Home > Store

Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (paperback)

Register your product to gain access to bonus material or receive a coupon.

Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (paperback)

Book

  • Sorry, this book is no longer in print.
Not for Sale

Description

  • Copyright 2006
  • Dimensions: 7-3/8" x 9-1/4"
  • Pages: 432
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-300703-0
  • ISBN-13: 978-0-13-300703-9

"I believe this book will help a great deal to clarify misconceptions about Dr. Genichi Taguchi's approach to robust design, such as why dynamic signal-to-noise ratio is used and the role of orthogonal arrays in parameter design and tolerance design. The authors understand the intent of robust design is to prevent fire instead of becoming better fire fighters!"

Ñ Shin Taguchi
President, American Supplier Institute

With practical techniques, real-life examples, and special software, this hands-on book/disk package teaches practicing engineers and students how to use Taguchi Methods and other robust design techniques that focus on engineering processes in optimizing technology and products for better performance under the imperfect conditions of the real world.

The unique WinRobust Lite software included with the book, together with a number of practice problems, enables you to conduct and analyze Taguchi experiments by simplifying the tedious process of performing the many necessary computations.

The book contains complete information on the process of engineering robust products that are insensitive to sources of variability in manufacturing and customer use. You will find detailed instructions for planning, designing, conducting, and analyzing the experiments that are used to optimize a product's performance under a variety of "stressed" conditions. An entire section focuses on designing products that achieve additivity, the property that reduces negative interactions. In addition, the book offers a systematic method for optimizing cost, quality, and cycle time. It even discusses the relationship of robust design to such other quality processes as Quality Function Deployment and Six Sigma.

Numerous case studies, taken from the authors' extensive practical experience, illustrate how robust design theories and techniques actually work in the real world of product engineering. With the techniques described in this book as well as the WinRobust Lite software, you will be better able to design robust products that are high-quality, durable, and able to perform well in the marketplace.

Sample Content

Table of Contents



Foreword.


Preface.


1. Introduction to Quality Engineering.

An Overview. The Concept of Noise in Robust Design. Product Reliability and Quality Engineering. What Is Robustness? What Is Quality? On-Target Engineering. How Is Quality Measured? The Phases of Quality Engineering in Product Commercialization. Off-Line Quality Engineering. On-Line Quality Engineering. The Link between Sir Ronald Fisher and Dr. Genichi Taguchi. A Brief History - The Taguchi Method of Quality Engineering. Concluding Remarks. Exercises for Chapter 1.

I. QUALITY ENGINEERING METRICS.

2. Introductory Data Analysis for Robust Design.

The Nature of Data. Graphical Methods of Data Analysis. Quantitative Methods of Data Analysis. An Introduction to the Two-Step Optimization Process. Summary. Exercises for Chapter 2.

3. The Quality Loss Function.

The Nature of Quality. Relating Performance Distributions to Quality. The Step Function: An Inadequate Description of Quality. The Customer Tolerance. The Quality Loss Function: A Better Description of Quality. The Quality Loss Coefficient. An Example of the Quality Loss Function. The Types of Quality Loss Functions. Loss Function Case Study. Summary. Exercises for Chapter 3.

4. The Signal-to-Noise Ratio.

Properties of the S/N Ratio. Derivation of the S/N Ratio. Defining the Signal-to-Noise Ratio from the Mean Square Derivation. Identifying the Scaling Factor. Summary. Exercises for Chapter 4.

5. The Static Signal-to-Noise Ratios.

Introduction, Static vs. Dynamic Analysis. The Smaller-the-Better Type Signal-to-Noise Ratio. The Larger-the-Better S/N Ratio. The Operating Window: A Combination of STB and LTB. A Signal-to-Noise Ratio for Probability. The Nominal-the-Best Signal-to-Noise Ratios. Two-Step Optimization. A Comparative Analysis of Type I NTB and Type II NTB. A Note on Notation. Summary. Exercises for Chapter 5.

6. The Dynamic Signal-to-Noise Methods and Metrics.

Introduction. The Zero-Point Proportional Case. The Reference-Point Proportional Case. Nonlinear Dynamic Problems. The Double-Dynamic Signal-to-Noise Ratio. Summary. Exercises for Chapter 6.

II. PARAMETER DESIGN.

7. Introduction to Designed Experiments.

Experimental Approaches. The Analysis of Means (ANOM). Degrees of Freedom. Full Factorial Arrays. Fractional Factorial Orthogonal Arrays. Summary of Chapter 7. Exercises for Chapter 7.

8. Selection of the Quality Characteristics.

Introduction. Engineering Analysis in the Planning Stage. The Ideal Function of the Design. Guidelines for Choosing the Quality Characteristic. Summary: The P-diagram. Exercises for Chapter 8.

9. The Selection and Testing of Noise Factors.

Introduction. The Role of Noise Factor - Control Factor Interactions. Experimental Error and Induced Noise. Noise Factors. Choosing the Noise Factors. The Noise Factor Experiment. Analysis of Means for Noise Experiments. Examples. Other Approaches to Studying Noise Factors. Case Study: Noise Experiment on a Film Feeding Device. Summary of Chapter 9. Exercises for Chapter 9.

10. The Selection of Control Factors.

Introduction. Selecting Control Factors to Improve Tunability and Robustness. Selecting and Grouping Engineering Parameters to Promote Additivity. Sliding Levels for Control Factors. Example: The Catapult. Example: The Paper Gyrocopter. Summary: The P-diagram. Exercises for Chapter 10.

11. The Parameter Optimization Experiment.

Introduction. Dr. Taguchi's Parameter Design Approach. Layout of the Static Experiment. Layout of the Dynamic Experiment. Choosing the Noise Factor Treatment. Choosing the S/N Ratio. Summary of Chapter 11. Exercises for Chapter 11.

12. The Analysis and Verification of the Parameter Optimization Experiment.

Introduction. The Data Analysis Procedure. An Example of the Analysis of the Parameter Optimization Experiment. Estimating the Effects of Each Factor Using ANOM. Identifying the Optimum Control Factor Set Points. The Two-Step Optimization Process. The Additive Model. The Predictive Equation. The Verification Tests. Summary: Succeeding at Parameter Design. Exercises for Chapter 12.

13. Examples of Parameter Design.

The Ice Water Experiment: Smaller-the-Better. The Gyrocopter Experiment: Dynamic Larger-the-Better. The Catapult Experiment. Conclusion. Exercises for Chapter 13.

14. Parameter Design Case Studies.

Introduction. Paper Handling - An Operating Window Example with Two Signal Factors. Improvement of a Capstan Roller Printer Registration. Enhancement of a Camera Zoom Shutter Design. Summary.

III. ADVANCED TOPICS.

15. Modifying Orthogonal Arrays.

Introduction. Downgrading a Column. Upgrading a Column. Compound Factors. Summary of Chapter 15. Exercises for Chapter 15.

16. Working with Interactions.

The Nature of Interactions in Robust Design. Interactions Defined. How Interactions Are Measured. Degrees of Freedom for Interactions. Setting Up the Experiment When Interactions Are Included. Summary of Chapter 16. Exercises for Chapter 16.

17. Analysis of Variance (ANOVA).

Introduction. An Example of the ANOVA Process. Degrees of Freedom. Error Variance and Pooling. Error Variance and Replication. Error Variance and Utilizing Empty Columns. The F-Test. WinRobust Examples. Summary. Exercises for Chapter 17.

18. The Relationship of Robust Design to Other Quality Processes.

Quality Function Deployment (QFD) and Robust Design. Design of Experiments and Robust Design. Six Sigma Quality Process and Robust Design. Summary.

Appendix A Glossary.
Appendix B Quick Start Guide for WinRobust Lite.
Appendix C Orthogonal Arrays.
Appendix D Bibliography.
Index. 0201633671T04062001

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020