
Ordering Information:
Perl How to Program
The Complete Perl Training Course

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.

To learn more about our Perl programming courses or any other Deitel instruc-
tor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 21, Sections 21.1
and 21.2 of Perl How to Program. This article introduces basic graphics process-
ing in Perl, used to create GUIs, charts and images. We provide an example of
creating an image with several shapes.Readers should be familiar with Perl syn-
tax, as well as objects and modules in Perl. The code examples included in this
article show readers programming examples using the DEITEL™ signature LIVE-
CODE™ Approach, which presents all concepts in the context of complete work-
ing programs followed by the screen shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, July 12, 2002 11:59 AM

http://www.informit.com/deitel
http://www.informit.com/isapi/product_id~{F56702E9-6C18-44EF-B80C-274DD87A1233}/content/index.asp
http://www.informit.com/isapi/product_id~{74CCB11E-1185-49CE-AFB4-5D5C8C2BDF90}/selectDescTypeId~{0FD5F7DB-0C17-4BE5-B7B9-45FDD4D74A11}/st~1EB84B5F-47B0-4B19-BD64-E2034EF03018/content/index.asp
http://www.informit.com/isapi/product_id~{0ADE24C6-35B4-4AF6-AE88-3A02293B9348}/content/index.asp
http://www.deitel.com/books/downloads.html#perl
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#perl
http://www.deitel.com/training
http://www.deitel.com/books/perlHTP1/perlHTP1_toc.html
http://www.informit.com/isapi/product_id~{74CCB11E-1185-49CE-AFB4-5D5C8C2BDF90}/selectDescTypeId~{0BBA7A1C-E080-49A0-B103-E1BE9F7C7092}/st~1EB84B5F-47B0-4B19-BD64-E2034EF03018/content/index.asp
mailto:christi.kelsey@deitel.com

1 Graphics/Tk Chapter 21

© Copyright 2001 Prentice Hall. All Rights Reserved.

21.1 Introduction
Graphics convey information and make programs visually appealing. Everywhere we look,
we see graphics—video games, billboards, movies, etc. One of the best examples is World
Wide Web pages. The majority of Web pages have some form of graphics. Pictures are one
form of graphics commonly found on Web pages. Pictures provide an enormous quantity
of information. Graphics are more than just pictures; they are the elements of a picture. Col-
ors, lines, rectangles, patterns, text, etc. are all graphics. Graphics are visual images.

Perl does not have any built-in graphics manipulation functions, yet we can use Perl to
generate complex graphics and graphical user interfaces (also called GUIs). Many mod-
ules have been developed to offer these capabilities. We will look at three of the most pop-
ular modules in this chapter. We begin to understand basic graphics concepts by discussing
the GD module. From there, we move on to discuss modules that create more high-end
graphics, charts and sophisticated GUIs.

21.2 GD Module: Creating Simple Shapes
The GD module is used to create and manipulate images, similar to a basic drawing or paint-
ing application. The major difference between the GD module and drawing applications is
that the programmer must specify in text commands, rather than physically drawing, what
it is that he or she wishes to accomplish. Figure 21.1 demonstrates a simple program that
creates some shapes.

1 #!/usr/bin/perl
2 # Fig 21.1: fig21_01.pl
3 # Using the GD module to create shapes.
4
5 use strict;
6 use warnings;
7 use GD;
8
9 my $image = new GD::Image(320, 320);

10
11 my $white = $image->colorAllocate(255, 255, 255);
12 my $red = $image->colorAllocate(255, 0, 0);
13 my $green = $image->colorAllocate(0, 255, 0);
14 my $blue = $image->colorAllocate(0, 0, 255);
15 my $black = $image->colorAllocate(0, 0, 0);
16 my $purple = $image->colorAllocate(255, 0, 255);
17
18 $image->filledRectangle(15, 15, 150, 150, $red);
19 $image->arc(200, 200, 50, 50, 0, 360, $black);
20 $image->fill(200, 200, $blue);
21 $image->rectangle(100, 100, 200, 125, $green);
22 $image->fillToBorder(150, 110, $green, $green);
23
24 my $polygon = new GD::Polygon();
25 $polygon->addPt(20, 300);
26 $polygon->addPt(20, 175);

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Using the GD module. (part 1 of 2)

Chapter 21 Graphics/Tk 2

© Copyright 2001 Prentice Hall. All Rights Reserved.

The program uses many of the GD module’s methods, so let us go through it line by
line. Line 7 imports the GD module. Line 9 creates a new GD image object. We pass to the
constructor the width and height of the image we wish to create (in this case, 320 pixels
wide by 320 pixels high). The upper-left corner of this area has an x coordinate of 0 and a
y coordinate of 0. The x coordinate increases from left to right across the image and the y
coordinate increases from top to bottom in the image. Then we define some colors (lines
11–16). The color $white becomes the background color for our picture. We define this
color using the colorAllocate method, passing it the red, green and blue values that
compose the color. The GD module uses the RGB (red, green, blue) color scheme, in which
the red, green and blue parts of the color are specified as integers in the range 0–255. We
also define colors red, green, blue, black and purple and set them to the corresponding vari-
ables. We now have a palette and we can refer to any of those six colors by their variable
names.

27 $polygon->addPt(100, 175);
28
29 $image->polygon($polygon, $blue);
30 $image->fill(50, 200, $purple);
31
32 $polygon->setPt(0, 30, 300);
33 $polygon->setPt(1, 110, 300);
34 $polygon->setPt(2, 110, 175);
35
36 $image->filledPolygon($polygon, $black);
37
38 open(PICT, ">fig21_02.png") or
39 die("Can not open picture: $!");
40
41 binmode(PICT);
42 print(PICT $image->png());
43 close(PICT) or die("Can not close file: $!");

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Contents of fig21_02.png.

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Using the GD module. (part 2 of 2)

3 Graphics/Tk Chapter 21

© Copyright 2001 Prentice Hall. All Rights Reserved.

Next we create some predefined polygons. We use the $image object’s filled-
Rectangle method to create a filled rectangle (line 18). The first two arguments define
one corner of the rectangle. The third and fourth arguments define the diagonally opposite
corner. The fifth argument is the color. In this case, the whole rectangle will be red.

We create a circle using method arc (line 19). The first two arguments passed to arc
are the coordinates of the center of the circle. The next two arguments are the horizontal
and vertical radius. The next two arguments provide degree bounds for the sweep of the arc.
In this case, the bounds are 0 and 360 so this will sweep out the full circle. The final argu-
ment is the color. Notice that this method will not fill in the arc. We are forced to do this
manually on line 20 by calling GD’s fill method. The first two arguments of this method
specify a pixel. The paint will spread out from this pixel until a pixel is found that is not the
same color as the starting pixel. The third argument is the color of the paint.

On line 21, we use GD’s rectangle method. This method to creates a hollow rect-
angle. We would like to fill this rectangle with color manually. We could use our fill
method to do so, but half of the rectangle we just created is red (it overlaps with the previous
rectangle) and the other half is white (blank canvas). The fill method fills only until it
hits a pixel of a different color than the previous one. If we started filling in the white por-
tion, only that area would get colored. Likewise, if we started filling in the red portion, only
that part would be colored. GD provides a method to work around this problem called
fillToBorder. This method takes the same arguments as fill, but adds one more
argument before the fill color. The third argument in this method is the border-color argu-
ment. The method will fill in the designated area until it reaches a pixel that is colored with
the specified border color. In this case, we fill in the inside of the rectangle in green until
we hit a border of green, the outside of the rectangle.

Next, we explore GD’s Polygon class. On line 24, we create an instance of the
Polygon class. The polygon is null—it has no points. Then, we create some points in this
polygon using method addPt. This method takes two arguments—the x coordinate and the
y coordinate of the point with respect to the upper-left (0, 0) coordinate of the image. We
add three points to the polygon, then we add the polygon to the image using method
polygon (line 29). This method takes a polygon object and a border color and adds the
polygon to the image. Next, we change the points in our polygon so that we can draw the
polygon again in a different position. We use Polygon’s setPt method to do this. This
method takes three arguments. The last two arguments are the x and y coordinates of the
new point. The first argument is the number of the point we wish to change. It is important
to note that this numbering starts at zero. Once we have changed our polygon, we add it to
our image, this time using method fillPolygon. This method is draws a polygon filled
with a color.

Finally, we would like to output our picture object to a file for later viewing. So, in line
38, we open a file. Line 41 sets the output mode of the file to binary with function bin-
mode, so that when the image is stored, the bytes of memory containing the image are
written in the image’s native format, rather than a platform-specific format. Then, we
output the image after converting it to a .png (Portable Network Graphics) file with
method png. Figure 21.2 contains the image that was created in Fig. 21.1.

