— @ Microsoft

°rogramming
_arge Language Models
with Azure Open Al

Conversational programming and
prompt engineering with LLMs

Francesco Esposito

FREE SAMPLE CHAPTER | o o @

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138280376
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138280376
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138280376

o Microsoft

Programming Large
Language Models

with Azure Open Al:
Conversational
programming and prompt
engineering with LLMs

Francesco Esposito

Programming Large Language Models with Azure
Open Al: Conversational programming and prompt
engineering with LLMs

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2024 by Francesco Esposito.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.
pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-828037-6

ISBN-10: 0-13-828037-1

Library of Congress Control Number: 2024931423
$PrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is" basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief
Brett Bartow
Executive Editor
Loretta Yates
Associate Editor
Shourav Bose
Development Editor
Kate Shoup
Managing Editor
Sandra Schroeder
Senior Project Editor

Tracey Croom

Copy Editor

Dan Foster
Indexer
Timothy Wright
Proofreader
Donna E. Mulder
Technical Editor
Dino Esposito
Editorial Assistant
Cindy Teeters
Cover Designer

Twist Creative, Seattle

Compositor
codeMantra
Graphics

codeMantra

http://www.pearson.com/permissions
http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Dedication

Al
Perché non dedicarti un libro sarebbe stato un sacrilegio.

Contents at a Glance

CHAPTER1

CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER7
CHAPTER 8

Introduction

The genesis and an analysis of large
language models

Core prompt learning techniques
Engineering advanced learning prompts
Mastering language frameworks
Security, privacy, and accuracy concerns
Building a personal assistant

Chat with your data

Conversational Ul

Appendix: Inner functioning of LLMs

Index

Xiif

25
51
79
131
159
181
203

217

234

Contents

Chapter1

Chapter 2

Acknowledgments Xi

INtrodUction Xiii

The genesis and an analysis of large

language models 1
LLMsataglance.o 1
History of LLMS. . ..o 2
Functioning basics. 5
BUSINESS USE CASES . ..o\ttt ettt 14

Facts of conversational programming ..., 14
The emerging power of natural language........................ 15

LLM t0POIOgY . oottt 16
Future perspective.o 18
SUMIMAANY et 23
Core prompt learning techniques 25
What is prompt engineering? ...t 25
Promptsataglance...........ooiiiii 25
Alternative ways to alteroutputl 28
Setting up for code execution......... 31
Basictechniques.o 34
Zero-shot SCeNArios. vttt 35
Few-shotscenariosc..ooiiiiiiiiiiiiiiiiiin, 37
Chain-of-thought scenarios.................oooiiiiiiii. 41
Fundamental use €asesot 44
Chatbots. ... 44
Translatingo 47

LLM IImitations.o e 48
SUMIMANY ettt e e e e e e 49

vii

Chapter 3 Engineering advanced learning prompts 51

What's beyond prompt engineering? ...t 51
CombinNiNg PIECES ..o\ o ittt 52
Fine-tuning 54

Functioncallingooiii 56
Homemade-style.o 57
OPENAL-StYIE. o e 60

Talking to (separated) data...........cooveiiii i 64
Connectingdatato LLMs ... 64
Embeddings.coooii 65
VECTOr STOrE . . e 69
Retrieval augmented generation ..., 72

SUMIMANY et e e e e e e 76

Chapter 4 Mastering language frameworks 79

The need foran orchestrator.............cooiiiiiiii 79
Cross-framework concepts........o.vviri i 80
Pointsto consider 86

LangChain ... e 88
Models, prompt templates, and chains........................... 88
AN . e 96
Data connection.ot 104

Microsoft SemanticKernel i 109
PIUG-INS . o m
Dataand planners....... ... 16

Microsoft GUIdANCe.t 121
Configuration ... 121
Main featuresouiri i 123

SUMIMATY ettt e e e e e 129

viii Contents

Chapter 5

Chapter 6

Chapter 7

Security, privacy, and accuracy concerns 131
OVEIVIBW ..ttt 131
Responsible Al 131
Red teamingouirini e 132
Abuse and content filtering 133
Hallucination and performances. ...t 134
Biasand fairness. 135
SECUItY and PriVaCyottt e 135
S Uy . e e 135
PrIVaCY . . e e 140
Evaluation and content filtering o il 144
Evaluation.o 144
Contentfiltering. ..o 148
SUMIMAANY ettt e e 157
Building a personal assistant 159
Overview of the chatbot web application............................. 159
Yoo} o TP 160
Tech stack. ... 160
THE PrOJECt. ..ottt 161
Settingupthe LLM 161
Settingup theproject..........c.co i 163
Integratingthe LLM.o e 165
Possible extensions 178
SUMIMANY ettt e e e e e 179
Chat with your data 181
OVEIVIBW ..ttt e 181
SO . 181
Techstack.o 182
Whatis Streamlit? 182
A brief introduction to Streamlit............ 183

Contents

ix

Main Ul features. 183

Pros and consin production................coiiiiiiii 185

ThE PrOJECt. oot 186
Setting up the projectand base Ul.............................. 187

Data preparation ... 189

LLM integrationc.ouiuii e 193
Progressing further. 198
Retrieval augmented generation versus fine-tuning 198
Possible extensions il 200
SUMIMAANY ettt e e e e e e 201
Chapter 8 Conversational Ul 203
OVEIVIEW . ettt et e e 203
Yoo o TSRt 204

Tech stack. ... 205

The project. ... 206
Minimal APl SEtUP . ..ot e 206
OpPeNAPL . 208
LLMintegrationo 210
Possible extensionso 215
SUMMANY ..o 216
Appendix: Inner functioning of LLMs 217
Index 234

X Contents

Acknowledgments

| n the spring of 2023, when | told my dad how cool Azure OpenAl was becoming, his
reply was kind of a shock: “Why don’t you write a book about it?" He said it so naturally
that it hit me as if he really thought | could do it. In fact, he added, “Are you up for it?”
Then there was no need to say more. Loretta Yates at Microsoft Press enthusiastically
accepted my proposal, and the story of this book began in June 2023.

Al has been a hot topic for the better part of a decade, but the emergence of new-
generation large language models (LLMs) has propelled it into the mainstream. The
increasing number of people using them translates to more ideas, more opportunities,
and new developments. And this makes all the difference.

Hence, the book you hold in your hands can’t be the ultimate and definitive guide to
Al and LLMs because the speed at which Al and LLMs evolve is impressive and because—
by design—every book is an act of approximation, a snapshot of knowledge taken at a
specific moment in time. Approximation inevitably leads to some form of dissatisfaction,
and dissatisfaction leads us to take on new challenges. In this regard, | wish for myself
decades of dissatisfaction. And a few more years of being on the stage presenting books
written for a prestigious publisher—it does wonders for my ego.

First, | feel somewhat indebted to all my first dates since May because they had to
endure monologues lasting at least 30 minutes on LLMs and some weird new approach
to transformers.

True thanks are a private matter, but publicly | want to thank Martina first, who
cowrote the appendix with me and always knows what to say to make me better. My
gratitude to her is keeping a promise she knows. Thank you, Martina, for being an
extraordinary human being.

To Gianfranco, who taught me the importance of discussing and expressing, even
loudly, when something doesn't please us, and taught me to always ask, because the
worst thing that can happen is hearing a no. Every time | engage in a discussion, | will
think of you.

| also want to thank Matteo, Luciano, Gabriele, Filippo, Daniele, Riccardo, Marco,
Jacopo, Simone, Francesco, and Alessia, who worked with me and supported me
during my (hopefully not too frequent) crises. | also have warm thoughts for
Alessandro, Antonino, Sara, Andrea, and Cristian who tolerated me whenever we
weren't like 25-year-old youngsters because | had to study and work on this book.

xi

xii

Acknowledgments

To Mom and Michela, who put up with me before the book and probably will
continue after. To my grandmas. To Giorgio, Gaetano, Vito, and Roberto for helping
me to grow every day. To Elio, who taught me how to dress and see myself in more
colors.

As for my dad, Dino, he never stops teaching me new things—for example, how
to get paid for doing things you would just love to do, like being the technical editor
of this book. Thank you, both as a father and as an editor. You bring to my mind a
song you well know: “Figlio, figlio, figlio.”

Beyond Loretta, if this book came to life, it was also because of the hard work of
Shouray, Kate, and Dan. Thank you for your patience and for trusting me so much.

This book is my best until the next one!

Introduction

his is my third book on artificial intelligence (Al), and the first | wrote on my own,

without the collaboration of a coauthor. The sequence in which my three books
have been published reflects my own learning path, motivated by a genuine thirst to
understand Al for far more than mere business considerations. The first book, pub-
lished in 2020, introduced the mathematical concepts behind machine learning (ML)
that make it possible to classify data and make timely predictions. The second book,
which focused on the Microsoft ML.NET framework, was about concrete applica-
tions—in other words, how to make fancy algorithms work effectively on amounts of
data hiding their complexity behind the charts and tables of a familiar web front end.

Then came ChatGPT.

The technology behind astonishing applications like ChatGPT is called a large
language model (LLM), and LLMs are the subject of this third book. LLMs add a
crucial capability to Al: the ability to generate content in addition to classifying
and predicting. LLMs represent a paradigm shift, raising the bar of communication
between humans and computers and opening the floodgates to new applications
that for decades we could only dream of.

And for decades, we did dream of these applications. Literature and movies
presented various supercomputers capable of crunching any sort of data to pro-
duce human-intelligible results. An extremely popular example was HAL 9000—the
computer that governed the spaceship Discovery in the movie 2007: A Space Odyssey
(1968). Another famous one was JARVIS (Just A Rather Very Intelligent System), the
computer that served Tony Stark’s home assistant in /ron Man and other movies in
the Marvel Comics universe.

Often, all that the human characters in such books and movies do is simply “load
data into the machine,” whether in the form of paper documents, digital files, or
media content. Next, the machine autonomously figures out the content, learns
from it, and communicates back to humans using natural language. But of course,
those supercomputers were conceived by authors; they were only science fiction.
Today, with LLMs, it is possible to devise and build concrete applications that not
only make human—-computer interaction smooth and natural, but also turn the old
dream of simply "loading data into the machine” into a dazzling reality.

xiii

http://ML.NET

xiv

Introduction

This book shows you how to build software applications using the same type of
engine that fuels ChatGPT to autonomously communicate with users and orches-
trate business tasks driven by plain textual prompts. No more, no less—and as easy
and striking as it sounds!

Who should read this book

Software architects, lead developers, and individuals with a background in program-
ming—particularly those familiar with languages like Python and possibly C# (for
ASP.NET Core)—will find the content in this book accessible and valuable. In the vast
realm of software professionals who might find the book useful, I'd call out those
who have an interest in ML, especially in the context of LLMs. I'd also list cloud and IT
professionals with an interest in using cloud services (specifically Microsoft Azure) or
in sophisticated, real-world applications of human-like language in software. While
this book focuses primarily on the services available on the Microsoft Azure plat-
form, the concepts covered are easily applicable to analogous platforms. At the end
of the day, using an LLM involves little more than calling a bunch of APl endpoints,
and, by design, APIs are completely independent of the underlying platform.

In summary, this book caters to a diverse audience, including programmers, ML
enthusiasts, cloud-computing professionals, and those interested in natural lan-
guage processing, with a specific emphasis on leveraging Azure services to program
LLMs.

Assumptions

To fully grasp the value of a programming book on LLMs, there are a couple of
prerequisites, including proficiency in foundational programming concepts and a
familiarity with ML fundamentals. Beyond these, a working knowledge of relevant
programming languages and frameworks, such as Python and possibly ASP.NET
Core, is helpful, as is an appreciation for the significance of classic natural language
processing in the context of business domains. Overall, a blend of programming
expertise, ML awareness, and linguistic understanding is recommended for a
comprehensive grasp of the book’s content.

http://ASP.NET
http://ASP.NET

This book might not be for you if...

This book might not be for you if you're just seeking a reference book to find out in
detail how to use a particular pattern or framework. Although the book discusses
advanced aspects of popular frameworks (for example, LangChain and Semantic
Kernel) and APIs (such as OpenAl and Azure OpenAl), it does not qualify as a pro-
gramming reference on any of these. The focus of the book is on using LLMs to build
useful applications in the business domains where LLMs really fit well.

Organization of this book

This book explores the practical application of existing LLMs in developing versatile
business domain applications. In essence, an LLM is an ML model trained on exten-
sive text data, enabling it to comprehend and generate human-like language. To
convey knowledge about these models, this book focuses on three key aspects:

m The first three chapters delve into scenarios for which an LLM is effective and
introduce essential tools for crafting sophisticated solutions. These chapters
provide insights into conversational programming and prompting as a new,
advanced, yet structured, approach to coding.

m The next two chapters emphasize patterns, frameworks, and techniques for
unlocking the potential of conversational programming. This involves using
natural language in code to define workflows, with the LLM-based applica-
tion orchestrating existing APIs.

m The final three chapters present concrete, end-to-end demo examples
featuring Python and ASP.NET Core. These demos showcase progressively
advanced interactions between logic, data, and existing business processes.
In the first demo, you learn how to take text from an email and craft a fitting
draft for a reply. In the second demo, you apply a retrieval augmented gener-
ation (RAG) pattern to formulate responses to questions based on document
content. Finally, in the third demo, you learn how to build a hotel booking
application with a chatbot that uses a conversational interface to ascertain
the user’s needs (dates, room preferences, budget) and seamlessly places (or
denies) reservations according to the underlying system’s state, without using
fixed user interface elements or formatted data input controls.

Introduction

Xv

http://ASP.NET

Downloads: notebooks and samples

Python and Polyglot notebooks containing the code featured in the initial part of
the book, as well as the complete codebases for the examples tackled in the latter
part of the book, can be accessed on GitHub at:

https://github.com/Youbiquitous/programming-lim

Errata, updates, & book support

We've made every effort to ensure the accuracy of this book and its companion
content. You can access updates to this book—in the form of a list of submitted
errata and their related corrections—at:

MicrosoftPressStore.com/LLMAzureAl/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit MicrosoftPressStore.
com/Support.

Please note that product support for Microsoft software and hardware is not
offered through the previous addresses. For help with Microsoft software or hard-
ware, go to http.//support.microsoft.com.

Stay in touch

Let's keep the conversation going! We're on X / Twitter: http://twitter.com/
MicrosoftPress.

xvi Introduction

https://github.com/Youbiquitous/programming-llm
http://MicrosoftPressStore.com/LLMAzureAI/errata
http://MicrosoftPressStore.com/Support
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress
http://twitter.com/MicrosoftPress

Core prompt learning techniques

rompt learning techniques play a crucial role in so-called “conversational programming,” the new
P paradigm of Al and software development that is now taking off. These techniques involve the
strategic design of prompts, which are then used to draw out desired responses from large language
models (LLMs).

Prompt engineering is the creative sum of all these techniques. It provides developers with the tools
to guide, customize, and optimize the behavior of language models in conversational programming
scenarios. Resulting prompts are in fact instrumental in guiding and tailoring responses to business
needs, improving language understanding, and managing context.

Prompts are not magic, though. Quite the reverse. Getting them down is more a matter of trial
and error than pure wizardry. Hence, at some point, you may end up with prompts that only partially
address the very specific domain requests. This is where the need for fine-tuning emerges.

What is prompt engineering?

As a developer, you use prompts as instructional input for the LLM. Prompts convey your intent and
guide the model toward generating appropriate and contextually relevant responses that fulfill specific
business needs. Prompts act as cues that inform the model about the desired outcome, the context in
which it should operate, and the type of response expected. More technically, the prompt is the point
from which the LLM begins to predict and then output new tokens.

Prompts at a glance

Let's try some prompts with a particular LLM—specifically, GPT-3.5-turbo. Be aware, though, that LLMs
are not deterministic tools, meaning that the response they give for the same input may be different
every time.

Note Although LLMs are commonly described as non-deterministic, “seed” mode is now
becoming more popular—in other words, seeding the model instead of sampling for a fully
reproducible output.

25

26

A very basic prompt
The hello-world of prompt engineering—easily testable online on Bing Chat, ChatGPT, or something
similar—can be as simple as what's shown here:
During the week I
This prompt might result in something like the following output:

During the week, I typically follow a structured routine.

Overall, the answer makes sense: The model tries to provide a continuation of the string, given the
understood context.

Let's try something a bit more specific:

Complete the following sentence, as if you were Shakespeare.
During the week I

The subsequent output might be similar to:

During the week, I doth engage in myriad tasks and endeavors, as the sun traverseth the sky with
unwavering pace.

So far so good.

A more complex prompt

One relatively complex prompt might be the following:

'Unacceptable risk AI systems are systems considered a threat to people and will be banned. They
include:

-Cognitive behavioral manipulation of people or specific vulnerable groups: for example,
voice-activated toys that encourage dangerous behavior in children

-Social scoring: classifying people based on behavior, socio-economic status, or personal
characteristics

-Real-time and remote biometric identification systems, such as facial recognition

Some exceptions may be allowed: For instance, "post" remote biometric identification systems
where identification occurs after a significant delay will be allowed to prosecute serious
crimes but only after court approval.'

Given the above, extract only the forbidden AI applications and output them as json.

The model might now output the following JSON string:

{
"Forbidden AI Applications":[

{
"Application":"Cognitive behavioral manipulation of people or specific vulnerable groups",
"Example": "Voice-activated toys that encourage dangerous behavior in children"

1,

{
"Application":"Social scoring",
"Example":"Classifying on behavior, socio-economic status or personal characteristics"”

1,

Core prompt learning techniques

{

"Application":"Real-time and remote biometric identification systems",

n.n

"Example":"Facial recognition"
}
]
}

Encouraged by these first experiments, let’s try to outline some general rules for prompts.

General rules for prompts

A prompt can include context, instructions, input data, and optionally the structure of the desired
output (also in the form of explicit examples). Depending on the task, you might need all four pieces or
only a couple of them—most likely, instructions and input data.

Designing a prompt is an iterative process. Not surprisingly, the first reply you get from a model
might be quite unreasonable. Don't give up; just try again, but be more precise in what you provide,
whether it's plain instructions, input data, or context.

Two key points for a good prompt are specificity and descriptiveness.

m Specificity means designing prompts to leave as little room for interpretation as possible. By
providing explicit instructions and restricting the operational space, developers can guide the
language model to generate more accurate and desired outputs.

m Descriptiveness plays a significant role in effective prompt engineering. By using analogies and
vivid descriptions, developers can provide clear instructions to the model. Analogies serve as
valuable tools for conveying complex tasks and concepts, enabling the model to grasp the
desired output with improved context and understanding.

General tips for prompting

A more technical tip is to use delimiters to clearly indicate distinct parts of the prompt. This helps
the model focus on the relevant parts of the prompt. Usually, backticks or backslashes work well.
For instance:

Extract sentiment from the following text delimited by triple backticks: '''Great choice!'''
When the first attempt fails, two simple design strategies might help:

m Doubling down on instructions is useful to reinforce clarity and consistency in the model’s
responses. Repetition techniques, such as providing instructions both before and after the
primary content or using instruction-cue combinations, strengthen the model's understanding
of the task at hand.

m Changing the order of the information presented to the model. The order of information
presented to the language model is significant. Whether instructions precede the content
(summarize the following)orfollow it (summarize the preceding) can lead to different

Core prompt learning techniques 27

28

results. Additionally, the order of few-shot examples (which will be covered shortly) can also
introduce variations in the model’s behavior. This concept is known as recency bias.

One last thing to consider is an exit strategy for the model in case it fails to respond adequately.
The prompt should instruct the model with an alternative path—in other words, an out. For instance,
when asking a question about some documents, including a directive such aswrite 'not found'
if you can't find the answer within the documentorcheck if the conditions are
satisfied before answering allows the model to gracefully handle situations in which the desired
information is unavailable. This helps to avoid the generation of false or inaccurate responses.

Alternative ways to alter output

When aiming to align the output of an LLM more closely with the desired outcome, there are several
options to consider. One approach involves modifying the prompt itself, following best practices
and iteratively improving results. Another involves working with inner parameters (also called
hyperparameters) of the model.

Beyond the purely prompt-based conversational approach, there are a few screws to tighten—
comparable to the old-but-gold hyperparameters in the classic machine learning approach. These
include the number of tokens, temperature, top_p (or nucleus) sampling, frequency penalties, presence
penalties, and stop sequences.

Temperature versus top_p

Temperature (T) is a parameter that influences the level of creativity (or “randomness”) in the text
generated by an LLM. The usual range of acceptable values is 0 to 2, but it depends on the specific
model. When the temperature value is high (say, 0.8), the output becomes more diverse and imagina-
tive. Conversely, a lower temperature (say, 0.1), makes the output more focused and deterministic.

Temperature affects the probability distribution of potential tokens at each step of the generation
process. In practice, when choosing the next token, a model with a temperature of 0 will always choose
the most probable one, while a model with a higher temperature will choose a token more or less
randomly. A temperature of 0, therefore, would make the model entirely deterministic.

Note As discussed in Chapter 1, the temperature parameter works on the LLM's last layer,
being a parameter of the softmax function.

An alternative technique called top_p sampling (or nucleus sampling) is also useful for altering the
default behavior of the LLM when generating the next token. With top_p sampling, instead of con-
sidering all possible tokens, the LLM focuses only on a subset of tokens (known as the nucleus) whose
cumulative probability mass adds up to a specified threshold called top_p.

With top_p, the range of acceptable values is from 0 to 1. If, for instance, if the top_p value is set to
0.3, the language model will consider only tokens that contribute to the top 30% of the probability
mass for the next token. This means lower top_p values limit the vocabulary of the model.

Core prompt learning techniques

Both temperature and top_p sampling serve as powerful tools for controlling an LLM’s behavior,
enabling different levels of creativity and control. They can be used independently or in combination,
although it is generally recommended to alter only one at a time.

Adjusting these parameters makes them versatile for a wide range of applications. For instance, for a
creative-writing task, a temperature of 1.3 (while also playing around with top_p) could be good, while
for a code-generation task, 0.4 (again, while also experimenting with top_p) would be better.

Consider this prompt:

Rephrase the following text:

<<<When aiming to align the output of a Targe Tanguage model (LLM) more closely with the desired
outcome, there are several options to consider. One approach involves modifying the prompt
itself, while another involves working with hyperparameters of the model>>>

With a temperature of 2, the prompt returns something like the following (which is grammatically
incorrect):

When attempting to have a Targe language model (LLM) output that reflects the desired outcome,
there are numerous alternatives to ponder. adapting the prompt itself is called one approach
that credits sustainability. Grounding on hyperparameters programs appertains settings amidst
the indicators simultaneously participates confidentiality impact later goals aren abbreviated
instructions. Otherwise instructions brings alternative ramification which doesn omit Tengthy
resolution reaching goals which aren susceptible to evaluations constantly... likelihood
advancement adjustment exemplark.

With a temperature of 0, it returns the following:

To achieve better alignment between the output of a Tanguage model (LLM) and the desired
outcome, there are various options to explore. One option is to adjust the prompt, while another
involves tweaking the model's hyperparameters.

In the middle, with a temperature of 0.8, the result looks like this:

To achieve a greater degree of alignment between the output of a language model (LLM) and the
intended result, there are various approaches to consider. One tactic involves adjusting the
prompt directly, whereas an alternative involves manipulating the model's hyperparameters.

Frequency and presence penalties

Another set of parameters is the frequency and presence penalty. These add a penalty when calculat-
ing probability of the next token. This results in a recalculation of each probability, which ultimately
affects which token is chosen.

The frequency penalty is applied to tokens that have already been mentioned in the preceding text
(including the prompt). It is scaled based on the number of times the token has appeared. For example,
a token that has appeared five times receives a higher penalty, reducing its likelihood of appearing
again, than a token that has appeared only once. The presence penalty, on the other hand, applies a
penalty to tokens regardless of their frequency. Once a token has appeared at least once before, it will
be subject to the penalty. The range of acceptable values for both is from -2 to 2.

Core prompt learning techniques 29

30

These parameter settings are valuable for eliminating (or promoting, in the case of negative values)
repetitive elements from generated outputs. For instance, consider this prompt:

Rephrase the following text:
<<<When aiming to align the output of a large language model (LLM) more closely with the desired
outcome, there are several options to consider. One approach involves modifying the prompt
itself, while another involves working with hyperparameters of the model>>>

With a frequency penalty of 2, it returns something like:

To enhance the accuracy of a large language model's (LLM) output to meet the desired result,
there are various strategies to explore. One method involves adjusting the prompt itself,
whereas another entails manipulating the model's hyperparameters.

While with a frequency penalty of 0, it returns something like:

There are various options to consider when attempting to better align the output of a language
model (LLM) with the desired outcome. One option is to modify the prompt, while another is to
adjust the model's hyperparameters.

Max tokens and stop sequences

The max tokens parameter specifies the maximum number of tokens that can be generated by the
model, while the stop sequence parameter instructs the language model to halt the generation of
further content. Stop sequences are in fact an additional mechanism for controlling the length of the
model’s output.

Note The modelis limited by its inner structure. For instance, GPT-4 is limited to a max
number of 32,768 tokens, including the entire conversation and prompts, while GPT-4-turbo
has a context window of 128k tokens.

Consider the following prompt:
Paris is the capital of

The model will likely generate France. If a full stop () is designated as the stop sequence, the model
will cease generating text when it reaches the end of the first sentence, regardless of the specified
token limit.

A more complex example can be built with a few-shot approach, which uses a pair of angled
brackets (<< ... >>) on each end of a sentiment. Considering the following prompt:

Extract sentiment from the following tweets:
Tweet: I Tove this match!

Sentiment: <<positive>>

Tweet: Not sure I completely agree with you
Sentiment: <<neutral>>

Tweet: Amazing movie!!!

Sentiment:

Core prompt learning techniques

Including the angled brackets instructs the model to stop generating tokens after extracting the
sentiment.

By using stop sequences strategically within prompts, developers can ensure that the model gener-
ates text up to a specific point, preventing it from producing unnecessary or undesired information.
This technique proves particularly useful in scenarios where precise and limited-length responses are
desired, such as when generating short summaries or single-sentence outputs.

Setting up for code execution

Now that you've learned the basic theoretical background of prompting, let’s bridge the gap between
theory and practical implementation. This section transitions from discussing the intricacies of prompt
engineering to the hands-on aspect of writing code. By translating insights into executable instructions,
you'll explore the tangible outcomes of prompt manipulation.

In this section, you'll focus on OpenAl models, like GPT-4, GPT-3.5-turbo, and their predecessors.
(Other chapters might use different models.) For these examples, .NET and C# will be used mainly, but
Python will also be used at some point.

Getting access to OpenAl APIs

To access OpenAl APIs, there are multiple options available. You can leverage the REST APIs from
OpenAl or Azure OpenAl, the Azure OpenAl .NET or Python SDK, or the OpenAl Python package.

In general, Azure OpenAl Services enable Azure customers to use those advanced language Al
models, while still benefiting from the security and enterprise features offered by Microsoft Azure, such
as private networking, regional availability, and responsible Al content filtering.

At first, directly accessing OpenAl could be the easiest choice. However, when it comes to enterprise
implementations, Azure OpenAl is the more suitable option due to its alignment with the Azure
platform and its enterprise-grade features.

To get started with Azure OpenAl, your Azure subscription must include access to Azure OpenAl,
and you must set up an Azure OpenAl Service resource with a deployed model.

If you choose to use OpenAl directly, you can create an APl key on the developer site (https.//
platform.openai.com/).

In terms of technical differences, OpenAl uses the mode1 keyword argument to specify the desired
model, whereas Azure OpenAl employs the depToyment_1id keyword argument to identify the specific
model deployment to use.

Chat Completion API versus Completion API

OpenAl APIs offer two different approaches for generating responses from language models: the Chat
Completion APl and the Completion API. Both are available in two modes: a standard form, which
returns the complete output once ready, and a streaming version, which streams the response token
by token.

Core prompt learning techniques 31

https://latform.openai.com/
http://OpenAI.NET
https://latform.openai.com/

32

The Chat Completion API is designed for chat-like interactions, where message history is concatenated
with the latest user message in JSON format, allowing for controlled completions. In contrast, the
Completion API provides completions for a single prompt and takes a single string as input.

The back-end models used for the two APIs differ:

m The Chat Completion API supports GPT-4-turbo, GPT-4, GPT-4-0314, GPT-4-32k, GPT-4-
32k-0314, GPT-3.5-turbo, and GPT-3.5-turbo-0301.

m The Completion APl includes older (but still good for some use cases) models, such as
text-davinci-003, text-davinci-002, text-curie-001, text-babbage-001, and text-ada-001.

One advantage of the Chat Completion APl is the role selection feature, which enables users to
assign roles to different entities in the conversation, such as user, assistant, and, most importantly,
system. The first system message provides the model with the main context and instructions “set in
stone.” This helps in maintaining consistent context throughout the interaction. Moreover, the system
message helps set the behavior of the assistant. For example, you can modify the personality or tone of
the assistant or give specific instructions on how it should respond. Additionally, the Chat Completion
API allows for longer conversational context to be appended, enabling a more dynamic conversation
flow. In contrast, the Completion APl does not include the role selection or conversation formatting
features. It takes a single prompt as input and generates a response accordingly.

Both APIs provide finish_reasons in the response to indicate the completion status. Possible
finish_reasons valuesinclude stop (complete message or a message terminated by a stop
sequence), Tength (incomplete output due to token limits), function_call (model calling a func-
tion), content_fiTlter (omitted content due to content filters), and nul11 (response still in progress).

Although OpenAl recommends the Chat Completion API for most use cases, the raw Completion
APl sometimes offers more potential for creative structuring of requests, allowing users to construct
their own JSON format or other formats. The JSON output can be forced in the Chat Completion API by
using the JSON mode with the response_format parameter setto json_object.

To summarize, the Chat Completion APl is a higher-level API that generates an internal prompt
and calls some lower-level APl and is suited for chat-like interactions with role selection and conversa-
tion formatting. In contrast, the Completion APl is focused on generating completions for individual
prompts.

It's worth mentioning that the two APIs are to some extent interchangeable. That is, a user can force
the format of a Chat Completion response to reflect the format of a Completion response by construct-
ing a request using a single user message. For instance, one can translate from English to Italian with
the following Completion prompt:

Translate the following English text to Italian: "{input}"
An equivalent Chat Completion prompt would be:

[{"role": "user", "content": 'Translate the following English text to Italian: "{input}"'}]

Core prompt learning techniques

Similarly, a user can use the Completion API to mimic a conversation between a user and an
assistant by appropriately formatting the input.

Setting things up in C#

You can now set things up to use Azure OpenAl APl in Visual Studio Code through interactive .NET
notebooks, which you will find in the source code that comes with this book. The model used is
GPT-3.5-turbo. You set up the necessary NuGet package—in this case, Azure.Al.OpenAl—with the
following line:

#r "nuget: Azure.AI.OpenAI, 1.0.0-beta.l2"
Then, moving on with the C# code:

using System;
using Azure.AI.OpenAl;
var AOAI_ENDPOINT = Environment.GetEnvironmentVariable("AOAI_ENDPOINT");
var AOAI_KEY = Environment.GetEnvironmentVariable("AOAI_KEY");
var AOAI_DEPLOYMENTID = Environment.GetEnvironmentVariable("AOAI_DEPLOYMENTID");
var AOAI_chat_DEPLOYMENTID = Environment.GetEnvironmentVariable("AOAI_chat_DEPLOYMENTID");
var endpoint = new Uri(AOAI_ENDPOINT);
var credentials = new Azure.AzureKeyCredential(AOAI_KEY);
var openAIClient = new OpenAIClient(endpoint, credentials);
var completionOptions = new ChatCompletionsOptions
{
DeploymentName=AOAI_DEPLOYMENTID,
MaxTokens=500,
Temperature=0.7f,
FrequencyPenalty=0f,
PresencePenalty=0f,
NucleusSamplingFactor=1,
StopSequences={}
};

var prompt =

@"rephrase the following text: <<<When aiming to align the output of a language model (LLM)
more closely with the desired outcome, there are several options to consider. One approach
involves modifying the prompt itself, while another involves working with hyperparameters of the
modeTl>>>";

compTletionOptions.Messages.Add(new ChatRequestUserMessage (prompt));

var response = await openAIClient.GetChatCompletionsAsync(completionOptions);
var completions = response.Value;
completions.Choices[0].Message.Content.Display(Q);

After running this code, one possible output displayed in the notebook is as follows:
There are various ways to bring the output of a Tanguage model (LLM) closer to the intended

result. One method is to adjust the prompt, while another involves tweaking the model's
hyperparameters.

Core prompt learning techniques 33

Note that the previous code uses the Chat Completion version of the API. A similar result could have
been obtained through the following code, which uses the Completion APl and an older model:

var completionOptions = new CompletionsOptions
{
DeploymentName=AOAI_DEPLOYMENTID,
Prompts={prompt},
MaxTokens=500,
Temperature=0.2f,
FrequencyPenalty=0.0f,
PresencePenalty=0.0f,NucleusSamplingFactor=1,
StopSequences={"."}
};
Completions response = await openAIClient.GetCompletionsAsync(completionOptions);
response.Choices.First().Text.Display(Q);

Setting things up in Python

If you prefer working with Python, put the following equivalent code in a Jupyter Notebook:

import os

import openai

from openai import AzureOpenAl

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv()) # read local .env file

client = AzureOpenAI(
azure endpoint = os.getenv("AZURE OPENAI ENDPOINT"),
api key=os.getenv("AZURE OPENAI KEY"),
openai.api_version="2023-09-01-preview"

)
deployment_name=o0s.getenv("AOAI_DEPLOYMENTID")
context = [{'role':'user', 'content':"rephrase the following text: 'When aiming to align the

output of a Tanguage model (LLM) more closely with the desired outcome, there are several
options to consider: one approach involves modifying the prompt itself, while another involves
working with hyperparameters of the model.'"} 1]
response = client.chat.completions.create(

model=depToyment_name,

messages=context,

temperature=0.7)
response.choices[0] .message["content"]

This is based on OpenAl Python SDK v.1.6.0, which can be installed via pip install openai.

Basic techniques

34

Prompt engineering involves understanding the fundamental behavior of LLMs to construct prompts
effectively. Prompts consist of different components: instructions, primary content, examples, cues,
and supporting content (also known as additional context or knowledge). Instructions guide the model
on what to do, while primary content is the main text being processed. Examples provide desired
behavior demonstrations, while cues act as a jumpstart for the model’s output. Supporting content

Core prompt learning techniques

provides additional information to influence the output, such as knowledge to search for before
answering. By strategically combining these elements, you can design prompts that elicit the desired
responses from the model.

This section covers basic techniques for mastering the art of prompting.

Zero-shot scenarios

Whenever a task, assigned to a model through a prompt, is given without any specific example of the
desired output, it's called zero-shot prompting. Basic scenarios might include:

m Proper text completion For example, writing an email or a medical record
m Topic extraction For example, to classify customers’ emails

= Translations and sentiment analysis For example, to label as positive/negative a tweet or to
translate users’ reviews to the same language

m Style-impersonation For example, Shakespeare, Hemingway, or any other notorious
personality the model may have been trained on.

The basic theory

Given the huge amount of data that LLMs are trained on, these models can perform an increasing
number of “zero-shot” tasks. In fact, the model already knows how to act in those cases. It has incor-
porated the ability to perform these tasks during its considerable training. However, the more clarity
expressed in the prompt, the more effective and accurate the output will be.

Note Clear prompts might not be short. In many situations, longer prompts provide more
clarity and context.

A few examples
A basic example of a zero-shot prompt might look like this:
Extract sentiment from the following text delimited by triple backticks.
'''Language models have revolutionized the way we interact with technology, empowering us to
generate creative content, explore new ideas, and enhance our communication. LLMs offer immense
potential for unlocking innovation and improving various aspects of our Tlives, opening up
exciting possibilities for the future.'''

An output would be:
The sentiment of the provided text is positive.

Trying topic extractions, it would be:

Determine at most three topics that are being discussed in the following text, delimited by
triple backticks.

Core prompt learning techniques 35

36

'''Language models have revolutionized the way we interact with technology, empowering us to
generate creative content, explore new ideas, and enhance our communication. LLMs offer immense
potential for unlocking innovation and improving various aspects of our Tlives, opening up
exciting possibilities for the future.'''

Here's a possible resulting output:

The three topics discussed in the text are:

The impact of language models on technology interaction: Language models have revolutionized the
way we interact with technology, enabling us to generate creative content, explore new ideas,
and enhance communication.

The potential of LLMs for innovation: LLMs offer immense potential for unlocking innovation and
improving various aspects of our lives. They open up exciting possibilities for the future.
Benefits and improvements in various aspects of life: The text highlights how LLMs can enhance
communication, generate creative content, and explore new ideas, thereby improving different
aspects of our Tives.

Iterative refining

Prompt engineering is a matter of refining. Trying to improve the preceding result, you might want to
explicitly list the sentiment the model should output and to limit the output to the sentiment only. For
example, a slightly improved prompt might look like the following:

Extract sentiment (positive, neutral, negative, unknown) from the following text, delimited by
triple backticks.

'''Language models have revolutionized the way we interact with technology, empowering us to
generate creative content, explore new ideas, and enhance our communication. LLMs offer immense
potential for unlocking innovation and improving various aspects of our lives, opening up
exciting possibilities for the future.'''

Return only one word indicating the sentiment.

This would result in the following output:
Positive

Likewise, regarding the topic extraction, you might want only one or two words per topic, each
separated by commas:

Determine at most three topics that are being discussed in the following text, delimited by
triple backticks.

Format the response as a list of at most 2 words, separated by commas.

''"'Language models have revolutionized the way we interact with technology, empowering us to
generate creative content, explore new ideas, and enhance our communication. LLMs offer immense
potential for unlocking innovation and improving various aspects of our lives, opening up
exciting possibilities for the future.'''

The result would look like:

Language models, Interaction with technology, LLM potential.

Core prompt learning techniques

Few-shot scenarios

Zero-shot capabilities are impressive but face important limitations when tackling complex tasks. This
is where few-shot prompting comes in handy. Few-shot prompting allows for in-context learning by
providing demonstrations within the prompt to guide the model’s performance.

A few-shot prompt consists of several examples, or shots, which condition the model to generate
responses in subsequent instances. While a single example may suffice for basic tasks, more challenging
scenarios call for increasing numbers of demonstrations.

When using the Chat Completion API, few-shot learning examples can be included in the system
message or, more often, in the messages array as user/assistant interactions following the initial system
message.

Note Few-shot prompting is useful if the accuracy of the response is too low. (Measuring
accuracy in an LLM context is covered later in the book.)

The basic theory

The concept of few-shot (or in-context) learning emerged as an alternative to fine-tuning models on
task-specific datasets. Fine-tuning requires the availability of a base model. OpenAl’s available base
models are GPT-3.5-turbo, davinci, curie, babbage, and ada, but not the latest GPT-4 and GPT-4-turbo
models. Fine-tuning also requires a lot of well-formatted and validated data. In this context, developed
as LLM sizes grew significantly, few-shot learning offers advantages over fine-tuning, reducing data
requirements and mitigating the risk of overfitting, typical of any machine learning solution.

This approach focuses on priming the model for inference within specific conversations or contexts.
It has demonstrated competitive performance compared to fine-tuned models in tasks like translation,
question answering, word unscrambling, and sentence construction. However, the inner workings of
in-context learning and the contributions of different aspects of shots to task performance remain less
understood.

Recent research has shown that ground truth demonstrations are not essential, as randomly replac-
ing correct labels has minimal impact on classification and multiple-choice tasks. Instead, other aspects
of demonstrations, such as the label space, input text distribution, and sequence format, play crucial
roles in driving performance. For instance, the two following prompts for sentiment analysis—the first
with correct labels, and the second with completely wrong labels —offer similar performance.

Tweet: "I hate it when I have no wifi"
Sentiment: Negative

Tweet: "Loved that movie"

Sentiment: Positive

Tweet: "Great car!!!"

Sentiment: Positive

Tweet: {new tweet}
Sentiment:

Core prompt learning techniques 37

38

And:

Tweet: "I hate it when I have no wifi"
Sentiment: Positive

Tweet: "Loved that movie"

Sentiment: Negative

Tweet: "Great car!!!"

Sentiment: Negative

Tweet: {new tweet}
Sentiment:

In-context learning may struggle with tasks that lack precaptured input-label correspondence. This
suggests that the intrinsic ability to perform a task is obtained during training, with demonstrations
(or shots) primarily serving as a task locator.

A few examples

One of the most famous examples of the efficiency of few-shot learning prompts is one taken from a
paper by Brown et al. (2020), where the task is to correctly use a new word in a sentence:

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses

the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a
"farduddle" means to jump up and down really fast. An example of a sentence that uses the word
farduddle is:

The model would correctly output something like:

We were so excited that we couldn't help but farduddle when our favorite team won the
championship.

A very good use case for few-shot learning is writing something in a given style, such as code docu-
mentation or social media posts. Whenever there is a pattern or a format, and explaining it is more
complex than showing it, it's worth trying few-shot prompting. For instance, the following prompt
would generate a consistent documentation:

/// <summary>

/// Returns detailed information about a specific event

/// </summary>

/// <param name="org">Name of the organization</param>

/// <param name="year">Year of the event</param>

/// <param name="tournamentId">Internal ID of the event</param>

/// <returns>Detailed info about the event</returns>

/// <remarks>Sample events to try are: 2892, 2331, 1028. Try also 8392.

/// If any of the parameters are invalid, the endpoint returns 404.</remarks>
public IActionResult Tournament(string org, int? year, string eventId)

public IActionResult Team(string org, string teamId)

Based on the model version and the APl (Completion or Chat Completion), the system might tend to
explain the code and the documentation instead of producing new documentation for the presented

Core prompt learning techniques

method (IActionResult Team). That's why a better and more precise prompt would be the
following, which includes specific instructions:

Your task is to generate documentation in a consistent style.

/// <summary>

/// Returns detailed information about a specific event

/// </summary>

/// <param name="org">Name of the organization</param>

/// <param name="year">Year of the event</param>

/// <param name="tournamentId">Internal ID of the event</param>

/// <returns>Detailed info about the event</returns>

/// <remarks>Sample events to try are: 2892, 2331, 1028. Try also 8392.
/// If any of the parameters are invalid, the endpoint returns 404.</remarks>
public IActionResult Tournament(string org, int? year, string eventId)

public IActionResult Team(string org, string teamId)

Iterative refining

The last prompt is likely to generate a similar response:

/// <summary>

/// Returns detailed information about a specific event.

/// </summary>

/// <param name="org">The name of the organization.</param>

/// <param name="year">The year of the event.</param>

/// <param name="tournamentId">The internal ID of the event.</param>
/// <returns>Detailed information about the event.</returns>

/// <remarks>

/// Sample event IDs to try are: 2892, 2331, 1028. You can also try 8392.
/// If any of the parameters are invalid, the endpoint returns a 404 error.
/// </remarks>

public IActionResult Event(string org, int? year, string eventId) {
// Implementation code here

}

/// <summary>

/// Retrieves information about a specific team.

/// </summary>

/// <param name="org">The name of the organization.</param>

/// <param name="teamId">The ID of the team.</param>

/// <returns>Information about the team.</returns>

public IActionResult Team(string org, string teamId) {

// Implementation code here

}

The Event method is an action that returns detailed information about a specific event. It takes
three parameters: org (representing the name of the organization), year (representing the year
of the event, nullable), and eventId (representing the internal ID of the event). This method

should be called to retrieve detailed information about an event.

The Team method 1is another action that retrieves information about a specific team. It takes two
parameters: org (representing the name of the organization) and teamId (representing the ID of

the team). This method should be called to fetch information about a team.

As is easily observable from the previous examples, all these generative models want to write text.
This is reasonable because they were trained to predict the next token. It is very likely, then, that a good

prompt needs to incorporate something to restrict the output.

Core prompt learning techniques

40

Following up with the last example, a better prompt might be:

Your task is to generate code comments in a consistent style with the reference. The response
must include only the comments for the new method, without any additional explanation or
comment.

Style reference:

/// <summary>

/// Returns detailed information about a specific event

/// </summary>

/// <param name="org">Name of the organization</param>

/// <param name="year">Year of the event</param>

/// <param name="tournamentId">Internal ID of the event</param>

/// <returns>Detailed info about the event</returns>

/// <remarks>Sample events to try are: 2892, 2331, 1028. Try also 8392.

/// If any of the parameters are invalid, the endpoint returns 404.</remarks>
public IActionResult Tournament(string org, int? year, string eventId)

New method:
public IActionResult Team(string org, string teamId)
This might still output some additional explanation:

/// <summary>

/// Returns detailed information about a specific team.
/// </summary>

/// <param name="org">Name of the organization</param>
/// <param name="teamId">ID of the team</param>

/// <returns>Detailed info about the team</returns>

Please note that this is the code comment for the new Team method. It retrieves detailed
information about a specific team. The method takes two parameters: org, which represents the
name of the organization, and teamId, which is the ID of the team. The method returns detailed
information about the team.

At this point, to prevent the model from producing additional text, you might need a different
strategy: asking the model to check if certain conditions on the output are satisfied. This can be done
by appending this line to the former prompt:

Check if the output contains additional text and, if so, remove it.

Asking the model to check if certain conditions in the input are satisfied is a very useful technique. It
can also be exploited for more standard tasks, such as form or json/xml/html validation.

In this case, you also tried to validate the output text. This is more of a trick than a technique
because the model doesn't really produce the full output to be validated. Still, it works as a guardrail.
A better way to achieve the same result would have been to add one more API call with the former
prompt or, as explored later in book, involving a framework like Microsoft Guidance or Guardrails Al.

Considering this, it's important to stress that these models work better when they are told what they
need to do instead of what they must avoid.

Core prompt learning techniques

Chain-of-thought scenarios

While standard few-shot prompting is effective for many tasks, it is not without limitations—particularly
when it comes to more intricate reasoning tasks, such as mathematical and logical problems, as well as
tasks that require the execution of multiple sequential steps.

Note Later models such as GPT-4 perform noticeably better on logical problems, even with
simple non-optimized prompts.

When few-shot prompting proves insufficient, it may indicate the need for fine-tuning models (if
these are an option, which they aren’t for GPT-4 and GPT-4-turbo) or exploring advanced prompting
techniques. One such technique is chain-of-thought (CoT) prompting. You use CoT prompting to track
down all the steps (thoughts) performed by the model to draw the solution.

As presented in the work of Wei et al. (2022), this technique gives the model time to think, enhanc-
ing reasoning abilities by incorporating intermediate reasoning steps. When used in conjunction with
few-shot prompting, it leads to improved performance on intricate tasks that demand prior reasoning
for accurate responses.

Note The effectiveness of CoT prompting is observed primarily when employed with
models consisting of approximately 100 billion parameters. Smaller models tend to generate
incoherent chains of thought, resulting in lower accuracy compared to standard prompting.
The performance improvements achieved through CoT prompting generally scale with the
size of the model.

The basic theory

Anyone young enough to remember their days as a student will know that during exams, the brain
stops functioning. Most of the time, one tries to answer the professor’s question, almost guessing
the solution, without really thinking about it. LLMs do the same thing. Sometimes they continue the
sentence without thinking; they just make a guess.

The basic idea behind CoT is to instruct the model to take time to think, allowing it to reconstruct
the reasoning steps during response generation. This simple idea significantly enhances the model’s
ability to perform complex tasks. This makes sense when you consider how language models produce
responses. They attempt to predict the next token, so the more intermediate “reasoning” tokens they
generate, the more the model needs to establish coherence among them and, ideally, provide a correct
response.

Note By only asking the model for the final answer, you leave limited room for the model to
verify the coherence between the question (prompt) and its response; in contrast, explicitly
outlining all the steps helps the model find the logical thread.

Core prompt learning techniques a1

42

A few examples

Following the professor-student example, the first two attempts to improve the output of the model
might be the classical “make sure the answer is correct” or “let’s think step by step” approach. For
instance, consider the following easy problem:

I bought 20 pens, gave 12 pens to my son, 3 to my daughter, 1 to my mom. I then bought 4 more
pens and lost 1.
Output the number of pens I have now.

Regarding logical problems, temperature and model version definitely matter. Lower temperature
will keep things more deterministic, while the latest models will have better accuracy, because they
have been trained on a larger dataset for logical problems.

With a temperature of 0.2, a GPT-3.5-turbo model will provide an answer like the following, whereas
a GPT-4 model will probably say, “You currently have 7 pens”:

I have 8 pens now.

Explanation: Initially, I had 20 pens. I gave away 12 + 3 + 1 = 16 pens. So I had 20 - 16 = 4
pens left. Then I bought 4 more pens, so I had 4 + 4 = 8 pens. But I Tost 1 pen, so I have

8 - 1 = 7 pens. Therefore, the output is 8 pens.

Note Older models would have probably responded with the number only, without any
reasoning. Newer models have been reinforced through step-by-step prompting.

The answer is wrong. Worse, the answer is incoherent. It says 8, while it correctly calculates 7.

Let’s try the following prompt to see if it provides more reasonable output:
I bought 20 pens, gave 12 pens to my son, 3 to my daughter, 1 to my mom. I then bought 4 more
pens and lost 1.
Output the number of pens I have now and make sure the answer is correct and coherent. Make sure
the answer and the explanation are correct and coherent before answering.

Here, the output is as follows:
After buying 20 pens, I had 20 pens. After giving 12 pens to my son, I had 8 pens. After giving
3 pens to my daughter, I had 5 pens. After giving 1 pen to my mom, I had 4 pens. After buying 4
more pens, I had 8 pens. After losing 1 pen, I had 7 pens.
Therefore, I have 7 pens now.

That's correct.

An equivalent prompt might have been:
I bought 20 pens, gave 12 pens to my son, 3 to my daughter, 1 to my mom. I then bought 4 more

pens and Tlost 1.
Output the number of pens I have now. Let's think it step by step.

Core prompt learning techniques

And the output:

. Start with 20 pens.

. Gave 12 pens to my son, so I have 20 - 12 = 8 pens Tleft.

. Gave 3 pens to my daughter, so I have 8 - 3 = 5 pens left.
. Gave 1 pen to my mom, so I have 5 - 1 = 4 pens Tleft.

. Bought 4 more pens, so I have 4 + 4 = 8 pens now.

. Lost 1 pen, so I have 8 - 1 = 7 pens now.

Therefore, I have 7 pens now.

VT A WN R

This is called a zero-shot chain-of-thought prompt; the magic sentence, “Let’s think it step by step,”
forces the model to take time to think and to write down all the steps.

At this point, to get the final answer, you could ask the model to produce a structured output or
make one more API call with a simple prompt like, “Extract only the final answer from this text":

I bought 20 pens, gave 12 pens to my son, 3 to my daughter, 1 to my mom. I then bought 4 more
pens and Tlost 1.

Output the number of pens I have now. Let's think it step by step. Output a json with:
explanation (string) and result (int).

The result would look like:
{"explanation":"Initially, I had 20 pens. After giving 12 to my son, I had 8 left. Then, I gave
3 to my daughter, leaving me with 5. Giving 1 to my mom Teft me with 4 pens. Buying 4 more pens
gave me a total of 8 pens. Unfortunately, I Tost 1 pen, leaving me with a final total of 7

pens.","result":7}

Possible extensions

Combining the few-shot technique with the chain-of-thought approach can give the model some
examples of step-by-step reasoning to emulate. This is called few-shot chain-of-thought. For instance:

Which is the more convenient way to reach the destination, balancing costs and time?

Option 1: Take a 20-minute walk, then a 15-minute bus ride (2 dollars), and finally a 5-minute
taxi ride (15 dollars).

Option 2: Take a 30-minute bike ride, then a 10-minute subway ride (2 dollars), and finally a
5-minute walk.

Option 1 will take 20 + 15 + 5 = 40 minutes. Option 1 will cost 17 dollars.

Option 2 will take 30 + 10 + 5 = 45 minutes. Option 2 will cost 2 dollars.

Since Option 1 takes 40 minutes and Option 2 takes 45 minutes, Option 1 is quicker, but Option 2
is cheaper by far. Option 2 is better.

Which is the better way to get to the office?
Option 1: 40 minutes train (5 dollars), 15 mins walk
Option 2: 10-minutes taxi ride (15 dollars), 10-minutes subway (2 dollars), 2-mins walk

An extension of this basic prompting technique is Auto-CoT. This basically leverages the few-shot
CoT approach, using a prompt to generate more samples (shots) of reasoning, which are then concat-
enated into a final prompt. Essentially, the idea is to auto-generate a few-shot CoT prompt.

Core prompt learning techniques 43

Beyond chain-of-thought prompting, there is one more sophisticated idea: tree of thoughts. This
technique can be implemented in essentially two ways. The first is through a single prompt, like the
following:

Consider a scenario where three experts approach this question.

Each expert will contribute one step of their thought process and share it with the group.
Subsequently, all experts will proceed to the next step.

If any expert realizes they have made a mistake at any stage, they will exit the process.
The question is the following: {question}

A more sophisticated approach to tree of thoughts requires writing some more code, with differ-
ent prompts running (maybe also with different temperatures) and producing reasoning paths. These
paths are then evaluated by another model instance with a scoring/voting prompt, which excludes
wrong ones. At the end, a certain mechanism votes (for coherence or majority) for the correct answer.

A few more emerging but relatively easy-to-implement prompting techniques are analogical
prompting (by Google DeepMind), which asks the model to recall a similar problem before solving
the current one; and step-back prompting, which prompts the model to step back from the specific
instance and contemplate the general principle at hand.

Fundamental use cases

44

Having explored some more intricate techniques, it's time to shift the focus to practical applications.
In this section, you'll delve into fundamental use cases where these techniques come to life, demon-
strating their effectiveness in real-world scenarios. Some of these use cases will be expanded in later
chapters, including chatbots, summarization and expansion, coding helpers, and universal translators.

Chatbots

Chatbots have been around for years, but until the advent of the latest language models, they were
mostly perceived as a waste of time by users who had to interact with them. However, these new
models are now capable of understanding even when the user makes mistakes or writes poorly, and
they respond coherently to the assigned task. Previously, the thought of people who used chatbots was
almost always, “Let me talk to a human; this bot doesn’t understand.” Soon, however, | expect we will
reach something like the opposite: “Let me talk to a chatbot; this human doesn’t understand.”

System messages

With chatbots, system messages, also known as metaprompts, can be used to guide the model’s behav-
ior. A metaprompt defines the general guidelines to be followed. Still, while using these templates and
guidelines, it remains essential to validate the responses generated by the models.

A good system prompt should define the model’s profile, capabilities, and limitations for the specific
scenario. This involves:

m Specifying how the model should complete tasks and whether it can use additional tools

Core prompt learning techniques

m Clearly outlining the scope and limitations of the model's performance, including instructions
for off-topic or irrelevant prompts

m Determining the desired posture and tone for the model's responses
m Defining the output format, including language, syntax, and any formatting preferences

m Providing examples to demonstrate the model’s intended behavior, considering difficult use
cases and CoT reasoning

m Establishing additional behavioral guardrails by identifying, prioritizing, and addressing
potential harms

Collecting information

Suppose you want to build a booking chatbot for a hotel brand group. A reasonable system prompt
might look something like this:

You are a HotelBot, an automated service to collect hotel bookings within a hotel brand group,
in different cities.

You first greet the customer, then collect the booking, asking the name of the customer, the
city the customer wants to book, room type and additional services.

You wait to collect the entire booking, then summarize it and check for a final time if the
customer wants to add anything else.

You ask for arrival date, departure date, and calculate the number of nights. You ask for a
passport number. Make sure to clarify all options and extras to uniquely identify the item from
the pricing 1ist.

You respond in a short, very conversational friendly style. Available cities: Rome, Lisbon,
Bucharest.

The hotel rooms are:
single 150.00 per night
double 250 per night
suite 350 per night

Extra services:
parking 20.00 per day,
late checkout 100.00
airport transfer 50.00
SPA 30.00 per day

Consider that the previous prompt is only a piece of a broader application. After the system mes-
sage is launched, the application should ask the user to start an interaction; then, a proper conversation
between the user and chatbot should begin.

For a console application, this is the basic code to incorporate to start such an interaction:
var chatCompletionsOptions = new ChatCompletionsOptions
{

DeploymentName = AOAI_chat_DEPLOYMENTID
Messages =

Core prompt learning techniques 45

46

new ChatRequestSystemMessage(systemPrompt),
new ChatRequestUserMessage("Introduce yourself"),

}

};
while (true)
{

Console.WriteLine();

Console.Write("HotelBot: ");

var chatCompletionsResponse = await openAIClient.GetChatCompletionsAsync(chatCompletions
Options);

var chatMessage = chatCompletionsResponse.Value.Choices[0].Message;

Console.Write(chatMessage.Content);

chatCompletionsOptions.Messages.Add(new ChatRequestAssistantMessage(chatMessage.
Content));

Console.WriteLine();

Console.Write("Enter a message: ");

var userMessage = Console.ReadLine();

chatCompTletionsOptions.Messages.Add(new ChatRequestUserMessage(userMessage));

Note When dealing with web apps, you must also consider the Ul of the chat.

Summarization and transformation

Now that you have a prompt to collect a hotel booking, the hotel booking system will likely need to
save it—calling an API or directly saving the information in a database. But all it has is unstructured
natural language, coming from the conversation between the customer and the bot. A prompt to
summarize and convert to structured data is needed:

Return a json summary of the previous booking. Itemize the price for each item.

The json fields should be

1) name,

2) passport,

3) city,

4) room type with total price,

5) T1ist of extras including total price,

6) arrival date,

7) departure date,

8) total days

9) total price of rooms and extras (calculated as the sum of the total room price and extra
price).

Return only the json, without introduction or final sentences.

Simulating a conversation with the HotelBot, a json like the following would be generated from
the previous prompt:

{"name":"Francesco Esposito","passport":"XXCONT0S0123","city":"Lisbon","room_type":{"single":15
0.00},"extras":{"parking":{"price_per_day":20.00,"total_price":40.00}},"arrival_date":"2023-06-
28" ,"departure_date":"2023-06-30", "total_days":2,"total_price":340.00}

Core prompt learning techniques

Expanding
At some point, you might need to handle the inverse problem: generating a natural language summary
from a structured JSON. The prompt to handle such a case could be something like:

Return a text summary from the following json, using a friendly style. Write at most two
sentences.

{"name" :"Francesco Esposito","passport":"XXCONT0S0123","city":"Lisbon","room_type":{"single":150.
00}, "extras":{"parking":{"price_per_day":20.00,"total_price":40.00}},"arrival_date":"2023-06-28",
"departure_date":"2023-06-30","total_days":2,"total_price":340.00}

This would result in a reasonable output:

Francesco Esposito will be staying in Lisbon from June 28th to June 30th. He has booked a single
room for $150.00 per night, and the total price including parking is $340.00 for 2 days.

Translating

Thanks to pretraining, one task that LLMs excel at is translating from a multitude of different languages—
not just natural human languages, but also programming languages.

From natural language to SQL

One famous example taken directly from OpenAl references is the following prompt:

Postgres SQL tables, with their properties:

#

Employee(id, name, department_id)

Department(id, name, address)

Salary_Payments(id, employee_id, amount, date)

#

A query to Tist the names of the departments that employed more than 10 employees in the
last 3 months

SELECT

This prompt is a classic example of a plain completion (so, Completion API). The last part (SELECT)
acts as cue, which is the jumpstart for the output.

In a broader sense, within the context of Chat Completion API, the system prompt could involve
providing the database schema and asking the user which information to extract, which can then be
translated into an SQL query. This type of prompt generates a query that the user should execute on
the database only after assessing the risks. There are other tools to interact directly with the database
through agents using the LangChain framework, discussed later in this book. These tools, of course,
come with risks; they provide direct access to the data layer and should be evaluated on a case-by-case
basis.

Core prompt learning techniques 47

Universal translator

Let's consider a messaging app in which each user selects their primary language. They write in that
language, and if necessary, a middleware translates their messages into the language of the other user.
At the end, each user will read and write using their own language.

The translator middleware could be a model instance with a similar prompt:

Translate the following text from {userlLanguage} to {user2lLanguage}:

<<<{messagel}>>>

A full schema of the interactions would be:

User 1 selects its preferred language {useriLanguage}.
User 2 selects its preferred language {user2Language}.

One sends a message to the other. Let's suppose User1 writes a message {messagel} in
{userlLanguage}.

The middleware translates {messagel} in {useriLanguage} to {messagel-translated} in
{user2Language}.

User 2 sees {messagel-translated} in its own language.
User 2 writes a message {message?2} in {user2Language}.
The middleware performs the same job and sends the message to User1.

And soon....

LLM limitations

48

So far, this chapter has focused on the positive aspects of LLMs. But LLMs have limitations in several

areas:

LLMs struggle with accurate source citations due to their lack of internet access and limited
memory. Consequently, they may generate sources that appear reliable but are incorrect (this is
called hallucination). Strategies like search-augmented LLMs can help address this issue.

LLMs tend to produce biased responses, occasionally exhibiting sexist, racist, or homophobic
language, even with safeguards in place. Care should be taken when using LLMs in consumer-
facing applications and research to avoid biased results.

LLMs often generate false information when faced with questions on which they have not been
trained, confidently providing incorrect answers or hallucinating responses.

Without additional prompting strategies, LLMs generally perform poorly in math, struggling
with both simple and complex math problems.

Core prompt learning techniques

It is important to be aware of these limitations. You should also be wary of prompt hacking, where
users manipulate LLMs to generate desired content. All these security concerns are addressed later in
this book.

Summary

This chapter explored various basic aspects of prompt engineering in the context of LLMs. It covered
common practices and alternative methods for altering output, including playing with hyperparam-
eters. In addition, it discussed accessing OpenAl APIs and setting things up in C# and Python.

Next, the chapter delved into basic prompting techniques, including zero-shot and few-shot

scenarios, iterative refining, chain-of-thought, time to think, and possible extensions. It also examined

basic use cases such as booking chatbots for collecting information, summarization, and transforma-
tion, along with the concept of a universal translator.

Finally, the chapter discussed limitations of LLMs, including generating incorrect citations,
producing biased responses, returning false information, and performing poorly in math.

Subsequent chapters focus on more advanced prompting techniques to take advantage of
additional LLM capabilities and, later, third-party tools.

Core prompt learning techniques

49

Index

A

abstraction, 11
abuse filtering, 133-134
acceleration, 125
accessing, OpenAl API, 31
adjusting the prompt, 29
adoption, LLM (large language model), 21
adversarial training, 4
agent, 53, 81
building, 127-128
LangChain, 96, 97
log, 53-54
ReAct, 101
security, 137-138
semi-autonomous, 80
agent_scratchpad, 99
AGlI (artificial general intelligence), 20, 22-23
Al

beginnings, 2
conventional, 2
engineer, 15
generative, 1, 4
NLP (natural language processing), 3
predictive, 3-4
singularity, 19
AirBot Solutions, 93
algorithm
ANN (artificial neural network), 70
KNN (k-nearest neighbor), 67, 70
MMR (maximum marginal relevance), 71
tokenization, 8
Amazon Comprehend, 144
analogical prompting, 44
angled bracket (<<.>>), 30-31
ANN (artificial neural network), 70
API, 86. See also framework/s
Assistants, 80
Chat Completion, function calling, 62
Minimal, 205-208
OpenAl
REST, 159
app, translation, 48
application, LLM-based, 18
architecture, transformer, 7, 9
Assistants API, 80
attack mitigation strategies, 138-139
Auto-CoT prompting, 43
automaton, 2
autoregressive language modeling, 5-6
Azure Al Content Safety, 133
Azure Machine Learning, 89

234

Azure OpenAl, 8. See also customer care chatbot assistant,
building

abuse monitoring, 133-134

content filtering, 134

Create Customized Model wizard, 56

environment variables, 89

topology, 16-17
Azure Prompt Flow, 145

Back, Adam, 109
basic prompt, 26
batch size hyperparameter, 56
BERT (Bidirectional Encoder Representation from Transformers),
3,5
bias, 145
logit, 149-150
training data, 135
big tech, 19
Bing search engine, 66
BPE (byte-pair encoding), 8
building, 159, 161
corporate chatbot, 181,186
customer care chatbot assistant
hotel reservation chatbot, 203-204
business use cases, LLM (large language model), 14

C

C#
RAG (retrieval augmented generation), 74
setting things up, 33-34
caching, 87,125
callbacks, LangChain, 95-96
canonical form, 153-154
chain/s, 52-53, 81
agent, 53-54, 81
building, 81
content moderation, 151
debugging, 87-88
evaluation, 147-148
LangChain, 88
memory, 82, 93-94
Chat Completion API, 32-33, 61, 62
chatbot/s, 44, 56-57
corporate, building, 181, 186
customer care, building
fine-tuning, 54

hotel reservation, building, 203-204
system message, 44-45
ChatGPT, 19
ChatML (Chat Markup Language), 137
ChatRequestMessage class, 173
ChatStreaming method, 175-176
chunking, 68-69
Church, Alonzo, 2
class
ChatRequestMessage, 173
ConversationBufferMemory, 94
ConversationSummaryMemory, 87, 94
Embeddings, 106
eval, 147
helper, 171172
classifier, 150-151
CLI (command-line interface), OpenAl, 55
CLM (causal language modeling), 6, 11
CNN (convolutional neural network), 4
code, 159. See also corporate chatbot, building; customer
care chatbot assistant, building; hotel reservationchatbot,
building
C#, setting things up, 33-34
function calling, refining the code, 60
homemade function calling, 57-60
injection, 136-137
prompt template, 90
Python, setting things up, 34
RAG (retrieval augmented generation), 109
RAIL spec file, 152
splitting, 105-106
Colang, 153
canonical form, 153-154
dialog flow, 154
scripting, 155
collecting information, 45-46
command/s
docker-compose, 85
pip install doctran, 106
Completion API, 32-33
completion call, 52
complex prompt, 26-27
compression, 108, 156, 192
consent, for LLM data, 141
content filtering, 133-134, 148-149
guardrailing, 151
LLM-based, 150-151
logit bias, 149-150
using a classifier, 150-151
content moderation, 148-149
conventional Al, 2
conversational
memory, 82-83
programming, 1, 14
ul, 14
ConversationBufferMemory class, 94
ConversationSummaryMemory class, 87, 94
corporate chatbot, building, 181, 186
data preparation, 189-190
improving results, 196-197
integrating the LLM, managing history, 194
LLM interaction, 195-196
possible extensions, 200
rewording, 191-193
scope, 181-182
setting up the project and base Ul, 187-189
tech stack, 182
cosine similarity function, 67

encoder/decoder

cost, framework, 87
CoT (chain-of-thought) prompting, 41
Auto-, 43
basic theory, 41
examples, 42-43
Create Customized Model wizard, Azure OpenAl, 56
customer care chatbot assistant, building
base Ul, 164-165
choosing a deployment model, 162-163
integrating the LLM
possible extensions, 178
project setup, 163-164
scope, 160
setting up the LLM, 161-163
SSE (server-sent event), 173-174
tech stack, 160-161
workflow, 160

D

data. See also privacy; security
bias, 135
collection, 142
connecting to LLMs, 64-65
de-identification, 142
leakage, 142
protection, 140
publicly available, 140
retriever, 83-84
talking to, 64
database
relational, 69
vector store, 69
data-driven approaches, NLP (natural language processing),
3
dataset, preparation, 55
debugging, 87-88
deep fake, 136, 137
deep learning, 3, 4
deep neural network, 4
dependency injection, 165-167
deployment model, choosing for a customer care chatbot
assistant, 162-163
descriptiveness, prompt, 27
detection, Pll, 143-144
development, regulatory compliance, 140-141
dialog flow, 153, 154
differential privacy, 143
discriminator, 4
doctran, 106
document/s
adding to VolatileMemoryStore, 83-84
vector store, 191-192

E

embeddings, 9, 65, 71
dimensionality, 65
LangChain, 106
potential issues, 68—69
semantic search, 66-67
use cases, 67-68
vector store, 69
word, 65

encoder/decoder, 7

235

encryption

encryption, 143 topology, 16-17
eval, 147 GptConversationalEngine method, 170-171
evaluating models, 134-135 grounding, 65, 72. See also RAG (retrieval augmented
evaluation, 144-145 generation)
chain, 147-148 guardrailing, 151
human-based, 146 Guardrails Al, 151-152
hybrid, 148 NVIDIA NeMo Guardrails, 153-156
LLM-based, 146-148 Guidance, 79, 80, 121
metric-based, 146 acceleration, 125
EventSource method, 174 basic usage, 122
ExampleSelector, 90-91 building an agent, 127-128
extensions installation, 121
corporate chatbot, 200 main features, 123-124
customer care chatbot assistant, 178 models, 121
hotel reservation chatbot, 215-216 structuring output and role-based chat, 125-127

syntax, 122-123
template, 125
token healing, 124-125

F

federated learning, 143

few-shot prompting, 14, 37, 90-91 H
checking for satisfied conditions, 40
examples, 38—-39 hallucination, 11, 134, 156157
iterative refining, 39-40 handlebars planner, 119
file-defined function, calling, 114 HandleStreamingMessage method, 175
fine-tuning, 12, 37, 54-55 Hashcash, 109
constraints, 54 history
dataset preparation, 55 LLM (large language model), 2
hyperparameters, 56 NLP (natural language processing), 3
iterative, 36 HMM (hidden Markov model), 3
versus retrieval augmented generation, homemade function calling, 57-60
198-199 horizontal big tech, 19
framework/s, 79. See also chain/s hotel reservation chatbot, building, 203-204
cost, 87 integrating the LLM, 210
debugging, 87-88 LLM interaction, 212-214
Evals, 135 Minimal API setup, 206-208
Guidance, 80, 121 OpenAPI, 208-209
LangChain, 57, 79, 80, 88 possible extensions, 215-216
orchestration, need for, 79-80 scope, 204-205
ReAct, 97-98 semantic functions, 215
SK (Semantic Kernel), 109-110 tech stack, 205
token consumption tracking, 84-86 Hugging Face, 17
VolatileMemoryStore, adding documents, human-based evaluation, 146
83-84 human-in-the-loop, 64
frequency penalty, 29-30 Humanloop, 145
FunctionCallingStepwisePlanner, 205-206, 208 hybrid evaluation, 148
function/s, 91-93 hyperparameters, 28, 56
call, 1, 56-57
cosine similarity, 67
definition, 61
plug-in, 111 |
semantic, 117, 215 .
SK (Semantic Kernel), 112114 IBM, Candide system, 3
VolatileMemoryStore, 82, 83-84 indexing, 66, 70

indirect injection, 136-137
inference, 11, 55
information-retrieval systems, 199

G inline configuration, SK (Semantic Kernel), 112-113
input
GAN (generative adversarial network), 4 installation, Guidance, 121
generative Al, 4. See also LLM (large language model) instantiation, prompt template, 80-81
LLM (large language model), 4-5, 6 instructions, 27, 34-35
Georgetown-IBM experiment, 3 “intelligent machinery”, 2
get_format_instructions method, 94 iterative refining
Google, 5 few-shot prompting, 39-40
GPT (Generative Pretrained Transformer), 3, 5, 20, 23 zero-shot prompting, 36

GPT-3/GPT-4,1
embedding layers, 9

236

J-K

jailbreaking, 136
JSONL (JSON Lines), dataset preparation, 55

Karpathy, Andrej, 14
KNN (k-nearest neighbor) algorithm, 67, 70
KV (key/value) cache, 125

L

labels, 37-38
LangChain, 57,79, 80, 88. See also corporate chatbot,
building
agent, 96, 97
callbacks, 95-96
chain, 88
chat models, 89
conversational memory, handling, 82-83
data providers, 83
doctran, 106
Embeddings module, 106
ExampleSelector, 90-91
loaders, 105
metadata filtering, 108
MMR (maximum marginal relevance) algorithm, 71
model support, 89
modules, 88
parsing output, 94-95
prompt
results caching, 87
text completion models, 89
text splitters, 105-106
token consumption tracking, 84
toolkits, 96
tracing server, 85-86
vector store, 106-107
LangSmith, 145
LCEL (LangChain Expression Language), 81, 91, 92-93. See
also LangChain
learning
deep, 3, 4
federated, 143
few-shot, 37
prompt, 25
rate multiplier hyperparameter, 56
reinforcement, 10-11
self-supervised, 4
semi-supervised, 4
supervised, 4
unsupervised, 4
LeCun, Yann, 5-6
Leibniz, Gottfried, 2
LLM (large language model), 1-2, 4-5, 6. See also agent;
framework/s; OpenAl; prompt/ing
abuse filtering, 133-134
autoregressive language modeling, 5-6
autoregressive prediction, 11
BERT (Bidirectional Encoder Representation from
Transformers), 5
business use cases, 14
chain, 52-53. See also chain
ChatGPT, 19
CLM (causal language modeling), 6
completion call, 52

connecting to data, 64-65. See also embeddings;
semantic search

content filtering, 133-134, 148-149
contextualized response, 64

current developments, 19-20
customer care chatbot assistant
embeddings, 9

evaluation, 134-135, 144145
fine-tuning, 12, 54-55

function calling, 56-57

future of, 20-21

hallucination, 11, 134, 156157

history, 2

inference, 11

inherent limitations, 21-22

limitations, 48—-49

memory, 82—-83

MLM (masked language modeling), 6
plug-in, 12

privacy, 140, 142

-as-a-producft, 15-16

prompt/ing, 2, 25

RAG (retrieval augmented generation), 72, 73
red team testing, 132-133

responsible use, 131-132

results caching, 87

security, 135-137. See also security
seed mode, 25

self-reflection, 12

Seq2Seq (sequence-to-sequence), 6, 7
speed of adoption, 21

stack, 18

stuff approach, 74

tokens and tokenization, 7-8
topology, 16

training

transformer architecture, 5,7, 10
translation, from natural language to SQL, 47
word embedding, 5

Word2Vec model, 5

zero-shot prompting, iterative refining, 36

loader, LangChain, 105
logging

agent, 53-54
token consumption, 84-86

logit bias, 149-150
LSTM (long short-term memory), 4

M

max tokens, 30-31
measuring, similarity, 67
memory. See also vector store

chain, 93-94

long short-term, 4

ReAct, 102-104

retriever, 83-84

short-term, 82-83

SK (Semantic Kernel), 116-117

metadata

filtering, 71,108
querying, 108

metaprompt, 44-45
method

ChatStreaming, 175-176
EventSource, 174
get_format_instructions, 94

method

237

method

238

GptConversationalEngine, 170-171
HandleStreamingMessage, 175
parse, 95
parse_without_prompt, 95
TextMemorySkill, 117
Translate, 170
metric-based evaluation, 146
Microsoft, 19
Guidance. See Guidance
Presidio, 144
Responsible Al, 132
Minimal API, hotel reservation chatbot, 205-208
ML (machine learning), 3
classifier, 150-151
embeddings, 65
multimodal model, 13
MLM (masked language modeling), 6
MMR (maximum marginal relevance) algorithm,
71,107
model/s, 89. See also LLM (large language model)
chat, 89
embedding, 65
evaluating, 134-135
fine-tuning, 54-55
Guidance, 121
multimodal, 13
reward, 10
small language, 19
text completion, 89
moderation, 148-149
module
Embeddings, 106
LangChain, 88
MRKL (Modular Reasoning, Knowledge and Language), 119
multimodal model, 13
MultiQueryRetriever, 196

N

natural language, 15
embeddings, dimensionality, 65
as presentation layer, 15
prompt engineering, 15-16
RAG (retrieval augmented generation), 72, 73
translation to SQL, 47
Natural Language to SQL (NL,SQL, 118
NeMo. See NVIDIA NeMo Guardrails
network, generative adversarial, 4
neural database, 67
neural network, 3, 4, 67
convolutional, 4
deep, 4
recurrent, 4
n-gram, 3
NIST (National Institute of Standards and Technology), Al
Risk Management Framework, 132
NLG (natural language generation), 2
NLP (natural language processing), 2, 3
BERT (Bidirectional Encoder Representation from
Transformers), 3
Candide system, 3
data-driven approaches, 3
deep learning, 3
GPT (Generative Pretrained Transformer), 3
history, 3

NLU (natural language understanding), 2
number of epochs hyperparameter, 56
NVIDIA NeMo Guardrails, 153-156

(0

obfuscation, 136
OpenAl, 8
API
Assistants API, 80
CLI (command-line interface), 55
DALL-E, 13
Evals framework, 147
function calling, 60-63
GPT series, 5,15, 16-17
Python SDKv.1.6.0, 34
OpenAPl, 208-209
orchestration, need for, 79-80
output
monitoring, 139
multimodal, 13
parsing, 94-95
structuring, 125-127

P

PALChain, 91-92
parse method, 95
parse_without_prompt method, 95
payload splitting, 136
Penn Treebank, 3
perceptron, 4
performance, 108
evaluation, 144-145
prompt, 37-38
Pll
detection, 143-144
regulatory compliance, 140-141
pip install doctran command, 106
planner, 116, 119-120. See also agent
plug-in, 111,138
core, 115-116
LLM (large language model), 12
OpenAl, 111
TextMemorySkill, 117
predictive Al, 3-4
preparation, dataset, 55
presence penalty, 29-30
privacy, 140, 142
differential, 143
regulations, 140-141
remediation strategies, 143-144
atrest, 142
retrieval augmented generation, 199
in transit, 141-142
programming, conversational, 1, 14
prompt/ing, 2, 25
adjusting, 29
analogical, 44
basic, 26
chain-of-thought, 41
collecting information, 45-46
complex, 26-27

descriptiveness, 27
engineering, 6, 10-11, 15-16, 25,51-52
few-shot, 37, 90-91
frequency penalty, 29-30
general rules and tips, 27-28
hyperparameters, 28
injection, 136-137
instructions, 27, 34-35
iterative refining, 36
leaking, 136
learning, 25
logging, 138
loss weight hyperparameter, 56
max tokens, 30-31
meta, 44-45
order of information, 27-28
performance, 37-38
presence penalty, 29-30
ReAct, 99, 103-104
reusability, 87-88
SK (Semantic Kernel), 112-114
specificity, 27
stop sequence, 30-31
summarization and transformation, 46
supporting content, 34-35
temperature, 28, 42
template, 58, 80-81, 88, 90
top_p sampling, 28-29
tree of thoughts, 44
zero-shot, 35,102
zero-shot chain-of-thought, 43
proof-of-work, 109
publicly available data, 140
Python, 86. See also Streamlit
data providers, 83
LangChain, 57
setting things up, 34

Q-R

quantization, 11
query, parameterized, 139

RA-DIT (Retrieval-Augmented Dual Instruction
Tuning), 199
RAG (retrieval augmented generation), 65, 72, 73, 109
C# code, 74
versus fine-tuning, 198-199
handling follow-up questions, 76
issues and mitigations, 76
privacy issues, 199
proof-of-work, 109
read-retrieve-read, 76
refining, 74-76
workflow, 72
ranking, 66
ReAct, 97-98
agent, 101
chain, 100
custom tools, 99-100
editing the base prompt, 101
memory, 102-104
read-retrieve-read, 76
reasoning, 97-99
red teaming, 132-133
regulatory compliance, Pll and, 140-141
relational database, 69

speech recognition

Responsible Al, 131-132

REST API, 159

results caching, 87

retriever, 83-84

reusability, prompt, 87-88

reward modeling, 10

RLHF (reinforcement learning from human
feedback), 10-11

RNN (recurrent neural network), 4
role-based chat, Guidance, 125-127
rules, prompt, 27

S

script, Colang, 155
search
ranking, 66
semantic, 66-67
security, 135-136. See also guardrailing; privacy
agent, 137-138
attack mitigation strategies, 138-139
content filtering, 133-134
function calling, 64
prompt injection, 136-137
red team testing, 132-133
seed mode, 25
self-attention processing, 7
SelfQueryRetriever, 197
self-reflection, 12
self-supervised learning, 4
Semantic Kernel, 82
semantic search, 66-67
chunking, 68-69
measuring similarity, 67
neural database, 67
potential issues, 68-69
TF-IDF (term frequency-inverse document frequency),
66-67
use cases, 67-68
semi-autonomous agent, 80
semi-supervised learning, 4
Seq2Seq (sequence-to-sequence), 6, 7
SFT (supervised fine-tuning), 10
short-term memory, 82-83
shot, 37
similarity, measuring, 67
singularity, 19
SK (Semantic Kernel), 109-110. See also hotel reservation
chatbot, building
inline configuration, 112-113
kernel configuration, 111-112
memory, 116117
native functions, 114-115
OpenAl plug-in, 111
planner, 119-120
semantic function, 117
semantic or prompt functions, 112-114
SQL, 117-118
Stepwise Planner, 205-206
telemetry, 85
token consumption tracking, 84-86
unstructured data ingestion, 118-119
Skyflow Data Privacy Vault, 144
SLM (small language model), 19
Software 3.0, 14
specificity, prompt, 27
speech recognition, 3

239

sQL

SQL
accessing within SK, 117-118
translating natural language to, 47
SSE (server-sent event), 173-174, 177
stack, LLM, 18. See also tech stack
statistical language model, 3
stop sequence, 30-31
Streamlit, 182-183. See also corporate
chatbot, building
pros and cons in production, 185-186
Ul, 183-185
stuff approach, 74
supervised learning, 4
supporting content, 34-35
SVM (support vector machine), 67
syntax
Colang, 153
Guidance, 122-123
system message, 44-45, 122-123

T

“talking to data”, 64
TaskRabbit, 137
tech stack
corporate chatbot, 182
customer care chatbot assistant, 160-161
technological singularity, 19
telemetry, SK (Semantic Kernel), 85
temperature, 28, 42
template
chain, 81
Guidance, 125
prompt, 58, 80-81, 88, 90
testing, red team, 132-133
text completion model, 89
text splitters, 105-106
TextMemorySkill method, 117

TF-IDF (term frequency-inverse document frequency),

66-67
token/ization, 7-8
healing, 124-125
logit bias, 149-150
tracing and logging, 84-86
training and, 10
toolkit, LangChain, 96
tools, 57, 81, 116. See also function, calling
top_p sampling, 28-29
topology, GPT-3/GPT-4, 16
tracing server, LangChain, 85-86
training
adversarial, 4
bias, 135
initial training on crawl data, 10
RLHF (reinforcement learning from human
feedback), 10-11
SFT (supervised fine-tuning), 10

240

transformer architecture, 7,9
LLM (large language model), 5
from natural language to SQL, 47
reward modeling, 10

Translate method, 170

translation
app, 48
chatbot user message, 168-172
doctran, 106
natural language to SQL, 47

tree of thoughts, 44

Turing, Alan, “Computing Machinery and Intelligence”, 2

U

Ul (user interface)
converational, 14
customer care chatbot, 164-165
Streamlit, 183-185
undesirable content, 148-149
unstructured data ingestion, SK (Semantic Kernel), 118-119
unsupervised learning, 4
use cases, LLM (large language model), 14

Vv

vector store, 69, 108-109
basic approach, 70
commercial and open-source
solutions, 70-71
corporate chatbot, 190-191
improving retrieval, 71-72
LangChain, 106-107
vertical big tech, 19
virtualization, 136
VolatileMemoryStore, 82, 83-84
von Neumann, John, 22

w

web server, tracing, 85-86
word embeddings, 65
Word2Vec model, 5,9
WordNet, 3

X-Y-Z

zero-shot prompting, 35, 102
basic theory, 35
chain-of-thought, 43
examples, 35-36
iterative refining, 36

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 2 Core prompt learning techniques
	What is prompt engineering?
	Prompts at a glance
	Alternative ways to alter output
	Setting up for code execution

	Basic techniques
	Zero-shot scenarios
	Few-shot scenarios
	Chain-of-thought scenarios

	Fundamental use cases
	Chatbots
	Translating

	LLM limitations
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

