
1st rule of Oriental Cuisine:
Never look inside the eggroll.

During that first expedition into SMB territory we continually deferred, among
other things, studying the finer details of the SMB header. We were trying to
cover the general concepts, but now we need to dig into the guts of SMB to
see how things really work. Latex gloves and lab coats required.

Let’s start by revisiting the header layout. Just for review, here’s what it
looks like:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

'B''M''S'0xff

STATUS...COMMAND

FLAGS2FLAGS..STATUS

EXTRA
...
...

PIDTID

MIDUID

12

The SMB Header
in Detail

197

The first four bytes are constant, so we won’t worry about those. The
COMMAND field is fairly straightforward too; it’s just a one byte field containing
an SMB command code. The list of available codes is given in Section 5.1 of
the SNIA doc. The rest of the header is where the fun lies...

The SMB_HEADER.STATUS Field Exposed12.1

Things get interesting starting at the STATUS field. It wouldn’t be so bad except
for the fact that there are two possible error code formats to consider. There
is the DOS and OS/2 format, and then there is the NT_STATUS format. In
C language terms, the STATUS field looks something like this:

typedef union
 {
 ulong NT_Status;
 struct
 {
 uchar ErrorClass;
 uchar reserved;
 ushort ErrorCode;
 } DosError;
 } Status;

From the client side, one way to deal with the split personality problem
is to use the DOS codes exclusively.1 These are fairly well documented (by
SMB standards), and should be supported by all SMB servers. Using DOS
codes is probably a good choice, but there is a catch... there are some
advanced features which simply don’t work unless the client negotiates
NT_STATUS codes.

Strange Behavior Alert
If the client negotiates Extended Security with a Windows 2000 server and also nego-
tiates DOS error codes, then the SESSION SETUP ANDX will fail, and return a
DOS hardware error. (!?)

1. This is exactly what jCIFS does (up through release 0.6.6 and the 0.7.0beta series). There
has been a small amount of discussion about supporting the NT_STATUS codes, but it’s not
clear whether there is any need to change.

Part II SMB: The Server Message Block Protocol198

STATUS
 {
 ErrorClass = 0x03 (Hardware Error)
 ErrorCode = 0x001F (General Error)
 }

Perhaps W2K doesn’t know which DOS error to return, and is guessing. The
bigger question is, why does this fail at all?

The same SMB conversation with the NT_STATUS capability enabled works just
fine. Perhaps, when the coders were coding that piece of code, they assumed that only
clients capable of using NT_STATUS codes would also use the Extended Security feature.
Perhaps that assumption came from the knowledge that all Windows systems that
could handle Extended Security would negotiate NT_STATUS. We can only guess...

This is one of the oddities of SMB, and another fine bit of forensic SMB research
by Andrew Bartlett of the Samba Team.

Another reason to support NT_STATUS codes is that they provide finer-
grained diagnostics, simply because there are more of them defined than there
are DOS codes. Samba has a fairly complete list of the known NT_STATUS
codes, which can be found in the samba/source/include/nterr.h
file in the Samba distribution. The list of DOS codes is in doserr.h in the
same directory.

We have already described the structure of the DOS error codes.
NT_STATUS codes also have a structure, and it looks like this:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

ErrorCodeFacility<reserved>Level

In testing, it appears as though the Facility field is always set to zero
(FACILITY_NULL) for SMB errors. That leaves us with the Level and
ErrorCode fields to provide variety... and, as we have suggested, there is
quite a bit of variety. Samba’s nterr.h file lists over 500 NT_STATUS codes,
while doserr.h lists only 99 (and some of those are repeats).

Level is one of the following:

00 == Success
01 == Information
10 == Warning
11 == Error

19912 The SMB Header in Detail

Since the next two bits (the <reserved> bits) are always zero, the highest-
order nibble will have one of the following values: 0x0, 0x4, 0x8, or 0xC.
At the other end of the longword, the ErrorCode is read as an unsigned short
(just like the DOS ErrorCode field).

The availability of Samba’s list of NT_STATUS codes makes things easy.
It took a bit of effort to generate that list, however, as most of the codes are
not documented in an accessible form. Andrew Tridgell described the method
below, which he used to generate a list of valid NT_STATUS codes. His results
were used to create the nterr.h file used in Samba.

Tridge's Trick

1. Modify the source of Samba’s smbd daemon so that whenever you try to delete
a file that matches a specific pattern it will return an NT_STATUS error code.
(Do this on a testing copy, of course. This hack is not meant for production.) For
example, return an error whenever the filename to be deleted matches
“STATUS_CODE_HACK_FILENAME.*”. Another thing to do is to include
the specific error number as the filename extension, so that the name

STATUS_CODE_HACK_FILENAME.0xC000001D

will cause Samba to return an NT_STATUS code of 0xC000001D.

2. Create the files on the server side first so you have something to delete. That is
easily done with a shell script, such as this:

#!/bin/bash
#
i=0;j=256
while [$i -lt $j]
do
 touch `printf "STATUS_CODE_HACK_FILENAME.0xC000%.4x" $i`
 i=`expr $i + 1`
done

Change the values of i and j to generate different ranges.

3. On a Windows NT or Windows 2000 system, mount the Samba share containing
the generated STATUS_CODE_HACK* files. Next, open a DOS command
shell and, one by one, delete the files. For each file, Samba should return the
specified NT_STATUS code... and Windows will interpret the code and tell you
what it means. If the code is not defined, Windows will tell you that as well.

4. If you capture the delete transactions using Microsoft’s NetMon tool, it will show
you the symbolic names that Microsoft uses for the NT_STATUS codes.

Part II SMB: The Server Message Block Protocol200

Okay, now for the next conundrum...
Servers have it tougher than clients. Consider a server that needs to re-

spond to one client using DOS error codes, and to another client using
NT_STATUS codes. That’s bad enough, but consider what happens when
that server needs to query yet another server in order to complete some opera-
tion. For example, a file server might need to contact a Domain Controller in
order to authenticate the user.

The problem is that, no matter which STATUS format the Domain
Controller uses when responding to the file server, it will be the wrong format
for one of the clients. To solve this problem the server needs to provide a
consistent mapping between DOS and NT_STATUS codes.

Windows NT and Windows 2000 both have such mappings built-in but,
of course, the details are not published (a partial list is given in Section 6 of
the SNIA doc). Andrew Bartlett used a trick similar to Tridge’s in order to
generate the required mappings. His setup uses a Samba server running as a
Primary Domain Controller (PDC), and a Windows 2000 system providing
SMB file services. A third system, running Samba’s smbtorture testing
utility, acts as the client. When the client system tries to log on to the Windows
server, Windows passes the login request to the Samba PDC.

The test works like this:

Andrew Bartlett's Trick

1. Modify Samba’s authentication code to reject login attempts for any username
beginning with “0x”. Translate the login name (e.g. “0xC000001D”) into an
NT_STATUS code, and return that in the STATUS field.

2. Configure smbtorture to negotiate DOS error codes. Aim smbtorture
at the W2K SMB server and try logging in as user 0xC0000001,
0xC0000002... etc.

3. For each login attempt from the client, the Windows SMB server will receive a
login failure message from the Samba PDC. Since smbtorture has requested
DOS error codes, the W2K pickle-in-the-middle is forced to translate the
NT_STATUS values into DOS error codes... and that’s how you discover Microsoft’s
mapping of NT_STATUS codes to DOS error codes.

The test configuration is shown in Figure 12.1.

Andrew’s test must be rerun periodically. The mappings have been known
to change when Windows service packs are installed. See the file

20112 The SMB Header in Detail

Client

W2K Server

Samba PDC

Logon:
0xC0000033

Authenticate:
0xC0000033

ubi

ERROR:
OBJECT_NAME_INVALID

ERROR:
 {ERRDOS,
 ERRinvalidname}

Figure 12.1: Andrew Bartlett’s test configuration

The polite way to ask Windows for its NT_STATUS-to-DOS error code mappings.
The client sends a logon request to the W2K server, which forwards it to the Samba

PDC. The PDC rejects the login, using the Username as the NT_STATUS code. The client
requested DOS error codes, so the W2K system must translate.

samba/source/libsmb/errormap.c in the Samba distribution for
more fun and adventure.2

The FLAGS and FLAGS2 Fields Tell All12.2

Most (but not all) of the bits in the older FLAGS field are of interest only to
older servers. They represent features that have been superseded by newer fea-
tures in newer servers. It would be nice if all of the old stuff would just go away

2. After all that work... Sometime around August of 2002, Microsoft posted a bit of documen-
tation listing the DOS error codes that they have defined. Not all are used in CIFS, but it’s a
nice list to have. In addition, they have documented an NTDLL.DLL function that converts
DOS error codes into NT_STATUS codes. (Thanks to Jeremy for finding these.)

Part II SMB: The Server Message Block Protocol202

so that we wouldn’t have to worry about it. It does seem, in fact, as though
this is slowly happening. (Maybe it would be better if the old stuff stayed and
the new stuff had never happened. Hmmm...)

In any case, this next table presents the FLAGS bits in order of descending
significance — the opposite of the order used in the SNIA doc. English
speaking people tend to read from left to right and from top to bottom, so it
seems logical (as this book is, more or less, written in English)3 to transpose
the left-to-right order into a top-to-bottom table.

SMB_HEADER.FLAGS

DescriptionName / Bitmask / ValuesBit

What an awful name! On DOS, OS/2, and
Windows systems, the client is built into the
operating system and is called a “redirector,”
which is where the “SERVER_TO_REDIR”
part of the name comes from. Basically,
though, this is simply the reply flag.

SMB_FLAGS_SERVER_TO_REDIR

0x80
0: request
1: reply

7

Obsolete.
If bit 5 is set, then bit 6 is the “batch

OpLock” (aka OPBATCH) bit. Bit 6 should
be clear if bit 5 is clear.

In a request from the client, this bit is
used to indicate whether the client wants an
exclusive OpLock (0) or a batch OpLock (1).
In a response, this bit indicates that the server
has granted the batch OpLock.

OpLocks (opportunistic locks) will be
covered later.

This bit is only used in the deprecated
SMB_COM_OPEN, SMB_COM_CREATE, and
SMB_COM_CREATE_NEW SMBs. It should
be zero in all other SMBs.

SMB_FLAGS_REQUEST_BATCH_OPLOCK

0x40
0: Exclusive
1: Batch

6

3. The English language is Copyright © 1597 by William Shakespeare & Co., used by permis-
sion. All rights deserved.

20312 The SMB Header in Detail

SMB_HEADER.FLAGS

DescriptionName / Bitmask / ValuesBit

The SMB_COM_OPEN_ANDX SMB has a
separate set of flags that handle OpLock
requests, as does the
SMB_COM_NT_CREATE_ANDX SMB.

Obsolete.
This is the “OpLock” bit. If this bit is

set in a request, it indicates that the client
wants to obtain an OpLock. If set in the reply,
it indicates that the server has granted the
OpLock.

OpLocks (opportunistic locks) will be
covered later.

This bit is only used in the deprecated
SMB_COM_OPEN, SMB_COM_CREATE, and
SMB_COM_CREATE_NEW SMBs. It should
be zero in all other SMBs. The
SMB_COM_OPEN_ANDX SMB has a separate
set of flags that handle OpLock requests, as
does the SMB_COM_NT_CREATE_ANDX
SMB. (Sigh.)

SMB_FLAGS_REQUEST_OPLOCK

0x20
0: no OpLock
1: OpLock

5

Obsolete.
This was supposed to be used to indicate

whether or not pathnames in SMB messages
were mapped to their “canonical” form. Thing
is, it doesn’t do much good to write a client
or server that doesn’t map names to the
canonical form (which is basically DOS,
OS/2, or Windows compatible). This bit
should always be set (1).

SMB_FLAGS_CANONICAL_PATHNAMES

0x10
0: Host format
1: Canonical

4

Part II SMB: The Server Message Block Protocol204

SMB_HEADER.FLAGS

DescriptionName / Bitmask / ValuesBit

When this bit is clear (0), pathnames should
be treated as case-sensitive. When the bit is
set, pathnames are considered caseless.

All good in theory. The trouble is that
some systems assume caseless pathnames no
matter what the state of this bit. Best practice
on the client side is to leave this bit set (1)
and always assume caseless pathnames.

SMB_FLAGS_CASELESS_PATHNAMES

0x08
0: case-sensitive
1: caseless

3

<Reserved> (must be zero).
...well, sort of. This bit is clearly listed

as “Reserved (must be zero)” in both the
SNIA and the X/Open docs, yet the latter
contains some odd references to optionally
using this bit in conjunction with OpLocks.
It’s probably a typo. Best bet is to clear it (0)
and leave it alone.

0x042

Obsolete.
This was probably useful with other

transports, such as NetBEUI. If the client sets
this bit, it is telling the server that it has
already posted a buffer to receive the server’s
response. The expired Leach/Naik Internet
Draft says that this allows a “send without
acknowledgment” from the server.

This bit should be clear (0) for use with
NBT and naked TCP transports.

SMB_FLAGS_CLIENT_BUF_AVAIL

0x02
0: Not posted
1: Buffer posted

1

Obsolete.
If this bit is set in the SMB NEGOTIATE

PROTOCOL RESPONSE, then the server
supports the deprecated
SMB_COM_LOCK_AND_READ and
SMB_COM_WRITE_AND_UNLOCK SMBs.
Unless you are implementing outdated
dialects, this bit should be clear (0).

SMB_FLAGS_SUPPORT_LOCKREAD

0x01
0: Not supported
1: Supported

0

20512 The SMB Header in Detail

The NEGOTIATE PROTOCOL REQUEST that we dissected back in
Section 11.3 on page 186 shows only the SMB_FLAGS_CANONICAL_PATH-
NAMES and SMB_FLAGS_CASELESS_PATHNAMES bits set, which is probably
the best thing for new implementations to do. Testing with other clients may
reveal other workable combinations.

Now let’s take a look at the newer flags in the FLAGS2 field.

SMB_HEADER.FLAGS2

DescriptionName / Bitmask / ValuesBit

If set (1), this bit indicates that string fields
within the SMB message are encoded using a
two-byte, little endian Unicode format. The
SNIA doc says that the format is UTF-16LE
but some folks on the Samba Team say it’s
really UCS-2LE. The latter is probably correct,
but it may not matter as both formats are
probably the same for the Basic Multilingual
Plane. Doesn’t Unicode sound like fun?4

If clear (0), all strings are in 8-bit ASCII
format (by which we actually mean 8-bit OEM
character set format).

SMB_FLAGS2_UNICODE_STRINGS

0x8000
0: ASCII
1: Unicode

15

Indicates whether the STATUS field is in DOS
or NT_STATUS format. This may also be
used to help the server guess which format the
client prefers before it has actually been
negotiated.

SMB_FLAGS2_32BIT_STATUS

0x4000
0: DOS error code
1: NT_STATUS code

14

A quirky little bit this. If set (1), it indicates
that execute permission on a file also grants
read permission. It is only useful in read
operations.

SMB_FLAGS2_READ_IF_EXECUTE

0x2000
0: Execute != Read
1: Execute confers Read

13

4. One of the reasons that the jCIFS project was started is that Java has built-in Unicode
support, which solves a lot of problems. That, plus the native threading model and a few other
features, made an SMB implementation in Java very tempting. Support for Unicode in a CIFS
implementation is not really optional any more except, perhaps, in the simplest of client systems.
Unfortunately, Unicode is way beyond the scope of this book. See the References section for
some web links to get you started with Unicode.

Part II SMB: The Server Message Block Protocol206

SMB_HEADER.FLAGS2

DescriptionName / Bitmask / ValuesBit

This is used with the Distributed File System
(DFS), which we haven’t covered yet. If this
bit is set (1), it indicates that the client knows
about DFS, and that the server should resolve
any UNC names in the SMB message by
looking in the DFS namespace. If this bit is
clear (0), the server should not check the DFS
namespace.

SMB_FLAGS2_DFS_PATHNAME

0x1000
0: Normal pathname
1: DFS pathname

12

If set (1), this bit indicates that the sending
node understands Extended Security. We’ll
touch on this again when we discuss
authentication.

SMB_FLAGS2_EXTENDED_SECURITY

0x0800
0: Normal security
1: Extended security

11

<Reserved> (must be zero)0x040010

<Reserved> (must be zero)0x02009

<Reserved> (must be zero)0x01008

<Reserved> (must be zero)0x00807

If set (1), then any pathnames that the SMB
contains are long pathnames, else the
pathnames are in 8.3 format. Any new CIFS
implementation really should support long
names.

SMB_FLAGS2_IS_LONG_NAME

0x0040
0: 8.3 format
1: Long names

6

<Reserved> (must be zero)0x00205

<Reserved> (must be zero)0x00104

<Reserved> (must be zero)0x00083

If set, the SMB contains a Message
Authentication Code (MAC). The MAC is used
to authenticate each packet in a session, to
prevent various attacks.

SMB_FLAGS2_SECURITY_SIGNATURE

0x0004
0: No signature
1: Message Authentication Code

2

20712 The SMB Header in Detail

SMB_HEADER.FLAGS2

DescriptionName / Bitmask / ValuesBit

Indicates that the client understands Extended
Attributes.

Note that the SNIA doc talks about
“Extended Attributes” and about “Extended
File Attributes.” These are two completely
different concepts. Extended Attributes are a
feature of OS/2. They are mentioned in
Section 1.1.6 (page 2) of the SNIA doc and
explained in better detail on page 87. Extended
File Attributes are described in Section 3.13
(page 30) of the SNIA doc.

The SMB_FLAGS2_EAS bit deals with
Extended Attribute support.

SMB_FLAGS2_EAS

0x0002
0: No EAs
1: Extended Attributes

1

Set by the client to let the server know that
long names are acceptable in the response.

SMB_FLAGS2_KNOWS_LONG_NAMES

0x0001
0: Client wants 8.3
1: Long pathnames okay

0

Some of the flags are used to modify the interpretation of the SMB mes-
sage, while others are used to negotiate features. Some do both. It may take
some experimentation to find the safest way to handle these bits. Implementa-
tions are not consistent, so new code must be fine-tuned.

You may need to refer back to these tables as we dig further into the de-
tails. Note that the constant names listed above may not match those in the
SNIA doc, or those in other docs or available source code. There doesn’t seem
to be a lot of agreement on the names.

EXTRA! EXTRA! Read All About It!12.3

Um, actually we are going to delay covering the EXTRA field yet again.
EXTRA.PidHigh will be thrown in with the PID field, and
EXTRA.Signature will be handled as part of authentication.

Part II SMB: The Server Message Block Protocol208

TID and UID: Separated at Birth?12.4

It would seem logical that the [V]UID and TID fields would be somehow relat-
ed. Both are assigned and managed by the server, and we said before that the
SESSION SETUP (where the logon occurs) is supposed to happen before the
TREE CONNECT.

Well, put all that aside and pay attention to this little story...

Storytime
Once upon a time there were many, many magic kingdoms taking up office space in
cities and towns around the world. In each of these magic kingdoms there were lots of
overpaid advisors called VeePees. The VeePees were all jealous of one another, but they
were more jealous of the underpaid wizards in the IT department who had power over
the data and could work spells and make the numbers come out all right.

Then, one day, evil marketing magicians appeared and convinced the VeePees
that they could steal all of the power away from the wizards of IT and have it for
themselves. To do this, the only thing the VeePees would need was a magic box called
a PeeCee (the name appealed to the VeePees). PeeCees, of course, were not cheap
but the lure of power was great and the marketing magicians knew that the VeePees
had control of the budget.

Soon, the wizards of IT discovered that their supplies of mag-tapes and 8-inch
floppies were dwindling, and that no one had bothered to update the service contracts
on their VAXes. Worse, the VeePees started taunting them, saying “We don’t need you
any more. We have spreadsheets.” The wise wizards of IT smiled quietly, went back
to their darkened cubicles, and entertained themselves by implementing EMACS in
TECO macro language. They did not seem at all surprised when the VeePees showed
up asking questions like “What happens if I format C-colon?” and “Should I Abort,
Retry, or — um — Fail?” The wizards understood what the VeePees did not: With
power there must be equal measures of knowledge and understanding, otherwise the
power will consume the data — and the user.

The marketing magicians, seeing that their golden goose was molting, came up
with a bold plan. They conjured up a LAN system and connected it to a shiny new file-
server, which they gave to the IT wizards. At first, the wizards were delighted by the
wonderful new server and the beautiful strands of network cable running all over the
kingdom. They quickly realized, however, that they had been tricked. The client/server
architecture had effectively separated authority from responsibility, and the wizards
were left with only the latter.

...and so it is unto this very day. The VeePees and their minions have their PeeCees
and hold the power of the data, but they remain under the influence of the sinister
marketing magicians. The wizards of IT are still underpaid, have little or no say when
decisions are made, and are held responsible and told to clean up the mess whenever
anything goes wrong. A wholly dysfunctional arrangement.

20912 The SMB Header in Detail

So what the purplebananafish does this have to do with TIDs and UIDs?
Well, see, it’s like this...

Early corporate LANs, such as those in our story, were small and self-
contained. The driving goal was to make sure that the data was available to
everyone in the office who could legitimately claim to need access. Security
was not considered a top priority, so PC OSes (e.g. DOS) did not support
complicated minicomputer features like user-based authentication. Given the
environment, it is not surprising that the authentication system originally built
into SMB was (by today’s standards) quite primitive. Passwords, if they were
used at all, were assigned to shares — not users — and everyone who wanted
to access the same share would use the same password.

This early form of SMB authentication is now known as “Share Level”
security. It does not include the concept of user accounts, so the UID field is
always zero. The password is included in the TREE CONNECT message, and
a valid TID indicates a successfully authenticated connection. In fact, though
the UID field is listed in the SMB message format layout described in the an-
cient COREP.TXT scrolls, it is not mentioned again anywhere else in that docu-
ment. There is no mention of a SESSION SETUP message either.

There are some interesting tricks that add a bit of flexibility to Share
Level security. For example, a single share may have multiple passwords as-
signed, each granting different access rights. It is fairly common, for instance,
to assign separate passwords for read-only vs. read/write access to a share.

Another interesting fudge is often used to provide access to user home
directories. The server (which, in this case, understands user-based authentica-
tion even if the protocol and/or client do not) simply offers usernames as share
names. When a user connects to the share matching their username, they give
their own login password. The server then checks the username/password pair
using its normal account validation routines. Thus, user-based authentication
can be mapped to Share Level security (see Figure 12.2).

MARX

\\MARX\ZEPPO
\\MARX\KARL

\\MARX\CHICO
\\MARX\GROUCHO
\\MARX\HARPO

Figure 12.2: User-based authentication via Share Level security

Each share name maps to a username (Chico, Groucho, etc.). The server will accept the user’s
logon password as the TREE CONNECT password.

Part II SMB: The Server Message Block Protocol210

Share Level security, though still used, is considered deprecated. It has
been replaced with “User Level” security which, of course, makes use of user-
name/password instead of sharename/password pairs.

Under User Level security, the SESSION SETUP is performed as the
authentication step before any TREE CONNECT requests may be sent. If the
logon succeeds, the server will assign a valid (non-zero) UID. Subsequent TREE
CONNECT attempts can use the UID as an authentication token when requesting
access to a share. If User Level security is in use, the password field in the TREE
CONNECT message will be blank.

So, with User Level security, the client must authenticate to get a valid
UID, and then present the UID to gain access to shares. Thing is, more than
one UID may be generated within a single connection, and the UID used to
connect to the share does not need to be the same as the one used to access
files within the share.

PID and MID Revealed12.5

Simply put:

a PID identifies a client process,

a [PID, MID] pair identifies a thread within a process.

That’s the idea, anyway. The client provides values for these fields when
it sends a request to the server, and the server is supposed to echo the values
back in the response. That way, the client can match the reply to the
original request.

Some systems (such as Windows and OS/2) multiplex all of the SMB
traffic between a client and a server over a single TCP connection. If the client
OS is multi-tasking there may be several active SMB sessions running concur-
rently, so there may be several requests outstanding at any given time. The
SMB conversations are all intertwined, so the client needs a way to sort out
the replies and hand them off to the correct thread within the correct process
(see Figure 12.3).

The PID field is also used to maintain the semantics of local file I/O.
Think about a simple program, like the one in Listing 12.1 which opens a file
in read-only mode and dumps the contents. Consider, in particular, the call
to the open() function, which returns a file descriptor. File descriptors are

21112 The SMB Header in Detail

Operating
System

Client

SMB
I/O

Server

SMB
I/O

TCP/IP
Connection

Process 1066
T0

Process 11

T0 T1

Process 10972
T0 T1 T2

Figure 12.3: Multiplexing SMB over a single TCP connection

Instead of opening individual TCP connections, one per process, some systems multiplex all
SMB traffic to a given server over a single connection. (T0, T1, etc. are threads within
a process.)

maintained on a per-process basis — that is, each process has its own private
set. The descriptor is an integer used by the operating system to identify an
internal record that keeps track of lots of information about the open file,
such as:

Is the file open for reading, writing, or both?

What is the current file pointer offset within the file?

Do we have any locks on the file?

Listing 12.1: Quick dump

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

Part II SMB: The Server Message Block Protocol212

#define bSIZE 1024

int main(int argc, char *argv[])
 /* -- **
 * Copy file contents to stdout.
 * -- **
 */
 {
 int fd_in;
 int fd_out;
 ssize_t count;
 char bufr[bSIZE];

 if(argc != 2)
 {
 (void)fprintf(stderr,
 "Usage: %s <filename>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 fd_in = open(argv[1], O_RDONLY);
 if(fd_in < 0)
 {
 perror("open()");
 exit(EXIT_FAILURE);
 }
 fd_out = fileno(stdout);

 do
 {
 count = read(fd_in, bufr, bSIZE);
 if(count > 0)
 count = write(fd_out, bufr, (size_t)count);
 } while(bSIZE == count);

 if(count < 0)
 {
 perror("read()/write()");
 exit(EXIT_FAILURE);
 }

 (void)close(fd_in);
 exit(EXIT_SUCCESS);
 } /* main */

21312 The SMB Header in Detail

Now take all of that and stretch it out across a network. The files physi-
cally reside on the server and information about locks, offsets, etc. must be
kept on the server side. The process that has opened the files, however, resides
on the client and all of the file status information is relevant within the context
of that process. That brings us back to what we said before: The PID identifies
a client process. It lets the server keep track of client context, and associate it
correctly with the right customer when the requests come rolling in.

Further complicating things, some clients support multiple threads run-
ning within a process. Threads share context (memory, file descriptors, etc.)
with their sister threads within the same process, but each thread may generate
SMB traffic all on its own. The MID field is used to make sure that server replies
get back to the thread that sent the request. The server really doesn’t do much
with the MID. It just echoes it back to the client so, in fact, the client could
make whatever use it wanted of the MID field. Using it as a thread identifier is
probably the most practical thing to do.

There is an important rule which the client should obey with regard to
the MID and PID fields: only one SMB request should ever be outstanding per
[PID, MID] pair per connection. The reason for this rule is that the client will
generally need to know the result of a request before sending the next request,
especially if an error occurred. The problems which might result should this
rule be broken probably depend upon the server, but defensive programming
practices would suggest avoiding trouble.

EXTRA.PidHigh Dark Secrets Uncovered12.5.1

Earlier on we promised to cover the EXTRA.PidHigh field. Well, a promise
is a promise...

The PidHigh field is supposed to be a PID extension, allowing the use
of 32-bit rather than 16-bit values as process identifiers. As with all extensions,
however, there is the basic problem of backward compatibility.

In this case, trouble shows up if (and only if) the client supports 32-bit
process IDs but the server does not. In that situation, the client must have a
mechanism for mapping 32-bit process IDs to 16-bit values that can fit into
the PID field. It doesn’t need to be an elaborate mapping scheme, and it is
unlikely that there will be 64K client processes talking to the same server at
the same time, so it should be a simple problem to solve.

Part II SMB: The Server Message Block Protocol214

Since that mapping mechanism needs to be in place in order for the client
to work with servers that don’t support the PidHigh field, there’s no reason
to use 32-bit process IDs at all. In testing, it appears as though the PidHigh
field is, in fact, always zero (except in some obscure security negotiations that
are still not completely understood). Best bet, leave it zero.

SMB Header Final Report12.6

Code...
The next Listing 12.2 provides support for reading and writing SMB

message headers. Most of the header fields are simple integer values, so we can
use the smb_Set*() and smb_Get*() functions from Listing 11.1 to move
the data in and out of the header buffer. To make subsequent code easier to
read, we provide a set of macros with nice clear names to front-end the function
calls and assignments that are actually used.

Listing 12.2a: SMB Header [De]Construction: MB_Header.h

/* SMB Headers are always 32 bytes long.
 */
#define SMB_HDR_SIZE 32

/* FLAGS field bitmasks.
 */
#define SMB_FLAGS_SERVER_TO_REDIR 0x80
#define SMB_FLAGS_REQUEST_BATCH_OPLOCK 0x40
#define SMB_FLAGS_REQUEST_OPLOCK 0x20
#define SMB_FLAGS_CANONICAL_PATHNAMES 0x10
#define SMB_FLAGS_CASELESS_PATHNAMES 0x08
#define SMB_FLAGS_RESERVED 0x04
#define SMB_FLAGS_CLIENT_BUF_AVAIL 0x02
#define SMB_FLAGS_SUPPORT_LOCKREAD 0x01
#define SMB_FLAGS_MASK 0xFB

/* FLAGS2 field bitmasks.
 */
#define SMB_FLAGS2_UNICODE_STRINGS 0x8000
#define SMB_FLAGS2_32BIT_STATUS 0x4000
#define SMB_FLAGS2_READ_IF_EXECUTE 0x2000
#define SMB_FLAGS2_DFS_PATHNAME 0x1000
#define SMB_FLAGS2_EXTENDED_SECURITY 0x0800

21512 The SMB Header in Detail

#define SMB_FLAGS2_RESERVED_01 0x0400
#define SMB_FLAGS2_RESERVED_02 0x0200
#define SMB_FLAGS2_RESERVED_03 0x0100
#define SMB_FLAGS2_RESERVED_04 0x0080
#define SMB_FLAGS2_IS_LONG_NAME 0x0040
#define SMB_FLAGS2_RESERVED_05 0x0020
#define SMB_FLAGS2_RESERVED_06 0x0010
#define SMB_FLAGS2_RESERVED_07 0x0008
#define SMB_FLAGS2_SECURITY_SIGNATURE 0x0004
#define SMB_FLAGS2_EAS 0x0002
#define SMB_FLAGS2_KNOWS_LONG_NAMES 0x0001
#define SMB_FLAGS2_MASK 0xF847

/* Field offsets.
 */
#define SMB_OFFSET_CMD 4
#define SMB_OFFSET_NTSTATUS 5
#define SMB_OFFSET_ECLASS 5
#define SMB_OFFSET_ECODE 7
#define SMB_OFFSET_FLAGS 9
#define SMB_OFFSET_FLAGS2 10
#define SMB_OFFSET_EXTRA 12
#define SMB_OFFSET_TID 24
#define SMB_OFFSET_PID 26
#define SMB_OFFSET_UID 28
#define SMB_OFFSET_MID 30

/* SMB command codes are given in the
 * SNIA doc.
 */

/* Write a command byte to the header buffer.
 */
#define smb_hdrSetCmd(bufr, cmd) \
 (bufr)[SMB_OFFSET_CMD] = (cmd)

/* Read a command byte; returns uchar.
 */
#define smb_hdrGetCmd(bufr) \
 (uchar)((bufr)[SMB_OFFSET_CMD])

/* Write a DOS Error Class to the header buffer.
 */
#define smb_hdrSetEclassDOS(bufr, Eclass) \
 (bufr)[SMB_OFFSET_ECLASS] = (Eclass)

Part II SMB: The Server Message Block Protocol216

/* Read a DOS Error Class; returns uchar.
 */
#define smb_hdrGetEclassDOS(bufr) \
 (uchar)((bufr)[SMB_OFFSET_ECLASS])

/* Write a DOS Error Code to the header buffer.
 */
#define smb_hdrSetEcodeDOS(bufr, Ecode) \
 smb_SetShort(bufr, SMB_OFFSET_ECODE, Ecode)

/* Read a DOS Error Code; returns ushort.
 */
#define smb_hdrGetEcodeDOS(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_ECODE)

/* Write an NT_STATUS code.
 */
#define smb_hdrSetNTStatus(bufr, nt_status) \
 smb_PutLong(bufr, SMB_OFFSET_NTSTATUS, nt_status)

/* Read an NT_STATUS code; returns ulong.
 */
#define smb_hdrGetNTStatus(bufr) \
 smb_GetLong(bufr, SMB_OFFSET_NTSTATUS)

/* Write FLAGS to the header buffer.
 */
#define smb_hdrSetFlags(bufr, flags) \
 (bufr)[SMB_OFFSET_FLAGS] = (flags)

/* Read FLAGS; returns uchar.
 */
#define smb_hdrGetFlags(bufr) \
 (uchar)((bufr)[SMB_OFFSET_FLAGS])

/* Write FLAGS2 to the header buffer.
 */
#define smb_hdrSetFlags2(bufr, flags2) \
 smb_SetShort(bufr, SMB_OFFSET_FLAGS2, flags2)

/* Read FLAGS2; returns ushort.
 */
#define smb_hdrGetFlags2(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_FLAGS2)

21712 The SMB Header in Detail

/* Write the TID.
 */
#define smb_hdrSetTID(bufr, TID) \
 smb_SetShort(bufr, SMB_OFFSET_TID, TID)

/* Read the TID; returns ushort.
 */
#define smb_hdrGetTID(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_TID)

/* Write the PID.
 */
#define smb_hdrSetPID(bufr, PID) \
 smb_SetShort(bufr, SMB_OFFSET_PID, PID)

/* Read the PID; returns ushort.
 */
#define smb_hdrGetPID(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_PID)

/* Write the [V]UID.
 */
#define smb_hdrSetUID(bufr, UID) \
 smb_SetShort(bufr, SMB_OFFSET_UID, UID)

/* Read the [V]UID; returns ushort.
 */
#define smb_hdrGetUID(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_UID)

/* Write the MID.
 */
#define smb_hdrSetMID(bufr, MID) \
 smb_SetShort(bufr, SMB_OFFSET_MID, MID)

/* Read the MID; returns ushort.
 */
#define smb_hdrGetMID(bufr) \
 smb_GetShort(bufr, SMB_OFFSET_MID)

/* Function prototypes.
 */

Part II SMB: The Server Message Block Protocol218

int smb_hdrInit(uchar *bufr, int bsize);
 /* -- **
 * Initialize an empty header structure.
 * Returns -1 on error, the SMB header size on success.
 * -- **
 */

int smb_hdrCheck(uchar *bufr, int bsize);
 /* -- **
 * Perform some quick checks on a received buffer to
 * make sure it's safe to read. This function returns
 * a negative value if the SMB header is invalid.
 * -- **
 */

Listing 12.2b: SMB Header [De]Construction: MB_Header.c

#include "smb_header.h"

const char *smb_hdrSMBString = "\xffSMB";

int smb_hdrInit(uchar *bufr, int bsize)
 /* -- **
 * Initialize an empty header structure.
 * Returns -1 on error, the SMB header size on success.
 * -- **
 */
 {
 int i;

 if(bsize < SMB_HDR_SIZE)
 return(-1);

 for(i = 0; i < 4; i++)
 bufr[i] = smb_hdrSMBString[i];
 for(i = 4; i < SMB_HDR_SIZE; i++)
 bufr[i] = '\0';

 return(SMB_HDR_SIZE);
 } /* smb_hdrInit */

21912 The SMB Header in Detail

int smb_hdrCheck(uchar *bufr, int bsize)
 /* -- **
 * Perform some quick checks on a received buffer to
 * make sure it's safe to read. This function returns
 * a negative value if the SMB header is invalid.
 * -- **
 */
 {
 int i;

 if(NULL == bufr)
 return(-1);

 if(bsize < SMB_HDR_SIZE)
 return(-2);

 for(i = 0; i < 4; i++)
 if(bufr[i] != smb_hdrSMBString[i])
 return(-3);

 return(SMB_HDR_SIZE);
 } /* smb_hdrCheck */

The smb_hdrInit() and smb_hdrCheck() functions are there
primarily to ensure that the SMB headers are reasonably sane. They check for
things like the buffer size, and ensure that the “\xffSMB” string is included
correctly in the header buffer.

Note that none of these functions or macros handle the reading and
writing of the four-byte session header, though that would be trivial. The
SESSION MESSAGE header is part of the transport layer, not SMB. It is
handled as a simple network-byte-order longword; something from the NBT
Session Service that has been carried over into naked transport. (We covered
all this back in Chapter 6 on page 129 and Section 8.2 on page 150.)

Part II SMB: The Server Message Block Protocol220

