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Introduction 
In 1960, Irving Reed and Gus Solomon published a paper in the Journal of the 
Society for Industrial and Applied Mathematics [1]. This paper described a new 
class of error-correcting codes that are now called Reed-Solomon (R-S) codes. 
These codes have great power and utility, and are today found in many 
applications from compact disc players to deep-space applications. This article is 
an attempt to describe the paramount features of R-S codes and the fundamentals 
of how they work. 

Reed-Solomon codes are nonbinary cyclic codes with symbols made up of m-bit 
sequences, where m is any positive integer having a value greater than 2. R-S (n, k) 
codes on m-bit symbols exist for all n and k for which 

 0 < k < n < 2m + 2 (1) 

where k is the number of data symbols being encoded, and n is the total number of 
code symbols in the encoded block. For the most conventional R-S (n, k) code, 

 (n, k) = (2m - 1, 2m - 1 - 2t) (2) 

where t is the symbol-error correcting capability of the code, and n - k = 2t is the 
number of parity symbols. An extended R-S code can be made up with n = 2m or 
n = 2m + 1, but not any further. 

Reed-Solomon codes achieve the largest possible code minimum distance for any 
linear code with the same encoder input and output block lengths. For nonbinary 
codes, the distance between two codewords is defined (analogous to Hamming 
distance) as the number of symbols in which the sequences differ. For Reed-
Solomon codes, the code minimum distance is given by [2] 

 dmin = n - k + 1 (3) 
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The code is capable of correcting any combination of t or fewer errors, where t can 
be expressed as [3] 

 min 1
2 2
  - n - kdt =     =     

  
   

 (4) 

where  x      means the largest integer not to exceed x. Equation (4) illustrates that 
for the case of R-S codes, correcting t symbol errors requires no more than 2t parity 
symbols. Equation (4) lends itself to the following intuitive reasoning. One can say 
that the decoder has n - k redundant symbols to “spend,” which is twice the amount 
of correctable errors. For each error, one redundant symbol is used to locate the error, 
and another redundant symbol is used to find its correct value. 

The erasure-correcting capability, ρ, of the code is 

 ρ = dmin - 1 = n - k (5) 

Simultaneous error-correction and erasure-correction capability can be expressed 
as follows: 

 2α + γ < dmin < n - k (6) 

where α is the number of symbol-error patterns that can be corrected and γ is the 
number of symbol erasure patterns that can be corrected. An advantage of 
nonbinary codes such as a Reed-Solomon code can be seen by the following 
comparison. Consider a binary (n, k) = (7, 3) code. The entire n-tuple space 
contains 2n = 27 = 128 n-tuples, of which 2k = 23 = 8 (or 1/16 of the n-tuples) are 
codewords. Next, consider a nonbinary (n, k) = (7, 3) code where each symbol is 
composed of m = 3 bits. The n-tuple space amounts to 2nm = 221 = 2,097,152 
n-tuples, of which 2km = 29 = 512 (or 1/4096 of the n-tuples) are codewords. When 
dealing with nonbinary symbols, each made up of m bits, only a small fraction (i.e., 
2km of the large number 2nm) of possible n-tuples are codewords. This fraction 
decreases with increasing values of m. The important point here is that when a 
small fraction of the n-tuple space is used for codewords, a large dmin can be 
created. 

Any linear code is capable of correcting n - k symbol erasure patterns if the n - k 
erased symbols all happen to lie on the parity symbols. However, R-S codes have 
the remarkable property that they are able to correct any set of n - k symbol 
erasures within the block. R-S codes can be designed to have any redundancy. 
However, the complexity of a high-speed implementation increases with 
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redundancy. Thus, the most attractive R-S codes have high code rates (low 
redundancy). 

Reed-Solomon Error Probability 
The Reed-Solomon (R-S) codes are particularly useful for burst-error correction; 
that is, they are effective for channels that have memory. Also, they can be used 
efficiently on channels where the set of input symbols is large. An interesting 
feature of the R-S code is that as many as two information symbols can be added to 
an R-S code of length n without reducing its minimum distance. This extended R-S 
code has length n + 2 and the same number of parity check symbols as the original 
code. The R-S decoded symbol-error probability, PE, in terms of the channel 
symbol-error probability, p, can be written as follows [4]: 
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where t is the symbol-error correcting capability of the code, and the symbols are 
made up of m bits each. 

The bit-error probability can be upper bounded by the symbol-error probability for 
specific modulation types. For MFSK modulation with M = 2m, the relationship 
between PB and PE is as follows [3]: 
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Figure 1 shows PB versus the channel symbol-error probability p, plotted from 
Equations (7) and (8) for various (t-error-correcting 32-ary orthogonal Reed-
Solomon codes with n = 31 (thirty-one 5-bit symbols per code block). 

Figure 2 shows PB versus Eb/N0 for such a coded system using 32-ary MFSK 
modulation and noncoherent demodulation over an AWGN channel [4]. For R-S 
codes, error probability is an exponentially decreasing function of block length, n, 
and decoding complexity is proportional to a small power of the block length [2]. 
The R-S codes are sometimes used in a concatenated arrangement. In such a 
system, an inner convolutional decoder first provides some error control by 
operating on soft-decision demodulator outputs; the convolutional decoder then 
presents hard-decision data to the outer Reed-Solomon decoder, which further 
reduces the probability of error. 
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Figure 1 
PB versus p for 32-ary orthogonal signaling and n = 31, t-error correcting Reed-Solomon 
coding [4]. 
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Figure 2 
Bit-error probability versus Eb/N0 performance of several n = 31, t-error correcting Reed-
Solomon coding systems with 32-ary MPSK modulation over an AWGN channel [4]. 
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Why R-S Codes Perform Well Against Burst Noise 
Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8 
bits (such symbols are typically referred to as bytes). Since n - k = 8, Equation (4) 
indicates that this code can correct any four symbol errors in a block of 255. 
Imagine the presence of a noise burst, lasting for 25-bit durations and disturbing 
one block of data during transmission, as illustrated in Figure 3. 

 

Figure 3 
Data block disturbed by 25-bit noise burst. 

In this example, notice that a burst of noise that lasts for a duration of 25 
contiguous bits must disturb exactly four symbols. The R-S decoder for the 
(255, 247) code will correct any four-symbol errors without regard to the type of 
damage suffered by the symbol. In other words, when a decoder corrects a byte, it 
replaces the incorrect byte with the correct one, whether the error was caused by 
one bit being corrupted or all eight bits being corrupted. Thus if a symbol is wrong, 
it might as well be wrong in all of its bit positions. This gives an R-S code a 
tremendous burst-noise advantage over binary codes, even allowing for the 
interleaving of binary codes. In this example, if the 25-bit noise disturbance had 
occurred in a random fashion rather than as a contiguous burst, it should be clear 
that many more than four symbols would be affected (as many as 25 symbols 
might be disturbed). Of course, that would be beyond the capability of the 
(255, 247) code. 

R-S Performance as a Function of Size, Redundancy, and Code Rate 
For a code to successfully combat the effects of noise, the noise duration has to 
represent a relatively small percentage of the codeword. To ensure that this 
happens most of the time, the received noise should be averaged over a long period 
of time, reducing the effect of a freak streak of bad luck. Hence, error-correcting  
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codes become more efficient (error performance improves) as the code block size 
increases, making R-S codes an attractive choice whenever long block lengths are 
desired [5]. This is seen by the family of curves in Figure 4, where the rate of the 
code is held at a constant 7/8, while its block size increases from n = 32 symbols 
(with m = 5 bits per symbol) to n = 256 symbols (with m = 8 bits per symbol). 
Thus, the block size increases from 160 bits to 2048 bits. 

As the redundancy of an R-S code increases (lower code rate), its implementation 
grows in complexity (especially for high-speed devices). Also, the bandwidth 
expansion must grow for any real-time communications application. However, the 
benefit of increased redundancy, just like the benefit of increased symbol size, is 
the improvement in bit-error performance, as can be seen in Figure 5, where the 
code length n is held at a constant 64, while the number of data symbols decreases 
from k = 60 to k = 4 (redundancy increases from 4 symbols to 60 symbols). 

Figure 5 represents transfer functions (output bit-error probability versus input 
channel symbol-error probability) of hypothetical decoders. Because there is no 
system or channel in mind (only an output-versus-input of a decoder), you might 
get the idea that the improved error performance versus increased redundancy is a 
monotonic function that will continually provide system improvement even as the 
code rate approaches zero. However, this is not the case for codes operating in a 
real-time communication system. As the rate of a code varies from minimum to 
maximum (0 to 1), it is interesting to observe the effects shown in Figure 6. Here, 
the performance curves are plotted for BPSK modulation and an R-S (31, k) code 
for various channel types. Figure 6 reflects a real-time communication system, where 
the price paid for error-correction coding is bandwidth expansion by a factor equal to 
the inverse of the code rate. The curves plotted show clear optimum code rates that 
minimize the required Eb/N0 [6]. The optimum code rate is about 0.6 to 0.7 for a 
Gaussian channel, 0.5 for a Rician-fading channel (with the ratio of direct to reflected 
received signal power, K = 7 dB), and 0.3 for a Rayleigh-fading channel. Why is 
there an Eb/N0 degradation for very large rates (small redundancy) and very low rates 
(large redundancy)? It is easy to explain the degradation at high rates compared to the 
optimum rate. Any code generally provides a coding-gain benefit; thus, as the code 
rate approaches unity (no coding), the system will suffer worse error performance. 
The degradation at low code rates is more subtle because in a real-time 
communication system using both modulation and coding, there are two mechanisms 
at work. One mechanism works to improve error performance, and the other works to  
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degrade it. The improving mechanism is the coding; the greater the redundancy, the 
greater will be the error-correcting capability of the code. The degrading mechanism 
is the energy reduction per channel symbol (compared to the data symbol) that stems 
from the increased redundancy (and faster signaling in a real-time communication 
system). The reduced symbol energy causes the demodulator to make more errors. 
Eventually, the second mechanism wins out, and thus at very low code rates the 
system experiences error-performance degradation. 

Let’s see if we can corroborate the error performance versus code rate in Figure 6 
with the curves in Figure 2. The figures are really not directly comparable because 
the modulation is BPSK in Figure 6 and 32-ary MFSK in Figure 2. However, 
perhaps we can verify that R-S error performance versus code rate exhibits the 
same general curvature with MFSK modulation as it does with BPSK. In Figure 2, 
the error performance over an AWGN channel improves as the symbol error-
correcting capability, t, increases from t = 1 to t = 4; the t = 1 and t = 4 cases 
correspond to R-S (31, 29) and R-S (31, 23) with code rates of 0.94 and 0.74 
respectively. However, at t = 8, which corresponds to R-S (31, 15) with code 
rate = 0.48, the error performance at PB = 10-5 degrades by about 0.5 dB of Eb/N0 
compared to the t = 4 case. From Figure 2, we can conclude that if we were to plot 
error performance versus code rate, the curve would have the same general “shape” 
as it does in Figure 6. Note that this manifestation cannot be gleaned from Figure 1, 
since that figure represents a decoder transfer function, which provides no 
information about the channel and the demodulation. Therefore, of the two 
mechanisms at work in the channel, the Figure 1 transfer function only presents the 
output-versus-input benefits of the decoder, and displays nothing about the loss of 
energy as a function of lower code rate. 
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Figure 4 
Reed-Solomon rate 7/8 decoder performance as a function of symbol size. 

 

Figure 5 
Reed-Solomon (64, k) decoder performance as a function of redundancy. 
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Figure 6 
BPSK plus Reed-Solomon (31, k) decoder performance as a function of code rate. 

Finite Fields 
In order to understand the encoding and decoding principles of nonbinary codes, 
such as Reed-Solomon (R-S) codes, it is necessary to venture into the area of finite 
fields known as Galois Fields (GF). For any prime number, p, there exists a finite 
field denoted GF( p) that contains p elements. It is possible to extend GF( p) to a 
field of pm elements, called an extension field of GF( p), and denoted by GF( pm), 
where m is a nonzero positive integer. Note that GF( pm) contains as a subset the 
elements of GF( p). Symbols from the extension field GF(2m) are used in the 
construction of Reed-Solomon (R-S) codes. 

The binary field GF(2) is a subfield of the extension field GF(2m), in much the 
same way as the real number field is a subfield of the complex number field.  
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Besides the numbers 0 and 1, there are additional unique elements in the extension 
field that will be represented with a new symbol α. Each nonzero element in 
GF(2m) can be represented by a power of α. An infinite set of elements, F, is 
formed by starting with the elements {0, 1, α}, and generating additional elements 
by progressively multiplying the last entry by α, which yields the following: 

 F = {0, 1, α, α2, …, α j, …} = {0, α0, α1, α2, …, α j, …} (9) 

To obtain the finite set of elements of GF(2m) from F, a condition must be imposed 
on F so that it may contain only 2m elements and is closed under multiplication. 
The condition that closes the set of field elements under multiplication is 
characterized by the irreducible polynomial shown below: 

 (2 1) 1 0m−α + =  

or equivalently 

 (2 1) 01m−α = = α  (10) 

Using this polynomial constraint, any field element that has a power equal to or 
greater than 2m - 1 can be reduced to an element with a power less than 2m - 1, as 
follows: 

 (2 ) (2 1) 1 1m mn n n+ − + +α = α α = α  (11) 

Thus, Equation (10) can be used to form the finite sequence F* from the infinite 
sequence F as follows: 
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Therefore, it can be seen from Equation (12) that the elements of the finite field, 
GF(2m), are as follows: 

 { }0 1 2 2 2GF(2 ) 0, , , , . . . , mm −= α α α α  (13) 
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Addition in the Extension Field GF(2m) 
Each of the 2m elements of the finite field, GF(2m), can be represented as a distinct 
polynomial of degree m - 1 or less. The degree of a polynomial is the value of its 
highest-order exponent. We denote each of the nonzero elements of GF(2m) as a 
polynomial, ai (X ), where at least one of the m coefficients of ai (X ) is nonzero. 
For i = 0,1,2,…,2m - 2, 

 αi = ai (X ) = ai, 0 + ai, 1 X + ai, 2 X 2 + … + ai, m - 1 X m - 1 (14) 

Consider the case of m = 3, where the finite field is denoted GF(23). Figure 7 
shows the mapping (developed later) of the seven elements {αi} and the zero 
element, in terms of the basis elements {X 0, X 1, X 2} described by Equation (14). 
Since Equation (10) indicates that α0 = α7, there are seven nonzero elements or a 
total of eight elements in this field. Each row in the Figure 7 mapping comprises a 
sequence of binary values representing the coefficients ai, 0, ai, 1, and ai, 2 in 
Equation (14). One of the benefits of using extension field elements {αi} in place 
of binary elements is the compact notation that facilitates the mathematical 
representation of nonbinary encoding and decoding processes. Addition of two 
elements of the finite field is then defined as the modulo-2 sum of each of the 
polynomial coefficients of like powers, 

 αi + αj = (ai, 0 + aj, 0) + (ai, 1 + aj, 1) X + … + (ai, m - 1 + aj, m - 1) X m - 1 (15) 

 

Figure 7 
Mapping field elements in terms of basis elements for GF(8) with f(x) = 1 + x + x3. 
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A Primitive Polynomial Is Used to Define the Finite Field 
A class of polynomials called primitive polynomials is of interest because such 
functions define the finite fields GF(2m) that in turn are needed to define R-S 
codes. The following condition is necessary and sufficient to guarantee that a 
polynomial is primitive. An irreducible polynomial f(X ) of degree m is said to be 
primitive if the smallest positive integer n for which f(X ) divides X n + 1 is 
n = 2m - 1. Note that the statement A divides B means that A divided into B yields a 
nonzero quotient and a zero remainder. Polynomials will usually be shown low 
order to high order. Sometimes, it is convenient to follow the reverse format (for 
example, when performing polynomial division). 

Example 1: Recognizing a Primitive Polynomial 

Based on the definition of a primitive polynomial given above, determine whether 
the following irreducible polynomials are primitive. 

a. 1 + X + X 4 

b. 1 + X + X 2 + X 3 + X 4 

Solution 

a. We can verify whether this degree m = 4 polynomial is primitive by 
determining whether it divides X n + 1 = (2 1) 1mX − +  = X 15 + 1, but does 
not divide X n + 1, for values of n in the range of 1 ≤ n < 15. It is easy to 
verify that 1 + X + X 4 divides X 15 + 1 [3], and after repeated 
computations it can be verified that 1 + X + X 4 will not divide X n + 1 for 
any n in the range of 1 ≤ n < 15. Therefore, 1 + X + X 4 is a primitive 
polynomial. 

b. It is simple to verify that the polynomial 1 + X + X 2 + X 3 + X 4 divides 
X 15 + 1. Testing to see whether it will divide X n + 1 for some n that is 
less than 15 yields the fact that it also divides X 5 + 1. Thus, although 
1 + X + X 2 + X 3 + X 4 is irreducible, it is not primitive. 

The Extension Field GF(23) 
Consider an example involving a primitive polynomial and the finite field that it 
defines. Table 1 contains a listing of some primitive polynomials. We choose the 
first one shown, f(X) = 1 + X + X 3, which defines a finite field GF(2m), where the 
degree of the polynomial is m = 3. Thus, there are 2m = 23 = 8 elements in the field 
defined by f(X ). Solving for the roots of f(X ) means that the values of X that 
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correspond to f(X ) = 0 must be found. The familiar binary elements, 1 and 0, do 
not satisfy (are not roots of) the polynomial f(X ) = 1 + X + X 3, since f(1) = 1 and 
f(0) = 1 (using modulo-2 arithmetic). Yet, a fundamental theorem of algebra states 
that a polynomial of degree m must have precisely m roots. Therefore for this 
example, f(X ) = 0 must yield three roots. Clearly a dilemma arises, since the three 
roots do not lie in the same finite field as the coefficients of f(X ). Therefore, they 
must lie somewhere else; the roots lie in the extension field, GF(23). Let α, an 
element of the extension field, be defined as a root of the polynomial f(X ). 
Therefore, it is possible to write the following: 

 f(α) = 0 

 1 + α + α3 = 0 (16) 

 α3 = –1 – α 

Since in the binary field +1 = −1, α3 can be represented as follows: 

 α3 = 1 + α (17) 

Thus, α3 is expressed as a weighted sum of α-terms having lower orders. In fact all 
powers of α can be so expressed. For example, consider α4, where we obtain 

 α4 = α  α3 = α  (1 + α) = α + α2 (18a) 

Now, consider α5, where 

 α5 = α  α4 = α  (α + α2) = α2 + α3 (18b) 

From Equation (17), we obtain 

 α5 = 1 + α + α2 (18c) 

Now, for α6, using Equation (18c), we obtain 

 α6 = α  α5 = α  (1 + α + α2) = α + α2 + α3 = 1 + α2 (18d) 

And for α7, using Equation (18d), we obtain 

 α7 = α  α6 = α  (1 + α2) = α + α3 = 1 = α0 (18e) 

Note that α7 = α0, and therefore the eight finite field elements of GF(23) are 

 {0, α0, α1, α2, α3, α4, α5, α6} (19) 
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Table 1 
Some Primitive Polynomials 

m   m  
3 1 + X + X 3  14 1 + X + X 6 + X 10 + X 14 
4 1 + X + X 4  15 1 + X + X 15 
5 1 + X 2 + X 5  16 1 + X + X 3 + X 12 + X 16 
6 1 + X + X 6  17 1 + X 3 + X 17 
7 1 + X 3 + X 7  18 1 + X 7 + X 18 
8 1 + X 2 + X 3 + X 4 + X 8  19 1 + X + X 2 + X 5 + X 19 
9 1 + X 4 + X 9  20 1 + X 3 + X 20 
10 1 + X 3 + X 10  21 1 + X 2 + X 21 
11 1 + X 2 + X 11  22 1 + X + X 22 
12 1 + X + X 4 + X 6 + X 12  23 1 + X 5 + X 23 
13 1 + X + X 3 + X 4 + X 13  24 1 + X + X 2 + X 7 + X 24 

The mapping of field elements in terms of basis elements, described by Equation 
(14), can be demonstrated with the linear feedback shift register (LFSR) circuit 
shown in Figure 8. The circuit generates (with m = 3) the 2m - 1 nonzero elements 
of the field, and thus summarizes the findings of Figure 7 and Equations (17) 
through (19). Note that in Figure 8 the circuit feedback connections correspond to 
the coefficients of the polynomial f(X ) = 1 + X + X 3, just like for binary cyclic 
codes [3]. By starting the circuit in any nonzero state, say 1 0 0, and performing a 
right-shift at each clock time, it is possible to verify that each of the field elements 
shown in Figure 7 (except the all-zeros element) will cyclically appear in the stages 
of the shift register. Two arithmetic operations, addition and multiplication, can be 
defined for this GF(23) finite field. Addition is shown in Table 2, and 
multiplication is shown in Table 3 for the nonzero elements only. The rules of 
addition follow from Equations (17) through (18e), and can be verified by noticing 
in Figure 7 that the sum of any field elements can be obtained by adding (modulo-
2) the respective coefficients of their basis elements. The multiplication rules in 
Table 3 follow the usual procedure, in which the product of the field elements is 
obtained by adding their exponents modulo-(2m - 1), or for this case, modulo-7. 
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Figure 8 
Extension field elements can be represented by the contents of a binary linear feedback shift 
register (LFSR) formed from a primitive polynomial. 

                         Table 2                                                          Table 3 
                  Addition Table                                          Multiplication Table 

 α0 α1 α2 α3 α4 α5 α6   α0 α1 α2 α3 α4 α5 α6 
α0 0 α3 α6 α1 α5 α4 α2  α0 α0 α1 α2 α3 α4 α5 α6 
α1 α3 0 α4 α0 α2 α6 α5  α1 α1 α2 α3 α4 α5 α6 α0 
α2 α6 α4 0 α5 α1 α3 α0  α2 α2 α3 α4 α5 α6 α0 α1 
α3 α1 α0 α5 0 α6 α2 α4  α3 α3 α4 α5 α6 α0 α1 α2 
α4 α5 α2 α1 α6 0 α0 α3  α4 α4 α5 α6 α0 α1 α2 α3 
α5 α4 α6 α3 α2 α0 0 α1  α5 α5 α6 α0 α1 α2 α3 α4 
α6 α2 α5 α0 α4 α3 α1 0  α6 α6 α0 α1 α2 α3 α4 α5 

A Simple Test to Determine Whether a Polynomial Is Primitive 
There is another way of defining a primitive polynomial that makes its verification 
relatively easy. For an irreducible polynomial to be a primitive polynomial, at least 
one of its roots must be a primitive element. A primitive element is one that when 
raised to higher-order exponents will yield all the nonzero elements in the field. 
Since the field is a finite field, the number of such elements is finite. 

Example 2: A Primitive Polynomial Must Have at Least One Primitive Element 

Find the m = 3 roots of f(X ) = 1 + X + X 3, and verify that the polynomial is 
primitive by checking that at least one of the roots is a primitive element. What are 
the roots? Which ones are primitive? 
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Solution 

The roots will be found by enumeration. Clearly, α0 = 1 is not a root because 
f(α0) = 1. Now, use Table 2 to check whether α1 is a root. Since 

 f(α) = 1 + α + α3 = 1 + α0 = 0 

α is therefore a root. 

Now check whether α2 is a root: 

 f(α2) = 1 + α2 + α6 = 1 + α0 = 0 

Hence, α2 is a root. 

Now check whether α3 is a root. 

 f(α3) = 1 + α3 + α9 = 1 + α3 + α2 = 1 + α5 = α4 ≠ 0 

Hence, α3 is not a root. Is α4 a root? 

 f(α4) = α12 + α4 + 1 = α5 + α4 + 1 = 1 + α0 = 0 

Yes, it is a root. Hence, the roots of f(X ) = 1 + X + X 3 are α, α2, and α4. It is not 
difficult to verify that starting with any of these roots and generating higher-order 
exponents yields all of the seven nonzero elements in the field. Hence, each of the 
roots is a primitive element. Since our verification requires that at least one root be 
a primitive element, the polynomial is primitive. 

A relatively simple method to verify whether a polynomial is primitive can be 
described in a manner that is related to this example. For any given polynomial 
under test, draw the LFSR, with the feedback connections corresponding to the 
polynomial coefficients as shown by the example of Figure 8. Load into the 
circuit-registers any nonzero setting, and perform a right-shift with each clock 
pulse. If the circuit generates each of the nonzero field elements within one period, 
the polynomial that defines this GF(2m) field is a primitive polynomial. 
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Reed-Solomon Encoding 
Equation (2), repeated below as Equation (20), expresses the most conventional 
form of Reed-Solomon (R-S) codes in terms of the parameters n, k, t, and any 
positive integer m > 2. 

 (n, k) = (2m - 1, 2m - 1 - 2t) (20) 

where n - k = 2t is the number of parity symbols, and t is the symbol-error 
correcting capability of the code. The generating polynomial for an R-S code takes 
the following form: 

 g(X ) = g0 + g1 X + g2 X 2 + … + g2t - 1 X 2t - 1 + X 2t (21) 

The degree of the generator polynomial is equal to the number of parity symbols. 
R-S codes are a subset of the Bose, Chaudhuri, and Hocquenghem (BCH) codes; 
hence, it should be no surprise that this relationship between the degree of the 
generator polynomial and the number of parity symbols holds, just as for BCH 
codes. Since the generator polynomial is of degree 2t, there must be precisely 2t 
successive powers of α that are roots of the polynomial. We designate the roots of 
g(X ) as α, α2, …, α2t. It is not necessary to start with the root α; starting with any 
power of α is possible. Consider as an example the (7, 3) double-symbol-error 
correcting R-S code. We describe the generator polynomial in terms of its 
2t = n - k = 4 roots, as follows: 
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2 4 3 2 6 0

4 4 6 3 3 10 0 2 4 9 3

4 3 3 0 2 1 3

( )X X X X X

X X X X

X X X X

X X X X

X X X X

   
   
   

= − α − α − α − α

= − α+ α +α − α + α + α

= − α + α − α + α

= − α + α + α + α + α − α + α + α

= − α + α − α + α

g

 

Following the low order to high order format, and changing negative signs to 
positive, since in the binary field +1 = –1, g(X ) can be expressed as follows: 

 g(X ) = α3 + α1 X + α0 X 2 + α3 X 3 + X 4 (22) 
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Encoding in Systematic Form 
Since R-S codes are cyclic codes, encoding in systematic form is analogous to the 
binary encoding procedure [3]. We can think of shifting a message polynomial, 
m(X ), into the rightmost k stages of a codeword register and then appending a 
parity polynomial, p(X ), by placing it in the leftmost n - k stages. Therefore we 
multiply m(X ) by X n - k, thereby manipulating the message polynomial 
algebraically so that it is right-shifted n - k positions. Next, we divide X n - k m(X ) 
by the generator polynomial g(X ), which is written in the following form: 

 X n - k m(X ) = q(X ) g(X ) + p(X ) (23) 

where q(X ) and p(X ) are quotient and remainder polynomials, respectively. As in 
the binary case, the remainder is the parity. Equation (23) can also be expressed as 
follows: 

 p(X ) = X n - k m(X ) modulo g(X ) (24) 

The resulting codeword polynomial, U(X ) can be written as 

 U(X ) = p(X ) + X n - k m(X ) (25) 

We demonstrate the steps implied by Equations (24) and (25) by encoding the 
following three-symbol message: 

 {{ {
51 3 αα α

010 110 111  

with the (7, 3) R-S code whose generator polynomial is given in Equation (22). We 
first multiply (upshift) the message polynomial α1 + α3 X + α5 X 2 by X n - k = X 4, 
yielding α1 X 4 + α3 X 5 + α5 X 6. We next divide this upshifted message polynomial 
by the generator polynomial in Equation (22), α3 + α1 X + α0 X 2 + α3 X 3 + X 4. 
Polynomial division with nonbinary coefficients is more tedious than its binary 
counterpart, because the required operations of addition (subtraction) and 
multiplication (division) must follow the rules in Tables 2 and 3, respectively. It is 
left as an exercise for the reader to verify that this polynomial division results in 
the following remainder (parity) polynomial. 

 p(X ) = α0 + α2 X + α4 X 2 + α6 X 3 

Then, from Equation (25), the codeword polynomial can be written as follows: 

 U(X ) = α0 + α2 X + α4 X 2 + α6 X 3+ α1 X 4 + α3 X 5 + α5 X 6 
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Systematic Encoding with an (n - k)–Stage Shift Register 
Using circuitry to encode a three-symbol sequence in systematic form with the 
(7, 3) R-S code described by g(X ) in Equation (22) requires the implementation of 
a linear feedback shift register (LFSR) circuit, as shown in Figure 9. It can easily 
be verified that the multiplier terms in Figure 9, taken from left to right, correspond 
to the coefficients of the polynomial in Equation (22) (low order to high order). 
This encoding process is the nonbinary equivalent of cyclic encoding [3]. Here, 
corresponding to Equation (20), the (7, 3) R-S nonzero codewords are made up of 
2m - 1 = 7 symbols, and each symbol is made up of m = 3 bits. 

 

Figure 9 
LFSR encoder for a (7, 3) R-S code. 

Here the example is nonbinary, so that each stage in the shift register of Figure 9 
holds a 3-bit symbol. In the case of binary codes, the coefficients labeled g1, g2, 
and so on are binary. Therefore, they take on values of 1 or 0, simply dictating the 
presence or absence of a connection in the LFSR. However in Figure 9, since each 
coefficient is specified by 3-bits, it can take on one of eight values. 

The nonbinary operation implemented by the encoder of Figure 9, forming 
codewords in a systematic format, proceeds in the same way as the binary one. The 
steps can be described as follows: 

1. Switch 1 is closed during the first k clock cycles to allow shifting the 
message symbols into the (n - k)–stage shift register. 

2. Switch 2 is in the down position during the first k clock cycles in order to 
allow simultaneous transfer of the message symbols directly to an output 
register (not shown in Figure 9). 
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3. After transfer of the kth message symbol to the output register, switch 1 is 
opened and switch 2 is moved to the up position. 

4. The remaining (n - k) clock cycles clear the parity symbols contained in 
the shift register by moving them to the output register. 

5. The total number of clock cycles is equal to n, and the contents of the 
output register is the codeword polynomial p(X ) + X n - k m(X ), where 
p(X ) represents the parity symbols and m(X ) the message symbols in 
polynomial form. 

We use the same symbol sequence that was chosen as a test message earlier: 

 {{ {
51 3 αα α

010 110 111  

where the rightmost symbol is the earliest symbol, and the rightmost bit is the 
earliest bit. The operational steps during the first k = 3 shifts of the encoding circuit 
of Figure 9 are as follows: 

INPUT QUEUE CLOCK
   CYCLE

REGISTER CONTENTS FEEDBACK

α1 α3 α5  0 0 0 0 0 α5

α1 α3  1 α1 α6 α5 α1 α0

α1  2 α3 0 α2 α2 α4

- α0 α2 α4 α6 - 3
 

After the third clock cycle, the register contents are the four parity symbols, α0, α2, 
α4, and α6, as shown. Then, switch 1 of the circuit is opened, switch 2 is toggled to 
the up position, and the parity symbols contained in the register are shifted to the 
output. Therefore the output codeword, U(X ), written in polynomial form, can be 
expressed as follows: 

 
6

0
( ) n

n
n

X u X
=

= ∑U  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 2 4 2 6 3 1 4 3 5 5 6

2 3 4 5 6

( )

100 001 011 101 010 110 111

X X X X X X X

X X X X X X

= α + α + α + α + α + α + α

= + + + + + +

U
 (26) 
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The process of verifying the contents of the register at various clock cycles is 
somewhat more tedious than in the binary case. Here, the field elements must be 
added and multiplied by using Table 2 and Table 3, respectively. 

The roots of a generator polynomial, g(X ), must also be the roots of the codeword 
generated by g(X ), because a valid codeword is of the following form: 

 U(X ) = m(X ) g(X ) (27) 

Therefore, an arbitrary codeword, when evaluated at any root of g(X ), must yield 
zero. It is of interest to verify that the codeword polynomial in Equation (26) does 
indeed yield zero when evaluated at the four roots of g(X ). In other words, this 
means checking that 

 U(α) = U(α2) = U(α3) = U(α4) = 0 

Evaluating each term independently yields the following: 

 

0 3 6 9 5 8 11

0 3 6 2 5 1 4

1 0 6 4

3 3

(α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α = 0

U

 

 

( 2 0 4 8 12 9 13 17

0 4 1 5 2 6 3

5 6 0 3

1 1

α ) = α + α + α + α + α + α + α
= α + α + α + α +α + α + α
= α + α + α + α
= α + α =

U

0

 

 
( 3 0 5 10 15 13 18 23

0 5 3 1 6 4 2

4 0 3 2

5 5

α ) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α =

U

0

 

 

( 4 0 6 12 18 17 23 29

0 6 5 4 3 2 1

2 0 5 1

6 6

α ) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α =

U

0

 

This demonstrates the expected results that a codeword evaluated at any root of 
g(X ) must yield zero. 
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Reed-Solomon Decoding 
Earlier, a test message encoded in systematic form using a (7, 3) R-S code resulted 
in a codeword polynomial described by Equation (26). Now, assume that during 
transmission this codeword becomes corrupted so that two symbols are received in 
error. (This number of errors corresponds to the maximum error-correcting 
capability of the code.) For this seven-symbol codeword example, the error pattern, 
e(X ), can be described in polynomial form as follows: 

 
6

0
( ) n

n
n

X e X
=

= ∑e  (28) 

For this example, let the double-symbol error be such that 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 3 5 4 5 6

2 3 4 5 6

( ) 0 0 0 0 0

000 000 000 001 111 000 000

X X X X X X X

X X X X X X

= + + + α + α + +

= + + + + + +

e
 (29) 

In other words, one parity symbol has been corrupted with a 1-bit error (seen as 
α2), and one data symbol has been corrupted with a 3-bit error (seen as α5). The 
received corrupted-codeword polynomial, r(X ), is then represented by the sum of 
the transmitted-codeword polynomial and the error-pattern polynomial as follows: 

 ( ) ( ) ( )X X X= +r U e  (30) 

Following Equation (30), we add U(X ) from Equation (26) to e(X ) from Equation 
(29) to yield r(X ), as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5 6( ) 100 001 011 100 101 110 111X X X X X X X= + + + + + +r  

 0 2 4 2 0 3 6 4 3 5 5 6X X X X X X= α + α + α + α + α + α + α  (31) 

In this example, there are four unknowns—two error locations and two error 
values. Notice an important difference between the nonbinary decoding of r(X ) 
that we are faced with in Equation (31) and binary decoding; in binary decoding, 
the decoder only needs to find the error locations [3]. Knowledge that there is an 
error at a particular location dictates that the bit must be “flipped” from 1 to 0 or 
vice versa. But here, the nonbinary symbols require that we not only learn the error 
locations, but also determine the correct symbol values at those locations. Since 
there are four unknowns in this example, four equations are required for their 
solution. 
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Syndrome Computation 
The syndrome is the result of a parity check performed on r to determine whether r 
is a valid member of the codeword set [3]. If in fact r is a member, the syndrome S 
has value 0. Any nonzero value of S indicates the presence of errors. Similar to the 
binary case, the syndrome S is made up of n - k symbols, {Si} (i = 1, … , n - k). 
Thus, for this (7, 3) R-S code, there are four symbols in every syndrome vector; 
their values can be computed from the received polynomial, r(X ). Note how the 
computation is facilitated by the structure of the code, given by Equation (27) and 
rewritten below: 

 U(X ) = m(X ) g(X ) 

From this structure it can be seen that every valid codeword polynomial U(X ) is a 
multiple of the generator polynomial g(X ). Therefore, the roots of g(X ) must also 
be the roots of U(X ). Since r(X ) = U(X ) + e(X ), then r(X ) evaluated at each of 
the roots of g(X ) should yield zero only when it is a valid codeword. Any errors 
will result in one or more of the computations yielding a nonzero result. The 
computation of a syndrome symbol can be described as follows: 

 ( ) ( ) 1, ,
ii X

iS X i n k
=α

== α = −r r L  (32) 

where r(X ) contains the postulated two-symbol errors as shown in Equation (29). 
If r(X ) were a valid codeword, it would cause each syndrome symbol Si to equal 0. 
For this example, the four syndrome symbols are found as follows: 

 
1 (S 0 3 6 3 10 8 11

0 3 6 3 2 1 4

3

= α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (33) 

 
2 (S 2 0 4 8 6 14 13 17

0 4 1 6 0 6 3

5

= α ) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (34) 

 3 (S 3 0 5 10 9 18 18 23

0 5 3 2 4 4 2

6

= α ) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (35) 

 
4 (S 4 0 6 12 12 22 23 29

0 6 5 5 1 2 1

= α ) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= 0

r
 (36) 
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The results confirm that the received codeword contains an error (which we 
inserted), since S≠0. 

Example 3: A Secondary Check on the Syndrome Values 

For the (7, 3) R-S code example under consideration, the error pattern is known, 
since it was chosen earlier. An important property of codes when describing the 
standard array is that each element of a coset (row) in the standard array has the 
same syndrome [3]. Show that this property is also true for the R-S code by 
evaluating the error polynomial e(X ) at the roots of g(X ) to demonstrate that it 
must yield the same syndrome values as when r(X ) is evaluated at the roots of 
g(X ). In other words, it must yield the same values obtained in Equations (33) 
through (36). 

Solution 

 ( ) ( ) 1, 2, ,i
i

i X
S X i n k

=α
= = α = −r r L  

 ( ) ( ) ( ) ( )i
i i

i XS X X = α
 
 = + = α + αU e U e  

 ( ) ( ) ( ) 0 ( )i i i i
iS = α = α + α = + αr U e e  

From Equation (29), 

 e(X ) = α2 X 3 + α5 X 4 

Therefore, 

 
1 (S 1 5 9

5 2

3

= α ) = α + α
= α + α
= α

e
 

 
2 (S 2 8 13

1 6

5

= α ) = α + α
= α + α
= α

e

 

continues  
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 continued 

 
3 (S 3 11 17

4 3

6

= α ) = α + α
= α + α
= α

e
 

 
4 (S 4 14 21

0 0

= α ) = α + α
= α + α
= 0

e
 

These results confirm that the syndrome values are the same, whether obtained by 
evaluating e(X ) at the roots of g(X ), or r(X ) at the roots of g(X ). 

Error Location 
Suppose there are ν errors in the codeword at location 1 2, , ... ,j j jX X X ν . Then, 
the error polynomial e(X ) shown in Equations (28) and (29) can be written as 
follows: 

 
2

1 2
1

( ) ...j j j
j j jX e X e X e X ν

ν
= + + +e  (37) 

The indices 1, 2, … ν refer to the first, second, …, νth errors, and the index j refers 
to the error location. To correct the corrupted codeword, each error value 

lje  and 

its location ljX , where l = 1, 2, ..., ν, must be determined. We define an error 
locator number as lj

lβ =α . Next, we obtain the n - k = 2t syndrome symbols by 
substituting αi into the received polynomial for i = 1, 2, … 2t: 

 
1 21 1 2( ) ...j j jS e e e

ν ν= α = β + β + + βr  

 
1 2

2 2 2
2 1 2( ) ...2

j j jS e e e
ν ν= α = β + β + + βr  (38) 

•  
•  
•  

 
1 2

2 2 2 2
2 1 2( ) ...t t t t

j j jtS e e e
ν ν= α = β + β + + βr  
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There are 2t unknowns (t error values and t locations), and 2t simultaneous 
equations. However, these 2t simultaneous equations cannot be solved in the usual 
way because they are nonlinear (as some of the unknowns have exponents). Any 
technique that solves this system of equations is known as a Reed-Solomon 
decoding algorithm. 

Once a nonzero syndrome vector (one or more of its symbols are nonzero) has 
been computed, that signifies that an error has been received. Next, it is necessary 
to learn the location of the error or errors. An error-locator polynomial, σ(X ), can 
be defined as follows: 

 
2

1 2

( ) ( 1 ) ( 1 ) ... ( 1 )

1 ...

X X X X

X X X

ν1 2

ν
ν

= + β + β + β

= + σ + σ + +σ

σ
 (39) 

The roots of σ(X ) are 1/β1, 1/β2, … ,1/βν. The reciprocal of the roots of σ(X ) are 
the error-location numbers of the error pattern e(X ). Then, using autoregressive 
modeling techniques [7], we form a matrix from the syndromes, where the first t 
syndromes are used to predict the next syndrome. That is, 

S1        S2         S3        ...        St – 1      St σt –St + 1 

S2        S3         S4        ...        St          St + 1 σt – 1 

 

–St + 2 

 

•  •   •  
•  •  = •  
•  •   •  

(40) 

St – 1     St         St + 1     ...       S2t – 3     S2t – 2 σ2 –S2t – 1 

 

St         St + 1     St + 2     ...       S2t – 2     S2t – 1 σ1 

 

–S2t 

 

 



28 Reed-Solomon Codes 

We apply the autoregressive model of Equation (40) by using the largest 
dimensioned matrix that has a nonzero determinant. For the (7, 3) double-symbol-
error correcting R-S code, the matrix size is 2 × 2, and the model is written as 
follows: 

 21 2 3

12 3 4

S S S
S S S
    
    
        

σ
=σ  (41) 

 
3 5 62
5 6 1 0

     
     
        

σα α α=σα α
 (42) 

To solve for the coefficients σ1 and σ2 and of the error-locator polynomial, σ(X ), 
we first take the inverse of the matrix in Equation (42). The inverse of a matrix [A] 
is found as follows: 

 
cofactor

Inv
det

A
A

A
 
  

   
 

=  

Therefore, 

 det 
3 5

3 6 5 5 9 10
5 6

2 3 5

 
 
 
 

α α = α α − α α = α + α
α α

= α + α = α

 (43) 

 cofactor
3 5 6 5α α α α

=
5 6 5 3α α α α

   
   
   
   

 (44) 
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Inv

6 5

5 33 5 6 5
−5

55 6 5 3

6 5 1 08 7
2

7 55 3 0 5

 
 

        
      

    
    
        

α α
α αα α α α

= = α
αα α α α

α α α αα α= α = =
α αα α α α

 (45) 

Safety Check 

If the inversion was performed correctly, the multiplication of the original matrix 
by the inverted matrix should yield an identity matrix. 

3 5

5 6

 
 
  

α α
α α

 
1 0 4 5 3 10

0 5 6 6 5 11

     
     
        

α α α + α α + α 1 0
= =

0 1α α α + α α + α
 (46) 

Continuing from Equation (42), we begin our search for the error locations by 
solving for the coefficients of the error-locator polynomial, σ(X ). 

σ
σ

1 0
2

0 5
1

  
  
    

α α
=
α α

 
7 06

6 6

   
   
        

α αα = =
0 α α

 (47) 

From Equations (39) and (47), we represent σ(X ) as shown below. 

 

0 2
1 2

0 6 0 2

( )X X X

X X

= α + σ + σ

= α + α + α

σ
 (48) 

The roots of σ(X ) are the reciprocals of the error locations. Once these roots are 
located, the error locations will be known. In general, the roots of σ(X ) may be one 
or more of the elements of the field. We determine these roots by exhaustive  
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testing of the σ(X ) polynomial with each of the field elements, as shown below. 
Any element X that yields σ(X ) = 0 is a root, and allows us to locate an error. 

 σ(α0) = α0 + α6 + α0 = α6 ≠ 0 

 σ(α1) = α0 + α7 + α2 = α2 ≠ 0 

 σ(α2) = α0 + α8 + α4 = α6 ≠ 0 

 σ(α2) = α0 + α8 + α4 = α6 ≠ 0 

 σ(α3) = α0 + α9 + α6 = 0 => ERROR 

 σ(α4) = α0 + α10 + α8 = 0 => ERROR 

 σ(α5) = α0 + α11 + α10 = α2 ≠ 0 

 σ(α6) = α0 + α12 + α12 = α0 ≠ 0 

As seen in Equation (39), the error locations are at the inverse of the roots of the 
polynomial. Therefore σ(α3) = 0 indicates that one root exits at 1/βl = α3. Thus, 
βl = 1/α3 = α4. Similarly, σ(α4) = 0 indicates that another root exits at 1/βl′ = α4. 
Thus, βl′ = 1/α4 = α3, where l and l′ refer to the first, second, …, νth error. 
Therefore, in this example, there are two-symbol errors, so that the error 
polynomial is of the following form: 

 
1 2

1 2( ) j j
j jX e X e X= +e  (49) 

The two errors were found at locations α3 and α4. Note that the indexing of the 
error-location numbers is completely arbitrary. Thus, for this example, we can 
designate the lj

lβ = α values as 1 3
1

jβ = α = α  and 2
2

4.jβ = α = α  

Error Values 

An error had been denoted 
lj

e , where the index j refers to the error location and the 
index l identifies the lth error. Since each error value is coupled to a particular 
location, the notation can be simplified by denoting 

lj
e , simply as 

l
e . Preparing to 

determine the error values e1 and e2 associated with locations β1 = α3 and β2 = α4,  
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any of the four syndrome equations can be used. From Equation (38), let’s use S1 
and S2. 

 
1 21 1 2( )S e e= α = β + βr  (50) 

 
1 2

2 2 2
2 1 2( )S e e= α = β + βr  

We can write these equations in matrix form as follows: 

 1 1

2 2

e S
e S

1 2
2 2
1 2

    
    
         

β β
=

β β
 (51) 

 1

2

e
e

3 4 3

56 8

    
    
        

α α α=
αα α

 (52) 

To solve for the error values e1 and e2, the matrix in Equation (52) is inverted in the 
usual way, yielding 

 

Inv

1 4

6 33 4

3 1 6 46 1

1 4

6 3 1 4 1 4
−6 1

4 3 6 3 6 3

2 5 2 5

7 4 0 4

 
 

     
  

 
 

         
      

   
   
      

α α
α αα α

=
α α − α αα α

α α
α α α α α α

= = α = α
α + α α α α α

α α α α
= =

α α α α

 (53) 

Now, we solve Equation (52) for the error values, as follows: 

 1

2

e
e

2 5 5 10 5 33 2

5 50 4 3 9 3 2

         
         
                   

α α α +α α +αα α= = = =
α αα α α +α α +α

 (54) 
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Correcting the Received Polynomial with Estimates of the Error Polynomial 

From Equations (49) and (54), the estimated error polynomial is formed, to yield 
the following: 

 
$ 1 2

1 2
2 3 5 4

) j jX e X e X
X X

( = +
= α + α

e
 (55) 

The demonstrated algorithm repairs the received polynomial, yielding an estimate 
of the transmitted codeword, and ultimately delivers a decoded message. That is, 

 Û(X ) = r(X ) + ê(X ) = U(X ) + e(X ) + ê(X ) (56) 

r(X ) = (100) + (001)X + (011)X 2 + (100)X 3 + (101)X 4 + (110)X 5 + (111)X 6 

ê(X ) = (000) + (000)X + (000)X 2 + (001)X 3 + (111)X 4 + (000)X 5 + (000)X 6 

Û(X ) = (100) + (001)X + (011)X 2 + (101)X 3 + (010)X 4 + (110)X 5 + (111)X 6 

 = α0 + α2X + α4X 2 + α6X 3 + α1X 4 + α3X 5 + α5X 6 (57) 

Since the message symbols constitute the rightmost k = 3 symbols, the decoded 
message is 

 {{ {
51 3 αα α

010 110 111  

which is exactly the test message that was chosen earlier for this example. For 
further reading on R-S coding, see the collection of papers in reference [8]. 

Conclusion 
In this article, we examined Reed-Solomon (R-S) codes, a powerful class of 
nonbinary block codes, particularly useful for correcting burst errors. Because 
coding efficiency increases with code length, R-S codes have a special attraction. 
They can be configured with long block lengths (in bits) with less decoding time  
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than other codes of similar lengths. This is because the decoder logic works with 
symbol-based rather than bit-based arithmetic. Hence, for 8-bit symbols, the 
arithmetic operations would all be at the byte level. This increases the complexity 
of the logic, compared with binary codes of the same length, but it also increases 
the throughput. 
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