
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133796827
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133796827
https://plusone.google.com/share?url=http://www.informit.com/title/9780133796827
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133796827
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133796827/Free-Sample-Chapter

Java® Performance
Companion

This page intentionally left blank

Java® Performance
Companion

Charlie Hunt
Monica Beckwith
Poonam Parhar
Bengt Rutisson

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
 likewise. For information regarding permissions, request forms and the appropriate contacts within the
 Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions.

ISBN-13: 978-0-13-379682-7
ISBN-10: 0-13-379682-5

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2016

http://www.pearsoned.com/permissions

v

Contents

Preface ix

Acknowledgments xi

About the Authors xv

Chapter 1 Garbage First Overview 1
Terminology 1

Parallel GC 2

Serial GC 4

Concurrent Mark Sweep (CMS) GC 5

Summary of the Collectors 7

Garbage First (G1) GC 8

G1 Design 10

Humongous Objects 12

Full Garbage Collections 12

Concurrent Cycle 13

Heap Sizing 14

References 14

vi Contents

Chapter 2 Garbage First Garbage Collector in Depth 15
Background 15

Garbage Collection in G1 16

The Young Generation 17

A Young Collection Pause 18

Object Aging and the Old Generation 19

Humongous Regions 19

A Mixed Collection Pause 22

Collection Sets and Their Importance 24

Remembered Sets and Their Importance 24

Concurrent Refinement Threads and Barriers 28

Concurrent Marking in G1 GC 30

Stages of Concurrent Marking 34

Initial Mark 34

Root Region Scanning 34

Concurrent Marking 34

Remark 36

Cleanup 36

Evacuation Failures and Full Collection 37

References 38

Chapter 3 Garbage First Garbage Collector Performance Tuning 39
The Stages of a Young Collection 39

Start of All Parallel Activities 41

External Root Regions 42

Remembered Sets and Processed Buffers 42

Summarizing Remembered Sets 44

Evacuation and Reclamation 47

Termination 47

Parallel Activity Outside of GC 48

Summarizing All Parallel Activities 48

Start of All Serial Activities 48

Other Serial Activities 49

Young Generation Tunables 50

Contents vii

Concurrent Marking Phase Tunables 52

A Refresher on the Mixed Garbage Collection Phase 54

The Taming of a Mixed Garbage Collection Phase 56

Avoiding Evacuation Failures 59

Reference Processing 60

Observing Reference Processing 60

Reference Processing Tuning 62

References 65

Chapter 4 The Serviceability Agent 67
What Is the Serviceability Agent? 68

Why Do We Need the SA? 68

SA Components 69

SA Binaries in the JDK 69

JDK Versions with Complete SA Binaries 69

How the SA Understands HotSpot VM Data Structures 70

SA Version Matching 71

The Serviceability Agent Debugging Tools 72

HSDB 72

HSDB Tools 80

CLHSDB 100

Some Other Tools 103

Core Dump or Crash Dump Files 108

Debugging Transported Core Files 109

Shared Library Problems with the SA 109

Eliminate Shared Library Problems 110

System Properties for the Serviceability Agent 111

Environment Variables for the Serviceability Agent 112

JDI Implementation 113

Extending Serviceability Agent Tools 115

Serviceability Agent Plugin for VisualVM 117

How to Install the SA-Plugin in VisualVM 118

How to Use the SA-Plugin 118

SA-Plugin Utilities 119

viii Contents

Troubleshooting Problems Using the SA 123

Diagnosing OutOfMemoryError 123

Diagnosing a Java-Level Deadlock 131

Postmortem Analysis of a HotSpot VM Crash 136

Appendix Additional HotSpot VM Command-Line Options of Interest 145

Index 155

ix

Preface

Welcome to the Java® Performance Companion. This book offers companion material
to Java™ Performance [1], which was first published in September 2011. Although
the additional topics covered in this book are not as broad as the material in Java™
Performance, they go into enormous detail. The topics covered in this book are the G1
garbage collector, also known as the Garbage First garbage collector, and the Java
HotSpot VM Serviceability Agent. There is also an appendix that covers additional
HotSpot VM command-line options of interest that were not included in the Java™
Performance appendix on HotSpot VM command-line options.

If you are currently using Java 8, have interest in migrating to Java 8, or have
plans for using Java 9, you will likely be either evaluating G1 GC or already using
it. Hence, the information in this book will be useful to you. If you have interest in
 diagnosing unexpected HotSpot VM failures, or in learning more about the details of
a modern Java Virtual Machine, this book’s content on the HotSpot VM Serviceability
Agent should be of value to you, too. The HotSpot VM Serviceability Agent is the tool
of choice for not only HotSpot VM developers but also the Oracle support engineers
whose daily job involves diagnosing and troubleshooting unexpected HotSpot VM
behavior.

This book begins with an overview of the G1 garbage collector by offering some
context around why G1 was implemented and included in HotSpot VM as a GC. It then
goes on to offer an overview of how the G1 garbage collector works. This chapter is
followed by two additional chapters on G1. The first is an in-depth description of the
internals of G1. If you already have a good understanding of how the G1 garbage

x Preface

collector works, and either have a need to further fine-tune G1 or want to know more
about its inner workings, this chapter would be a great place to start. The third chap-
ter on G1 is all about fine-tuning G1 for your application. One of the main design
points for G1 was to simplify the tuning required to realize good performance. For
instance, the major inputs into G1 are the initial and maximum Java heap size it can
use, and a maximum GC pause time you are willing to tolerate. From there G1 will
attempt to adaptively adjust to meet those inputs while it executes your application.
In circumstances where you would like to achieve better performance, or you would
like to do some additional tuning on G1, this chapter has the information you are
looking for.

The remaining chapter is dedicated entirely to the HotSpot VM Serviceability
Agent. This chapter provides an in-depth description of and instructions for how to
use the Serviceability Agent. If you have interest in learning more about the inter-
nals of the HotSpot VM, or how to troubleshoot and diagnose unexpected HotSpot
VM issues, this is a good chapter for you. In this chapter you will learn how to use
the HotSpot VM Serviceability Agent to observe and analyze HotSpot VM behavior
in a variety of ways through examples and illustrations.

Last, there is an appendix that includes HotSpot VM command-line options that
were not included in Java™ Performance’s appendix on HotSpot VM command-line
options. Many of the HotSpot VM command-line options found in the appendix are
related to G1. And, rather than merely listing these options with only a description,
an attempt is made to also mention when it is appropriate to use them.

References

[1] Charlie Hunt and Binu John. JavaTM Performance. Addison-Wesley, Upper Saddle
River, NJ, 2012. ISBN 978-0-13-714252-1.

Register your copy of Java® Performance Companion at informit.com for
 convenient access to downloads, updates, and corrections as they become
 available. To start the registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN (9780133796827) and click
Submit. Once the process is complete, you will find any available bonus content
under “Registered Products.”

xi

Acknowledgments

Charlie Hunt

For those who have ever considered writing a book, or are curious about the effort
involved in doing so, the book-writing experience is a major undertaking! For me it
just would not have happened without the help of so many people. I cannot begin to
mention everyone who made this possible.

In an attempt to at least name those who have had a profound impact on this book
getting drafted and eventually into print, I would first like to thank my coauthors,
Monica Beckwith, Bengt Rutisson, and Poonam Parhar. When the idea of doing a
companion book to Java™ Performance first surfaced, I thought it would be great
to offer the opportunity to these talented HotSpot VM engineers to showcase their
expertise. I am sure I have learned much more from each of them than they have
learned from me. I could not be prouder of their contributions to this book.

I also extend sincere thanks to Monica Beckwith for her persistence and passion
in sharing her in-depth knowledge of G1 GC. In the early days of G1, I had the plea-
sure of working with Monica on a daily basis on G1 performance, eventually handing
off full reins to her. She has done an exceptional job with driving G1’s performance
and sharing her G1 knowledge.

I also have to explicitly call out Poonam Parhar and thank her for her patience.
Poonam so patiently waited for the other contributors to complete their initial
drafts—patiently as in years of patience! Had all of us finished our drafts in a timely
way, this book probably would have been on the shelf at least two years earlier.

xii Acknowledgments

I also extend my thanks to the entire HotSpot VM team, the HotSpot GC
engineering team, and in particular the G1 GC engineers, both past and present.

And to the reviewers of the material in this book: Paul Hohensee for his relentless
attention to detail and incredible suggestions for improved readability, and Tony
Printezis for his thorough review of the gory details of G1 GC and recommended
tuning of G1.

Thanks also to John Cuthbertson for sharing his knowledge of G1. John also
happens to be one of the most talented concurrency troubleshooting engineers I have
ever worked with. I don’t think I ever saw a situation where I was able to stump him
with some bizarre observation about G1 that was clearly some kind of concurrency
bug. He was always able to track it down.

And to Bernard Traversat and Georges Saab for their support and encouragement
in pulling together material for a follow-on to Java™ Performance.

And obviously thanks to Greg Doench, our editor, for his patience with our many
delays in delivering drafts, completing reviews, and getting the manuscript in shape
to put in his hands.

Last, thanks to my wife, Barb, and son, Boyd, for putting up with yet another round of
the book-writing experience!

Monica Beckwith

I felt honored when I was approached by my mentor Charlie Hunt to write a few
chapters for this book. I didn’t have the slightest idea that it would take me so
long. So, my first set of thanks goes to my fellow writers for their patience and to
Charlie for his persistence and encouragement throughout. While we are talking
about encouragement, I want to thank my hubby, Ben Beckwith—when he saw my
frustration he had nothing but words of encouragement for me. He was also the
initial reviewer of my drafts. Thank you, Ben. And then, of course, my two kiddos,
Annika and Bodin, and my mom, Usha, who have been nothing but supportive of me
and of this book.

My technical strength on G1 taps off John Cuthbertson, and I am thankful to
him for supporting my crazy queries and patiently listening and working with
me to “make G1 adaptive” and to “tame mixed collections.” When we used to
discuss the adaptive marking threshold, I got tired of typing and talking about
InitiatingHeapOccupancyPercent, so I shortened it to IHOP and John just loved
it. It’s really hard to find such supportive colleagues as John and Charlie.

And then there are Paul Hohensee and Tony Printezis. They are my mentors in
their own right, and I can assure you that their persistence in reviewing my chapters
has improved the readability and content by at least 75 percent! :)

Thank you all for trusting me and encouraging me. I am forever in your debt!

Acknowledgments xiii

Poonam Parhar

I was deeply honored and excited when Charlie suggested that I write a chapter on the
Serviceability Agent. I thought it was a great idea, as this wonderful tool is little known
to the world, and it would be great to talk about its usefulness and capabilities. But I had
never written a book before, and I was nervous. Big thanks to Charlie for his trust in me,
for his encouragement, and for guiding me throughout writing the chapter on the SA.

I would like to thank my manager, Mattis Castegren, for always being supportive
and encouraging of my work on this book, and for being the first reviewer of the
chapter on the SA. Huge thanks to Kevin Walls for reviewing my chapter and helping
me improve the quality of the content.

Special thanks to my husband, Onkar, who is my best friend, too, for being sup-
portive and always being there whenever I need help. And of course I am grateful
to my two little angels, Amanvir and Karanvir, who are my continuous source of
motivation and happiness.

And my most sincere thanks to my father, Subhash C. Bajaj, for his infectious
cheerfulness and for being a source of light, and for always inspiring me to never
give up.

Bengt Rutisson

When Charlie asked me to write a chapter for this book, I was very honored and
flattered. I had never written a book before and clearly had no idea how much
work it is—even to write just one chapter! I am very grateful for all the support
from Charlie and the reviewers. Without their help, I would not have been able to
complete this chapter.

A big thanks to my wife, Sara Fritzell, who encouraged me throughout the work
and helped me set up deadlines to get the chapter completed. And, of course, many
thanks to our children, Max, Elsa, Teo, Emil, and Lina, for putting up with me during
the writing period.

I would also like to thank all of the members of the HotSpot GC engineering
team, both past and present. They are by far the most talented bunch of engineers
I have ever worked with. I have learned so much from all of them, and they have all
inspired me in so many ways.

This page intentionally left blank

xv

About the Authors

Charlie Hunt (Chicago, IL) is currently a JVM Engineer at Oracle leading a variety
of Java SE and HotSpot VM projects whose primary focus is reducing memory
 footprint while maintaining throughput and latency. He is also the lead author of
Java™ Performance (Addison-Wesley, 2012). He is a regular presenter at the JavaOne
Conference where he has been recognized as a Java Rock Star. He has also been
a speaker at other well-known conferences, including QCon, Velocity, GoTo, and
 Dreamforce. Prior to leading a variety of Java SE and HotSpot VM projects for Oracle,
 Charlie worked in several different performance positions, including Performance
 Engineering Architect at Salesforce.com and HotSpot VM Performance Architect at
Oracle and Sun Microsystems. He wrote his first Java application in 1998, joined
Sun Microsystems in 1999 as Senior Java Architect, and has had a passion for Java
and JVM performance ever since.

Monica Beckwith is an Independent Performance Consultant optimizing customer
applications for server-class systems running the Java Virtual Machine. Her past
experiences include working with Oracle, Sun Microsystems, and AMD. Monica has
worked with Java HotSpot VM optimizing the JIT compiler, the generated code, the
JVM heuristics, and garbage collection and collectors. She is a regular speaker at
various conferences and has several published articles on topics including garbage
collection, the Java memory model, and others. Monica led Oracle’s Garbage First
Garbage Collector performance team, and was named a JavaOne Rock Star.

xvi About the Authors

Poonam Parhar (Santa Clara, CA) is currently a JVM Sustaining Engineer at Oracle
where her primary responsibility is to resolve customer-escalated problems against
JRockit and HotSpot VMs. She loves debugging and troubleshooting problems and
is always focused on improving the serviceability and supportability of the HotSpot
VM. She has nailed down many complex garbage collection issues in the HotSpot VM
and is passionate about improving the debugging tools and the serviceability of the
product so as to make it easier to troubleshoot and fix garbage-collector-related issues
in the HotSpotVM. She has made several contributions to the Serviceability Agent
debugger and also developed a VisualVM plugin for it. She presented “VisualVM
Plugin for the SA” at the JavaOne 2011 conference. In an attempt to help customers
and the Java community, she shares her work experiences and knowledge through
the blog she maintains at https://blogs.oracle.com/poonam/.

Bengt Rutisson (Stockholm, Sweden) is a JVM Engineer at Oracle, working on the
HotSpot engineering team. He has worked on garbage collectors in JVMs for the
past 10 years, first with the JRockit VM and the last six years with the HotSpot VM.
Bengt is an active participant in the OpenJDK project, with many contributions of
features, stability fixes, and performance enhancements.

https://blogs.oracle.com/poonam/

1

1
Garbage First
Overview

This chapter is an introduction to the Garbage First (or G1) garbage collector (GC)
along with a historical perspective on the garbage collectors in the Java HotSpot
Virtual Machine (VM), hereafter called just HotSpot, and the reasoning behind
G1’s inclusion in HotSpot. The reader is assumed to be familiar with basic garbage
 collection concepts such as young generation, old generation, and compaction.
 Chapter 3, “JVM Overview,” of the book Java™ Performance [1] is a good source for
learning more about these concepts.

Serial GC was the first garbage collector introduced in HotSpot in 1999 as part
of Java Development Kit (JDK) 1.3.1. The Parallel and Concurrent Mark Sweep
 collectors were introduced in 2002 as part of JDK 1.4.2. These three collectors roughly
correspond to the three most important GC use cases: “minimize memory footprint
and concurrent overhead,” “maximize application throughput,” and “minimize
 GC- related pause times.” One might ask, “Why do we need a new collector such as
G1?” Before answering, let’s clarify some terminology that is often used when comparing
and contrasting garbage collectors. We’ll then move on to a brief overview of the four
HotSpot garbage collectors, including G1, and identify how G1 differs from the others.

Terminology

In this section, we define the terms parallel, stop-the-world, and concurrent. The term
parallel means a multithreaded garbage collection operation. When a GC event activity
is described as parallel, multiple threads are used to perform it. When a garbage

2 Chapter 1 � Garbage First Overview

collector is described as parallel, it uses multiple threads to perform garbage collection.
In the case of the HotSpot garbage collectors, almost all multithreaded GC operations
are handled by internal Java VM (JVM) threads. One major exception to this is the
G1 garbage collector, in which some background GC work can be taken on by the
application threads. For more detail see Chapter 2, “Garbage First Garbage Collector
in Depth,” and Chapter 3, “Garbage First Garbage Collector Performance Tuning.”

The term stop-the-world means that all Java application threads are stopped
during a GC event. A stop-the-world garbage collector is one that stops all Java
application threads when it performs a garbage collection. A GC phase or event may
be described as stop-the-world, which means that during that particular GC phase
or event all Java application threads are stopped.

The term concurrent means that garbage collection activity is occurring at the
same time as the Java application is executing. A concurrent GC phase or event
means that the GC phase or event executes at the same time as the application.

A garbage collector may be described by any one or a combination of these three
terms. For example, a parallel concurrent collector is multithreaded (the parallel
part) and also executes at the same time as the application (the concurrent part).

Parallel GC

Parallel GC is a parallel stop-the-world collector, which means that when a GC occurs, it
stops all application threads and performs the GC work using multiple threads. The GC
work can thus be done very efficiently without any interruptions. This is normally the
best way to minimize the total time spent doing GC work relative to application work.
However, individual pauses of the Java application induced by GC can be fairly long.

Both the young and old generation collections in Parallel GC are parallel and
stop-the-world. Old generation collections also perform compaction. Compaction
moves objects closer together to eliminate wasted space between them, leading to an
optimal heap layout. However, compaction may take a considerable amount of time,
which is generally a function of the size of the Java heap and the number and size
of live objects in the old generation.

At the time when Parallel GC was introduced in HotSpot, only the young
generation used a parallel stop-the-world collector. Old generation collections used a
single-threaded stop-the-world collector. Back when Parallel GC was first introduced,
the HotSpot command-line option that enabled Parallel GC in this configuration was
-XX:+UseParallelGC.

At the time when Parallel GC was introduced, the most common use case for
servers required throughput optimization, and hence Parallel GC became the
default collector for the HotSpot Server VM. Additionally, the sizes of most Java
heaps tended to be between 512MB and 2GB, which keeps Parallel GC pause times

Parallel GC 3

relatively low, even for single-threaded stop-the-world collections. Also at the time,
latency requirements tended to be more relaxed than they are today. It was common
for Web applications to tolerate GC-induced latencies in excess of one second, and as
much as three to five seconds.

As Java heap sizes and the number and size of live objects in old generation grew,
the time to collect the old generation became longer and longer. At the same time,
hardware advances made more hardware threads available. As a result, Parallel GC
was enhanced by adding a multithreaded old generation collector to be used with a
multithreaded young generation collector. This enhanced Parallel GC reduced the
time required to collect and compact the heap.

The enhanced Parallel GC was delivered in a Java 6 update release. It was
enabled by a new command-line option called -XX:+UseParallelOldGC. When
 -XX:+UseParallelOldGC is enabled, parallel young generation collection is also
enabled. This is what we think of today as Parallel GC in HotSpot, a multithreaded
stop-the-world young generation collector combined with a multithreaded stop-the-
world old generation collector.

Tip

In Java 7 update release 4 (also referred to as Java 7u4, or JDK 7u4), - XX:+UseParallelOldGC
was made the default GC and the normal mode of operation for Parallel GC. As of Java 7u4,
specifying -XX:+UseParallelGC also enables -XX:+UseParallelOldGC, and likewise
specifying -XX:+UseParallelOldGC also enables -XX:+UseParallelGC.

Parallel GC is a good choice in the following use cases:

1. Application throughput requirements are much more important than latency
requirements.

A batch processing application is a good example since it is noninteractive. When
you start a batch execution, you expect it to run to completion as fast as possible.

2. If worst-case application latency requirements can be met, Parallel GC will offer
the best throughput. Worst-case latency requirements include both worst-case
pause times, and also how frequently the pauses occur. For example, an application
may have a latency requirement of “pauses that exceed 500ms shall not occur
more than once every two hours, and all pauses shall not exceed three seconds.”

An interactive application with a sufficiently small live data size such that
a Parallel GC’s full GC event is able to meet or beat worst-case GC-induced
latency requirements for the application is a good example that fits this use case.
However, since the amount of live data tends to be highly correlated with the size
of the Java heap, the types of applications falling into this category are limited.

4 Chapter 1 � Garbage First Overview

Parallel GC works well for applications that meet these requirements. For
 applications that do not meet these requirements, pause times can become excessively
long, since a full GC must mark through the entire Java heap and also compact the
old generation space. As a result, pause times tend to increase with increased Java
heap sizes.

Figure 1.1 illustrates how the Java application threads (gray arrows) are stopped
and the GC threads (black arrows) take over to do the garbage collection work. In
this diagram there are eight parallel GC threads and eight Java application threads,
although in most applications the number of application threads usually exceeds the
number of GC threads, especially in cases where some application threads may be
idle. When a GC occurs, all application threads are stopped, and multiple GC threads
execute during GC.

Serial GC

Serial GC is very similar to Parallel GC except that it does all its work in a single
thread. The single-threaded approach allows for a less complex GC implementation
and requires very few external runtime data structures. The memory footprint is the
lowest of all HotSpot collectors. The challenges with Serial GC are similar to those
for Parallel GC. Pause times can be long, and they grow more or less linearly with
the heap size and amount of live data. In addition, with Serial GC the long pauses
are more pronounced, since the GC work is done in a single thread.

GC
Threads

App
Threads

Figure 1.1 How Java application threads are interrupted by GC threads
when Parallel GC is used

Concurrent Mark Sweep (CMS) GC 5

Because of the low memory footprint, Serial GC is the default on the Java HotSpot
Client VM. It also addresses the requirements for many embedded use cases. Serial
GC can be explicitly specified as the GC to use with the -XX:+UseSerialGC HotSpot
command-line option.

Figure 1.2 illustrates how Java application threads (gray arrows) are stopped
and a single GC thread (black arrow) takes over to do the garbage collection work
on a machine running eight Java application threads. Because it is single-threaded,
Serial GC in most cases will take longer to execute a GC event than Parallel GC since
Parallel GC can spread out the GC work to multiple threads.

Concurrent Mark Sweep (CMS) GC

CMS GC was developed in response to an increasing number of applications that
demand a GC with lower worst-case pause times than Serial or Parallel GC and
where it is acceptable to sacrifice some application throughput to eliminate or greatly
reduce the number of lengthy GC pauses.

In CMS GC, young garbage collections are similar to those of Parallel GC. They are
parallel stop-the-world, meaning all Java application threads are paused during young
garbage collections and the garbage collection work is performed by multiple threads.
Note that you can configure CMS GC with a single-threaded young generation collec-
tor, but this option has been deprecated in Java 8 and is removed in Java 9.

The major difference between Parallel GC and CMS GC is the old generation
collection. For CMS GC, the old generation collections attempt to avoid long pauses in

GC
Thread

App
Threads

Figure 1.2 How Java application threads are interrupted by a single GC thread when
Serial GC is used

6 Chapter 1 � Garbage First Overview

application threads. To achieve this, the CMS old generation collector does most of its
work concurrently with application thread execution, except for a few relatively short
GC synchronization pauses. CMS is often referred to as mostly concurrent, since there
are some phases of old generation collection that pause application threads. Exam-
ples are the initial-mark and remark phases. In CMS’s initial implementation, both
the initial-mark and remark phases were single-threaded, but they have since been
enhanced to be multithreaded. The HotSpot command-line options to support mul-
tithreaded initial-mark and remark phases are -XX:+CMSParallelInitialMark
Enabled and -XX:CMSParallelRemarkEnabled. These are automatically
enabled by default when CMS GC is enabled by the -XX:+UseConcurrent
MarkSweepGC command-line option.

It is possible, and quite likely, for a young generation collection to occur while
an old generation concurrent collection is taking place. When this happens, the old
generation concurrent collection is interrupted by the young generation collection
and immediately resumes upon the latter’s completion. The default young generation
collector for CMS GC is commonly referred to as ParNew.

Figure 1.3 shows how Java application threads (gray arrows) are stopped for the
young GCs (black arrows) and for the CMS initial-mark and remark phases, and old
generation GC stop-the-world phases (also black arrows). An old generation collec-
tion in CMS GC begins with a stop-the-world initial-mark phase. Once initial mark
completes, the concurrent marking phase begins where the Java application threads
are allowed to execute concurrently with the CMS marking threads. In Figure 1.3,
the concurrent marking threads are the first two longer black arrows, one on top of
the other below the “Marking/Pre-cleaning” label. Once concurrent marking com-
pletes, concurrent pre-cleaning is executed by the CMS threads, as shown by the
two shorter black arrows under the “Marking/Pre-cleaning” label. Note that if there
are enough available hardware threads, CMS thread execution overhead will not
have much effect on the performance of Java application threads. If, however, the
hardware threads are saturated or highly utilized, CMS threads will compete for
CPU cycles with Java application threads. Once concurrent pre-cleaning completes,
the stop-the-world remark phase begins. The remark phase marks objects that may
have been missed after the initial mark and while concurrent marking and concur-
rent pre-cleaning execute. After the remark phase completes, concurrent sweeping
begins, which frees all dead object space.

One of the challenges with CMS GC is tuning it such that the concurrent work
can complete before the application runs out of available Java heap space. Hence,
one tricky part about CMS is to find the right time to start the concurrent work.
A common consequence of the concurrent approach is that CMS normally requires
on the order of 10 to 20 percent more Java heap space than Parallel GC to handle
the same application. That is part of the price paid for shorter GC pause times.

Concurrent Mark Sweep (CMS) GC 7

Another challenge with CMS GC is how it deals with fragmentation in the old
generation. Fragmentation occurs when the free space between objects in the
old generation becomes so small or nonexistent that an object being promoted from
the young generation cannot fit into an available hole. The CMS concurrent collec-
tion cycle does not perform compaction, not even incremental or partial compaction.
A failure to find an available hole causes CMS to fall back to a full collection using
Serial GC, typically resulting in a lengthy pause. Another unfortunate challenge
associated with fragmentation in CMS is that it is unpredictable. Some application
runs may never experience a full GC resulting from old generation fragmentation
while others may experience it regularly.

Tuning CMS GC can help postpone fragmentation, as can application modifica-
tions such as avoiding large object allocations. Tuning can be a nontrivial task and
requires much expertise. Making changes to the application to avoid fragmentation
may also be challenging.

Summary of the Collectors

All of the collectors described thus far have some common issues. One is that the old
generation collectors must scan the entire old generation for most of their operations
such as marking, sweeping, and compacting. This means that the time to perform
the work scales more or less linearly with the Java heap size. Another is that it must

Concurrent
SweepingMarking/Pre-cleaning

Initial-mark
App

Threads
App

Threads
Remark

Figure 1.3 How Java application threads are impacted by the GC threads
when CMS is used

8 Chapter 1 � Garbage First Overview

be decided up front where the young and old generations should be placed in the
virtual address space, since the young and old generations are separate consecutive
chunks of memory.

Garbage First (G1) GC

The G1 garbage collector addresses many of the shortcomings of Parallel, Serial, and
CMS GC by taking a somewhat different approach. G1 divides the heap into a set of
regions. Most GC operations can then be performed a region at a time rather than
on the entire Java heap or an entire generation.

In G1, the young generation is just a set of regions, which means that it is not
required to be a consecutive chunk of memory. Similarly, the old generation is also
just a set of regions. There is no need to decide at JVM launch time which regions
should be part of the old or young generation. In fact, the normal operational state
for G1 is that over time the virtual memory mapped to G1 regions moves back and
forth between the generations. A G1 region may be designated as young and later,
after a young generation collection, become available for use elsewhere, since young
generation regions are completely evacuated to unused regions.

In the remainder of this chapter, the term available region is used to identify
regions that are unused and available for use by G1. An available region can be used
or designated as a young or old generation region. It is possible that after a young
generation collection, a young generation region can at some future time be used as an
old generation region. Likewise, after collection of an old generation region, it becomes
an available region that can at some future time be used as a young generation region.

G1 young collections are parallel stop-the-world collections. As mentioned earlier,
parallel stop-the-world collections pause all Java application threads while the
 garbage collector threads execute, and the GC work is spread across multiple threads.
As with the other HotSpot garbage collectors, when a young generation collection
occurs, the entire young generation is collected.

Old generation G1 collections are quite different from those of the other HotSpot
collectors. G1 old generation collections do not require the entire old generation to
be collected in order to free space in the old generation. Instead, only a subset of the
old generation regions may be collected at any one time. In addition, this subset of
old generation regions is collected in conjunction with a young collection.

Tip

The term to describe the collection of a subset of old generation regions in conjunction with a
young collection is mixed GC. Hence, a mixed GC is a GC event in which all young generation
regions are collected in addition to a subset of old generation regions. In other words, a mixed
GC is a mix of young and old generation regions that are being collected.

Garbage First (G1) GC 9

Similar to CMS GC, there is a fail-safe to collect and compact the entire old
generation in dire situations such as when old generation space is exhausted.

A G1 old generation collection, ignoring the fail-safe type of collection, is a set of
phases, some of which are parallel stop-the-world and some of which are parallel con-
current. That is, some phases are multithreaded and stop all application threads, and
others are multithreaded and execute at the same time as the application threads.
Chapters 2 and 3 provide more detail on each of these phases.

G1 initiates an old generation collection when a Java heap occupancy threshold is
exceeded. It is important to note that the heap occupancy threshold in G1 measures
the old generation occupancy compared to the entire Java heap. Readers who are
familiar with CMS GC remember that CMS initiates an old generation collection
using an occupancy threshold applied against the old generation space only. In G1,
once the heap occupancy threshold is reached or exceeded, a parallel stop-the-world
initial-mark phase is scheduled to execute.

The initial-mark phase executes at the same time as the next young GC. Once the
initial-mark phase completes, a concurrent multithreaded marking phase is initiated
to mark all live objects in the old generation. When the concurrent marking phase is
completed, a parallel stop-the-world remark phase is scheduled to mark any objects
that may have been missed due to application threads executing concurrently with
the marking phase. At the end of the remark phase, G1 has full marking information
on the old generation regions. If there happen to be old generation regions that do
not have any live objects in them, they can be reclaimed without any additional GC
work during the next phase of the concurrent cycle, the cleanup phase.

Also at the end of the remark phase, G1 can identify an optimal set of old
 generations to collect.

Tip

The set of regions to collect during a garbage collection is referred to as a collection set (CSet).

The regions selected for inclusion in a CSet are based on how much space can be freed
and the G1 pause time target. After the CSet has been identified, G1 schedules a GC
to collect regions in the CSet during the next several young generation GCs. That
is, over the next several young GCs, a portion of the old generation will be collected
in addition to the young generation. This is the mixed GC type of garbage collection
event mentioned earlier.

With G1, every region that is garbage collected, regardless of whether it is young
or old generation, has its live objects evacuated to an available region. Once the live
objects have been evacuated, the young and/or old regions that have been collected
become available regions.

An attractive outcome of evacuating live objects from old generation regions into
available regions is that the evacuated objects end up next to each other in the virtual

10 Chapter 1 � Garbage First Overview

address space. There is no fragmented empty space between objects. Effectively, G1
does partial compaction of the old generation. Remember that CMS, Parallel, and
Serial GC all require a full GC to compact the old generation and that compaction
scans the entire old generation.

Since G1 performs GC operations on a per-region basis, it is suitable for large Java
heaps. The amount of GC work can be limited to a small set of regions even though
the Java heap size may be rather large.

The largest contributors to pause times in G1 are young and mixed collections,
so one of the design goals of G1 is to allow the user to set a GC pause time goal. G1
attempts to meet the specified pause time goal through adaptive sizing of the Java
heap. It will automatically adjust the size of the young generation and the total Java
heap size based on the pause time goal. The lower the pause time goal, the smaller
the young generation and the larger the total heap size, making the old generation
relatively large.

A G1 design goal is to limit required tuning to setting a maximum Java heap size
and specifying a GC pause time target. Otherwise, G1 is designed to dynamically
tune itself using internal heuristics. At the time of writing, the heuristics within
G1 are where most active HotSpot GC development is taking place. Also as of this
writing, G1 may require additional tuning in some cases, but the prerequisites to
building good heuristics are present and look promising. For advice on how to tune
G1, see Chapter 3.

To summarize, G1 scales better than the other garbage collectors for large Java
heaps by splitting the Java heap into regions. G1 deals with Java heap fragmentation
with the help of partial compactions, and it does almost all its work in a multithreaded
fashion.

As of this writing, G1 primarily targets the use case of large Java heaps with
 reasonably low pauses, and also those applications that are using CMS GC. There are
plans to use G1 to also target the throughput use case, but for applications looking
for high throughput that can tolerate longer GC pauses, Parallel GC is currently the
better choice.

G1 Design

As mentioned earlier, G1 divides the Java heap into regions. The region size can vary
depending on the size of the heap but must be a power of 2 and at least 1MB and at
most 32MB. Possible region sizes are therefore 1, 2, 4, 8, 16, and 32MB. All regions
are the same size, and their size does not change during execution of the JVM. The
region size calculation is based on the average of the initial and maximum Java
heap sizes such that there are about 2000 regions for that average heap size. As an
example, for a 16GB Java heap with -Xmx16g -Xms16g command-line options, G1
will choose a region size of 16GB/2000 = 8MB.

Garbage First (G1) GC 11

If the initial and maximum Java heap sizes are far apart or if the heap size is very
large, it is possible to have many more than 2000 regions. Similarly, a small heap size
may end up with many fewer than 2000 regions.

Each region has an associated remembered set (a collection of the locations that
contain pointers into the region, shortened to RSet). The total RSet size is limited but
noticeable, so the number of regions has a direct effect on HotSpot’s memory footprint.
The total size of the RSets heavily depends on application behavior. At the low end,
RSet overhead is around 1 percent and at the high end 20 percent of the heap size.

A particular region is used for only one purpose at a time, but when the region is
included in a collection, it will be completely evacuated and released as an available
region.

There are several types of regions in G1. Available regions are currently unused.
Eden regions constitute the young generation eden space, and survivor regions con-
stitute the young generation survivor space. The set of all eden and survivor regions
together is the young generation. The number of eden or survivor regions can change
from one GC to the next, between young, mixed, or full GCs. Old generation regions
comprise most of the old generation. Finally, humongous regions are considered to
be part of the old generation and contain objects whose size is 50 percent or more of
a region. Until a JDK 8u40 change, humongous regions were collected as part of the
old generation, but in JDK 8u40 certain humongous regions are collected as part of
a young collection. There is more detail on humongous regions later in this chapter.

The fact that a region can be used for any purpose means that there is no need
to partition the heap into contiguous young and old generation segments. Instead,
G1 heuristics estimate how many regions the young generation can consist of and
still be collected within a given GC pause time target. As the application starts allo-
cating objects, G1 chooses an available region, designates it as an eden region, and
starts handing out memory chunks from it to Java threads. Once the region is full,
another unused region is designated an eden region. The process continues until the
maximum number of eden regions is reached, at which point a young GC is initiated.

During a young GC, all young regions, eden and survivor, are collected. All live
objects in those regions are evacuated to either a new survivor region or to an old
generation region. Available regions are tagged as survivor or old generation regions
as needed when the current evacuation target region becomes full.

When the occupancy of the old generation space, after a GC, reaches or
exceeds the initiating heap occupancy threshold, G1 initiates an old generation
collection. The occupancy threshold is controlled by the command-line option
-XX:InitiatingHeapOccupancyPercent, which defaults to 45 percent of the
Java heap.

G1 can reclaim old generation regions early when the marking phase shows that
they contain no live objects. Such regions are added to the available region set. Old
regions containing live objects are scheduled to be included in a future mixed collection.

12 Chapter 1 � Garbage First Overview

G1 uses multiple concurrent marking threads. In an attempt to avoid stealing too
much CPU from application threads, marking threads do their work in bursts. They
do as much work as they can fit into a given time slot and then pause for a while,
allowing the Java threads to execute instead.

Humongous Objects

G1 deals specially with large object allocations, or what G1 calls “humongous objects.”
As mentioned earlier, a humongous object is an object that is 50 percent or more
of a region size. That size includes the Java object header. Object header sizes
vary between 32- and 64-bit HotSpot VMs. The header size for a given object within
a given HotSpot VM can be obtained using the Java Object Layout tool, also
known as JOL. As of this writing, the Java Object Layout tool can be found on the
Internet [2].

When a humongous object allocation occurs, G1 locates a set of consecutive avail-
able regions that together add up to enough memory to contain the humongous
object. The first region is tagged as a “humongous start” region and the other regions
are marked as “humongous continues” regions. If there are not enough consecutive
available regions, G1 will do a full GC to compact the Java heap.

Humongous regions are considered part of the old generation, but they contain
only one object. This property allows G1 to eagerly collect a humongous region
when the concurrent marking phase detects that it is no longer live. When this
happens, all the regions containing the humongous object can be reclaimed
at once.

A potential challenge for G1 is that short-lived humongous objects may not be
reclaimed until well past the point at which they become unreferenced. JDK 8u40
implemented a method to, in some cases, reclaim a humongous region during a young
collection. Avoiding frequent humongous object allocations can be crucial to achieving
application performance goals when using G1. The enhancements available in JDK
8u40 help but may not be a solution for all applications having many short-lived
humongous objects.

Full Garbage Collections

Full GCs in G1 are implemented using the same algorithm as the Serial GC collector.
When a full GC occurs, a full compaction of the entire Java heap is performed. This
ensures that the maximum amount of free memory is available to the system. It
is important to note that full GCs in G1 are single-threaded and as a result may
introduce exceptionally long pause times. Also, G1 is designed such that full GCs
are not expected to be necessary. G1 is expected to satisfy application performance

Garbage First (G1) GC 13

goals without requiring a full GC and can usually be tuned such that a full GC is
not needed.

Concurrent Cycle

A G1 concurrent cycle includes the activity of several phases: initial marking,
concurrent root region scanning, concurrent marking, remarking, and cleanup. The
beginning of a concurrent cycle is the initial mark, and the ending phase is cleanup.
All these phases are considered part of “marking the live object graph” with the
exception of the cleanup phase.

The purpose of the initial-mark phase is to gather all GC roots. Roots are the
starting points of the object graphs. To collect root references from application
threads, the application threads must be stopped; thus the initial-mark phase is
stop-the-world. In G1, the initial marking is done as part of a young GC pause since
a young GC must gather all roots anyway.

The marking operation must also scan and follow all references from objects in
the survivor regions. This is what the concurrent root region scanning phase does.
During this phase all Java threads are allowed to execute, so no application pauses
occur. The only limitation is that the scanning must be completed before the next GC
is allowed to start. The reason for that is that a new GC will generate a new set of
survivor objects that are different from the initial mark’s survivor objects.

Most marking work is done during the concurrent marking phase. Multiple
threads cooperate to mark the live object graph. All Java threads are allowed to
execute at the same time as the concurrent marking threads, so there is no pause in
the application, though an application may experience some throughput reduction.

After concurrent marking is done, another stop-the-world phase is needed to
finalize all marking work. This phase is called the “remark phase” and is usually a
very short stop-the-world pause.

The final phase of concurrent marking is the cleanup phase. In this phase, regions
that were found not to contain any live objects are reclaimed. These regions are not
included in a young or mixed GC since they contain no live objects. They are added
to the list of available regions.

The marking phases must be completed in order to find out what objects are live
so as to make informed decisions about what regions to include in the mixed GCs.
Since it is the mixed GCs that are the primary mechanism for freeing up memory in
G1, it is important that the marking phase finishes before G1 runs out of available
regions. If the marking phase does not finish prior to running out of available regions,
G1 will fall back to a full GC to free up memory. This is reliable but slow. Ensuring
that the marking phases complete in time to avoid a full GC may require tuning,
which is covered in detail in Chapter 3.

14 Chapter 1 � Garbage First Overview

Heap Sizing

The Java heap size in G1 is always a multiple of the region size. Except for that
limitation, G1 can grow and shrink the heap size dynamically between -Xms and -Xmx
just as the other HotSpot GCs do.

G1 may increase the Java heap size for several reasons:

 1. An increase in size can occur based on heap size calculations during a full GC.

 2. When a young or mixed GC occurs, G1 calculates the time spent to perform
the GC compared to the time spent executing the Java application. If too much
time is spent in GC according to the command-line setting -XX:GCTimeRatio,
the Java heap size is increased. The idea behind growing the Java heap size in
this situation is to allow GCs to happen less frequently so that the time spent
in GC compared to the time spent executing the application is reduced.

The default value for -XX:GCTimeRatio in G1 is 9. All other HotSpot garbage
collectors default to a value of 99. The larger the value for GCTimeRatio,
the more aggressive the increase in Java heap size. The other HotSpot collectors
are thus more aggressive in their decision to increase Java heap size and by
default are targeted to spend less time in GC relative to the time spent executing
the application.

 3. If an object allocation fails, even after having done a GC, rather than immediately
falling back to doing a full GC, G1 will attempt to increase the heap size to
satisfy the object allocation.

 4. If a humongous object allocation fails to find enough consecutive free regions to
allocate the object, G1 will try to expand the Java heap to obtain more available
regions rather than doing a full GC.

 5. When a GC requests a new region into which to evacuate objects, G1 will prefer
to increase the size of the Java heap to obtain a new region rather than failing
the GC and falling back to a full GC in an attempt to find an available region.

References

[1] Charlie Hunt and Binu John. Java™ Performance. Addison-Wesley, Upper Saddle
River, NJ, 2012. ISBN 978-0-13-714252-1.

[2] “Code Tools: jol.” OpenJDK, circa 2014. http://openjdk.java.net/projects/code-tools/
jol/.

http://openjdk.java.net/projects/code-tools/jol/
http://openjdk.java.net/projects/code-tools/jol/

155

Index

Classes
dumping, 106–108
unloading, 153

Cleanup phase, G1 GC, 13
Cleanup stage of concurrent

marking, 36
CLHSDB (Command-Line HotSpot

Debugger). See also HSDB
(HotSpot Debugger)

command list, 102
description, 100–102
Java objects, examining, 101
launching, 100
VM data structures,

examining, 101
CMS (Concurrent Mark Sweep) GC,

pause times, 5–7
Coarse-grained bitmap, 25
Code root scanning, 43–44
Code Viewer, 95–97
Code Viewer panel, 120–122
Collection sets (CSets). See CSets

(collection sets)
Command Line Flags, 98, 100

A
Addresses, finding, 92
Age tables, 19
Aging, live objects, 18, 19
Allocating humongous objects, allocation

path, 19, 21
Available regions, 8

B
Barriers, in RSets, 28–30, 35
Boolean command-line options, 145

C
Cards, definition, 25
Chunks. See also Regions

cards, 25
definition, 25–28
global card table, 25–28

Class browser, 84–85
Class files, dumping, 84, 112
Class instances, displaying, 88
ClassDump, 106–108

156 Index

Command-line options. See also specific
options

boolean, 145
default values, 146
diagnostic options, enabling, 153–154
displaying, 98, 100
overtuning, causing evacuation

failure, 59
types of, 145

Compaction
CMS (Concurrent Mark Sweep) GC, 7
G1 GC, 10, 12
Parallel GC, 2–3

Compute Reverse Pointers, 89–90
Concurrent cycle, G1 GC, 13
Concurrent garbage collection, definition, 2
Concurrent Mark Sweep (CMS) GC, pause

times, 5–7
Concurrent marking

concurrent marking pre-write
barriers, 35

description, 13
high remark times, 36
identifying allocated objects, 30
next bitmap, 30–33
NTAMS (next TAMS), 30–33, 37
overview, 33
previous bitmap, 30–33
pre-write barriers, 35
PTAMS (previous TAMS), 30–33, 37
SATB (snapshot-at-the-beginning), 30
SATB pre-write barriers, 35
TAMS (top-at-mark-starts), 30–33

Concurrent marking, stages of
cleanup, 36
concurrent marking, 34–36
initial mark, 34
remark, 36
root region scanning, 34

Concurrent marking cycle, triggering, 21
Concurrent marking phase,

tuning, 52–54
Concurrent marking pre-write barriers, 35
Concurrent marking stage of concurrent

marking, 34–36
Concurrent refinement threads, 42–43

logging, 148
maximum number, setting, 29

purpose of, 29
in RSets, 28–30

Concurrent root region scanning, 13
Constant pools, 70
Copy to survivor, 18, 19
Core files. See also Crash dump files

attaching to HSDB, 76
collecting, 108
Command Line Flags, 98, 100
command-line JVM options, displaying,

98, 100
creating, 108
description, 108
exploring with the SA Plugin,

118–119
Java threads, displaying, 119–120
JFR information, extracting, 107–108
JVM version, displaying, 98–99
multiple debugging sessions on, 113
opening with Serviceability Agent,

76–77
permanent generation statistics,

printing, 103–104
process map, printing, 104
reading bits with the /proc

interface, 111
remote debugging, 78–80, 114
thread stack trace, displaying,

119–120
Core files, transported

debugging, 109–110
shared library problems,

109–110, 112
Crash dump files. See also Core files

attaching HSDB to, 76
collecting, 108
creating, 108
description, 108
reading bits with the Windows

Debugger Engine, 111
CSets (collection sets)

definition, 9
minimum old CSet size, setting,

57–58
old regions per CSet, maximum

threshold, 58
old regions per CSet, minimum

threshold, 57–58

Index 157

D
Deadlock Detection, 84, 86
Deadlocks

detecting, 84, 86
troubleshooting, 131–136

Debug messages, enable printing on
Windows, 112

Debugging tools. See JDI (Java Debug
Interface); Serviceability Agent

Deduplicating Java strings, 149–151
Dirty card queue, 29–30
DumpJFR, 107–108

E
Eden space, 11, 18–19
Efficiency, garbage collection. See GC

efficiency
Ergonomics heuristics, dumping, 55
Evacuation, 47
Evacuation failures

definition, 16
duration of, determining, 37
log messages, 53–54
overview, 37–38
to-space exhausted log message,

53–54
Evacuation failures, potential causes

heap size, 59
insufficient space in survivor regions, 60
long-lived humongous objects, 59–60
overtuning JVM command-line

options, 59
External root region scanning, 42

F
Finalizable objects, printing details

of, 103
FinalizerInfo, 103
Find Address in Heap, 92–93
Find Object by Query, 90–91
Find panel, 122–123
Find Pointer, 92, 122–123
Find Value in Code Cache, 92–93
Find Value in CodeCache (in VisualVM),

122–123

Find Value in Heap, 122–123
Fine RSets, 25
Fragmentation

CMS (Concurrent Mark Sweep) GC, 7
G1 GC, 10
maximum allowable, 56–59
per region, controlling, 58

Full GCs
algorithm for, 12–13
compacting the heap, 12–13
evaluation failures, 37–38
triggering, 37–38

G
G1 garbage collector. See G1 GC
G1 GC. See also Regions

available regions, 8
cleanup, 13
collection cycles, 16–17
compaction, 10, 12
concurrent cycle, 13
concurrent marking, 13
concurrent root region scanning, 13
description, 8–10
enabling, 146
fragmentation, 10
free memory amount, setting, 146–147
full GCs, 12–13
heap sizing, 14
initial-mark phase, 13
marking the live object graph, 13
pause times, 10
remarking, 13
threads, setting number of, 146

Garbage, maximum allowable, 56–59
Garbage collectors. common issues, 7–8
Garbage First garbage collector.

See G1 GC
Garbage-collector-related issues, 92
GC efficiency

definition, 17
identifying garbage collection

candidates, 22–24
GC Worker Other times too high, 48
GCLABs (GC local allocation buffers), 47
gcore tool, 108
Generations, definition, 24

158 Index

H
Heap, occupancy threshold, adaptive

adjustment, 151
Heap Parameters, 98
HeapDumper, 103
Heaps

boundaries, displaying, 98–99, 101
dividing into regions. See Regions
dumping, 103
free memory, setting, 152
G1 concurrent cycle, initiating, 149
liveness information, printing, 147
raw memory contents, displaying, 94
region size, setting, 146
size, causing evacuation failure, 59
size changes, logging, 152
sizes, Parallel GC, 2–4
sizing, G1 GC, 14

HotSpot Serviceability Agent.
See Serviceability Agent

Hprof files, creating, 149
HSDB (HotSpot Debugger). See also

CLHSDB (Command-Line HotSpot
Debugger)

connecting to debug server, 78–80
core files, attaching to, 76
debugging modes, 74
description, 72–80
HotSpot processes, attaching to, 74–76
launching, 72
opening core files, 76–77
remote debugging, 78–80

HSDB (HotSpot Debugger) tools and
utilities

addresses, finding, 92
class browser, 84–85
class instances, displaying, 88
Code Viewer, 95–97
Compute Reverse Pointers, 89–90
Deadlock Detection, 84, 86
displaying Java threads, 80–84
dumping class files, 84, 112
Find Address in Heap, 92–93
Find Object by Query, 90–91
Find Pointer, 92
Find Value in Code Cache, 92–93
garbage-collector-related issues, 92
heap boundaries, displaying, 98–99

Heap Parameters, 98
Java Threads, 80–84
JIT compiler-related problems,

92–93, 95–97
liveness path, getting, 88–89, 91
memory leaks, 87–89
Memory Viewer, 94
method bytecodes, displaying,

95–97, 120–122
Monitor Cache Dump, 94
Object Histogram, 87–89
Object Inspector, 85–87
out-of-memory problems, 87–89
raw memory contents, displaying, 94
reference paths, computing, 89–90
synchronization-related issues, 95
System Properties, 98–99
VM Version Info, 98–99

Humongous continue regions, 12
Humongous objects

allocation path, 19, 21
causing evacuation failure, 59–60
description, 12
identifying, 19
optimizing allocation and reclamation

of, 20
short-lived, optimizing collection of, 21

Humongous Reclaim, 50
Humongous regions

contiguity, 21
definition, 11
description, 19–21
examples of, 20–21

Humongous start regions, 12

I
IHOP. See –XX:InitiatingHeap

OccupancyPercent
Initial-mark stage of concurrent

marking, 34
Initial-mark phase, G1 GC, 13
inspect command, 101

J
Java application threads. See Threads
Java Debug Interface (JDI). See JDI

(Java Debug Interface)

Index 159

Java heaps. See Heaps
Java objects. See also Humongous

objects; Young collection pauses,
live objects

examining, 101
ordinary object pointers, inspecting,

120–121
Java Stack Trace panel, 119–120
Java strings

deduplicating, 149–150
deduplication statistics, printing, 151
deduplication threshold, setting, 150

Java threads. See Threads
Java Threads panel, 119–120
java.lang.OutOfMemoryError, 123–130
java.lang.OutOfMemoryError,

troubleshooting, 123–130
Java-level deadlocks, troubleshooting,

131–136
JavaScript Debugger (JSDB), 108
JavaScript interface to Serviceability

Agent, 108
JDI (Java Debug Interface)

description, 113
SA Core Attaching Connector, 113
SA Debug Server Attaching

Connector, 114
SAPID Attaching Connector, 113

JFR information, extracting, 107–108
JIT compiler-related problems, 92–93,

95–97
jsadebugd utility, 114
JSDB (JavaScript Debugger), 108
JVM version, displaying, 98–99

L
Large object allocations. See Humongous

objects
LIBSAPROC_DEBUG environment variable,

112
libsaproc.so binaries, 69
Licensed features, enabling, 154
Live object graph, marking, 13
Live objects, liveness factor per region,

calculating, 22–24
Liveness information, printing, 147
Liveness path, getting, 88–89, 91
Load balancing, 47–48

Log messages, evacuation failures, 53–54
Logging

concurrent refinement threads, 148
heap size changes, 152
update log buffer, 29–30

M
Marking the live object graph, 13
Marking threshold, setting, 54
Memory

free amount, setting, 146–147, 152
reserving for promotions, 147

Memory leaks, 87–89
Memory Viewer, 94
Method bytecodes, displaying, 95–97,

120–122
Mixed collection cycle

definition, 23
number of mixed collections,

determining, 23–24
Mixed collection pause, 22–24
Mixed collection phase

ergonomics heuristics, dumping, 55
fragmentation, maximum

allowable, 56–59
fragmentation per region, controlling, 58
garbage, maximum allowable, 56–59
minimum old CSet size, setting,

57–58
old regions per CSet, maximum

threshold, 58
old regions per CSet, minimum

threshold, 57–58
reclaimable percentage threshold,

56–59
tuning, 54–56

Mixed GCs, 8, 147
Monitor Cache Dump, 94
Multithreaded parallel garbage collection,

1–2
Multithreaded reference processing,

enabling, 62
Mutator threads, definition, 29

N
Native methods versus nmethods, 44
Next bitmap, 30–33

160 Index

Nmethods, 44
NTAMS (next TAMS), 30–33, 37

O
Object Histogram, 87–89, 105
Object histograms, collecting, 87–89, 105
Object Inspector, 85–87
Old generation, live objects

age tables, 19
aging, 19

Old-to-old references, 25
Old-to-young references, 25
Oop Inspector panel, 120–121
oops (ordinary object pointers), inspecting,

120–121
Out-of-memory problems, 87–89

P
Parallel GC

compaction, 2–3
definition, 1–2
description, 2–4
enabling, 2–3
interrupting Java application threads, 4
Java heap sizes, 2–4
pause times, 4
uses for, 3–4

Pauses
Concurrent Mark Sweep (CMS) GC,

5–7
G1 GC, 10
Parallel GC, 4
Serial GC, 4
time goal, setting, 151
young collection, 18–19

.pdb files, setting the path to, 111
Performance tuning. See Tuning
Permanent generation statistics, printing,

103–104
PermStat, 103–104
Per-region-tables (PRTs), 25–26
PLABs, 18, 21, 152–153
PMap, 104
Postmortem analysis

core files, 136–143
Java HotSpot VM crashes, 136–143

Previous bitmap, 30–33
Previous TAMS (PTAMS), 30–33, 37
Pre-write barriers

concurrent marking, 35
in RSets, 35

Process maps, printing, 104
Processed buffers, 42–44
Processes

debugging, 113
exploring with the SA Plugin,

118–119
Java threads, displaying, 119–120
JFR information, extracting, 107–108
JVM version, displaying, 98–99
permanent generation statistics,

printing, 103–104
process map, printing, 104
reading bits with the /proc

interface, 111
reading bits with the Windows

Debugger Engine, 111
remote debugging, 114
thread stack trace, displaying,

119–120
Promotion failure. See Evacuation

failures
PRTs (per-region-tables), 25–26
PTAMS (previous TAMS), 30–33, 37

R
Raw memory contents, displaying, 94
Reading bits with the /proc interface, 111
Reclaimable percentage threshold, mixed

collection phase, 56–59
Reclaiming regions, 13
Reclamation, 47
Reference object types, 60
Reference paths, computing, 89–90
Reference processing

enabling multithreaded reference
processing, 62

excessive weak references, correcting, 63
observing, 60
overhead, 36
overview, 60
reference object types, 60
soft references, 63–65

Index 161

Region size
adaptive selection, overwriting, 18
average, 10
calculating, 10
determining, 18
setting, 146

Regions. See also Chunks; CSets (collection
sets); RSets (remembered sets)

available, 8
candidates, identifying. See GC

efficiency
concurrent root region scanning, 13
dividing heaps, 8–10
eden space, 11, 18–19
GC efficiency, 17
humongous, 11
maximum number of, 10–11
mixed GC, 8
mixing old generation with young

collections, 8
reclaiming, 13
region size, 10
root, definition, 34
sorting. See GC efficiency
survivor fill capacity, 19
survivor space, 11, 18–19
types of, 11

Remark stage of concurrent marking, 36
Remark times, high, reasons for, 36
Remarking phase, G1 GC, 13
Remembered sets (RSets). See RSets

(remembered sets)
Remote debugging, 78–80, 114
Resizing, young generation, 18
RMI (Remote Method Invocation), 114
Root objects, definition, 34
Root references, collecting, 13
Root region scanning stage of concurrent

marking, 34
RSets (remembered sets)

barriers, 28–30
coarse, 25
coarse-grained bitmap, 25
code root scanning, 43–44
concurrent marking pre-write

barriers, 35
concurrent refinement threads,

28–30

definition, 11, 25
density, 25
fine, 25
number per region, 25
pre-write barriers, 35
printing a summary of, 147–148
processed buffers, 42–44
SATB pre-write barriers, 35
size, 11
sparse, 25
summarizing statistics, 44–47
visualizing potential improvements, 47
write barriers, 28–30

RSets (remembered sets), importance of
old-to-old references, 25
old-to-young references, 25
overview, 24–28
PRTs (per-region-tables), 25–26

S
SA_ALTROOT environment variable

description, 112
setting, 110

SA_IGNORE_THREADDB environment
variable, 112

sa-jdi.jar binaries, 69, 113
SATB (snapshot-at-the-beginning), 30
SATB pre-write barriers, 35
sawindbg.dll binaries, 69
Scanning nmethods, 44
Serial GC. See also Parallel GC

definition, 4
description, 4–5
interrupting Java application

threads, 5
pause times, 4

Serviceability Agent
binaries in the JDK, 69–70
components, 69
description, 68
enable printing of debug messages on

Windows, 112
environment variables, 112
HotSpot data structures, 70–71
purpose of, 68
system properties, 111–112
version matching, 71

162 Index

Serviceability Agent, debugging tools.
See also CLHSDB (Command-Line
HotSpot Debugger); HSDB (HotSpot
Debugger)

ClassDump, 106–108
DumpJFR, 107–108
extending, 115–117
finalizable objects, printing details

of, 103
FinalizerInfo, 103
heap, dumping, 103
HeapDumper, 103
JavaScript interface to Serviceability

Agent, 108
JFR information, extracting, 107–108
JSDB (JavaScript Debugger), 108
loaded classes, dumping, 106–108
Object Histogram, 105
object histograms, collecting, 105
permanent generation statistics,

printing, 103–104
PermStat, 103–104
PMap, 104
process maps, printing, 104
SOQL (Structured Object Query

Language), 106
SOQL queries, executing, 106

Serviceability Agent, plugin for VisualVM
Code Viewer panel, 120–122
description, 117–118
Find panel, 122–123
Find Pointer utility, 122–123
Find Value in CodeCache utility,

122–123
Find Value in Heap utility, 122–123
installing, 118
Java Stack Trace panel, 119–120
Java Threads panel, 119–120
Oop Inspector panel, 120–121
ordinary object pointers, inspecting,

120–121
using, 118–119
utilities, 119–123

Serviceability Agent, troubleshooting
problems

Java-level deadlocks, 131–136
OutOfMemoryError, 123–130

postmortem analysis of core files,
136–143

postmortem analysis of HotSpot JVM
crashes, 136–143

Shared library problems with transported
core files, 109–110

Snapshot-at-the beginning (SATB), 30
Soft references, 63–65
SOQL (Structured Object Query

Language), 106
SOQL queries, executing, 106
Sparse RSets, 25
Stop-the-world garbage collection, 2–4
sun.jvm.hotspot.debugger

.useProcDebugger, 111
sun.jvm.hotspot.debugger

.useWindbgDebugger, 111
sun.jvm.hotspot.debugger.windbg

.disableNativeLookup, 111
sun.jvm.hotspot.debugger.windbg

.imagePath, 111
sun.jvm.hotspot.debugger.windbg

.symbolPath, 111
sun.jvm.hotspot.jdi

.SACoreAttachingConnector, 113
sun.jvm.hotspot.jdi

.SAPIDAHachingConnector, 113
sun.jvm.hotspot.loadLibrary

.DEBUG, 111
sun.jvm.hotspot.runtime

.VM.disableVersionCheck, 111
sun.jvm.hotspot.tools.jcore

.filter=<name of class>
property, 106–108, 111

sun.jvm.hotspot.tools.jcore
.outputDir=<output
directory> property, 106–107

sun.jvm.hotspot.tools.jcore
.PackageNameFilter
.pkgList=\<list of packages>
property, 106, 111

sun.jvm.hotspot.tools.Tool, 115
Survivor fill capacity, 19
Survivor regions, insufficient space causing

evacuation failure, 60
Survivor space, 11, 18–19
Synchronization-related issues, 95

Index 163

T
TAMS (top-at-mark-starts), 30–33
Tenuring threshold, live objects, 18, 19
Termination, 47–48
Thread count, increasing, 54
Thread stack trace, displaying, 119–120
Threads

CMS (Concurrent Mark Sweep)
GC, 6–7

displaying, 80–84, 119–120
setting number of, 146
time ratio, setting, 148–149

Threads, interrupting
Parallel GC, 4
Serial GC, 5

Timed activities, variance in, 42
TLABs, 17–18, 21, 153
Top-at-mark-starts (TAMS), 30–33
To-space exhausted log message,

53–54. See also Evacuation failures
To-space exhaustion. See Evacuation

failures
To-space overflow. See Evacuation failures
Troubleshooting. See JDI (Java Debug

Interface); Serviceability Agent
Tuning

concurrent marking phase, 52–54
mixed collection phase, 54–56
reclamation, 63–65
young generations, 50–52

U
universe command, 101
Update log buffer, 29–30
userdump tool, 108

V
Version checking, disabling, 111
Version matching, 71
VisualVM. See Serviceability Agent
VM data structures, examining, 101
VM Version Info, 98–99
VMStructs class, 70–71
vmStructs.cpp file, 70–71

W
Weak references, excessive, correcting, 63
Work stealing, 47–48
Write barriers, RSets, 28–30

X
–XX:+ClassUnloadingWithConcurrent

Mark, 36, 153
–XX:+CMSParallelInitialMark

Enabled, 6
–XX:+CMSParallelRemarkEnabled, 6
–XX:ConcGCThreads, 34–35, 54, 146
–XX:G1ConcRefinementGreenZone,

29, 148
–XX:G1ConcRefinementRedZone,

29, 148
–XX:G1ConcRefinementThreads,

29–30, 43
–XX:G1ConcRefinementYellowZone,

29, 148
–XX:G1HeapRegionSize, 19, 59, 146
–XX:G1HeapRegionSize=n, 18
–XX:G1HeapWastePercent,

23, 146–147
–XX:G1MaxNewSizePercent,

17, 50–52
–XX:G1MixedGCCountTarget,

23, 57, 147
–XX:G1MixedGCLiveThreshold

Percent, 58
–XX:G1NewSizePercent, 17, 50–52
–XX:+G1PrintRegionLiveness

Info, 147
–XX:G1ReservePercent, 60, 147
–XX:+G1SummarizeRSetStats,

44–47, 147
–XX:G1SummarizeRSetStats

Period, 148
–XX:+G1TraceConcRefinement, 148
–XX:+G1UseAdaptiveConc

Refinement, 148
–XX:+G1UseAdaptiveIHOP, 151
–XX:GCTimeRatio, 148–149
–XX:+HeapDumpAfterFullGC, 149
–XX:+HeapDumpBeforeFullGC, 149

164 Index

–XX:InitiatingHeapOccupancy
Percent

default value, 11
description, 149
heap occupancy percentage, 22
occupancy threshold, default, 22
occupancy threshold, setting, 30
overview, 22–24

–XX:InitiatingHeapOccupancy
Percent=n, 52–54

–XX:MaxGCPauseMillis, 17, 50–52, 151
–XX:MaxHeapFreeRatio, 152
–XX:MaxTenuringThreshold, 19
–XX:MinHeapFreeRatio, 152
–XX:ParallelGCThreads, 29–30,

35, 43, 54
–XX:+ParallelRefProcEnabled, 62–63
–XX:+PrintAdaptiveSizePolicy,

55, 59, 152
–XX:+PrintGCDetails, 18, 27, 60–61
–XX:PrintGCTimeStamps, 27
–XX:+PrintReferenceGC, 61–63
–XX:+PrintStringDeduplication

Statistics, 151
–XX:+ResizePLAB, 152–153
–XX:+ResizeTLAB, 153
–XX:SoftRefLRUPolicyMSPerMB=1000,

63–64
–XX:StringDeduplicationAge

Threshold, 150
–XX:TargetSurvivorRatio, 19
–XX:+UnlockCommercialFeatures, 154
–XX:+UnlockDiagnostic

VMOptions, 147, 153–154
–XX:+UnlockExperimental

VMOptions, 154
–XX:+UseConcurrentMarkSweepGC, 6
–XX:+UseG1GC, 27
–XX:+UseG1GC, 146
–XX:+UseParallelGC, 2–3
–XX:+UseParallelOldGC, 2–3
–XX:+UseSerialGC, 5
–XX:+UseStringDeduplication,

149–150

Y
Young collection pauses

description, 18–19
eden regions, 18–19
survivor regions, 18–19
triggering, 18

Young collection pauses, live objects
aging, 18, 19
copy to survivor, 18, 19
identifying, 22–24
liveness factor per region, calculating,

22–24
survivor fill capacity, 19
tenuring, 18, 19
tenuring threshold, 18, 19

Young collections
concurrent marking phase, tuning,

52–54
evacuation failure, log messages,

53–54
increasing thread count, 54
marking threshold, setting, 54
phases, 39. See also specific phases

Young collections, parallel phase
activities outside of GC, 48
code root scanning, 43–44
code sample, 39–40
concurrent refinement threads,

42–43
definition, 39
evacuation, 47
external root region scanning, 42
load balancing, 47–48
processed buffers, 42–44
reclamation, 47
RSets, and processed buffers,

42–44
RSets, summarizing statistics,

44–47
scanning nmethods, 44
start of parallel activities, 41
summarizing parallel activities, 48
termination, 47–48

Index 165

variance in timed activities, 42
work stealing, 47–48

Young collections, serial phase
activities, 48–50
definition, 39

Young generation
description, 17–18
initial generation size, setting, 50–52

maximum growth limit, setting,
50–52

pause time goal, setting,
50–52

resizing, 18
size, calculating, 17–18
tuning, 50–52

Yuasa, Taiichi, 30

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Garbage First Overview
	Terminology
	Parallel GC
	Serial GC
	Concurrent Mark Sweep (CMS) GC
	Summary of the Collectors

	Garbage First (G1) GC
	G1 Design
	Humongous Objects
	Full Garbage Collections
	Concurrent Cycle
	Heap Sizing
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

