Best Practices for Collaborative Web Development
"Make this awful thing stop!" ordered Mr. Teavee.

"Can't do that," said Mr. Wonka. "It won't stop till we get there. I only hope no one's using the other elevator at this moment."

"What other elevator?" screamed Mrs. Teavee.

"The one that goes the opposite way on the same track as this one," said Mr. Wonka.

"Holy mackerel!" cried Mr. Teavee. "You mean we might have a collision?"

"I've always been lucky so far," said Mr. Wonka.

—Roald Dahl, Charlie and the Chocolate Factory
The WSE Paradigm
One of the hard-won lessons we have gained from helping development groups implement more robust systems and procedures is that building an effective collaboration environment rests on clear roles and responsibilities. And whereas software tools help to facilitate the process and to automate certain tasks, development is fundamentally a collaborative social process.

With that in mind, we're going to proceed on two fronts. On the one hand, we're going to introduce and define a particular style of organization of individual and shared work products, and also introduce with a set of basic collaboration operations. This organization forms the technical underpinning for a content-management system. Then we'll interpret the meaning of the various operations within a social context of collaboration.

These two views are no different from the ways that we interpret a corner stop sign. At the technical level of interpretation, a stop sign tells us to bring our vehicle to a complete halt, under the threat of a traffic ticket if we are caught in violation. At the social level of interpretation, there's a tacit agreement between drivers at an intersection that fewer accidents and injuries result if drivers agree to stop and look both ways before proceeding through. By analogy, the content-management system defines the "rules of the road," but ultimate success and satisfaction will derive from understanding the intent of the rules and following them wisely.

We call the collaboration approach the WSE paradigm, shorthand for "workarea/staging-area/edition paradigm." WSE relies on multiple work areas, a single staging area, and some editions (versions of the web property) to organize the flow and integration of changes from developers. (See Figure 1.) The previous article introduced the notion of a workarea, which is an independent copy of the web property that is used to add, remove, and modify assets. The use of multiple workareas fosters parallel development of many tasks. Multiple workareas have the desirable effect of increasing the rate at which projects complete by giving each developer a controlled work environment.

Figure 1 The WSE paradigm uses workareas, staging areas, and editions to organize the flow of changes from development to production.

Eventually the new and modified assets need to be brought together. This blend occurs in a single staging area. The staging area is like a workarea because it, too, contains a copy of the web property. But it is different because it accepts changes from a workarea. The staging area changes through the incorporation of new, modified, and deleted assets. This file-level versioning operation captures a copy of the asset and records the submitter, the workarea, the submission time, and comments.

Collaboration Strategies
In a collaborative development environment, each developer works on a task in a workarea. Depending on the overlap between her work and the work of others, the developer must be vigilant for changes submitted by her colleagues as she submits changes to the staging area. (See Figure 3.) Four collaboration modes are depicted in the graph shown in Figure 2. The most effective integration the incoming flow of changes depends on the nature of the collaboration among colleagues.

The horizontal dimension in Figure 2 indicates whether assets are primarily new or whether changes are primarily to existing assets. On one hand, the changes being made by a developer can consist primarily of new assets. For example, a contributor can create new assets, such as a writing a press release or building a new section of a web site. On the other hand, changes might involve mostly modifications to existing assets. For example, someone might be assigned to modify elements on an index page or to add a question and answer to the frequently asked question page.

The vertical dimension in Figure 2 indicates whether one or many people are making changes to assets of the task at one time. For example, the frequently-asked-question page may not be actively changed, so that there's at most one person making a change at a given time. On the other hand, because the index page typically functions as a gateway into major sections of a web site, index pages tend to have people attempting to update the same page.

When we overlay these two dimensions on a graph, we get four quadrants; these describe the most effective strategies to moving changes efficiently to production. In quadrant I, because assets are primary new ones, and because the assets are relatively isolated and infrequently changed by others, there is little chance for collision. Focusing purely on rapid development is the best strategy.

Figure 2 The activity type and the number of concurrent modifiers determine the best development strategy.

In quadrant II, assets are primarily new, but the section of the web site has assets that are frequently changed by others. In this case, the best strategy is to develop rapidly but to be cognizant of the changes made by others. This could mean frequent updates, or developers receiving notification when changes occur in the staging area.

In quadrant III, changes are primarily made to existing assets, and the changes are relatively isolated. Because the likelihood of collision is low, the best strategy is to develop rapidly, with occasional updates or notification to stay apprised of impending collisions.

In quadrant IV, modifications occur in existing assets, and the likelihood of simultaneous edits on the same asset is frequent. In this situation, the challenges of carefully orchestrating the efforts of the development team are especially great.

Collaboration Operations
Five basic collaborations operations govern the movement of assets from a workarea into the common staging area through the compare, update, and merge operations that integrate changes from other workareas to the publishing of an edition. These operations are shown in Table 1. Each operation is much more than merely copying a web asset from one place to another. For example, the movement of assets from a workarea is typically used by a single developer into the staging area that is shared by all affects the entire team. Just as we cannot help but interpret graffiti placed on a highway overpass as having a larger social meaning, each submission of an asset into the staging area makes an important social statement to the organization. The contents of the staging area represent common assets for the organization, and small changes can have a major impact. For instance, two days before a major release, a developer wisely decides to delay submitting "clean-up" Java servlet code consisting of renaming variables, reordering the subroutines, and reformatting the indent structure of the code. Success of the release depends on knowing precisely which old problems have been fixed and being able to isolate sources of new problems by focusing closely on recently changed logic. Development is collaborative, and a developer must always recognize the larger social context of the development effort.

Table 1 shows two main ideas. First, it describes five basic collaboration operations—submit, compare, update, merge, publish—and describes them in terms of the movement of assets between areas. Second, and more significantly, the table suggests an interpretation of each action in a larger social context of collaboration.

Table 1

Basic Collaboration Operations

Operation
Description
Interpretation

Submit
Copy assets from workarea to staging area.
“To my esteemed colleagues, I have completed, tested, and have obtained approval for the following assets. They are suitable for integration into your ongoing work.”

Compare
Compare assets in workarea with corresponding assets in staging area.
“I’m at a point in the work on my task that I’d like to see the new and modified assets in the staging area, for possible integration into my workarea.”

Update
Copy assets from staging area to workarea.
“I believe that updating my workarea with the following assets will help me stay in closer synchronization with recently submitted changes from my colleagues, and hence enhance my ability to submit my changes when that time comes.”

Merge
Resolve conflict between staging area and workarea.
“I’ve modified an asset for which another colleague has also modified and has submitted. To keep my this asset synchronized with the staging area, and to enhance my ability to submit my modifications later, I will merge selected changes from the staging area’s copy into my copy of this asset.”

Publish
Create edition, which is a snapshot of entire staging area.
“The staging area comprises a version of our web property that will be useful to us, either as a distinguished snapshot in time (such as an archival reference), or a potential rollback version of our web property. As such, I’m creating this edition.”

Submit Operation
Submitting an asset from a workarea, shown in Figure 3, presents the asset to the rest of the organization. It is more than a developer claiming, "I'm done." Instead, inserting the new or modified asset into the staging area is merely the first hand-off step in integrating the asset into the web property. With it goes a presumption that the asset has been sufficiently tested and reviewed, and therefore is suitable to be integrated into the ongoing work of the rest of the organization. A healthy organization demonstrates mutual respect by adhering to the convention that submitted assets are high quality, as demonstrated by explicit testing and peer reviews.

Figure 3 A developer submits her changes to the staging area.

Compare Operation
The compare operation identifies new, modified, and deleted assets in the staging area, with respect to a given workarea. For example, a second developer might compare his workarea to the contents of the staging area (see Figure 4.) The possible comparison results are shown in Table 2. This gives a developer the opportunity to decide which differences to pull into his workarea. The comparison reveals a mixture of internal changes made within the workarea and external changes that have been submitted to the staging area by others. If external changes have a reputation for high quality, the developer will feel more confidence in readily pulling in changes. In the compare-update work cycle, certain specific differences might need to be resolved.

Figure 4
A second developer compares his workarea to the contents of the staging area.
Table 2

Possible Comparison Results Between Workarea and Staging Area

Case
Description
Conflict?
Possible actions

1
Same version as in staging area
No
None

2
Modified, based on version currently in staging area
No
Submit change from workarea.

Revert to previous version in staging area.

Merge changes into workarea’s asset.

3
Modified, based on different version than currently in staging area
Yes
Merge workarea with staging.

Overwrite staging, to override conflict and submit workarea’s asset.

Force update workarea, to overwrite the workarea asset with asset from staging area.

4
Deleted in workarea, exists in staging area
Yes
Submit deletion, to remove asset in staging area.

Force update workarea, to undo the deletion in workarea.

5
New in workarea, no corresponding asset in staging area
No
Submit change from workarea.

Force update workarea, to discard new asset.

6
New in staging area, no corresponding asset in workarea
No
Update workarea, to pull change from staging area into workarea.

Overwrite submit deletion, to delete the asset from the staging area.

Update Operation
Update is the collaboration operation that copies changes from the staging area into a given workarea (see Figure 5). When changes have consistently high quality, frequent updates to ongoing development are beneficial to the organization as a whole. Smaller, incremental updates with controlled disruptive effect spread the burden of integration over a longer period. This avoids costly one-time disruptions.

Figure 5 Changes in the staging area that haven't been modified in the workarea can be updated into the workarea.

Merge Operation
Merge is the collaboration operation that resolves conflicts between a workarea and the staging area. (See Figure 6.) This takes care of changes that require more than just copying in. It is an essential part of achieving maximum productivity because conflicts need resolution before submission. Merging incrementally during development instead of deferring all merges until the last moment typically takes less time and produces less aggravation.

Figure 6 Merging a change resolves the conflict with a previously submitted asset.

Publish Operation
An important collaboration operation is publish, which records a snapshot of the staging area, shown in Figure 7.

Figure 7 Publishing an edition creates a whole-site snapshot of the staging area.

The key is to strike a balance between raw speed of development and the need to stay synchronized with changes made by others. These are two important factors that impinge on the development process, and it is important to take them into account when designing the content-management infrastructure.

contentmgt-articles
Page 6 of 6
8/26/2001 7:01 PM

 TIME \@ "h:mm AM/PM"7:01 PM

