseSensitivePassword field will contain the password
in Unicode format — two bytes per character.

Note the subtle glitch here. If Samba is configured to send
Unicode plaintext passwords, the CaseSensitivePassword
field will not be word-aligned because the Pad byte comes afterward.
It seems that the designers of the NT LM 0.12 dialect did not con-
sider the possibility of plaintext Unicode passwords.

AccountName

This is the username field. If Unicode has been negotiated, then the
username is presented in Unicode. Otherwise, the string is converted
to uppercase and sent using the 8-bit OEM character set.

PrimaryDomain

As with the AccountName, this value is converted to uppercase
unless it is being sent in Unicode format.

Whenever possible, this field should contain the NetBIOS
name of the NT Domain to which the user belongs. Basically, it al-
lows the client to specify the NT Domain in which the username
and password are valid — the Authentication Domain. A correct
value is not always needed, however. If the server is not a member
of an NT Domain, then it will have its own authentication database,
and no Domain Controller need be consulted.

Some testing was done with Windows NT 4.0 and Windows
2000 systems that were not members of an NT Domain. As clients,
these systems sent their own NetBIOS machine names in the
PrimaryDomain field. The smbclient utility sent the work-
group name, as specified in the smb.conf file. jCIFS just sent

25314 Session Setup

a question mark. All of these variations seem to work, as long
as the server maintains its own authentication database. The
PrimaryDomain field is really only useful when authenticating
against a Domain Controller.

...and that’s the end of the auth_stuff block. On to the rest of it.

NativeOS

This string identifies the host operating system. Windows systems, of
course, will fill this field with their OS name and some revision informa-
tion. This field will be expressed in Unicode if that format has
been negotiated.

NativeLanMan

Similar to the NativeOS field, this one contains a short description of
the client SMB software. Smbclient fills this field with the name
“Samba.” jCIFS used to just say “foo” here, but starting with release
0.7.0beta10 it says “jCIFS.” The successful use of “foo” demonstrates,
however, that the field is not used for anything critical on the server side.
Just error reporting, most likely.

Email

 From: Gerald (Jerry) Carter
 To: Chris Hertel
Subject: NativeLanMan

Note that NT4 misaligns the NativeLanMan string by one byte
(see Ethereal for details). Also note that Samba uses this
string to distinguish between W2K/XP/2K3 for the %a smb.conf
variable. So it is used by the server in some cases.

Pad2

Some systems add one or two extra nul bytes at the end of the SESSION
SETUP. Not all clients do this; it appears to be more common if Unicode
has been negotiated. The extra bytes pad the end of the SESSION
SETUP to the next word boundary. If these bytes are present, they are
generally included in the total count given in the ByteCount field.

Part II SMB: The Server Message Block Protocol254

We have done a lot of work ripping apart packet structures and studying
the internal organs. Don’t worry, that’s the last of it. You should be familiar
enough with this stuff by now, so from here on out we will rely on the SNIA
doc and packet traces to provide the gory details.

Don't Know When to Quit Alert
Some of the Windows systems that were tested did not place the correct number of
nul bytes at the ends of some Unicode strings. Consider, for example, this snippet from
an Ethereal capture:

0000029F 57 00 69 00 6e 00 64 00 W.i.n.d.

000002AF 6f 00 77 00 73 00 20 00 4e 00 54 00 20 00 31 00 o.w.s. . N.T. .1.

000002BF 33 00 38 00 31 00 00 00 00 00 57 00 69 00 6e 00 3.8.1... ..W.i.n.

000002CF 64 00 6f 00 77 00 73 00 20 00 4e 00 54 00 20 00 d.o.w.s. .N.T. .

000002DF 34 00 2e 00 30 00 00 00 00 00 4...0... ..

Look closely, and you will see that there are two extra nul bytes following each
of the two Unicode strings in the hex dump. Under UCS-2LE encoding, the nul string
terminator would be encoded as two nul bytes (00 00). In the sample above, however,
there are four null bytes (00 00 00 00) following the last Unicode character of
each string.

In this next excerpt, taken from a SESSION SETUP ANDX RESPONSE
SMB, it appears as though one of the terminating nul bytes at the end of the
PrimaryDomain field has been lost:

0000008F 57 00 W.

0000009F 69 00 6e 00 64 00 6f 00 77 00 73 00 20 00 35 00 i.n.d.o. w.s. .5.

000000AF 2e 00 30 00 00 00 57 00 69 00 6e 00 64 00 6f 00 ..0...W. i.n.d.o.

000000BF 77 00 73 00 20 00 32 00 30 00 30 00 30 00 20 00 w.s. .2. 0.0.0. .

000000CF 4c 00 41 00 4e 00 20 00 4d 00 61 00 6e 00 61 00 L.A.N. . M.a.n.a.

000000DF 67 00 65 00 72 00 00 00 55 00 42 00 49 00 51 00 g.e.r... U.B.I.Q.

000000EF 58 00 00 X..

The first two bytes of the last line (58 00) are the letter ‘X’ in UCS-2LE encod-
ing. They should be followed by two nul bytes... but there’s only one.

The SESSION SETUP ANDX RESPONSE SMB14.3

The SESSION SETUP ANDX RESPONSE SMB structure is described in
Section 4.1.2 of the SNIA doc.

In the NT LM 0.12 dialect, there are two versions of the SESSION
SETUP ANDX RESPONSE message. They differ, of course, based on whether
or not Extended Security is in use. In the Extended Security version the

25514 Session Setup

Parameter block has a SecurityBlobLength field, and there is an associ-
ated SecurityBlob within the Data block. These two fields are missing
from the non-Extended Security version. Other than that, the two are the same.

The SESSION SETUP ANDX RESPONSE message also has an interest-
ing little bitfield called SMB_PARAMETERS.Action. Only the low-order bit
(bit 0) of this field is defined. If set, it indicates that the username was not
recognized by the server (that is, authentication failed — no such user) but the
logon is being allowed to succeed anyway.

That’s rather odd, eh?
What it means is this: If the username (in the AccountName field) is

not recognized, the server may choose to grant anonymous or guest authorization
instead. Anonymous access typically provides only very limited access to the
server. For example, it may allow the use of a limited set of RAP function calls
such as those used for querying the Browse Service.

So, the Action bit is used to indicate that the logon attempt failed, but
anonymous access was granted instead. No error code will be returned in this
case, so the Action bit is the only indication to the client that the rules have
changed. Server-side support for this behavior is optional.

Part II SMB: The Server Message Block Protocol256

