
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136624097
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136624097
https://plusone.google.com/share?url=http://www.informit.com/title/9780136624097
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136624097
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136624097/Free-Sample-Chapter

Building a
Future-Proof Cloud
Infrastructure
A Unified Architecture for Network,
Security, and Storage Services

Silvano Gai

With Contributions by

Roger Andersson,

Diego Crupnicoff, and Vipin Jain

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or

in all capitals.

The author and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connection

with or arising out of the use of the information or programs contained herein.

Microsoft and/or its respective suppliers make no representations about the suitability of the

information contained in the documents and related graphics published as part of the services

for any purpose. All such documents and related graphics are provided “as is” without

warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties

and conditions with regard to this information, including all warranties and conditions of

merchantability, whether express, implied or statutory, fitness for a particular purpose, title

and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable

for any special, indirect or consequential damages or any damages whatsoever resulting

from loss of use, data or profits, whether in an action of contract, negligence or other

tortious action, arising out of or in connection with the use or performance of information

available from the services. The documents and related graphics contained herein could

include technical inaccuracies or typographical errors. Changes are periodically added to

the information herein. Microsoft and/or its respective suppliers may make improvements

and/or changes in the product(s) and/or the program(s) described herein at any time. Partial

screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the

U.S.A. and other countries. Screenshots and icons reprinted with permission from the

Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the

Microsoft Corporation.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to your

business, training goals, marketing focus, or branding interests), please contact our corporate

sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019956931

Copyright © 2020 Silvano Gai

Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be

obtained from the publisher prior to any prohibited reproduction, storage in a retrieval

system, or transmission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. For information regarding permissions, request forms, and the

appropriate contacts within the Pearson Education Global Rights & Permissions Department,

please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-662409-7

ISBN-10: 0-13-662409-X

ScoutAutomatedPrintCode

Editor-in-Chief
Mark Taub

Product Manager
James Manly

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Copy Editor
Paula Lowell

Production Manager
Vaishnavi/codeMantra

Indexer
Erika Millen

Proofreader
Abigail Manheim

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

To the women in my family: Antonella, Eleonora,
Evelina, and Carola;

and to Jacopo

This page intentionally left blank

v

Contents at a Glance
 Preface . xix

Chapter 1 Introduction to Distributed Platforms . 2

Chapter 2 Network Design . 10

Chapter 3 Virtualization . 34

Chapter 4 Network Virtualization Services . 62

Chapter 5 Security Services . 84

Chapter 6 Distributed Storage and RDMA Services . 100

Chapter 7 CPUs and Domain-Specific Hardware . 130

Chapter 8 NIC Evolution . 142

Chapter 9 Implementing a DS Platform . 156

Chapter 10 DSN Hardware Architectures . 174

Chapter 11 The P4 Domain-Specific Language . 190

Chapter 12 Management Architectures for DS Platforms . 204

 Index . 230

vi Table of Contents

Contents
Preface ... xix

Chapter 1: Introduction to Distributed Platforms 2

1.1 The Need for a Distributed Services Platform ...3

1.2 The Precious CPU Cycles ..4

1.3 The Case for Domain-Specific Hardware ..4

1.4 Using Appliances ...5

1.5 Attempts at Defining a Distributed Services Platform ...6

1.6 Requirements for a Distributed Services Platform ..7

1.7 Summary ..9

Chapter 2: Network Design 10

2.1 Bridging and Routing ...11

2.1.1 L2 Forwarding ...12

2.1.2 L3 Forwarding ...12

2.1.3 LPM Forwarding in Hardware ..13

2.1.4 VRF ..14

2.2 Clos Topology ..14

2.3 Overlays ...16

2.3.1 IP in IP ...18

2.3.2 GRE ...18

2.3.3 Modern Encapsulations ..19

2.3.4 VXLAN ...19

2.3.5 MTU Considerations ...22

2.4 Secure Tunnels ..22

2.5 Where to Terminate the Encapsulation ..23

2.6 Segment Routing ...23

viiTable of Contents

2.7 Using Discrete Appliance for Services ..25

2.7.1 Tromboning with VXLAN ...25

2.7.2 Tromboning with VRF ..26

2.7.3 Hybrid Tromboning ..27

2.8 Cache-Based Forwarding ..27

2.9 Generic Forwarding Table ..29

2.10 Summary ..30

2.11 Bibliography ...30

Chapter 3: Virtualization 34

3.1 Virtualization and Clouds ...35

3.2 Virtual Machines and Hypervisors ...37

3.2.1 VMware ESXi ...40

3.2.2 Hyper-V ...41

3.2.3 QEMU ..43

3.2.4 KVM ...43

3.2.5 XEN..46

3.3 Containers ...47

3.3.1 Docker and Friends ...48

3.3.2 Kata Containers ...49

3.3.3 Container Network Interface ...49

3.3.4 Kubernetes ..50

3.4 The Microservice Architecture ...52

3.4.1 REST API ...54

3.4.2 gRPC ...54

3.5 OpenStack ...55

3.6 NFV ..57

3.7 Summary ..58

3.8 Bibliography ...58

viii Table of Contents

Chapter 4: Network Virtualization Services 62

4.1 Introduction to Networking Services ...62

4.2 Software-Defined Networking ...63

4.2.1 OpenFlow ..64

4.2.2 SD-WAN ..66

4.2.3 gRIBI ..67

4.2.4 Data Plane Development Kit (DPDK) ...68

4.3 Virtual Switches ...69

4.3.1 Open vSwitch (OVS) ..70

4.3.2 tc-flower ..73

4.3.3 DPDK RTE Flow Filtering ...74

4.3.4 VPP (Vector Packet Processing) ..75

4.3.5 BPF and eBPF ...76

4.3.6 XDP ...76

4.3.7 Summary on Virtual Switches ...78

4.4 Stateful NAT ...79

4.5 Load Balancing ..79

4.6 Troubleshooting and Telemetry ..80

4.7 Summary ..82

4.8 Bibliography ...82

Chapter 5: Security Services 84

5.1 Distributed Firewalls ..85

5.2 Microsegmentation ..86

5.3 TLS Everywhere ...87

5.4 Symmetric Encryption ...89

5.5 Asymmetric Encryption ..89

5.6 Digital Certificates ..90

5.7 Hashing ..90

ixTable of Contents

5.8 Secure Key Storage ...90

5.9 PUF ..91

5.10 TCP/TLS/HTTP Implementation ..91

5.11 Secure Tunnels ..92

5.11.1 IPsec ..92

5.11.2 TLS ..93

5.11.3 DTLS ..94

5.12 VPNs ..94

5.13 Secure Boot ...97

5.14 Summary ..97

5.15 Bibliography ...98

Chapter 6: Distributed Storage and RDMA Services 100

6.1 RDMA and RoCE ...103

6.1.1 RDMA Architecture Overview ..106

6.1.2 RDMA Transport Services ...108

6.1.3 RDMA Operations ...108

6.1.4 RDMA Scalability ...109

6.1.5 RoCE ...109

6.1.6 RoCE vs iWARP ..110

6.1.7 RDMA Deployments ..110

6.1.8 RoCEv2 and Lossy Networks ..112

6.1.9 Continued Evolution of RDMA ..117

6.2 Storage ..119

6.2.1 The Advent of SSDs ..119

6.2.2 NVMe over Fabrics ..120

6.2.3 Data Plane Model of Storage Protocols120

6.2.4 Remote Storage Meets Virtualization ..122

6.2.5 Distributed Storages Services ...124

6.2.6 Storage Security ..125

x Table of Contents

6.2.7 Storage Efficiency ...125

6.2.8 Storage Reliability ...126

6.2.9 Offloading and Distributing Storage Services126

6.2.10 Persistent Memory as a New Storage Tier127

6.3 Summary ..128

6.4 Bibliography ...128

Chapter 7: CPUs and Domain-Specific Hardware 130

7.1 42 Years of Microprocessor Trend Data ..131

7.2 Moore’s Law ..132

7.3 Dennard Scaling ..134

7.4 Amdahl’s Law ..135

7.5 Other Technical Factors ...136

7.6 Putting It All Together ..137

7.7 Is Moore’s Law Dead or Not? ..138

7.8 Domain-specific Hardware ..139

7.9 Economics of the Server..139

7.10 Summary ..140

7.11 Bibliography ...140

Chapter 8: NIC Evolution 142

8.1 Understanding Server Buses ...143

8.2 Comparing NIC Form Factors ...144

8.2.1 PCI Plugin Cards ...144

8.2.2 Proprietary Mezzanine Cards ..146

8.2.3 OCP Mezzanine Cards ..147

8.2.4 Lan On Motherboard ...148

8.3 Looking at the NIC Evolution ...149

8.4 Using Single Root Input/Output Virtualization ...152

8.5 Using Virtual I/O ...153

xiTable of Contents

8.6 Defining “SmartNIC” ..154

8.7 Summary ..155

8.8 Bibliography ...155

Chapter 9: Implementing a DS Platform 156

9.1 Analyzing the Goals for a Distributed Services Platform157

9.1.1 Services Everywhere ...157

9.1.2 Scaling ...157

9.1.3 Speed ..158

9.1.4 Low Latency ..158

9.1.5 Low Jitter ...158

9.1.6 Minimal CPU Load ..159

9.1.7 Observability and Troubleshooting Capability159

9.1.8 Manageability ..160

9.1.9 Host Mode versus Network Mode ..160

9.1.10 PCIe Firewall ..161

9.2 Understanding Constraints ..161

9.2.1 Virtualized versus Bare-metal Servers ..161

9.2.2 Greenfield versus Brownfield Deployment162

9.2.3 The Drivers ..162

9.2.4 PCIe-only Services ..162

9.2.5 Power Budget ..163

9.3 Determining the Target User ..163

9.3.1 Enterprise Data Centers ..163

9.3.2 Cloud Providers and Service Providers164

9.4 Understanding DSN Implementations ...164

9.4.1 DSN in Software ..164

9.4.2 DSN Adapter ...166

9.4.3 DSN Bump-in-the-Wire ...168

xii Table of Contents

9.4.4 DSN in Switch ...169

9.4.5 DSNs in an Appliance ..171

9.5 Summary ..172

9.6 Bibliography ...173

Chapter 10: DSN Hardware Architectures 174

10.1 The Main Building Blocks of a DSN ...174

10.2 Identifying the Silicon Sweet Spot ...176

10.2.1 The 16 nm Process ...177

10.2.2 The 7 nm Process ...178

10.3 Choosing an Architecture ..178

10.4 Having a Sea of CPU Cores ..179

10.5 Understanding Field-Programmable Gate Arrays ...181

10.6 Using Application-Specific Integrated Circuits ...183

10.7 Determining DSN Power Consumption ...184

10.8 Determining Memory Needs ..185

10.8.1 Host Memory ...185

10.8.2 External DRAM ..186

10.8.3 On-chip DRAM ..186

10.8.4 Memory Bandwidth Requirements ..186

10.9 Summary ..187

10.10 Bibliography ...187

Chapter 11: The P4 Domain-Specific Language 190

11.1 P4 Version 16 ...192

11.2 Using the P4 Language ...193

11.3 Getting to Know the Portable Switch Architecture ...194

11.4 Looking at a P4 Example ...195

11.5 Implementing the P4Runtime API ..199

xiiiTable of Contents

11.6 Understanding the P4 INT ...201

11.7 Extending P4 ...201

11.7.1 Portable NIC Architecture ...201

11.7.2 Language Composability ..201

11.7.3 Better Programming and Development Tools202

11.8 Summary ..202

11.9 Bibliography ...203

Chapter 12: Management Architectures for DS Platforms 204

12.1 Architectural Traits of a Management Control Plane205

12.2 Declarative Configuration ..206

12.3 Building a Distributed Control Plane as a Cloud-Native Application207

12.4 Monitoring and Troubleshooting ..209

12.5 Securing the Management Control Plane ..210

12.6 Ease of Deployment ...211

12.7 Performance and Scale ...212

12.8 Failure Handling ...214

12.9 API Architecture ...215

12.10 Federation ..218

12.10.1 Scaling a Single SDSP ..219

12.10.2 Distributed Multiple SDSPs ...220

12.10.3 Federation of Multiple SDSPs ...220

12.11 Scale and Performance Testing ...223

12.12 Summary ..227

12.13 Bibliography ...227

Index ..230

xiv

List of Figures
Figure 1-1 A Distributed Services Platform 3

Figure 1-2 Services 6

Figure 1-3 North-South vs. East-West 8

Figure 2-1 LPM Forwarding 13

Figure 2-2 A Clos Network 15

Figure 2-3 Customers and Infrastructure IP Addresses 16

Figure 2-4 Generic Encapsulation 17

Figure 2-5 IPv4 in IPv4 Encapsulation 18

Figure 2-6 GRE Encapsulation 19

Figure 2-7 VXLAN Encapsulation 20

Figure 2-8 VXLAN Encapsulation Details 21

Figure 2-9 VTEPs 21

Figure 2-10 Segment Routing Example 24

Figure 2-11 Example of Trombone at Layer 2 25

Figure 2-12 Example of Trombone at Layer 3 26

Figure 2-13 Cache-based Forwarding in HW 28

Figure 3-1 A Hybrid Cloud 36

Figure 3-2 Different Types of Hypervisors 38

Figure 3-3 A Virtual Switch 39

Figure 3-4 VMware ESXi 40

Figure 3-5 The Hyper-V Architecture 42

Figure 3-6 The KVM Architecture 43

Figure 3-7 Virtio 44

Figure 3-8 KVM, QEMU, Virtio 45

Figure 3-9 vSwitch with SR-IOV 46

Figure 3-10 The XEN Architecture 47

Figure 3-11 Classical Virtualization versus Container Virtualization 48

Figure 3-12 Kata Containers 49

Figure 3-13 Kubernetes Cluster Components 51

xv

Figure 3-14 Microservices Deployed using Kubernetes 51

Figure 3-15 A Microservice Architecture 52

Figure 3-16 The OpenStack Architecture 56

Figure 3-17 NFV example 58

Figure 4-1 Main Components of an OpenFlow Switch 65

Figure 4-2 gRIBI 67

Figure 4-3 DPDK 69

Figure 4-4 OVS (Open Virtual Switch) 70

Figure 4-5 A Distributed OVS 71

Figure 4-6 The OVS Architecture 72

Figure 4-7 OVS in a NIC 73

Figure 4-8 OVS Offload with tc-flower 74

Figure 4-9 VPP 75

Figure 4-10 XDP 77

Figure 4-11 All Solutions in One Picture 78

Figure 4-12 Web Load Balancing 80

Figure 5-1 North-South vs. East-West 85

Figure 5-2 Microsegmentation 86

Figure 5-3 TLS Protocol Stack 88

Figure 5-4 IPsec Encapsulations 92

Figure 5-5 TLS Encapsulation 93

Figure 5-6 DTLS Encapsulation 94

Figure 5-7 Example of a VPN 95

Figure 6-1 Host Connected to Dedicated Networks 101

Figure 6-2 Hosts with Unified Networks 102

Figure 6-3 Unified Network Software Stack 102

Figure 6-4 InfiniBand Protocol Stack and Fabric Diagram 103

Figure 6-5 Cost of I/O, Kernel Network Stack versus Bypass 104

Figure 6-6 Kernel Buffer versus Zero-Copy 105

Figure 6-7 Software Stack versus Protocol Offload 105

Figure 6-8 One-sided Operations Ladder Diagram 106

xvi

Figure 6-9 QPs, WRs, CQs, and Scheduler/QoS Arbiter 107

Figure 6-10 RDMA Transport Services 108

Figure 6-11 RDMA over Ethernet Protocol Stack Evolution 110

Figure 6-12 RoCE versus iWARP 110

Figure 6-13 InfiniBand and Ethernet Shares 111

Figure 6-14 Priority Flow Control 113

Figure 6-15 DCQCN 114

Figure 6-16 One-way Latencies 115

Figure 6-17 Go Back N versus Selective Retransmission 116

Figure 6-18 Staging Buffer Cost of Selective Retransmission 117

Figure 6-19 Tail Drop Recovery 118

Figure 6-20 Remote SCSI Storage Protocols 119

Figure 6-21 NVMe-oF 121

Figure 6-22 Example of Storage Write 121

Figure 6-23 Push Model 122

Figure 6-24 Explicit Remote Storage 123

Figure 6-25 Hypervisor Emulates Local Disk Towards Guest OS 123

Figure 6-26 NIC-Based NVMe Emulation 124

Figure 6-27 Distributed Storage Services 127

Figure 7-1 42 Years of Microprocessor Trend Data 132

Figure 7-2 Transistor Count as a Function of Years 133

Figure 7-3 Intel Processor Transistor Count 134

Figure 7-4 Dennard Scaling 135

Figure 7-5 Amdahl’s Law 136

Figure 7-6 Combined effect on single-thread performance 138

Figure 8-1 PCIe Root Complex 143

Figure 8-2 Intel I350-T2 Intel Ethernet Server Adapter 145

Figure 8-3 Broadcom NeXtreme E-Series 145

Figure 8-4 HPE Card in a Mezzanine Form Factor 146

Figure 8-5 OCP 3.0 Small and Large Cards 147

Figure 8-6 Mellanox ConnectX-5 in OCP 3.0 Form Factor 148

Figure 8-7 LOM on a Cisco UCS 149

xvii

Figure 8-8 SR-IOV Architecture 153

Figure 8-9 VirtIO Architecture 154

Figure 9-1 A Distributed Services Platform 156

Figure 9-2 Server with a Classical NIC 165

Figure 9-3 Server with a DSN-capable NIC 167

Figure 9-4 Bump-in-the-Wire 168

Figure 9-5 DSN in Switch 170

Figure 9-6 DSNs in an Appliance 171

Figure 10-1 Major Considerations in Silicon Design 176

Figure 10-2 Possible Architectures for DSNs 179

Figure 10-3 ARM Performance as a Packet Processor 180

Figure 10-4 High-Bandwidth Memory (HBM) 187

Figure 11-1 Example of P4 Version 14 Network Device 191

Figure 11-2 P4 Language Components 192

Figure 11-3 The PSA 194

Figure 11-4 The V1 Model Architecture 195

Figure 11-5 P4Runtime 200

Figure 12-1 Distributed Services Management Control Plane 205

Figure 12-2 Implementation of Declarative Configuration 207

Figure 12-3 Security Model of Management Control Plane 211

Figure 12-4 Functionality and Architecture of API Service 216

Figure 12-5 A Single DS Manager 219

Figure 12-6 Distribution of Multiple DS Managers 220

Figure 12-7 Federation of Multiple DS Managers 221

xviii

Figure Credits
Figure 2-8: Cisco Nexus 9000 Series Switches © Cisco system, Inc

Figure 3-5: Hyper V Architecture © Microsoft corporation

Figure 3-7: Virtio: An I/O virtualization framework for Linux by M. Jones © IBM Corporation

Figure 3-10: Xen arc diagram © The Linux Foundation

Figure 3-12: Kata Containers: Secure, Lightweight Virtual Machines for Container Environments by

Scott M. Fulton, III © The New Stack

Figure 4-1: OpenFlow Switch Specification © The Open Networking Foundation

Figure 4-2: gRIBI © 2020 GitHub, Inc, https://github.com/opencon/gribi

Figure 4-3: DPDK © DPDK Project

Figure 4-4: Linux Foundation Collaborative Projects, “OVS: Open vSwitch,” © 2016 A Linux Foundation

Collaborative Project. http:// www.openvswitch.org/

Figure 4-5: Open v Switch © 2016 A Linux Foundation Collaborative Project

Figure 4-9: The Linux Foundation Projects, ‘Vector Packet Processing (VPP)’ © Cisco Systems, Inc.

Figure 6-11: Supplement to InfiniBandTM Architecture Specification, Volume 1, Release 1.2.1, Annex A17,

RoCEv2, © 2010 by InfiniBandTM Trade Association. https://cw.infinibandta.org/document/dl/7781

Figure 6-12: © Copyright 2017. Mellanox Technologies

Figure 6-13: Top 500, Development over time, © 1993-2019 TOP500.org. https://www.top500.org/statistics/

overtime/

Figure 7-1: Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham,

K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010−2017 by K. Rupp − Creative

Commons Attribution 4.0 International Public License

Figure 7-2: Moore’s law © Our World In Data

Figure 8-1: PCI Express® Basics & Background by Richard Solomon © PCI-SIG

Table 8-1: Specifications of PCI-SIG © PCI-SIG

Figure 8-4: Used with permission from Hewlett Packard Enterprise

Figure 8-5: Used with permission from Open Compute Project Foundation

Figure 8-6: Used with permission from Open Compute Project Foundation

Figure 8-9: Virtio: An I/O virtualization framework for Linux by M. Jones © IBM Corporation

Figure 10-3: Used with permission from Pensando

Figure 11-1: P4 Language Tutorial © P4.org

Figure 11-2: P4 Language Tutorial © P4.org

Figure 11-3: P416 Portable Switch Architecture (PSA) © P4.org

Figure 11-4: P4 Language Tutorial © P4.org

Figure 11-5: P4Runtime Specification © P4.org

https://github.com/opencon/gribi
http://www.openvswitch.org/Figure
http://www.openvswitch.org/Figure
https://cw.infinibandta.org/document/dl/7781
http://TOP500.org
https://www.top500.org/statistics/overtime/Figure
https://www.top500.org/statistics/overtime/Figure
https://www.top500.org/statistics/overtime/Figure
http://P4.org
http://P4.org
http://P4.org
http://P4.org
http://P4.org

xix

Preface

The Motivation for Writing this Book

I decided to write this book after the success of the Cisco Unified Computing System (UCS) Data
Center book, which I wrote with Roger Andersson and Tommi Salli.

I attribute the excellent response to that book to the significant amount of material that we included

on protocols, technologies, and system evolution. We discussed several significant changes that were

happening in data centers, from the blade server architecture to the dominance of Ethernet, to the trend

toward I/O consolidation. We also made some predictions on the long-term evolution, some of which

turned out to be right, while others didn’t.

In the eight years that followed, the pace of changes has dramatically increased, and I thought it was

time to provide an updated view of the technology trends as independently as possible from actual

products.

This book focuses on core services like segment routing, NAT, firewall, microsegmentation, load

balancing, SSL/TLS termination, VPNs, RDMA, storage, and storage services such as compression

and encryption. These services are vital components whenever multiple users share any cloud archi-

tecture, be it private, public, or hybrid. In particular, this book is about distributed services platforms

that can be implemented with multiple service modules located in different hardware components,

such as NICs, appliances, or switches. Distributing these service modules as closely as possible to the

final applications enables very high performance, low latency, low jitter, deep observability, and rapid

troubleshooting.

Who Should Read This Book

This book targets all IT professionals who want to learn about the evolution of service architectures.

In particular, this book is helpful to:

 ■ Network engineers, for the L2, L3 forwarding, Clos networks, VLAN, VXLAN, VPN, and

network services

 ■ Cloud engineers, for multi-tenancy, overlay networks, virtual switching, and GFT

 ■ Security experts, for firewalls, encryption, key management, and zero trust

 ■ Application engineers, for load balancing, virtualization, and microservice architecture

 ■ High-performance computing engineers, for RDMA applications

 ■ Storage engineers, for NVMe and NVMe-oF, compression, deduplication, and encryption in

motion and at rest

xx

After reading this book, the reader will comprehend the problems with the current reality of discrete

centralized appliances and will understand the need to migrate services as closely as possible to the

applications. They will then have the right knowledge to evaluate different commercial solutions,

compare them by asking pertinent questions, and make the right selection for her/his business.

Chapter Organization

Chapter 1, “Introduction to Distributed Platform,” introduces the need for a Distributed Services

Platform that offers superior security, cloudlike scale, hardware performance, and low latency and

yet be software programmable. A platform that is easy to manage, operate, troubleshoot, and works

for bare metal, virtual machine, and container workloads. The chapter explores the need for domain-

specific hardware, programmable through a domain-specific language for network, security, and storage

services, to satisfy the insatiable demand for processing, as Moore’s law hits the limits of physics.

Chapter 2, “Network Design,” presents standard network designs for clouds and enterprise data

centers, reviewing L2/L3 forwarding algorithms used both in classical switch routers and in hyper-

visors, the requirements posed by Clos networks with their leaf and spine architecture, the role of

overlays and how to secure them, segment routing, and the need for “tromboning” in the presence of

discrete appliances.

Chapter 3, “Virtualization,” is about the trend in public, private, and hybrid clouds and virtual-

ization; it covers the differences between bare metal, virtual machines, and containers. It describes

 virtualization solutions like VMware and KVM, with particular emphasis on their network and service

implications. It introduces the microservice architecture and container technologies as a possible

implementation, with examples on Docker and Kubernetes. It concludes with examples of OpenStack

and NFV.

Chapter 4, “Network Virtualization Services,” introduces networking virtualization services,

starting with SDN and OpenFlow trends and more recent efforts like gRIBI. It discusses DPDK, virtual

switches and OVS, offloading techniques like tc-flower, DPDK RTE flow, eBPF, and VPP and tries

to provide a taxonomy of these many efforts. Popular services like load balancing and NAT are also

presented. The chapter ends with a discussion about telemetry.

Chapter 5, “Security Services,” introduces security services. Starting with popular services like

firewall, the discussion evolves into microsegmentation, followed by a deep dive on security with

symmetric and asymmetric encryption, key storage, unique key generation, digital certificates, hashing,

TLS/TCP implementations, and VPNs.

Chapter 6, “Distributed Storage and RDMA Services,” presents RDMA and storage services.

RDMA was born in the world of high-performance computing, but it is now used also in enterprise and

cloud networks. NVMe is the new storage standard that replaces SCSI for high-performance storage

xxi

drives. NVMe is also overlaid on RDMA to provide networkwide access to storage resources in an

arrangement called NVMe over Fabrics (NVMe-oF). NVMe-oF can also use TCP as an alternative to

RDMA. This chapter describes this landscape with the addition of essential storage services such as

encryption of data at rest, compression, and data deduplication.

Chapter 7, “CPUs and Domain-Specific Hardware,” discusses servers used in clouds and data

centers, looking in particular to the dramatic reduction in performance growth in recent years that calls

for domain-specific hardware to take over service functions. Moore’s law, Dennard scaling, Amdahl’s

law, and 42 years of microprocessor data are analyzed to understand the economics of the server better

and to help the reader decide how to partition the server functions.

Chapter 8, “NIC Evolution,” describes the evolution of network interface cards (NICs) from simple

devices in charge of sending and receiving one packet at a time, to more complex and sophisticated

entities capable of effectively supporting multicore CPUs, multiple types of traffic, stateless offloads,

SR-IOV, and advanced parsing/classification capabilities. The term SmartNICs has recently appeared to

indicate NICs that incorporate even more processing power to enable offload of networking processing

from the host CPU. Understanding this evolution is essential because the NIC represents one of the

possible footprints for a distributed services platform.

Chapter 9, “Implementing a DS Platform,” introduces distributed services platforms, outlining their

goals, constraints, and implementation. Obtaining a standard set of functionalities with a granular

distribution is key to scaling the architecture to a vast number of users while creating scalability and

maintaining low latency, low jitter, and minimum CPU load. The chapter compares possible imple-

mentations and trade-offs in greenfield and brownfield deployment scenarios.

Chapter 10, “DSN Hardware Architectures,” describes possible hardware implementations of these

Distributed Services Platforms, considering three main approaches: sea of processors, field program-

mable gate arrays (FPGAs), and application-specific integrated circuits (ASICs). It compares the

advantages and disadvantages of each approach and draws some conclusions.

Chapter 11, “The P4 Domain-Specific Language,” presents the P4 architecture that makes it

possible to implement ASICs that are data plane–programmable at runtime, an important feature that

marries the programmability of devices like FPGAs with the performance and power-saving capability

of ASICs. The chapter ends with an analysis of future directions to make P4 more usable and flexible.

Chapter 12, “Management Architectures for DS Platforms,” discusses the architectural compo-

nents and design choices to build a modern management infrastructure, leveraging the concepts of

distributed systems, stateless microservices, and API-driven software. It presents design trade-offs

for building secure, highly available, high performance, and scalable software. It further discusses

the practical aspects of a management system, like ease of deployment, troubleshooting, diagnosing,

and integration with existing software ecosystems. Finally, the chapter touches upon federating the

 declarative intent across multiple clusters.

xxii

Help Improve This Book

If you uncover any remaining resilient bugs, please contact the authors by email at dsplatforms@ip6.

com. We welcome general comments to the text and invite you to send them by email also.

I hope this book provides useful information that you can apply to your daily activity.

—Silvano Gai

With Contributions by

 ■ Diego Crupnicoff contributed all of Chapter 6, “Distributed Storage and RDMA Services” and

helped review the book.

 ■ Vipin Jain and Roger Andersson contributed Chapter 12, “Management Architectures for DS

Platforms” and helped review the book.

 ■ Francis Matus provided part of Chapter 7, “CPUs and Domain-Specific Hardware” on

the historical evolution of processors as well as data for Chapter 10, “DSN Hardware

 Architectures.”

mailto:dsplatforms@ip6.com
mailto:dsplatforms@ip6.com

xxiii

About the Authors
Silvano Gai, who grew up in a small village near Asti, Italy, has more

than 35 years of experience in computer engineering and computer

networks. He is the author of several books and technical publications

on computer networking as well as multiple Internet Drafts and RFCs.

He is responsible for 50 issued patents. His background includes seven

years as a full professor of Computer Engineering, tenure track, at

Politecnico di Torino, Italy, and seven years as a researcher at the CNR

(Italian National Council for Scientific Research). For the past 20 years,

he has been in Silicon Valley where, in the position of Cisco Fellow, he

was an architect of the Cisco Catalyst family of network switches, of the

Cisco MDS family of storage networking switches, of the Nexus family of data center switches, and

the Cisco Unified Computing System (UCS). Silvano is currently a Fellow with Pensando Systems.

Roger Andersson has spent more than 28 years in the computer and

storage industry with work experience that spans across EMC/Data

General, Pure Storage, Veritas/Symantec and Nuova Systems/Cisco

UCS, focusing on software automation, OS provisioning, and policy-

driven management at scale. Roger’s roles started in hardware engi-

neering, moved to software engineering, and for the past 16 years has

been in technical product management roles. Roger is currently working

at Pensando as a Technical Product Manager focusing on Distributed

Service Management at scale. Roger was born in Stockholm, Sweden.

Diego Crupnicoff has been a Fellow at Pensando Systems since

May 2017. Prior to that, Diego served as VP Architecture at Mellanox

Technologies where he worked since its inception in 1999, driving chip

and system architectures for multiple generations of Ethernet and

RDMA products. Diego has been a member of the InfiniBand Trade

Association since its early days and took part in the definition of the

InfiniBand RDMA Standard. Among other roles, Diego chaired the

IBTA Technical Working Group for many years. He was also among the

founding directors of the OpenFabrics Alliance and chaired its Technical

Advisory Council for several years. Over the past two decades, Diego

has participated in multiple other SDOs and Tech Committees, including the IEEE802, IETF, T11,

NVME, and the ONF. Diego is an inventor in multiple patents on the areas of computer networks and

system architecture. He holds a B.Sc. in Computer Engineering (Summa Cum Laude) and an M.Sc. in

EE. (Summa Cum Laude), both from the Technion - Israel Institute of Technology.

xxiv

Vipin Jain is a passionate engineer with 20 years of industry experience.

Over the years, he has contributed in the areas of switching, routing,

network protocols, embedded systems, ASIC architecture, data path

design, distributed systems, software-defined networking, container

networking, orchestration systems, application security, open source,

cloud infrastructure, and DevOps.

He holds numerous patents and has been a speaker at many conferences,

author of IETF RFCs, and been a developer evangelist for his open

source work. He enjoys coding for work and for fun. He also enjoys

snowboarding, hiking, kayaking, and reading philosophy. He holds a

bachelor’s degree in Computer Science from NIT Warangal, India. He

has worked in multiple successful startups in technical and management

leadership roles. He is founder and CTO at Pensando Systems.

xxv

Acknowledgments
I would like to thank the following people for their contributions to this book:

 ■ I am in debt to the MPLS team (Mario Mazzola, Prem Jain, Luca Cafiero, and Soni Jiandani)

and to Randy Pond for having let me participate in the design of some of the most fantastic

networking products of the last 20 years.

 ■ John Evans and Boris Shpolyansky have spent many hours reviewing the chapters and

providing countless insights.

 ■ Rami Siadous, Bob Doud, Stuart Stammers, Ravindra Venkataramaiah, Prem Jain, Kangwarn

Chinthammit, Satya Akella, Jeff Silberman, David Clear, and Shane Corban have provided

many valuable comments.

 ■ Chris Ratcliffe helped me organize my ideas and my terminology. He is a master in messaging.

 ■ Mike Galles, Francis Matus, and Georges Akis kept me honest on all the hardware discussions.

 ■ Krishna Doddapaneni made countless measurements on the performance of different

technologies and summarized the results for this book.

 ■ The members of the Pensando Advisory Board for many technically challenging discussions.

 ■ Dinesh Dutt is a great friend who has helped me define the structure of this book.

 ■ Alfredo Cardigliano provided material and insights on DPDK.

 ■ Nital Patwa helped me to better understand the implications of integrating ARM cores in an SoC.

 ■ Elese Orrell and Darci Quack are the graphic designers. They were effortless to work with, and

I like the result.

 ■ Brenda Nguyen and Rhonda Biddle for their support.

 ■ Wikipedia made writing this book so much easier that I will donate the first $1,000 of royalties

to this fantastic source of information.

 ■ All the other people who gave me advice, suggestions, ideas, and reviews: my deeply felt

thank you.

2

Introduction to Distributed Platforms

In the last ten years, we have observed an increasingly rapid transition from monolithic servers to

virtualization. Initially, this happened inside enterprise networks, creating the need for virtual

networking, but it has quickly evolved into modern cloud architectures that add the dimension of

multitenancy and, with multitenancy, increased demand for security. Each user requires network

services, including firewalls, load balancers, virtual private networks (VPNs), microsegmentation,

encryption, and storage, and needs to be protected from other users.

This trend is very evident in cloud providers, but even larger enterprises are structuring their networks

as private clouds and need to secure network users from each other.

Software-based services are often the solution. The server CPU implements a Distributed Services

Architecture in software. A virtual machine or a container comprises the software that implements

the service architecture. All network traffic goes through this software and, after the appropriate

processing, packets are delivered to their final destinations (other virtual machines or containers).

Similar processing happens on the reverse path.

A pure software solution is limited in performance, and it has high latency and jitter. Moreover, it is

very problematic in bare-metal environments where the entire server is dedicated to a user or an appli-

cation, and there is no place to run the services architecture.

A distributed services platform is a set of components unified by a management control

plane that implements standard network services, such as stateful firewall, load balancing,

encryption, and overlay networks, in a distributed, highly scalable way with high perfor-

mance, low latency, and low jitter. It has no inherent bottleneck and offers high avail-

ability. Each component should be able to implement and chain together as many services

as possible, avoiding unnecessary forwarding of packets between different boxes that

perform different functions. The management control plane provides role-based access to

various functions and is itself implemented as a distributed software application.

Chapter 1

1.1 The Need for a Distributed Services Platform 3

We offer a new term, distributed services node (DSN), to describe the entity running various network

and security services. A DSN can be integrated into existing network components such as NICs

(network interface cards), switches, routers, and appliances. The architecture also allows for a software

implementation of the DSN, even though only hardware is capable of providing the security and

performance needed by today’s networks.

Keeping DSNs closer to applications provides better security; however, DSNs should be ideally imple-

mented at a layer that is immune to application, operating system, or hypervisor compromise.

Having multiple DSNs, as distributed as possible, increases scalability dramatically and effectively

removes bottlenecks.

This architecture is practical only in the presence of a management system capable of distributing and

monitoring service policies to all DSNs.

Figure 1-1 provides a graphical representation of a distributed services platform.

Server C Server D Server G Server H

VPN
Firewall

Load Balancer
Encryption

NAT
offloads

...

Policy
Manager

Distributed
Services

Node

REST API/gRPC

Appliance

Server A Server B Server E Server F

FIGURE 1-1 A Distributed Services Platform

1.1 The Need for a Distributed Services Platform
A real distributed services platform should solve not only performance issues but should also provide:

 ■ A consistent services layer common to bare-metal servers, virtual machines, and containers

 ■ Pervasive security without any entitlements within the perimeter; that is, decouple security from

network access

CHAPTER 1 Introduction to Distributed Platforms4

 ■ A security solution that is immune to compromised OSes or hypervisors

 ■ Services orchestration and chaining to simplify management while enabling the delivery of

different combinations of services

 ■ Better utilization of resources, higher performance, lower latency, and latency isolation

 ■ Tools capable of troubleshooting the network flows going through multiple services

 ■ Built-in telemetry for edge-to-edge network troubleshooting, rather than debugging individual

systems, applications and segments, to give the infrastructure the ability to proactively report

potential issues and offending actors

 ■ A comprehensive set of infrastructure services that are easy to manage and that can be used

together, including features such as microsegmentation, load balancing, a firewall, encryption

service, storage virtualization, and infrastructure services such as RDMA and TCP/TLS proxy

 ■ Programmability in the management, control, and data planes so that software-defined features

can be rolled out without requiring hardware swapout or extended hardware development and

release cycles

1.2 The Precious CPU Cycles
In recent years, single-thread performance has only grown a few percentage points a year due

to the slowdown in Moore’s law as well as Dennard scaling issues (see Chapter 7, “CPUs and

 Domain-Specific Hardware”). Similarly, increasing the number of cores per CPU only partially helps,

due to the problems pointed out in Amdahl’s law on parallelization.

Another important aspect is that CPU architectures and their associated operating systems are not the

best matches for implementing services at the packet level: an example is interrupt-moderation, which

reduces the number of interrupts to increase throughput, but has the side effect of jitter explosion.

As processors become more complex, processor cycles are becoming more precious every day and

should be used for user applications and not for network services. A purely software-based solution

might use a third of the available cores on an enterprise-class CPU to implement services; this is

unacceptable in cases of high load on servers. It creates a big pushback for software-based services

architectures.

1.3 The Case for Domain-Specific Hardware
Domain-specific hardware can be designed to be the best implementation for specific functions.

An example of successful domain-specific hardware is the graphic processor unit (GPU).

GPUs were born to support advanced graphics interfaces by covering a well-defined domain of

computing—matrix algebra—which is applicable to other workloads such as artificial intelligence (AI)

1.4 Using Appliances 5

and machine learning (ML). The combination of a domain-specific architecture with a domain-specific

language (for example, CUDA and its libraries) led to rapid innovation.

Another important measure that is often overlooked is power per packet. Today’s cloud services are

targeted at 100 Gbps, which for a reasonable packet size is equivalent to 25 Mpps. An acceptable power

budget is 25 watts, which equates to 1 microwatt per packet per second. To achieve this minuscule

amount of power usage, selecting the most appropriate hardware architecture is essential. For example,

Field-Programmable Gate Arrays (FPGAs) have good programmability but cannot meet this stringent

power requirement. You might wonder what the big deal is between 25 watts and 100 watts per server.

On an average installation of 24 to 40 servers per rack, it means saving 1.8 to 3.0 kilowatts of power per

rack. To give you an example, 3 kilowatts is the peak consumption of a single-family home in Europe.

When dealing with features such as encryption (both symmetric and asymmetric) and compression,

dedicated hardware structures explicitly designed to solve these issues have much higher throughput

and consume far less power than general-purpose processors.

This book should prove to the reader that a properly architected domain-specific hardware platform,

programmable through a domain-specific language (DSL), combined with hardware offload for

compression and encryption, is the best implementation for a DSN.

Although hardware is an essential aspect of a distributed services platform, a distributed services

platform also uses a considerable amount of software.

The management and control planes are entirely software, and even the data plane must be software

defined. The hardware is what provides the performance and lowers latency and jitter when used

in conjunction with software. When we compare performance and delays, the differences can be

enormous. Leading solutions exist in which the first packet of a flow incurs a 20-millisecond delay and

other solutions in which the same packet is processed in 2 microseconds: a difference of four orders of

magnitude.

1.4 Using Appliances
Today the most common implementation of services is through appliances, typically deployed centrally.

These network devices implement services such as firewall, load balancing, and VPN termination.

These are discrete boxes, and the traffic is sent to them explicitly in a technique called tromboning

(see section 2.7). These devices become natural bottlenecks for traffic and impose a weird routing/

forwarding topology. They are very high-cost, high-performance devices, and even the most capable

ones have limitations in performance when compared to the amount of traffic that even a small private

cloud can generate. These limitations, plus the fact that a packet must traverse the network multiple

times to go through service chaining, result in reduced throughput and high latency and high jitter.

A distributed services platform avoids these large centralized appliances and relies on small high-

performance distributed services nodes (DSNs) located as closely as possible to the final applications

they serve. They are also multifunctional; that is, they implement multiple services and can chain them

internally, in any order, without needing to traverse the network numerous times.

CHAPTER 1 Introduction to Distributed Platforms6

1.5 Attempts at Defining a Distributed Services
Platform
The first question we should ask ourselves is, “Which services should this architecture support?”

A precise classification is difficult, if not impossible, but Figure 1-2 is an example of some of the

services typically associated with a domain-specific platform.

From 10,000 feet, we can see two groups of services: infrastructure services and value-added services.

Infrastructure services are things such as Ethernet and bridging, IP and routing, storage access through

a modern protocol like NVMe, RDMA transport, TCP termination, and overlay network processing.

Value-Added
Services

Infrastructure
Services

Fi
re

w
al

l

Lo
ad

 B
al

an
ce

r

SS
L

/ T
LS

H
SN

 /
Ke

y
M

gm
t

En
cr

yp
tio

n

VP
N

RD
M

A

Ap
pl

ic
at

io
n

En
cr

yp
tio

n
at

 R
es

t

H
as

hi
ng

De
du

pl
ic

at
io

n

Co
m

pr
es

si
on

NVMERDMA

Ethernet Physical Layer

TCP UDP

En
ca

ps
ul

at
io

n/
O

ve
rla

y Storage

AC
L/

N
AC

L

Ethernet Layer 2 – Bridging

IP, NAT, Routing

FIGURE 1-2 Services

Value-added services include a firewall, load balancer, encryption (both symmetric and asymmetric,

both in flight and at rest), key management and secure storage, classical VPNs like IPsec, and more

modern ones such as SSL/TLS, storage compression, and deduplication.

In this book, we will present infrastructure and value-added services together because they are deployed

together in the majority of the cases.

The first attempt at a truly “distributed” network architecture can be traced back to software-defined

networking (SDN). SDN is a paradigm that was introduced initially on switches and routers but was

expanded to servers. It offers the capability to control and program the NIC virtual forwarding functions.

The main focus of SDNs is on infrastructure services. They do not currently address value-added

services, but they create a framework where DSNs are under the central coordination of a common

manager and work together toward a common goal.

There is also an open-source effort within the container community, called service mesh, that defines

the services, such as load balancing, telemetry and security, distributed across the clusters of nodes

1.6 Requirements for a Distributed Services Platform 7

and combined with a management control plane. The approach uses a software proxy sitting next to

an application to provide layer 4 or layer 7 load balancing features and TLS security between applica-

tions and provide telemetry for all the traffic that passes through the proxy. The management control

plane provides integration with orchestration systems, such as Kubernetes, and also provides a security

framework to do key management for applications and define authorization primitives that can police

interapplication communication. Although the effort started for containers, the concepts and code can

be leveraged for virtual machines. There are many implementations of service mesh, such as Istio,

Nginx, Linkerd, and some commercial closed-source implementations.

It is definitely possible to provide a much superior service mesh with DSNs by offering better security

via keeping private keys within the hardware root of trust, by improving performance by an order of

magnitude, and by reducing interapplication latency, without losing the software programmability.

The distributed services platform also attempts to address a few additional elements:

 ■ Provide immunity from host/application/hypervisor compromises; that is, the enforcer

shouldn’t be compromised if the enforcee is compromised

 ■ Provide services beyond the network, for example, storage, RDMA, and so on

 ■ Offer low latency, high throughput, and latency isolation without impacting application

performance

 ■ Exhibit cloudlike scale to handle millions of sessions

A distributed services platform may be used alongside service mesh, which is an application layer

concept, as opposed to an infrastructure layer concept. For example, the distributed services platform

may provide isolation, security, and telemetry at the virtualization infrastructure layer, whereas service

mesh can provide application layer TLS, API routing, and so on.

1.6 Requirements for a Distributed Services
Platform
A truly distributed services platform requires the availability of DSNs that are placed as closely as

possible to the applications. These DSNs are the enforcement or action points and can have various

embodiments; for example, they can be integrated into NICs, appliances, or switches. Having as many

services nodes as possible is the key to scaling, high performance, and low delay and jitter. The closer

a DSN is to applications, the lesser the amount of traffic it needs to process, and the better the power

profile becomes.

Services may appear to be well defined and not changing over time, but this is not the case. For example,

new encapsulations or variations of old ones or different combinations of protocols and encapsula-

tions are introduced over time. For this reason, DSNs need to be programmable in the management,

control, and data planes. The control and management planes may be complicated, but they are not

data intensive and are coded as software programs on standard CPUs. Data plane programmability is a

CHAPTER 1 Introduction to Distributed Platforms8

crucial requirement because it determines the performance and the scaling of the architecture. Network

devices that are data plane programmable are still pretty rare, even if there have been some attempts in

the adapter space with devices that are typically called SmartNIC and in the switching/routing space

using a domain-specific programming language called P4.

An excellent services platform is only as good as the monitoring and troubleshooting features that

it implements. Monitoring has significantly evolved over the years, and its modern version is called

telemetry. It is not just a name change; it is an architectural revamp on how performance is measured,

collected, stored, and postprocessed. The more dynamic telemetry is and the less likely it is to introduce

latency, the more useful it is. An ideal distributed services platform has “always-on telemetry” with no

performance cost. Also, compliance considerations are becoming extremely important, and being able

to observe, track, and correlate events is crucial.

Where do services apply? To answer this question, we need to introduce a minimum of terminology.

A common way to draw a network diagram is with the network equipment on top, and the compute

nodes at the bottom. If you superimpose a compass rose with the North on top, then the term North-

South traffic means traffic between the public network (typically the Internet) and servers; the term

East-West implies traffic between servers (see Figure 1-3).

Historically the North-South direction has been the focus of services such as firewall, SSL/TLS termi-

nation, VPN termination, and load balancing. Protecting the North-South direction is synonymous with

protecting the periphery of the cloud or data center. For many years, it has been security managers’

primary goal because all the attacks originated on the outside, and the inside was composed of homo-

geneous, trusted users.

Internet

Server nServer 2Server 1

FIGURE 1-3 North-South vs. East-West

1.7 Summary 9

With the advent of public clouds, the change in the type of attacks, the need to compartmentalize large

corporations for compliance reasons, the introduction of highly distributed microservice architectures,

and remote storage, East-West traffic is now demanding the same level of services as the North-South

connections.

East-West traffic requires better services performance than North-South for the following reasons:

 ■ Usually, the North-South traffic has a geographical dimension; for example, going through the

Internet creates a lower bound to the delay of milliseconds, due to propagation delays. This is

not the case for East-West traffic.

 ■ East-West traffic is easily one order of magnitude higher in bytes than North-South traffic, a

phenomenon called “traffic amplification,” where the size of the response and internal traffic

can be much larger, that is, “amplified,” compared to the inbound request. For this reason, it

requires services with higher throughput.

 ■ With the advent of solid-state disks (SSDs), the storage access time has dramatically decreased,

and delays associated with processing storage packets must be minimal.

 ■ In microservice architectures, what on the North-South direction may be a simple transaction is

in reality composed of multiple interactions between microservices on the East-West direction.

Any delay is critical because it is cumulative and can quickly result in performance degradation.

Institutions with sensitive data, such as banks or healthcare providers, are considering encrypting all

the East-West traffic. It implies, for instance, that each communication between two microservices

must be encrypted and decrypted: If the encryption service is not line-rate and low-latency, this will

show up as degraded performance.

1.7 Summary
This introductory chapter delineated what a distributed services platform could be, the continuously

evolving requirements of the cloud world, the rising importance of the East-West traffic, and the need

for domain-specific hardware and common management.

Starting with the next chapter, we will cover all these aspects in detail.

230

Index

Numbers
3D Xpoint, 120

7 nm circuit-manufacturing process, 178

16 nm circuit-manufacturing process, 177–178

802.1Q tag, 12

A
Access-Aggregation-Core model, 10

ACLs (access control lists), 28, 157

active-active mode, 39

active-standby mode, 39

adapters, DSN, 164–166

adaptive logic modules (ALMs), 182

ADD API (CNI), 50

AES (Advanced Encryption Standard), 89, 125

AI (artificial intelligence), 4–5

ALGs (application layer gateways), 79

Alibaba Cloud, 36, 46

ALMs (adaptive logic modules), 182

alpha-quality reference compiler (P4), 202

Amazon Web Services (AWS), 36, 46

AMD

Epyc processor, 137

xenproject.org, 46

Amdahl, Gene, 135

Amdahl’s Law, 135–136

Ansible, 57, 212

APIs (application programming interfaces),
215–217

Apple A12 Bionic, 178

http://xenproject.org

231CMDB (configuration management database)

appliances, 5

distributed services platforms in, 171–172

tromboning, 5, 157

example of, 25

hybrid, 27

with VRF (virtual routing and forwarding), 26–27

with VXLAN (Virtual Extensible LAN), 25–26

application layer gateways (ALGs), 79

application programming interfaces (APIs),
215–217

application-specific integrated circuits (ASICs),
183–184

ARM

CPU cores, 179–181

xenproject.org, 46

The Art of Invisibility (Mitnick), 95

artificial intelligence (AI), 4–5

ASICs (application-specific integrated circuits),
183–184

asymmetric encryption, 89–90

atomic operations (RDMA), 108–109

auditing (API), 217

AWS (Amazon Web Services), 36, 46

Azure, 36

GFT (generic forwarding table), 29–30

SmartNIC, 154–155

B
back end of line (BEOL), 178

Baldi, Mario, 202

bandwidth requirements, 186–187

Barefoot Networks Tofino switch, 202

bare-metal hypervisors, 38–39

Hyper-V, 41–43

VMware ESXi, 40–41

XEN, 46

bare-metal servers, 161

Batten, C., 131

BEOL (back end of line), 178

Berkeley Packet Filter (BPF), 76

BitDefender, 46

Blade servers, 146

bonding, 40

boot systems, secure, 97

Borg, 50

BPF (Berkeley Packet Filter), 76

bridging and routing. See routing

Broadcom BCM58800, 142

brownfield projects, 162

bump-in-the-wire, 168–169

buses, 143–144

C
C++, 208

cache

cache-based forwarding, 27–29

DSN requirements, 175

flow, 28

CAD (computer-aided design), 183

CAs (certificate authorities), 210

Cassandra, 212–213

CEE (Converged Enhanced Ethernet), 151

central processing units. See CPUs
(central processing units)

centralized routing, 66

certificate authorities (CAs), 210

certificates, digital, 90

ChaCha20-Poly1305, 89

CHECK API (CNI), 50

checksum offload, 150

Chef, 212

Cinder module (OpenStack), 56

Citrix, 46

Clos, Charles, 14

Clos topology, 14–15

Cloud Native Computing Foundation. See CNCF
(Cloud Native Computing Foundation)

cloud providers, 164

clouds. See also individual cloud services

hybrid, 36–37

private, 36

public, 36

virtualization and, 35–37

CMDB (configuration management database), 218

http://xenproject.org

232 CNCF (Cloud Native Computing Foundation)

CNCF (Cloud Native Computing Foundation),
207–208

containerd, 48

Kubernetes, 50–52

CNI (Container Network Interface), 49–50

CNP (congestion notification packet), 114

CockroachDB, 212–213

commands, ping, 181

communication interfaces, 100–102

Compaq, 103

computer-aided design (CAD), 183

configuration, declarative, 206–207

configuration management database (CMDB),
218

congestion management signaling, 109

congestion notification packet (CNP), 114

constraints, distributed services platforms,
161–163

drivers, 162

greenfield versus brownfield deployment, 162

PCIe-only services, 162–163

power budget, 163

virtualized versus bare-metal servers, 161

Container Network Interface (CNI), 49–50

Container Storage Interface (CSI), 50

containerd, 48

containers

CNI (Container Network Interface), 49–50

container runtimes, 48

CSI (Container Storage Interface), 50

Kata Containers, 49

Kubernetes, 50–52

LXC (LinuX Containers), 47

overview of, 47–48

control plane, distributed management. See
distributed management control plane

controls (P4), 193

Converged Enhanced Ethernet (CEE), 151

converged fabric, support for, 151

Core OS, Rocket, 48

COT (customer-owned tooling), 177

CPUs (central processing units)

Amdahl’s Law, 4

demands on, 4

Dennard scaling, 4, 134–135

Distributed Services Architecture implementation, 2

DSN requirements, 176

general-purpose, 131

historical perspective of, 130–131

historical trend data, 131–132

loads, 159

Moore’s law, 4, 103, 132–134

sea of cores solution, 179–181

single-thread performance, 137–138

technical factors limiting, 136–137

Create, Read, Update, and Delete (CRUD)
operations, 213

CRUD (Create, Read, Update, and Delete)
operations, 213

Cryptographic Protection on Block Storage
Devices, 125

CSI (Container Storage Interface), 50

customer-owned tooling (COT), 177

D
DAG (directed acyclic graph), 193

Data Center Bridging (DCB), 112, 151

Data Center Bridging eXchange (DCBX),
112, 151

Data Center Ethernet (DCE), 151

Data Center Quantized Congestion Notification
(DCQCN), 114

data field (Ethernet packets), 12

Data Plane Development Kit (DPDK), 68

data plane model of storage protocols, 120–122

data replication, 214

data types (P4), 193

Datagram TLS (DTLS), securing tunnels
with, 94

DCB (Data Center Bridging), 112, 151

DCBX (Data Center Bridging eXchange),
112, 151

DCE (Data Center Ethernet), 151

DCQCN (Data Center Quantized Congestion
Notification), 114

DDR4, 186

DDR5, 186

distributed services platforms 233

declarative configuration model, 206–207

dedicated networks, hosts connected to,
100–101

Deficit Weighted Round Robin (DWRR), 150

DEL API (CNI), 50

Dennard, Robert, 134

Dennard scaling, 4, 134–135

deparsers (P4), 191

deployment

distributed management control plane, 211–212

RDMA (Remote Direct Memory Access), 110–112

destination MAC address field (Ethernet
packets), 12

Diffie, Whitfield, 89

digital certificates, 90

Digital Equipment Corporation, 103

direct memory access (DMA), 101

directed acyclic graph (DAG), 193

distributed firewalls, 85–86

distributed management control plane, 204

API architecture, 215–217

architectural traits of, 205–206

building as cloud-native application, 207–208

control plane acceleration, 117–118

declarative configuration, 206–207

deployment, 211–212

failure handling, 214–215

federation

concept of, 220–223

distributed multiple SDSPs, 220

overview of, 218

single SDSP scaling, 219

monitoring and troubleshooting, 209

performance of, 212–214, 223–226

scale of, 212–214, 223–226

securing, 210–211

distributed multiple SDSPs (software defined
services platforms), 220

Distributed Services Architecture, 2

distributed services nodes. See DSNs
 (distributed services nodes)

distributed services platforms

appliances, avoidance of, 5

architecture of, 2–3

constraints, 161–163

drivers, 162

greenfield versus brownfield deployment, 162

PCIe-only services, 162–163

power budget, 163

virtualized versus bare-metal servers, 161

CPU architecture and, 4

distributed management control plane

API architecture, 215–217

architectural traits of, 205–206

building as cloud-native application, 207–208

declarative configuration, 206–207

deployment, 211–212

failure handling, 214–215

federation, 218–223

monitoring and troubleshooting, 209

overview of, 204

performance of, 212–214, 223–226

scale of, 212–214, 223–226

securing, 210–211

domain-specific hardware

concept of, 139

historical perspective of, 130–131

need for, 4–5, 139

DSNs (distributed services nodes). See also CPUs

(central processing units)

advantages of, 5

building blocks of, 174–176

defined, 3

hardware architectures, 174–187

implementation of, 130

goals for, 156–161

host mode versus network mode, 160–161

low jitter, 158–159

low latency, 158

manageability, 160

minimal CPU load, 159

observability and troubleshooting capacity,

159–160

PCIe firewall, 161

scaling, 157

services everywhere, 157

speed, 158

234 distributed services platforms

implementation of

in appliances, 171–172

bump-in-the-wire, 168–169

in domain-specific hardware inside NIC, 166–167

in software, 164–166

summary of, 172

in switch, 169–170

need for, 3–4

overview of, 2–3, 156

requirements for, 7–9

services

overview of, 6

service mesh, 6–7

target users, determining, 163–164

distributed storage services, 126–127

DMA (direct memory access), 101

DNS (Domain Name Server), 29

Docker, 48, 208

Domain Name Server (DNS), 29

domain-specific hardware

concept of, 139

historical perspective of, 130–131

need for, 4–5, 139

domain-specific hardware inside NIC,
164–166

domain-specific language (DSL), 5, 193

DPDK (Data Plane Development Kit), 68

DPDK Generic Flow API, 74

DRAM (Dynamic RAM)

on-chip DRAM, 186

external DRAM, 186

memory needs, 185

drivers, 162

DS platforms. See distributed services
 platforms

DSL (domain-specific language), 5, 193

DSNs (distributed services nodes). See also
CPUs (central processing units)

advantages of, 5

building blocks of, 174–176

defined, 3

hardware architectures

ASICs (application-specific integrated circuits),

183–184

choosing, 178–179

DSN building blocks, 174–176

DSN power consumption, 184–185

FPGAs (field-programmable gate arrays),

181–183

memory, 185–187

overview of, 174

sea of cores solution, 179–181

silicon design, 176–178

implementation of, 130

DTLS (Datagram TLS), securing tunnels
with, 94

Dutt, Dinesh, 15

DWRR (Deficit Weighted Round Robin), 150

dynamic bonding, 40

Dynamic RAM. See DRAM (Dynamic RAM)

E
East-West traffic, 8–9, 84

eBPF (extended Berkeley Packet Filter), 76

ECMP (equal cost multi-path), 14, 20

ElasticDB, 212–213

ELK, 212

elliptic curves, 89–90

encapsulation

generic, 17–18

GRE (Generic Routing Encapsulation), 18–19

IP in IP, 18

modern, 19

modern encapsulations, 19

MTU (maximum transmission unit) considerations,

22

termination of, 23

tunnel security, 22–23

VXLAN (Virtual Extensible LAN), 19–22

encryption, 22–23

asymmetric, 89–90

Cryptographic Protection on Block Storage Devices,

125

digital certificates, 90

hashing, 90

PUF (physical unclonable function), 91

secure key storage, 90–91

235FutureIO

secure tunnels, 92

with DTLS (Datagram TLS), 94

with IPsec, 92–93

with TLS (Transport Layer Security), 93–94

storage security with, 125

symmetric, 89

TCP/TLS/HTTP implementation, 91

endpoints, tunnel, 17

Enhanced Transmission Selection (ETS), 151

Enlightened I/O, 42

enterprise data centers, 163–164

Envoy, 208

equal cost multi-path (ECMP), 14, 20

Esmaeilzadeh, Hadi, 135

ESXi (VMware), 40–41

Etcd, 212–213

Ethernet packets, 12. See also routing

Ethernet ports, DSN requirements for, 174

Ethernet VPN (EVPN), 22, 95

Ethertype field (Ethernet packets), 12

ETS (Enhanced Transmission Selection), 151

ETSI (European Telecommunications Standards
Institute), 57

EVPN (Ethernet VPN), 22, 95

eXpress Data Path (XDP), 76–77

expressions (P4), 193

extended Berkeley Packet Filter (eBPF), 76

extending P4 (Programming Protocol-
independent Packet Processors), 201–202

language composability, 201–202

PNA (Portable NIC Architecture), 201

extern objects (P4), 194

external DRAM, 186

F
Fabrics, NVME over, 120

failure handling, 214–215

Fairchild Semiconductor, 132

Fast Data - Input/Output (FD.io), 75

FCS (frame check sequence), 12

FD.io (Fast Data - Input/Output), 75

Federated Service Manager (FSM), 220–221

federation

concept of, 218, 220–223

distributed multiple SDSPs, 220

single SDSP scaling, 219

FIB (forwarding information base), 13–14, 68

Fibre Channel, 119

Fielding, Roy, 54

field-programmable gate arrays (FPGAs), 5, 30,
142, 181–183

Finagle, 54, 208

firewalls

distributed, 85–86

PCI Express, 161

flow cache, 28

flow dissector, 73

form factors, NIC (network interface card)

LOM (LAN On Motherboard), 148–149

OCP (Open Compute Project) mezzanine

cards, 147

PCI plug-in cards, 144–145

proprietary mezzanine cards, 146

forwarding

cache-based, 27–29

FIB (forwarding information base), 13–14, 68

GFT (generic forwarding table), 29–30

hash-based, 39

L2, 12

L3, 12–13

LPM (longest prefix match) forwarding, 13–14

vEth-based, 39

VRF (virtual routing and forwarding), 14

FPGAs (field-programmable gate arrays), 5, 30,
142, 181–183

frame check sequence (FCS), 12

frames, 12. See also routing

FSM (Federated Service Manager), 220–221

full virtualization, 39

functions

physical, 152, 175

virtual, 152, 175

FutureIO, 103

http://FD.io
http://FD.io

236 GCM (Galois Counter Mode)

G
GCM (Galois Counter Mode), 89

GDDR6, 186

general-purpose CPUs (central processing
units), 131

generic forwarding table (GFT), 29–30

Generic Routing Encapsulation (GRE),
18–19

generic segmentation offload (GSO), 150

GFT (generic forwarding table), 29–30

GigaBytes per second (GB/s), 185

Glance module (OpenStack), 56

“Go Back N” approach, 115–116

Golang, 208

Google

Cloud Platform, 36

OpenFlow at, 66

GPUs (graphic processor units), 4

Grafana, 212

graphic processor units (GPUs), 4

gRBC Routing Information Base Interface
(gRIBI), 67–68

GRE (Generic Routing Encapsulation),
18–19

greenfield projects, 162

gRIBI (gRBC Routing Information Base
Interface), 67–68

gRPC, 54–55, 160, 208, 210

gRPC-lb, 54

GSO (generic segmentation offload), 150

H
Hammond, L., 131

hardware architectures (DSN)

ASICs (application-specific integrated circuits),

183–184

choosing, 178–179

DSN building blocks, 174–176

DSN power consumption, 184–185

FPGAs (field-programmable gate arrays), 181–183

memory

bandwidth requirements, 186–187

on-chip DRAM, 186

external DRAM, 186

host memory, 185

memory needs, 185

overview of, 174

sea of cores solution, 179–181

silicon design

7 nm process, 178

16 nm process, 177–178

“silicon sweet-spot,” 176–177

hardware description language (HDL), 182

hardware security modules (HSMs), 90–91, 157

hash-based forwarding, 39

Hash-based Message Authentication
(HMAC), 96

hashing, 90, 126

HBM (high-bandwidth memory), 186

HCI (hyper-converged infrastructure), 119

HDL (hardware description language), 182

Hellman, Martin, 89

Helm, 211–212

high-bandwidth memory (HBM), 186

high-performance computing (HPC),
110–111

HMAC (Hash-based Message Authentication
Code), 96

Horowitz, M., 131

host memory, 185

host mode, 160–161

hosted hypervisors, 38–39

hosts connected to dedicated networks,
100–101

hosts with unified networks, 100–102

host-to-site VPNs (virtual private networks), 96

HP, 103

HPC (high-performance computing), 110–111

HSMs (hardware security modules),
90–91, 157

HTTP (Hypertext Transfer Protocol), 88, 91

HTTPS (HTTP Secure), 88

Huawei, xenproject.org, 46

Huawei Kirin 980, 178

Huffman Coding, 125

hybrid clouds, 36–37

hybrid tromboning, 27

http://xenproject.org

237JWT (JSON Web Tokens)

hyper-converged infrastructure (HCI), 119

Hypertext Transfer Protocol (HTTP), 88, 91

Hypertext Transfer Protocol Secure
(HTTPS), 88

Hyper-V, 29–30, 41–43

hypervisors

Hyper-V, 41–43

KVM (Kernel-based Virtual Machine), 36, 43–46

overview of, 37–40

QEMU (Quick EMUlator), 43

types of, 38–39

VMware ESXi, 40–41

XEN, 46

I
i7–5557U Intel processor, 177

IBM, 36, 103

IBTA (InfiniBand Trade Association), 103

IC (integrated circuit) manufacturing processes

7 nm process, 178

16 nm process, 177–178

“silicon sweet-spot,” 176–177

IDL (interface description language), 55

IEEE (Institute of Electrical and Electronics
Engineers), 11

Cryptographic Protection on Block Storage Devices

standard, 125

IEEE 802.1, 11

IETF (Internet Engineering Task Force), 11

implementation of distributed services
 platforms

in appliances, 171–172

bump-in-the-wire, 168–169

in domain-specific hardware inside NIC, 166–167

in software, 164–166

summary of, 172

in switch, 169–170

In-band Network Telemetry (INT), 193

InfiniBand RDMA. See RDMA (Remote Direct
Memory Access)

InfiniBand Trade Association (IBTA), 103

InfluxDB, 212–213

in-service upgrades, 215

Institute of Electrical and Electronics
Engineers. See IEEE (Institute of Electrical and
Electronics Engineers)

INT (In-band Network Telemetry), 193

INT header (P4), 201

integrated circuit. See IC (integrated circuit)
manufacturing processes

Intel

Agilex AGF 008, 182

x86 processors, 130

xenproject.org, 46

Interconnections: Bridges and Routers
(Perlman), 63

interface description language (IDL), 55

Intermediate-System to Intermediate-System
(IS-IS), 15

internal layer 2 switches, 175

International System of Units, 184

International Technology Roadmap for
Semiconductors (ITRS), 135

Internet Engineering Task Force (IETF), 11

Internet of Things (IoT), 57, 87

Internet Protocol. See IP (Internet Protocol)

interrupt moderation, 151

I/O offloads, 130

IoT (Internet of Things), 57, 87

IP (Internet Protocol)

IP in IP encapsulation, 18

IP masquerading, 79

IPsec, 92–93

Ironic module (OpenStack), 56

iSER (iSCSI Extensions for RDMA), 121

IS-IS (Intermediate-System to Intermediate-
System), 15

Istio, 6–7

ITRS (International Technology Roadmap for
Semiconductors), 135

iWARP, 109–110

J
Jacobson, Van, 76

jitter, 158–159, 181

JWT (JSON Web Tokens), 216–217

http://xenproject.org

238 Kafka

K
Kafka, 212–213

Kata Containers, 49

kernal bypass, 104

Kernel-based Virtual Machine (KVM), 36, 43–46

keys, secure key storage, 90–91

Keystone module (OpenStack), 56

Kibana, 212

kubelet, 50

kube-proxy, 50

Kubernetes, 50–52, 208, 211–212

KVM (Kernel-based Virtual Machine), 36, 43–46

L
L2 forwarding, 12

L3 forwarding, 12–13

Labonte, F., 131

LAN On Motherboard (LAN), 148–149

language composability, 201–202

large receive offload (LRO), 150

large send offload (LSO), 150

latency, 158, 181

LDAP (Lightweight Directory Access Protocol),
210–211

Lempel-Ziv (LZ) compression, 125

LEs (logical elements), 182

libcontainer, 48

libvirt, 45

Lightweight Directory Access Protocol (LDAP),
210–211

Linkerd, 6–7

LinuX Containers (LXC), 47

load balancing, 79–80, 208

loads (CPU), 159

logical elements (LEs), 182

LOM (LAN On Motherboard), 148–149

longest prefix match (LPM) forwarding, 13–14

look up table (LUT), 182

lossy networks, RoCEv2 and, 112–117

LPM (longest prefix match) forwarding, 13–14

LRO (large receive offload), 150

LSO (large send offload), 150

LUT (look up table), 182

LXC (LinuX Containers), 47

LZ (Lempel-Ziv) compression, 125

LZ4, 125

M
machine learning (ML), 4–5

manageability, distributed services platforms,
160

management architecture. See distributed
management control plane

masquerading (IP), 79

match-action pipeline, 191

maximum transmission unit (MTU), 22

McCanne, Steven, 76

McKeown, Nick, 63, 66, 190

MD5 algorithm, 90

Mega Transactions per second (MT/s), 185

Mellanox Technologies, 112

Meltdown, 84, 90–91

memory, 127

bandwidth requirements, 186–187

on-chip DRAM, 186

external DRAM, 186

HBM (high-bandwidth memory), 186

host, 185

memory needs, 185

RDMA (Remote Direct Memory Access), 175

advantages of, 104–106

architecture of, 106–107

control plane acceleration, 117–118

data security, 118–119

deployments, 110–112

history of, 103

operations, 108–109

remote nonvolatile memory access, 118

RoCE (RDMA over Converged Ethernet), 19,

109–110, 112–117

scalability, 109

transport services, 108

registration, 107

TCAM (ternary content-addressable memory), 139

Memory Management Units (MMUs), 161

239network design

Mesos, 48, 208

Message Signaled Interrupts-Extended
(MSI-X), 151

metal-oxide-semiconductor field-effect
 transistors (MOSFETs), 136–137. See also
transistor count

mezzanine cards

OCP (Open Compute Project) mezzanine, 147

proprietary, 146

microprocessors. See CPUs (central processing
units)

microsegmentation, 86–87

microservice architecture

gRPC, 54–55

overview of, 52–54

REST API, 54

Microsoft Azure, 36

GFT (generic forwarding table), 29–30

SmartNIC, 154–155

Microsoft Hyper-V, 29–30, 41–43

Miller, David, 76

Minio, 212–213

MIPS cores, 179

ML (machine learning), 4–5

MMUs (Memory Management Units), 161

modern encapsulations, 19

MongoDB, 212–213

monitoring distributed management control
plane, 209

Moore, Gordon, 132, 138

Moore’s law, 4, 103, 132–134, 138

MOSFETs (metal-oxide-semiconductor
 field-effect transistors), 136–137. See also
transistor count

MPLS (Multiprotocol Label Switching),
23–24, 95

MSI-X (Message Signaled Interrupts-Extended),
151

MTU (maximum transmission unit), 22

multicast handling, 150

multicore CPU architecture, 130

Multiprotocol Label Switching (MPLS), 23–24, 95

multitenancy, 37

N
NAPI (New API), 150

NAT (network address translation), 157

ALGs (application layer gateways), 79

stateful, 79

National Institute of Standards and Technology
(NIST), 89

NATS, 212–213

ndo-setup-tc utility, 73

NetFlow, 81

network address translation (NAT), 79, 157

network design. See also NICs (network
interface cards)

Access-Aggregation-Core model, 10

bridging and routing

defined, 11

L2 forwarding, 12

L3 forwarding, 12–13

LPM (longest prefix match) forwarding, 13–14

VRF (virtual routing and forwarding), 14

cache-based forwarding, 27–29

Clos topology, 14–15

East-West traffic, 8–9, 84

encapsulation termination, 23

GFT (generic forwarding table), 29–30

lossy networks, RoCEv2 and, 112–117

North-South traffic, 8–9, 84

overlays

architecture of, 16–18

generic encapsulation, 17–18

GRE (Generic Routing Encapsulation), 18–19

IP in IP encapsulation, 18

modern encapsulations, 19

MTU (maximum transmission unit)

 considerations, 22

support for, 151

tunnel endpoints, 17

tunnels and tunnel endpoints, 17

VXLAN (Virtual Extensible LAN) encapsulation,

19–22

overview of, 10–11

redundancy, 214

240 network design

secure tunnels, 22–23, 92

with DTLS (Datagram TLS), 94

with IPsec, 92–93

with TLS (Transport Layer Security), 93–94

SR (segment routing), 23–24

telemetry, 80–81

tromboning, 5, 157

example of, 25

hybrid, 27

with VRF (virtual routing and forwarding), 26–27

with VXLAN (Virtual Extensible LAN), 25–26

underlays, 16

Network Function Virtualization (NFV), 57

network interface cards. See NICs (network
interface cards)

Network Load Balancer (NLB), 208

network mode, 160–161

network on chip (NoC), 175

Network Virtualization using Generic Routing
Encapsulation (NVGRE), 18–19

networking services

challenges of, 62–63

load balancing, 79–80

SDN (software-defined networking)

DPDK (Data Plane Development Kit), 68

gRIBI (gRBC Routing Information Base

Interface), 67–68

OpenFlow, 64–66

overview of, 63–64

SW-WAN (software-defined wide-area network),

66–67

stateful NAT (network address translation), 79

troubleshooting, 80–81

VPNs (virtual private networks), 94–96

vSwitches

BPF (Berkeley Packet Filter), 76

classification of, 69

DPDK Generic Flow API, 74

eBPF (extended Berkeley Packet Filter), 76

OVS (Open vSwitch), 70–73

summary of, 78–79

tc-flower, 73–74

VPP (Vector Packet Processing), 75

XDP (eXpress Data Path), 76–77

Neutron module (OpenStack), 56

New API (NAPI), 150

NFV (Network Function Virtualization), 57

Nginx, 6–7, 208

NGIO, 103

Nicira, 70

NICs (network interface cards), 100

DSN adapters, 164–166

evolution of, 142, 149–153

form factors

LOM (LAN On Motherboard), 148–149

OCP (Open Compute Project) mezzanine cards,

147

PCI plug-in cards, 144–145

proprietary mezzanine cards, 146

server buses, 143–144

SmartNIC, 154–155

SR-IOV (Single Root Input/Output Virtualization),

149–153

VirtIO (Virtual I/O), 153–154

NIST (National Institute of Standards and
Technology), 89

NLB (Network Load Balancer), 208

NOC (network on chip), 175

non-recurring engineering (NRE), 183

Non-Volatile Memory express (NVMe), 119

North-South traffic, 8–9, 84

Nova module (OpenStack), 56

NRE (non-recurring engineering), 183

NSX (VMware), 41, 164

NVDIMMs, 120

NVGRE (Network Virtualization using Generic
Routing Encapsulation), 18–19

NVIDIA CP100 GPU, 137

NVMe-oF (NVME over Fabrics), 120

NVMe, 6

NVRAM interface, 176

O
OAS (OpenAPI Specification), 54

observability, distributed services platforms,
159–160

OCI (Open Container Initiative), 48

241path MTU discovery (PMTUD)

OCP (Open Compute Project), 147, 163

offloading, 159

stateless offloads, 150

storage services, 126–127

ole-Based Access Control (RBAC), 210–211

Olukotun, K., 131

on-chip DRAM, 186

one-sided operations, RDMA (Remote Direct
Memory Access), 104, 106

ONF (Open Networking Foundation),
64–66, 190

Open Compute Project (OCP), 147, 163

Open Container Initiative (OCI), 48

Open Networking Foundation (ONF),
64–66, 190

Open Shortest Path First (OSPF), 15

Open Source NFV Management and
Orchestration (MANO), 57

Open vSwitch (OVS), 70–73

OpenAPI Specification (OAS), 54, 160

OpenFlow, 64–66

open-source software

gRPC, 54–55

KVM (Kernel-based Virtual Machine), 43–46

Open Source NFV Management and Orchestration

(MANO), 57

OpenStack, 55–57

OpenVPN, 96

OVS (Open vSwitch), 70–73

QEMU (Quick EMUlator), 43

openssl utility, 89

OpenStack, 55–57

OpenStack Cloud Computing, 57

OpenStack Foundation, 55

OpenTracing, 208

OpenVPN, 96

OpenZipkin, 208

operations, RDMA (Remote Direct Memory
Access), 108–109

Oracle

Cloud Infrastructure, 36

xenproject.org, 46

orchestration, 48

OSPF (Open Shortest Path First), 15

overlays, network

architecture of, 16–18

generic encapsulation, 17–18

GRE (Generic Routing Encapsulation), 18–19

IP in IP encapsulation, 18

modern encapsulations, 19

MTU (maximum transmission unit) considerations,

22

support for, 151

tunnels and tunnel endpoints, 17

VXLAN (Virtual Extensible LAN) encapsulation,

19–22

OVH, 36

OVS (Open vSwitch), 70–73

P
P4 (Programming Protocol-independent Packet

Processors)

example of, 195–199

extending, 201–202

language composability, 201–202

PNA (Portable NIC Architecture), 201

INT (In-band Network Telemetry), 193

overview of, 190–192

P4 INT, 201

P4 language, 193–194

P4 version 16, 192–193

P4Runtime API, 193, 199–200

programming and development tools, 202

PSA (Portable Switch Architecture), 193, 194–195

P4 Language consortium, 194

P4 Language Design Working Group, 202

packet processing graphs (VPP), 75

packets. See also routing

filtering, 151

structure of, 12

paravirtualization, 39

parsers (P4), 191, 193

PAT (port address translation), 79

path MTU discovery (PMTUD), 22

http://xenproject.org

242 PCI (Peripheral Component Interconnect)

PCI (Peripheral Component Interconnect)

DSN requirements, 175

PCI plug-in cards, 144–145

PCIe (PCI Express), 143–144, 161

PCIe-only services, 162–163

Pentium 4 processors, 130

Pentium processors, 130

Pentium Pro/II processors, 130

Per Priority Pause (PPP), 151

perfect forward secrecy (PFS), 88

performance, distributed management control
plane, 212–214, 223–226

Peripheral Component Interconnect. See PCI
(Peripheral Component Interconnect)

Perlman, Radia, 63

Per-Priority Flow Control (PFC), 112

PFC (Per-Priority Flow Control), 112, 151

PFS (perfect forward secrecy), 88

PFs (physical functions), 152

phishing, 84

physical functions (PFs), 152, 175

physical unclonable function (PUF), 91

ping command, 181

PMTUD (path MTU discovery), 22

PNA (Portable NIC Architecture), 201

pods (Kubernetes), 52

port address translation (PAT), 79

Portable NIC Architecture (PNA), 201

Portable Switch Architecture (PSA), 193,
194–195

ports

DSN requirements, 174

OpenFlow, 65

power consumption

constraints on, 163

DSNs (distributed services nodes),

184–185

power budget, 163

PPP (Per Priority Pause), 151

Precision Time Protocol (PTP), 152, 160

Priority-based Flow Control (PFC), 151

private clouds, 36

processors. See CPUs (central processing
units)

programmability, 182

programmable deparsers, 191

programmable match-action pipeline, 191

programmable parsers, 191

Programming Protocol-independent Packet
Processors. See P4 (Programming
Protocol-independent Packet Processors)

Prometheus, 212–213

proprietary mezzanine cards, 146

protobuf, 54, 160, 200, 208

Protocol 41 encapsulation, 18

protocol buffers, 54. See also protobuf

protocol overload, 104, 105

PSA (Portable Switch Architecture), 193,
194–195

PTP (Precision Time Protocol), 152, 160

public clouds, 36

PUF (physical unclonable function), 91

Puppet, 212

Python, 208

Q
QEMU (Quick EMUlator), 43

QoS (Quality of Service)

NICs (network interface cards), 150

QoS marking, 109

Queue Pairs (QPs), 106–107

R
RAID (Redundant Array of Independent Disks),

126

RAW (Raw Architecture Workstation), 130

RBAC (Role-Based Access Control), 210–211

RC (Reliable Connected), 108

RD (Reliable Datagram), 108

RDMA (Remote Direct Memory Access), 175

advantages of, 104–106

architecture of, 106–107

control plane acceleration, 117–118

243SDN (software-defined networking)

data security, 118–119

deployments, 110–112

history of, 103

operations, 108–109

RDMA over Converged Ethernet (RoCE), 19,

109–110

remote nonvolatile memory access, support

for, 118

RoCE (RDMA over Converged Ethernet), 109–110

RoCEv2 and lossy networks, 112–117

scalability, 109

transport services, 108

Read/Write operations (RDMA), 108

Receive Queue (RQ), 106–107

Receive Side Coalescing (RSC), 150

Receive Side Scaling (RSS), 150

reconciliation, 215

Redis, 212–213

redundancy, network, 214

Redundant Array of Independent Disks (RAID),
126

registration, memory, 107

Reliable Connected (RC), 108

Reliable Datagram (RD), 108

Remote Direct Memory Access. See RDMA
(Remote Direct Memory Access)

remote nonvolatile memory access, support for,
118

Representational State Transfer (REST) API, 54,
160, 208

Requests for Comment. See RFCs (Requests
For Comment)

REST (Representational State Transfer) API, 54,
160, 208

RFCs (Requests For Comment), 11

RFC 1191, 22

RFC 1701, 18–19

RFC 1853, 18

RFC 1918, 79

RFC 1981, 22

RFC 2473, 18

RFC 2663, 79

RFC 4821, 22

RFC 7348, 20

RIB (routing information base), 68

Rivest-Shamir-Adleman (RSA), 89

RoCE (RDMA over Converged Ethernet), 19,
109–110

Rocket, 48

ROTPK (root of trust public key), 97

routing

centralized, 66

defined, 11

L2 forwarding, 12

L3 forwarding, 12–13

LPM (longest prefix match) forwarding, 13–14

SR (segment routing), 23–24

VRF (virtual routing and forwarding), 14

routing information base (RIB), 68

RPC framework, 208

RQ (Receive Queue), 106–107

RSA (Rivest-Shamir-Adleman), 89

RSC (Receive Side Coalescing), 150

RSS (Receive Side Scaling), 150

RTE Flow Filtering (DPDK), 74

runtimes, container, 48

Rupp, Karl, 131

Rust, 208

S
scalability/scaling

Dennard scaling, 4, 134–135

distributed management control plane,

212–214, 223–226

RDMA (Remote Direct Memory Access), 109

SCSI (Small Computer System Interface), 119

SCSI RDMA Protocol (SRP), 121

SDN (software-defined networking), 6

DPDK (Data Plane Development Kit), 68

gRIBI (gRBC Routing Information Base Interface),

67–68

OpenFlow, 64–66

overview of, 63–64

SD-WAN (software-defined wide-area network),

66–67

244 SDSPs (software defined services platforms)

SDSPs (software defined services platforms)

distributed multiple, 220

federation of multiple, 220–223

single SDSP scaling, 219

SD-WAN (software-defined wide-area
network), 66–67

Secure Production Identity Framework for
Everyone (SPIFFE), 210

Secure Sockets Layer (SSL), 88, 93

security

APIs (application programming interfaces), 216–217

asymmetric encryption, 89–90

digital certificates, 90

distributed firewalls, 85–86

distributed management control plane, 210–211

encryption, 125

hashing, 90, 126

microsegmentation, 86–87

overview of, 84–85

PUF (physical unclonable function), 91

RDMA (Remote Direct Memory Access), 118–119

secure boot, 97

secure key storage, 90–91

secure tunnels, 22–23, 92

with DTLS (Datagram TLS), 94

with IPsec, 92–93

with TLS (Transport Layer Security), 93–94

security threats, 84–85

SPIFFE (Secure Production Identity Framework for

Everyone), 210

SSL (Secure Sockets Layer), 88, 93

storage, 125

symmetric encryption, 89

TCP/TLS/HTTP implementation, 91

TLS (Transport Layer Security), 87–89, 91, 93–94,

210

VPNs (virtual private networks), 94–96

zero-trust security, 87

segment routing (SR), 23–24

selective retransmission, 115–117

Send Queue (SQ), 106–107

Send/Receive operations (RDMA), 108

Serializer/Deserializer (SerDes), 177

server buses, 143–144

service chaining, 25. See also tromboning

service mesh, 6–7

service providers, 164

services. See also individual services

overview of, 6

service mesh, 6–7

SHA hashing algorithms, 90, 126

Shacham, O., 131

shortest path first (SPF), 64

silicon design

7 nm process, 178

16 nm process, 177–178

“silicon sweet-spot,” 176–177

Simple Network Management Protocol (SNMP),
64, 81

Single Root Input/Output Virtualization
(SR-IOV), 45–46, 149–153, 175

single-thread CPU performance, 137–138

site-to-site VPNs (virtual private networks), 96

SKB (socket buffer), 77

Small Computer System Interface (SCSI), 119

SmartNIC, 7–8, 154–155

Snappy, 125

SNIA (Storage Networking Industry
Association), 127

SNMP (Simple Network Management Protocol),
64, 81

SoC (System on a Chip), 177

socket buffer (SKB), 77

software, distributed services platforms in,
164–166

software defined services platforms. See
SDSPs (software defined services platforms)

software-defined networking. See SDN
 (software-defined networking)

software-defined wide-area network (SD-WAN),
66–67

solid state drives (SSDs), 119–120

source MAC address field (Ethernet
packets), 12

SPAN (switched port analyzer) ports, 192

SPEC Integer benchmark, 138

Spectre, 84, 90–91

transistor count 245

speed, distributed services platforms, 158

SPF (shortest path first), 64

SPIFFE (Secure Production Identity Framework
for Everyone), 210

SQ (Send Queue), 106–107

SR (segment routing), 23–24

SR-IOV (Single Root Input/Output Virtualization),
45–46, 149–153, 175

SRP (SCSI RDMA Protocol), 121

SSDs (solid state drives), 119–120

SSL (Secure Sockets Layer), 88, 93

Starovoitov, Alexei, 76

stateful NAT (network address translation), 79

stateless offloads, 150

static bonding, 40

storage

data plane model of storage protocols, 120–122

efficiency of, 125–126

NVMe-oF (NVME over Fabrics), 120

offloading and distributing, 126–127

persistent memory as, 127

reliability of, 126

SCSI (Small Computer System Interface), 119

security, 125

SSDs (solid state drives), 119–120

storage services by type, 124

virtualization and, 122–124

Storage Networking Industry Association
(SNIA), 127

Sun, 103

Swagger, 54, 160

Swift module (OpenStack), 56

switched port analyzer (SPAN) ports, 192

switches. See also bridging and routing

distributed services platforms in, 169–170

ToR (top of rack), 168

vSwitches

BPF (Berkeley Packet Filter), 76

classification of, 69

DPDK Generic Flow API, 74

eBPF (extended Berkeley Packet Filter), 76

overview of, 39–40

OVS (Open vSwitch), 70–73

summary of, 78–79

tc-flower, 73–74

VPP (Vector Packet Processing), 75

XDP (eXpress Data Path), 76–77

symmetric encryption, 89

synchronization, time, 152

System on a Chip (SoC), 177

T
Tandem Computers, 103

target users, determining, 163–164

TCAM (ternary content-addressable memory),
13, 139

tc-flower, 73–74

TCP (Transmission Control Protocol), 19, 91

TCP segmentation offload (TSO), 150

telecommunications, 57

telemetry, 8, 80–81

ternary content-addressable memory (TCAM),
13, 139

ternary matches, 13–14

TICK, 212

time series databases (TSDBs), 214

Time Server, 29

time synchronization, 152

time to live (TTL), 12

TLS (Transport Layer Security), 87–89, 91,
93–94, 210

top of rack (ToR) switches, 14, 168

topologies, Clos, 14–15

ToR (top of rack) switches, 14, 168

Torvolds, Linus, 96

TPM (Trusted Platform Module), 210

traffic shaping, 150

transactional semantics, 217

transistor count

Amdahl’s Law, 4

Dennard scaling, 4, 134–135

historical perspective of, 130–131

historical trend data, 131–132

Moore’s law, 4, 103, 132–134, 138

single-thread performance, 137–138

technical factors limiting, 136–137

246 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP), 19, 91

Transport Layer Security (TLS), 87–89, 91,
93–94, 210

transport services, 108

tromboning, 5, 157

example of, 25

hybrid, 27

with VRF (virtual routing and forwarding), 26–27

with VXLAN (Virtual Extensible LAN), 25–26

troubleshooting

distributed management control plane, 209

distributed services platforms, 159–160

networking services, 80–81

Trusted Platform Module (TPM), 210

TSDBs (time series databases), 214

TSO (TCP segmentation offload), 150

TTL (time to live), 12

tunnels. See also encapsulation

defined, 17

endpoints, 17

secure, 22–23, 92

with DTLS (Datagram TLS), 94

with IPsec, 92–93

with TLS (Transport Layer Security), 93–94

U
UC (Unreliable Connected), 108

UD (Unreliable Datagram), 108

UDP (User Datagram Protocol), 19

underlay networks, 16

unified fabric, support for, 151

unified networks

hosts with, 100–102

software stack, 101–102

University of Cambridge Computer Laboratory,
XEN, 46

Unreliable Connected (UC), 108

Unreliable Datagram (UD), 108

upstream, 72

User Datagram Protocol (UDP), 19

users, target, 163–164

utilities. See individual utilities

V
Vahdat, Amin, 66

vCenter (VMware), 41

Vector Packet Processing (VPP), 75

Verilog, 182

VERSION API (CNI), 50

vETh (virtual ethernet) ports, 39, 65

VFP (Virtual Filtering Platform), 29–30

VFs (virtual functions), 152, 175

VHDL, 182

VIA (Virtual Interface Architecture), 103

VID (VLAN identifier), 12, 19–20

VirtIO (Virtual I/O), 44–46, 153–154

virtual ethernet (vEth) ports, 39, 65

Virtual Extensible LAN. See VXLAN (Virtual
Extensible LAN)

Virtual Filtering Platform (VFP), 29–30

virtual functions (VFs), 152, 175

Virtual Interface Architecture (VIA), 103

virtual machines (VMs), 37–40

Virtual Network ID (VNID), 21

virtual private networks (VPNs), 94–96

virtual routing and forwarding. See VRF (virtual
routing and forwarding)

virtualization. See also networking services

advantages of, 34–35

clouds and, 35–37

containers

CNI (Container Network Interface), 49–50

container runtimes, 48

CSI (Container Storage Interface), 50

Kata Containers, 49

Kubernetes, 50–52

LXC (LinuX Containers), 47

overview of, 47–48

full, 39

hypervisors

Hyper-V, 41–43

KVM (Kernel-based Virtual Machine), 36, 43–46

overview of, 37–40

QEMU (Quick EMUlator), 43

types of, 38–39

247Zookeeper

VMware ESXi, 40–41

XEN, 46

libvirt, 45

microservice architecture

gRPC, 54–55

overview of, 52–54

REST API, 54

NFV (Network Function Virtualization), 57

OpenStack, 55–57

paravirtualization, 39

remote storage and, 122–124

SR-IOV (Single Root Input/Output Virtualization),

149–153

vETh (virtual ethernet) ports, 39, 65

VFP (Virtual Filtering Platform), 29–30

VFs (virtual functions), 152, 175

VIA (Virtual Interface Architecture), 103

VirtIO (Virtual I/O), 44–46, 153–154

virtualized versus bare-metal servers, 161

VLAN tagging support, 151

VMs (virtual machines), 37–40

VRF (virtual routing and forwarding), 14, 26–27,

29–30

vSwitches

BPF (Berkeley Packet Filter), 76

classification of, 69

DPDK Generic Flow API, 74

eBPF (extended Berkeley Packet Filter), 76

overview of, 39–40

OVS (Open vSwitch), 70–73

summary of, 78–79

tc-flower, 73–74

VPP (Vector Packet Processing), 75

XDP (eXpress Data Path), 76–77

VXLAN (Virtual Extensible LAN)

encapsulation, 19–22

tromboning with, 25–26

VLAN identifier (VID), 12, 19–20

VLAN tagging support, 151

VMs (virtual machines), 37–40. See also
hypervisors

VMware

ESXi, 40–41

NSX, 41, 164

vCenter, 41

vSAN, 41

VNID (Virtual Network ID), 21

VPNs (virtual private networks), 94–96

VPP (Vector Packet Processing), 75

VRF (virtual routing and forwarding), 14, 26–27,
191

vsAN (VMware), 41

vSwitches

BPF (Berkeley Packet Filter), 76

classification of, 69

DPDK Generic Flow API, 74

eBPF (extended Berkeley Packet Filter), 76

overview of, 39–40

OVS (Open vSwitch), 70–73

summary of, 78–79

tc-flower, 73–74

VPP (Vector Packet Processing), 75

XDP (eXpress Data Path), 76–77

VXLAN (Virtual Extensible LAN)

encapsulation, 19–22

tromboning with, 25–26

W
Wireguard, 96

WRs (work requests), 106–107

X
X.509 certificates, 210

XDP (eXpress Data Path), 76–77

XEN, 46

xenproject.org, 46

XenSource, Inc., 46

XTS encryption mode, 89

Y-Z
YANG (Yet Another Next Generation), 54, 160

zero-copy, 104, 105

zero-trust security, 87

Zombieland, 90–91

Zookeeper, 212–213

http://xenproject.org

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Chapter 1: Introduction to Distributed Platforms
	1.1 The Need for a Distributed Services Platform
	1.2 The Precious CPU Cycles
	1.3 The Case for Domain-Specific Hardware
	1.4 Using Appliances
	1.5 Attempts at Defining a Distributed Services Platform
	1.6 Requirements for a Distributed Services Platform
	1.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

