
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509303588
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509303588
https://plusone.google.com/share?url=http://www.informit.com/title/9781509303588
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509303588
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509303588

Essential C# 7.0

This page intentionally left blank

Essential
C# 7.0

Mark Michaelis
with Eric Lippert, Technical Editor

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or

trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or in

all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed

or implied warranty of any kind and assume no responsibility for errors or omissions. No liability

is assumed for incidental or consequential damages in connection with or arising out of the use of

the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-

ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018933128

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-

right, and permission must be obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. For information regarding permissions, request forms and

the appropriate contacts within the Pearson Education Global Rights & Permissions Department,

please visit www.pearsoned.com/permissions/.

ISBN-13: 978-1-5093-0358-8

ISBN-10: 1-5093-0358-8

1 18

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To my family: Elisabeth, Benjamin, Hanna, and Abigail.

You have sacrificed a husband and daddy for countless hours of writing,
frequently at times when he was needed most.

Thanks!

This page intentionally left blank

vii

Contents at a Glance

Contents ix
Figures xv
Tables xvii
Foreword xix
Preface xxi
Acknowledgments xxxiii
About the Author xxxv

1 Introducing C# 1

2 Data Types 43

3 More with Data Types 77

4 Operators and Control Flow 109

5 Methods and Parameters 181

6 Classes 241

7 Inheritance 313

8 Interfaces 353

9 Value Types 379

10 Well-Formed Types 411

11 Exception Handling 465

 viii Contents at a Glance

12 Generics 487

13 Delegates and Lambda Expressions 537

14 Events 575

15 Collection Interfaces with Standard Query Operators 603

16 LINQ with Query Expressions 657

17 Building Custom Collections 679

18 Reflection, Attributes, and Dynamic Programming 721

19 Multithreading 771

20 Thread Synchronization 863

21 Platform Interoperability and Unsafe Code 897

22 The Common Language Infrastructure 923

Index 945
Index of 7.0 Topics 995
Index of 6.0 Topics 998
Index of 5.0 Topics 1001

ix

Contents

Figures xv
Tables xvii
Foreword xix
Preface xxi
Acknowledgments xxxiii
About the Author xxxv

1 Introducing C# 1
Hello, World 2

C# Syntax Fundamentals 11

Working with Variables 20

Console Input and Output 24

Managed Execution and the Common Language Infrastructure 32

Multiple .NET Frameworks 37

2 Data Types 43
Fundamental Numeric Types 44

More Fundamental Types 53

null and void 67

Conversions between Data Types 69

3 More with Data Types 77
Categories of Types 77

Nullable Modifier 80

Tuples 83

Arrays 90

 x Contents

4 Operators and Control Flow 109
Operators 110

Introducing Flow Control 126

Code Blocks ({}) 132

Code Blocks, Scopes, and Declaration Spaces 135

Boolean Expressions 137

Bitwise Operators (<<, >>, |, &, ^, ~) 147

Control Flow Statements, Continued 153

Jump Statements 165

C# Preprocessor Directives 171

5 Methods and Parameters 181
Calling a Method 182

Declaring a Method 189

The using Directive 195

Returns and Parameters on Main() 200

Advanced Method Parameters 203

Recursion 215

Method Overloading 217

Optional Parameters 220

Basic Error Handling with Exceptions 225

6 Classes 241
Declaring and Instantiating a Class 245

Instance Fields 249

Instance Methods 251

Using the this Keyword 252

Access Modifiers 259

Properties 261

Constructors 278

Static Members 289

Extension Methods 299

Encapsulating the Data 301

 Contents xi

Nested Classes 304

Partial Classes 307

7 Inheritance 313
Derivation 314

Overriding the Base Class 326

Abstract Classes 338

All Classes Derive from System.Object 344

Verifying the Underlying Type with the is Operator 345

Pattern Matching with the is Operator 346

Pattern Matching within a switch Statement 347

Conversion Using the as Operator 349

8 Interfaces 353
Introducing Interfaces 354

Polymorphism through Interfaces 355

Interface Implementation 360

Converting between the Implementing Class and Its Interfaces 366

Interface Inheritance 366

Multiple Interface Inheritance 369

Extension Methods on Interfaces 369

Implementing Multiple Inheritance via Interfaces 371

Versioning 374

Interfaces Compared with Classes 375

Interfaces Compared with Attributes 377

9 Value Types 379
Structs 383

Boxing 390

Enums 398

10 Well-Formed Types 411
Overriding object Members 411

Operator Overloading 424

Referencing Other Assemblies 432

 xii Contents

Defining Namespaces 442

XML Comments 445

Garbage Collection 449

Resource Cleanup 452

Lazy Initialization 461

11 Exception Handling 465
Multiple Exception Types 465

Catching Exceptions 469

General Catch Block 473

Guidelines for Exception Handling 475

Defining Custom Exceptions 479

Rethrowing a Wrapped Exception 483

12 Generics 487
C# without Generics 488

Introducing Generic Types 493

Constraints 506

Generic Methods 519

Covariance and Contravariance 524

Generic Internals 531

13 Delegates and Lambda Expressions 537
Introducing Delegates 538

Declaring Delegate Types 542

Lambda Expressions 550

Anonymous Methods 556

14 Events 575
Coding the Publish-Subscribe Pattern with Multicast Delegates 576

Understanding Events 591

15 Collection Interfaces with Standard Query Operators 603
Collection Initializers 604

What Makes a Class a Collection: IEnumerable<T> 607

 Contents xiii

Standard Query Operators 613

Anonymous Types with LINQ 646

16 LINQ with Query Expressions 657
Introducing Query Expressions 658

Query Expressions Are Just Method Invocations 676

17 Building Custom Collections 679
More Collection Interfaces 680

Primary Collection Classes 683

Providing an Indexer 702

Returning Null or an Empty Collection 705

Iterators 705

18 Reflection, Attributes, and Dynamic Programming 721
Reflection 722

nameof Operator 733

Attributes 735

Programming with Dynamic Objects 759

19 Multithreading 771
Multithreading Basics 774

Working with System.Threading 781

Asynchronous Tasks 789

Canceling a Task 810

The Task-based Asynchronous Pattern 816

Executing Loop Iterations in Parallel 846

Running LINQ Queries in Parallel 856

20 Thread Synchronization 863
Why Synchronization? 864

Timers 893

21 Platform Interoperability and Unsafe Code 897
Platform Invoke 898

Pointers and Addresses 910

Executing Unsafe Code via a Delegate 920

 xiv Contents

22 The Common Language Infrastructure 923
Defining the Common Language Infrastructure 924

CLI Implementations 925

.NET Standard 928

Base Class Library 929

C# Compilation to Machine Code 929

Runtime 932

Assemblies, Manifests, and Modules 936

Common Intermediate Language 939

Common Type System 939

Common Language Specification 940

Metadata 941

.NET Native and Ahead of Time Compilation 942

Index 945
Index of 7.0 Topics 995
Index of 6.0 Topics 998
Index of 5.0 Topics 1001

xv

Figures

 Figure 1.1: The New Project Dialog 6
 Figure 1.2: Dialog That Shows the Program.cs File 7

 Figure 3.1: Value Types Contain the Data Directly 78
 Figure 3.2: Reference Types Point to the Heap 79

 Figure 4.1: Corresponding Placeholder Values 147
 Figure 4.2: Calculating the Value of an Unsigned Byte 148
 Figure 4.3: Calculating the Value of a Signed Byte 148
 Figure 4.4: The Numbers 12 and 7 Represented in Binary 150
 Figure 4.5: Collapsed Region in Microsoft Visual Studio .NET 178

 Figure 5.1: Exception-Handling Control Flow 229

 Figure 6.1: Class Hierarchy 244

 Figure 7.1: Refactoring into a Base Class 315
 Figure 7.2: Simulating Multiple Inheritance Using Aggregation 324

 Figure 8.1: Working around Single Inheritances with Aggregation and
Interface 373

 Figure 9.1: Value Types Contain the Data Directly 380
 Figure 9.2: Reference Types Point to the Heap 382

 Figure 10.1: Identity 416
 Figure 10.2: The Project Menu 437
 Figure 10.3: The Browse Filter 437
 Figure 10.4: XML Comments as Tips in Visual Studio IDE 446

 xvi Figures

 Figure 13.1: Delegate Types Object Model 548
 Figure 13.2: Anonymous Function Terminology 551
 Figure 13.3: The Lambda Expression Tree Type 569
 Figure 13.4: Unary and Binary Expression Tree Types 569

 Figure 14.1: Delegate Invocation Sequence Diagram 585
 Figure 14.2: Multicast Delegates Chained Together 587
 Figure 14.3: Delegate Invocation with Exception Sequence Diagram 588

 Figure 15.1: A Class Diagram of IEnumerator<T> and IEnumerator
Interfaces 608

 Figure 15.2: Sequence of Operations Invoking Lambda Expressions 625
 Figure 15.3: Venn Diagram of Inventor and Patent Collections 629

 Figure 17.1: Collection Class Hierarchy 681
 Figure 17.2: List<> Class Diagrams 684
 Figure 17.3: Dictionary Class Diagrams 691
 Figure 17.4: Sorted Collections 698
 Figure 17.5: Stack<T> Class Diagram 699
 Figure 17.6: Queue<T> Class Diagram 700
 Figure 17.7: LinkedList<T> and LinkedListNode<T> Class

Diagram 701
 Figure 17.8: Sequence Diagram with yield return 710

 Figure 18.1: MemberInfo Derived Classes 730
 Figure 18.2: BinaryFormatter Does Not Encrypt Data 754

 Figure 19.1: Clock Speeds over Time 772
 Figure 19.2: Deadlock Timeline 780
 Figure 19.3: CancellationTokenSource and CancellationToken

Class Diagrams 813

 Figure 21.1: Pointers Contain the Address of the Data 913

 Figure 22.1: Compiling C# to Machine Code 931
 Figure 22.2: Assemblies with the Modules and Files They Reference 938

xvii

Tables

 Table 1.1: C# Keywords 12
 Table 1.2: C# Comment Types 30
 Table 1.3: Predominant .NET Framework Implementations 37
 Table 1.4: C# and .NET Versions 39

 Table 2.1: Integer Types 44
 Table 2.2: Floating-Point Types 46
 Table 2.3: Decimal Type 46
 Table 2.4: Escape Characters 55
 Table 2.5: string Static Methods 61
 Table 2.6: string Methods 61

 Table 3.1: Sample Code for Tuple Declaration and Assignment 84
 Table 3.2: Array Highlights 91
 Table 3.3: Common Array Coding Errors 105

 Table 4.1: Control Flow Statements 127
 Table 4.2: Relational and Equality Operators 138
 Table 4.3: Conditional Values for the XOR Operator 141
 Table 4.4: Preprocessor Directives 172
 Table 4.5: Operator Order of Precedence 178

 Table 5.1: Common Namespaces 185
 Table 5.2: Common Exception Types 232

 Table 7.1: Why the New Modifier? 331
 Table 7.2: Members of System.Object 344

 Table 8.1: Comparing Abstract Classes and Interfaces 376

 xviii Tables

 Table 9.1: Boxing Code in CIL 391

 Table 10.1: Microsoft.Extension.CommandUtils Examples 439
 Table 10.2: Accessibility Modifiers 441

 Table 13.1: Lambda Expression Notes and Examples 555

 Table 15.1: Simpler Standard Query Operators 643
 Table 15.2: Aggregate Functions on System.Linq.Enumerable 644

 Table 18.1: Deserialization of a New Version Throws an Exception 756

 Table 19.1: List of Available TaskContinuationOptions Enums 798
 Table 19.2: Control Flow within Each Task 827

 Table 20.1: Sample Pseudocode Execution 866
 Table 20.2: Interlocked’s Synchronization-Related Methods 877
 Table 20.3: Execution Path with ManualResetEvent

Synchronization 886
 Table 20.4: Concurrent Collection Classes 888

 Table 22.1: Implementations of the CLI 925
 Table 22.2: Common C#-Related Acronyms 943

xix

Foreword

Welcome to one of the most venerable and trusted franchises you

could dream of in the world of C# books—and probably far beyond! Mark

Michaelis’s Essential C# series has been a classic for years, but it was yet to

see the light of day when I first got to know Mark.

In 2005 when LINQ (Language Integrated Query) was disclosed, I had

only just joined Microsoft, and I got to tag along to the Microsoft Profes-

sional Developers Conference for the big reveal. Despite my almost total

lack of contribution to the technology, I thoroughly enjoyed the hype. The

talks were overflowing, the printed leaflets were scooped up like free hot-

cakes: It was a big day for C# and .NET, and I was having a great time.

It was pretty quiet in the hands-on labs area, though, where people

could try out the technology preview themselves with nice scripted walk-

throughs. That’s where I ran into Mark. Needless to say, he wasn’t follow-

ing the script. He was doing his own experiments, combing through the

docs, talking to other folks, busily pulling together his own picture.

As a newcomer to the C# community, I think I may have met a lot of

people for the first time at that conference—people I have since formed

great relationships with. But to be honest, I don’t remember it—it’s all a

blur. The only person I remember is Mark. Here is why: When I asked

him if he was liking the new stuff, he didn’t just join the rave. He was

totally level-headed: “I don’t know yet. I haven’t made up my mind about it.”

He wanted to absorb and understand the full package, and until then he

wasn’t going to let anyone tell him what to think.

So instead of the quick sugar rush of affirmation I might have expected,

I got to have a frank and wholesome conversation, the first of many over

 x x Foreword

the years, about details, consequences, and concerns with this new tech-

nology. And so it remains: Mark is an incredibly valuable community

member for us language designers to have, because he is super smart,

insists on understanding everything to the core, and has phenomenal

insight into how things affect real developers. But perhaps most of all

because he is forthright and never afraid to speak his mind. If something

passes the Mark Test, then we know we can start feeling pretty good

about it!

These are the same qualities that make Mark such a great writer. He

goes right to the essence and communicates with great integrity—no

sugarcoating—and has a keen eye for practical value and real-world

problems. Mark has a great gift for providing clarity and elucidation,

and no one will help you get C# 7.0 like he does.

Enjoy!

—Mads Torgersen,
C# Program Manager,

Microsoft

xxi

Preface

Throughout the history of software engineering, the methodology used

to write computer programs has undergone several paradigm shifts, each

building on the foundation of the former by increasing code organization

and decreasing complexity. This book takes you through these same par-

adigm shifts.

The beginning chapters take you through sequential programming

structure in which statements are executed in the order in which they are

written. The problem with this model is that complexity increases expo-

nentially as the requirements increase. To reduce this complexity, code

blocks are moved into methods, creating a structured programming

model. This allows you to call the same code block from multiple locations

within a program, without duplicating code. Even with this construct,

however, programs quickly become unwieldy and require further abstrac-

tion. Object-oriented programming, introduced in Chapter 6, was the

response. In subsequent chapters, you will learn about additional method-

ologies, such as interface-based programming, LINQ (and the transforma-

tion it makes to the collection API), and eventually rudimentary forms of

declarative programming (in Chapter 18) via attributes.

This book has three main functions.

• It provides comprehensive coverage of the C# language, going beyond

a tutorial and offering a foundation upon which you can begin effec-

tive software development projects.

• For readers already familiar with C#, this book provides insight into

some of the more complex programming paradigms and provides

 x xii Preface

in-depth coverage of the features introduced in the latest version of

the language, C# 7.0 and .NET Framework 4.7/.NET Core 2.0.

• It serves as a timeless reference even after you gain proficiency with

the language.

The key to successfully learning C# is to start coding as soon as pos-

sible. Don’t wait until you are an “expert” in theory; start writing soft-

ware immediately. As a believer in iterative development, I hope this book

enables even a novice programmer to begin writing basic C# code by the

end of Chapter 2.

Many topics are not covered in this book. You won’t find coverage of

topics such as ASP.NET, ADO.NET, Xamarin, smart client development,

distributed programming, and so on. Although these topics are relevant to

.NET, to do them justice requires books of their own. Fortunately, Addison-

Wesley’s Microsoft Windows Development Series provides a wealth of

writing on these topics. Essential C# 7.0 focuses on C# and the types within

the Base Class Library. Reading this book will prepare you to focus on and

develop expertise in any of the areas covered by the rest of the series.

Target Audience for This Book
My challenge with this book was to keep advanced developers awake

while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion as though the topic was more appropriate for

blacksmiths than for programmers. This book’s primary audience is expe-

rienced developers looking to add another language to their quiver. How-

ever, I have carefully assembled this book to provide significant value to

developers at all levels.

• Beginners: If you are new to programming, this book serves as a

resource to help transition you from an entry-level programmer to

a C# developer, comfortable with any C# programming task that’s

thrown your way. This book not only teaches you syntax but also

trains you in good programming practices that will serve you

throughout your programming career.

• Structured programmers: Just as it’s best to learn a foreign language

through immersion, learning a computer language is most effective

 Preface xxiii

when you begin using it before you know all the intricacies. In this

vein, this book begins with a tutorial that will be comfortable for those

familiar with structured programming, and by the end of Chapter 5,

developers in this category should feel at home writing basic control

flow programs. However, the key to excellence for C# developers is

not memorizing syntax. To transition from simple programs to enter-

prise development, the C# developer must think natively in terms of

objects and their relationships. To this end, Chapter 6’s Beginner Top-

ics introduce classes and object-oriented development. The role of his-

torically structured programming languages such as C, COBOL, and

FORTRAN is still significant but shrinking, so it behooves software

engineers to become familiar with object-oriented development. C# is

an ideal language for making this transition because it was designed

with object-oriented development as one of its core tenets.

• Object-based and object-oriented developers: C++, Java, Python, TypeScript,

Visual Basic, and Java programmers fall into this category. Many of

you are already completely comfortable with semicolons and curly

braces. A brief glance at the code in Chapter 1 reveals that, at its core,

C# is like other C- and C++-style languages that you already know.

• C# professionals: For those already versed in C#, this book provides a

convenient reference for less frequently encountered syntax. Further-

more, it provides answers to language details and subtleties that are

seldom addressed. Most important, it presents the guidelines and

patterns for programming robust and maintainable code. This book

also aids in the task of teaching C# to others. With the emergence of

C# 3.0 through 7.0, some of the most prominent enhancements are

 – String interpolation (see Chapter 2)

 – Implicitly typed variables (see Chapter 3)

 – Tuples (see Chapter 3)

 – Pattern matching (see Chapter 4)

 – Extension methods (see Chapter 6)

 – Partial methods (see Chapter 6)

 – Anonymous types (see Chapter 12)

 – Generics (see Chapter 12)

 – Lambda statements and expressions (see Chapter 13)

 – Expression trees (see Chapter 13)

 – Standard query operators (see Chapter 15)

 x xiv Preface

 – Query expressions (see Chapter 16)

 – Dynamic programming (Chapter 18)

 – Multithreaded programming with the Task Programming Library

and async (Chapter 19)

 – Parallel query processing with PLINQ (Chapter 19)

 – Concurrent collections (Chapter 20)

These topics are covered in detail for those not already familiar with

them. Also pertinent to advanced C# development is the subject of

pointers, in Chapter 21. Even experienced C# developers often do not

understand this topic well.

Features of This Book
Essential C# 7.0 is a language book that adheres to the core C# Language 7.0

Specification. To help you understand the various C# constructs, it pro-

vides numerous examples demonstrating each feature. Accompanying

each concept are guidelines and best practices, ensuring that code com-

piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are

outlined using mind maps.

C# Coding Guidelines
One of the more significant enhancements included in Essential C# 7.0 is

C# coding guidelines, as shown in the following example taken from

Chapter 17:

Guidelines
DO ensure that equal objects have equal hash codes.
DO ensure that the hash code of an object never changes while it is in
a hash table.
DO ensure that the hashing algorithm quickly produces a well-
distributed hash.
DO ensure that the hashing algorithm is robust in any possible object state.

These guidelines are the key to differentiating a programmer who knows

the syntax from an expert who can discern the most effective code to write

 Preface x xv

based on the circumstances. Such an expert not only gets the code to com-

pile but does so while following best practices that minimize bugs and

enable maintenance well into the future. The coding guidelines highlight

some of the key principles that readers will want to be sure to incorporate

into their development.

Code Samples
The code snippets in most of this text can run on most implementations

of the Common Language Infrastructure (CLI), but the focus is on the

Micro soft .NET Framework and the .NET Core implementation. Platform-

or vendor-specific libraries are seldom used except when communicating

important concepts relevant only to those platforms (e.g., appropriately

handling the single-threaded user interface of Windows). Any code that

specifically relates to C# 5.0, 6.0, or 7.0 is called out in the C# version indexes

at the end of the book.

Here is a sample code listing.

Listing 1.19: Commenting Your Code

class Comment Samples
{
 static void Main()
 {

 string firstName; //Variable for storing the first name
 string lastName; //Variable for storing the last name

 System.Console.WriteLine("Hey you!");

 System.Console.Write /* No new line */ (
 "Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write /* No new line */ (
 "Enter your last name: ");
 lastName = System.Console.ReadLine();

 /* Display a greeting to the console
 using composite formatting. */

 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 // This is the end
 // of the program listing
 }
}

Begin 2.0

 x xvi Preface

The formatting is as follows.

• Comments are shown in italics.

/* Display a greeting to the console
 using composite formatting */

• Keywords are shown in bold.

static void Main()

• Highlighted code calls out specific code snippets that may have

changed from an earlier listing, or demonstrates the concept

described in the text.

System.Console.WriteLine(valerie);
miracleMax = "It would take a miracle.";
System.Console.WriteLine(miracleMax);

Highlighting can appear on an entire line or on just a few characters

within a line.

System.Console.WriteLine(
 "Your full name is {0} {1}.", firstName, lastName);

• Incomplete listings contain an ellipsis to denote irrelevant code that

has been omitted.

// ...

• Console output is the output from a particular listing that appears

following the listing. User input for the program appears in

boldface.

Output 1.7

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya
Your full name is Inigo Montoya.

Although it might have been convenient to provide full code samples

that you could copy into your own programs, doing so would detract from

your learning a particular topic. Therefore, you need to modify the code

samples before you can incorporate them into your programs. The core

omission is error checking, such as exception handling. Also, code samples

 Preface xxvii

do not explicitly include using System statements. You need to assume the

statement throughout all samples.

You can find sample code at https://IntelliTect.com/EssentialCSharp.

Mind Maps
Each chapter’s introduction includes a mind map, which serves as an out-

line that provides an at-a-glance reference to each chapter’s content. Here

is an example (taken from Chapter 6).

Declaring a Property
Naming Conventions
Using Properties with Validation
Read-Only and Write-Only Properties
Access Modifiers on Getters and Setters
Properties as Virtual Fields
Properties and Method Calls Not Allowed
as ref or out Parameter Values

Instance
Fields Declaring an Instance Field

Accessing an Instance Field
const and readonly Modifiers

Properties

Static Fields
Static Methods

Static Constructors
Static Classes

Partial Classes
Nested Classes

Classes

2

3 Instance Methods

4

5

Static7

Access Modifiers

9 Special Classes Declaring and Instantiating a Class1

8 Extension Methods

Declaring a Constructor
Default Constructors

Overloading Constructors
Calling one Constructor

Using this
Finalizers

Constructors
& Finalizers6

The theme of each chapter appears in the mind map’s center. High-

level topics spread out from the core. Mind maps allow you to absorb the

flow from high-level to more detailed concepts easily, with less chance of

encountering very specific knowledge that you might not be looking for.

Helpful Notes
Depending on your level of experience, special features will help you

navigate through the text.

• Beginner Topics provide definitions or explanations targeted specifi-

cally toward entry-level programmers.

• Advanced Topics enable experienced developers to focus on the mate-

rial that is most relevant to them.

https://IntelliTect.com/EssentialCSharp

 x xviii Preface

• Callout notes highlight key principles in callout boxes so that readers

easily recognize their significance.

• Language Contrast sidebars identify key differences between C# and

its predecessors to aid those familiar with other languages.

How This Book Is Organized
At a high level, software engineering is about managing complexity, and

it is toward this end that I have organized Essential C# 7.0. Chapters 1–5

introduce structured programming, which enable you to start writing sim-

ple functioning code immediately. Chapters 6–10 present the object-oriented

constructs of C#. Novice readers should focus on fully understanding

this section before they proceed to the more advanced topics found in the

remainder of this book. Chapters 12–14 introduce additional complexity-

reducing constructs, handling common patterns needed by virtually all

modern programs. This leads to dynamic programming with reflection

and attributes, which is used extensively for threading and interoperability

in the chapters that follow.

The book ends with a chapter on the Common Language Infrastruc-

ture, which describes C# within the context of the development platform

in which it operates. This chapter appears at the end because it is not C#

specific and it departs from the syntax and programming style in the rest

of the book. However, this chapter is suitable for reading at any time, per-

haps most appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers

shown in bold indicate the presence of C# 6.0–7.0 material).

• Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-

gram, this chapter proceeds to dissect it. This should familiarize

readers with the look and feel of a C# program and provide details on

how to compile and debug their own programs. It also touches on the

context of a C# program’s execution and its intermediate language.

• Chapter 2—Data Types: Functioning programs manipulate data, and

this chapter introduces the primitive data types of C#.

• Chapter 3—More with Data Types: This chapter includes coverage

of two type categories, value types and reference types. From

there, it delves into the nullable modifier and a C# 7.0-introduced

 Preface x xix

feature, tuples. It concludes with an in-depth look at a primitive array

structure.

• Chapter 4—Operators and Control Flow: To take advantage of the iter-

ative capabilities in a computer, you need to know how to include

loops and conditional logic within your program. This chapter also

covers the C# operators, data conversion, and preprocessor directives.

• Chapter 5—Methods and Parameters: This chapter investigates the

details of methods and their parameters. It includes passing by value,

passing by reference, and returning data via an out parameter. In

C# 4.0, default parameter support was added, and this chapter

explains how to use default parameters.

• Chapter 6—Classes: Given the basic building blocks of a class, this

chapter combines these constructs to form fully functional types.

Classes form the core of object-oriented technology by defining the

template for an object.

• Chapter 7—Inheritance: Although inheritance is a programming fun-

damental to many developers, C# provides some unique constructs,

such as the new modifier. This chapter discusses the details of the

inheritance syntax, including overriding.

• Chapter 8—Interfaces: This chapter demonstrates how interfaces are

used to define the versionable interaction contract between classes.

C# includes both explicit and implicit interface member implemen-

tation, enabling an additional encapsulation level not supported by

most other languages.

• Chapter 9—Value Types: Although not as prevalent as defining ref-

erence types, it is sometimes necessary to define value types that

behave in a fashion similar to the primitive types built into C#. This

chapter describes how to define structures while exposing the idio-

syncrasies they may introduce.

• Chapter 10—Well-Formed Types: This chapter discusses more

advanced type definition. It explains how to implement operators,

such as + and casts, and describes how to encapsulate multiple classes

into a single library. In addition, the chapter demonstrates defining

namespaces and XML comments and discusses how to design classes

for garbage collection.

 x x x Preface

• Chapter 11—Exception Handling: This chapter expands on the

exception-handling introduction from Chapter 5 and describes how

exceptions follow a hierarchy that enables creating custom excep-

tions. It also includes some best practices on exception handling.

• Chapter 12—Generics: Generics is perhaps the core feature missing

from C# 1.0. This chapter fully covers this 2.0 feature. In addition,

C# 4.0 added support for covariance and contravariance—something

covered in the context of generics in this chapter.

• Chapter 13—Delegates and Lambda Expressions: Delegates begin clearly

distinguishing C# from its predecessors by defining patterns for

handling events within code. This virtually eliminates the need

for writing routines that poll. Lambda expressions are the key con-

cept that make C# 3.0’s LINQ possible. This chapter explains how

lambda expressions build on the delegate construct by providing a

more elegant and succinct syntax. This chapter forms the foundation

for the new collection API discussed next.

• Chapter 14—Events: Encapsulated delegates, known as events, are

a core construct of the Common Language Runtime. Anonymous

methods, another C# 2.0 feature, are also presented here.

• Chapter 15—Collection Interfaces with Standard Query Operators: The

simple and yet elegantly powerful changes introduced in C# 3.0 begin

to shine in this chapter as we take a look at the extension methods of

the new Enumerable class. This class makes available an entirely new

collection API known as the standard query operators and discussed

in detail here.

• Chapter 16—LINQ with Query Expressions: Using standard query

operators alone results in some long statements that are hard to

decipher. However, query expressions provide an alternative syntax

that matches closely with SQL, as described in this chapter.

• Chapter 17—Building Custom Collections: In building custom APIs

that work against business objects, it is sometimes necessary to

create custom collections. This chapter details how to do this and in

the process introduces contextual keywords that make custom collec-

tion building easier.

• Chapter 18—Reflection, Attributes, and Dynamic Programming:
Object-oriented programming formed the basis for a paradigm shift

 Preface x x xi

in program structure in the late 1980s. In a similar way, attributes

facilitate declarative programming and embedded metadata, ush-

ering in a new paradigm. This chapter looks at attributes and dis-

cusses how to retrieve them via reflection. It also covers file input and

 output via the serialization framework within the Base Class Library.

In C# 4.0, a new keyword, dynamic, was added to the language. This

removed all type checking until runtime, a significant expansion of

what can be done with C#.

• Chapter 19—Multithreading: Most modern programs require the

use of threads to execute long-running tasks while ensuring active

response to simultaneous events. As programs become more sophis-

ticated, they must take additional precautions to protect data in these

advanced environments. Programming multithreaded applications is

complex. This chapter discusses how to work with threads and pro-

vides best practices to avoid the problems that plague multithreaded

applications.

• Chapter 20—Thread Synchronization: Building on the preceding chap-

ter, this one demonstrates some of the built-in threading pattern sup-

port that can simplify the explicit control of multithreaded code.

• Chapter 21—Platform Interoperability and Unsafe Code: Given that C# is a

relatively young language, far more code is written in other languages

than in C#. To take advantage of this preexisting code, C# supports

interoperability—the calling of unmanaged code—through P/Invoke.

In addition, C# provides for the use of pointers and direct memory

manipulation. Although code with pointers requires special privi-

leges to run, it provides the power to interoperate fully with tradi-

tional C-based application programming interfaces.

• Chapter 22—The Common Language Infrastructure: Fundamentally, C#

is the syntax that was designed as the most effective programming

language on top of the underlying Common Language Infrastruc-

ture. This chapter delves into how C# programs relate to the underlying

runtime and its specifications.

• Indexes of C# 5.0, 6.0, and 7.0 Topics: These indexes provide quick ref-

erences for the features added in C# 4.0 through 7.0. They are specif-

ically designed to help programmers quickly update their language

skills to a more recent version.

 x x xii Preface

I hope you find this book to be a great resource in establishing your C#

expertise and that you continue to reference it for those areas that you use

less frequently well after you are proficient in C#.

—Mark Michaelis

IntelliTect.com/mark

Twitter: @Intellitect, @MarkMichaelis

Register your copy of Essential C# 7.0 on the InformIT site for con-

venient access to updates and/or corrections as they become avail-

able. To start the registration process, go to informit.com/register and

log in or create an account. Enter the product ISBN (9781509303588)

and click Submit. Look on the Registered Products tab for an Access

Bonus Content link next to this product, and follow that link to access

any available bonus materials. If you would like to be notified of

exclusive offers on new editions and updates, please check the box to

receive email from us.

http://IntelliTect.com/mark
http://informit.com/register

xxxiii

Acknowledgments

No book can be published by the author alone, and I am extremely

grateful for the multitude of people who helped me with this one. The

order in which I thank people is not significant, except for those who come

first. Given that this is now the sixth edition of the book, you can only

imagine how much my family has sacrificed to allow me to write over the

last 10 years (not to mention the books before that). Benjamin, Hanna, and

Abigail often had a Daddy distracted by this book, but Elisabeth suffered

even more so. She was often left to take care of things, holding the family’s

world together on her own. (While on vacation in 2017, I spent days indoors

writing while they would much have preferred to go to the beach.) A huge

sorry and ginormous Thank You!

Over the years, many technical editors reviewed each chapter in minute

detail to ensure technical accuracy. I was often amazed by the subtle errors

these folks still managed to catch: Paul Bramsman, Kody Brown, Ian Davis,

Doug Dechow, Gerard Frantz, Thomas Heavey, Anson Horton, Brian

Jones, Shane Kercheval, Angelika Langer, Eric Lippert, John Michaelis,

Jason Morse, Nicholas Paldino, Jon Skeet, Michael Stokesbary, Robert

Stokesbary, John Timney, Neal Lundby, Andrew Comb, Jason Peterson,

Andrew Scott, Dan Haley, Phil Spokas (who helped with portions of the

writing in Chapter 22), and Kevin Bost.

Or course, Eric Lippert is no less than amazing. His grasp of C# is truly

astounding, and I am very appreciative of his edits, especially when he

pushed for perfection in terminology. His improvements to the C# 3.0

chapters were incredibly significant, and in the second edition my only

 x x xiv Acknowledgments

regret was that I didn’t have him review all the chapters. However, that

regret is no longer. Eric painstakingly reviewed every Essential C# 4.0

chapter and even served as a contributing author for Essential C# 5.0 and

Essential C# 6.0. I am extremely grateful for his role as a technical editor for

Essential C# 7.0. Thanks, Eric! I can’t imagine anyone better for the job. You

deserve all the credit for raising the bar from good to great.

Like Eric and C#, there are fewer than a handful of people who know

.NET multithreading as well as Stephen Toub. Accordingly, Stephen

concentrated on the two rewritten (for a third time) multithreading

chapters and their new focus on async support in C# 5.0. Thanks, Stephen!

Thanks to everyone at Pearson/Addison-Wesley for their patience

in working with me in spite of my frequent focus on everything else

except the manuscript. Thanks to Trina Fletcher Macdonald, Anna Popick,

Julie Nahil, and Carol Lallier. Trina deserves a special medal for putting

up with the likes of me when she clearly was juggling myriad other more

important things as well. Also, Carol’s attention to detail was invaluable,

and her ability to improve the writing and red-line potential writing faux

pas (even catching them when they occurred in code listings) was so

appreciated.

xxxv

About the Author

Mark Michaelis is the founder of IntelliTect, a high-end software engi-

neering and consulting company where he serves as the chief technical

architect and trainer. Mark speaks at developer conferences and has written

numerous articles and books. Currently, he is the Essential .NET columnist

for MSDN Magazine.
Since 1996, Mark has been a Microsoft MVP for C#, Visual Studio Team

System, and the Windows SDK. In 2007, he was recognized as a Microsoft

Regional Director. He also serves on several Microsoft software design

review teams, including C# and VSTS.

Mark holds a bachelor of arts in philosophy from the University

of Illinois and a masters in computer science from the Illinois Institute of

Technology.

When not bonding with his computer, Mark is busy with his family

or playing racquetball (having suspended competing in Ironman back

in 2016). Mark lives in Spokane, Washington, with his wife, Elisabeth,

and three children, Benjamin, Hanna, and Abigail.

About the Technical Editor
Eric Lippert works on developer tools at Facebook; he is a former mem-

ber of the C# language design team at Microsoft. When not answering C#

questions on StackOverflow or editing programming books, Eric does his

best to keep his tiny sailboat upright. He lives in Seattle, Washington, with

his wife, Leah.

This page intentionally left blank

5

181

Methods and Parameters

From what you have learned about C# programming so far, you should

be able to write straightforward programs consisting of a list of state-

ments, similar to the way programs were created in the 1970s. Program-

ming has come a long way since the 1970s, however; as programs have

become more complex, new paradigms have emerged to manage that

complexity. Procedural or structured programming provides constructs by

which statements are grouped together to form units. Furthermore, with

structured programming, it is possible to pass data to a group of state-

ments and then have data returned once the statements have executed.

2

34

5

6 1

Methods and
Parameters

Calling
a Method

Namespace
Type Name
Scope
Method Name
Parameters
Method Return

Declaring
a Method

The using
Directive

Aliasing
Parameters

Value Parameters
Reference Parameters (ref)

Output Parameters (out)
Parameter Arrays (params)

Method
Overloading

Exception
Handling

 182 Chapter 5: Methods and Parameters

Besides the basics of calling and defining methods, this chapter covers

some slightly more advanced concepts—namely, recursion, method over-

loading, optional parameters, and named arguments. All method calls dis-

cussed so far and through the end of this chapter are static (a concept that

Chapter 6 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned

how to define a method. In that example, you defined the Main() method.

In this chapter, you will learn about method creation in more detail,

including the special C# syntaxes (ref and out) for parameters that pass

variables rather than values to methods. Lastly, we will touch on some

rudimentary error handling.

Calling a Method

B E G I N N E R T O P I C

What Is a Method?
Up to this point, all of the statements in the programs you have written

have appeared together in one grouping called a Main() method. When

programs become any more complex than those we have seen thus far, a

single method implementation quickly becomes difficult to maintain and

complex to read through and understand.

A method is a means of grouping together a sequence of statements

to perform a particular action or compute a particular result. This pro-

vides greater structure and organization for the statements that com-

prise a program. Consider, for example, a Main() method that counts the

lines of source code in a directory. Instead of having one large Main()

method, you can provide a shorter version that allows you to hone in

on the details of each method implementation as necessary. Listing 5.1

shows an example.

Listing 5.1: Grouping Statements into Methods

class LineCount
{
 static void Main()
 {
 int lineCount;
 string files;

 Calling a Method 183

 DisplayHelpText();
 files = GetFiles();
 lineCount = CountLines(files);
 DisplayLineCount(lineCount);
 }
 // ...
}

Instead of placing all of the statements into Main(), the listing breaks

them into groups called methods. The System.Console.WriteLine()

statements that display the help text have been moved to the

DisplayHelpText() method. All of the statements used to determine

which files to count appear in the GetFiles() method. To actually count the

files, the code calls the CountLines() method before displaying the results

using the DisplayLineCount() method. With a quick glance, it is easy to

review the code and gain an overview, because the method name describes

the purpose of the method.

Guidelines
DO give methods names that are verbs or verb phrases.

A method is always associated with a type—usually a class—that pro-

vides a means of grouping related methods together.

Methods can receive data via arguments that are supplied for their

parameters. Parameters are variables used for passing data from the

caller (the code containing the method call) to the invoked method

(Write(), WriteLine(), GetFiles(), CountLines(), and so on). In List-

ing 5.1, files and lineCount are examples of arguments passed to the

CountLines() and DisplayLineCount() methods via their parameters.

Methods can also return data to the caller via a return value (in Listing 5.1,

the GetFiles() method call has a return value that is assigned to files).

To begin, we reexamine System.Console.Write(), System.Console
.WriteLine(), and System.Console.ReadLine() from Chapter 1. This

time we look at them as examples of method calls in general instead of

looking at the specifics of printing and retrieving data from the console.

Listing 5.2 shows each of the three methods in use.

 184 Chapter 5: Methods and Parameters

Listing 5.2: A Simple Method Call

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 System.Console.WriteLine("Hey you!");

 System.Console.Write("Enter your first name: ");

 firstName = System.Console.ReadLine();
 System.Console.Write("Enter your last name: ");
 lastName = System.Console.ReadLine();
 System.Console.WriteLine(
 $"Your full name is { firstName } { lastName }.");
 }
}

The parts of the method call include the method name, argument list,

and returned value. A fully qualified method name includes a namespace,

type name, and method name; a period separates each part of a fully qual-

ified method name. As we will see, methods are often called with only a

part of their fully qualified name.

Namespaces
Namespaces are a categorization mechanism for grouping all types

related to a particular area of functionality. Namespaces are hierarchical

and can have arbitrarily many levels in the hierarchy, though namespaces

with more than half a dozen levels are rare. Typically the hierarchy begins

with a company name, and then a product name, and then the functional

area. For example, in Microsoft.Win32.Networking, the outermost

namespace is Microsoft, which contains an inner namespace Win32, which

in turn contains an even more deeply nested Networking namespace.

Namespaces are primarily used to organize types by area of func-

tionality so that they can be more easily found and understood. How-

ever, they can also be used to avoid type name collisions. For example,

the compiler can distinguish between two types with the name

Button as long as each type has a different namespace. Thus you

can disambiguate types System.Web.UI.WebControls.Button and

System.Windows.Controls.Button.

 Calling a Method 185

In Listing 5.2, the Console type is found within the System name-

space. The System namespace contains the types that enable the program-

mer to perform many fundamental programming activities. Almost all C#

programs use types within the System namespace. Table 5.1 provides a

listing of other common namespaces.

Table 5.1: Common Namespaces

Namespace Description

System Contains the fundamental types and
types for conversion between types,
mathematics, program invocation, and
environment management.

System.Collections.Generics Contains strongly typed collections that
use generics.

System.Data Contains types used for working with
databases.

System.Drawing Contains types for drawing to the dis-
play device and working with images.

System.IO Contains types for working with direc-
tories and manipulating, loading, and
saving files.

System.Linq Contains classes and interfaces for
querying data in collections using a
Language Integrated Query.

System.Text Contains types for working with strings
and various text encodings, and for con-
verting between those encodings.

System.Text.RegularExpressions Contains types for working with regular
expressions.

System.Threading Contains types for multithreaded
programming.

System.Threading.Tasks Contains types for task-based
asynchrony.

System.Web Contains types that enable browser-to-
server communication, generally over
HTTP. The functionality within this
namespace is used to support ASP.NET.

Begin 4.0

continues

 186 Chapter 5: Methods and Parameters

Namespace Description

System.Windows Contains types for creating rich user
interfaces starting with .NET 3.0 using a
UI technology called Windows Presen-
tation Framework (WPF) that leverages
Extensible Application Markup Lan-
guage (XAML) for declarative design of
the UI.

System.Xml Contains standards-based support for
XML processing.

It is not always necessary to provide the namespace when calling a

method. For example, if the call expression appears in a type in the same

namespace as the called method, the compiler can infer the namespace to

be the namespace that contains the type. Later in this chapter, you will see

how the using directive eliminates the need for a namespace qualifier as well.

Guidelines
DO use PascalCasing for namespace names.
CONSIDER organizing the directory hierarchy for source code files to
match the namespace hierarchy.

Type Name
Calls to static methods require the type name qualifier as long as the target

method is not within the same type.1 (As discussed later in the chapter, a

using static directive allows you to omit the type name.) For example,

a call expression of Console.WriteLine() found in the method

HelloWorld.Main() requires the type, Console, to be stated. However,

just as with the namespace, C# allows the omission of the type name from

a method call whenever the method is a member of the type containing

the call expression. (Examples of method calls such as this appear in List-

ing 5.4.) The type name is unnecessary in such cases because the compiler

 1. Or base class.

End 4.0

Table 5.1: Common Namespaces (continued)

 Calling a Method 187

infers the type from the location of the call. If the compiler can make no

such inference, the name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their

associated data. For example, Console is the type that contains the Write(),

WriteLine(), and ReadLine() methods (among others). All of these methods

are in the same group because they belong to the Console type.

Scope
In the previous chapter, you learned that the scope of a program element is

the region of text in which it can be referred to by its unqualified name. A

call that appears inside a type declaration to a method declared in that type

does not require the type qualifier because the method is in scope throughout

its containing type. Similarly, a type is in scope throughout the namespace

that declares it; therefore, a method call that appears in a type in a particular

namespace need not specify that namespace in the method call name.

Method Name
Every method call contains a method name, which might or might not be

qualified with a namespace and type name, as we have discussed. After

the method name comes the argument list; the argument list is a parenthe-

sized, comma-separated list of the values that correspond to the parameters

of the method.

Parameters and Arguments
A method can take any number of parameters, and each parameter is of

a specific data type. The values that the caller supplies for parameters are

called the arguments; every argument must correspond to a particular

parameter. For example, the following method call has three arguments:

System.IO.File.Copy(
 oldFileName, newFileName, false)

The method is found on the class File, which is located in the namespace

System.IO. It is declared to have three parameters, with the first and

second being of type string and the third being of type bool. In this exam-

ple, we use variables (oldFileName and newFileName) of type string for

the old and new filenames, and then specify false to indicate that the

copy should fail if the new filename already exists.

 188 Chapter 5: Methods and Parameters

Method Return Values
In contrast to System.Console.WriteLine(), the method call System
.Console.ReadLine() in Listing 5.2 does not have any arguments because

the method is declared to take no parameters. However, this method happens

to have a method return value. The method return value is a means

of transferring results from a called method back to the caller. Because

System.Console.ReadLine() has a return value, it is possible to assign

the return value to the variable firstName. In addition, it is possible to

pass this method return value itself as an argument to another method

call, as shown in Listing 5.3.

Listing 5.3: Passing a Method Return Value as an Argument to Another Method Call

class Program
{
 static void Main()
 {
 System.Console.Write("Enter your first name: ");
 System.Console.WriteLine("Hello {0}!",
 System.Console.ReadLine());
 }
}

Instead of assigning the returned value to a variable and then using that

variable as an argument to the call to System.Console.WriteLine(), List-

ing 5.3 calls the System.Console.ReadLine() method within the call to

System.Console.WriteLine(). At execution time, the System.Console
.ReadLine() method executes first, and its return value is passed directly

into the System.Console.WriteLine() method, rather than into a variable.

Not all methods return data. Both versions of System.Console.Write()

and System.Console.WriteLine() are examples of such methods. As

you will see shortly, these methods specify a return type of void, just as

the HelloWorld declaration of Main returned void.

Statement versus Method Call
Listing 5.3 provides a demonstration of the difference between

a statement and a method call. Although System.Console
.WriteLine("Hello {0}!", System.Console.ReadLine()); is a single

statement, it contains two method calls. A statement often contains one

or more expressions, and in this example, two of those expressions are

method calls. Therefore, method calls form parts of statements.

 Declaring a Method 189

Although coding multiple method calls in a single statement often

reduces the amount of code, it does not necessarily increase the readability

and seldom offers a significant performance advantage. Developers should

favor readability over brevity.

NOTE
In general, developers should favor readability over brevity. Readability

is critical to writing code that is self-documenting and therefore more

maintainable over time.

Declaring a Method
This section expands on the explanation of declaring a method to include

parameters or a return type. Listing 5.4 contains examples of these concepts,

and Output 5.1 shows the results.

Listing 5.4: Declaring a Method

class IntroducingMethods
{
 public static void Main()
 {
 string firstName;
 string lastName;
 string fullName;
 string initials;

 System.Console.WriteLine("Hey you!");

 firstName = GetUserInput("Enter your first name: ");
 lastName = GetUserInput("Enter your last name: ");

 fullName = GetFullName(firstName, lastName);
 initials = GetInitials(firstName, lastName);
 DisplayGreeting(fullName, initials);
 }

 static string GetUserInput(string prompt)
 {
 System.Console.Write(prompt);
 return System.Console.ReadLine();
 }

 stat ic string GetFullName(// C# 6.0 expression-bodied method
 string firstName, string lastName) =>
 $"{ firstName } { lastName }";

Begin 6.0

 190 Chapter 5: Methods and Parameters

 static void DisplayGreeting(string fullName, string initials)
 {
 System.Console.WriteLine(
 $"Hello { fullName }! Your initials are { initials }");
 return;
 }

 static string GetInitials(string firstName, string lastName)
 {
 return $"{ firstName[0] }. { lastName[0] }.";
 }
}

Output 5.1

Hey you!
Enter your first name: InigoInigo
Enter your last name: MontoyaMontoya
Your full name is Inigo Montoya.

Five methods are declared in Listing 5.4. From Main() the code calls

GetUserInput(), followed by a call to GetFullName() and GetInitials().

All of the last three methods return a value and take arguments. In addi-

tion, the listing calls DisplayGreeting(), which doesn’t return any data.

No method in C# can exist outside the confines of an enclosing type; in this

case, the enclosing type is the IntroducingMethods class. Even the Main

method examined in Chapter 1 must be within a type.

Language Contrast: C++/Visual Basic—Global Methods
C# provides no global method support; everything must appear within a type declara-
tion. This is why the Main() method was marked as static—the C# equivalent of a C++
global and Visual Basic “shared” method.

B E G I N N E R T O P I C

Refactoring into Methods
Moving a set of statements into a method instead of leaving them inline

within a larger method is a form of refactoring. Refactoring reduces code

duplication, because you can call the method from multiple places instead

of duplicating the code. Refactoring also increases code readability. As part

End 6.0

 Declaring a Method 191

of the coding process, it is a best practice to continually review your code

and look for opportunities to refactor. This involves looking for blocks of

code that are difficult to understand at a glance and moving them into a

method with a name that clearly defines the code’s behavior. This practice

is often preferred over commenting a block of code, because the method

name serves to describe what the implementation does.

For example, the Main() method that is shown in Listing 5.4 results in

the same behavior as does the Main() method that is shown in Listing 1.16

in Chapter 1. Perhaps even more noteworthy is that although both listings

are trivial to follow, Listing 5.4 is easier to grasp at a glance by just view-

ing the Main() method and not worrying about the details of each called

method’s implementation.

In earlier versions of Visual Studio, you can select a group of statements,

right-click on it, and then select the Extract Method refactoring from the

Refactoring section of the context menu to automatically move a group of

statements to a new method. In Visual Studio 2015, the refactorings are

available from the Quick Actions section of the context menu.

Formal Parameter Declaration
Consider the declarations of the DisplayGreeting(), GetFullName(),

and the GetInitials() methods. The text that appears between the

parentheses of a method declaration is the formal parameter list. (As we

will see when we discuss generics, methods may also have a type param-

eter list. When it is clear from context which kind of parameters we are

discussing, we simply refer to them as parameters in a parameter list.) Each

parameter in the parameter list includes the type of the parameter along

with the parameter name. A comma separates each parameter in the list.

Behaviorally, most parameters are virtually identical to local variables, and

the naming convention of parameters follows accordingly. Therefore, parameter

names use camelCase. Also, it is not possible to declare a local variable (a vari-

able declared inside a method) with the same name as a parameter of the con-

taining method, because this would create two local variables of the same name.

Guidelines
DO use camelCasing for parameter names.

 192 Chapter 5: Methods and Parameters

Method Return Type Declaration
In addition to GetUserInput(), GetFullName(), and the GetInitials()

methods requiring parameters to be specified, each of these methods also

includes a method return type. You can tell that a method returns a value

because a data type appears immediately before the method name in the

method declaration. Each of these method examples specifies a string

return type. Unlike with parameters, of which there can be any number,

only one method return type is allowable.

As with GetUserInput() and GetInitials(), methods with a return

type almost always contain one or more return statements that return con-

trol to the caller. A return statement consists of the return keyword

followed by an expression that computes the value the method is return-

ing. For example, the GetInitials() method’s return statement is

return $"{ firstName[0] }. { lastName[0] }.";. The expression (an

interpolated string in this case) following the return keyword must be

compatible with the stated return type of the method.

If a method has a return type, the block of statements that makes up

the body of the method must have an unreachable end point. That is, there

must be no way for control to “fall off the end” of a method without it

returning a value. Often the easiest way to ensure that this condition is

met is to make the last statement of the method a return statement. How-

ever, return statements can appear in locations other than at the end of

a method implementation. For example, an if or switch statement in a

method implementation could include a return statement within it; see

Listing 5.5 for an example.

Listing 5.5: A return Statement before the End of a Method

class Program
{
 static bool MyMethod()
 {
 string command = ObtainCommand();
 switch(command)
 {
 case "quit":
 return false;
 // ... omitted, other cases
 default:
 return true;
 }
 }
}

 Declaring a Method 193

(Note that a return statement transfers control out of the switch, so no

break statement is required to prevent illegal fall-through in a switch sec-

tion that ends with a return statement.)

In Listing 5.5, the last statement in the method is not a return state-

ment; it is a switch statement. However, the compiler can deduce that

every possible code path through the method results in a return, so that the

end point of the method is not reachable. Thus this method is legal even

though it does not end with a return statement.

If particular code paths include unreachable statements following the

return, the compiler will issue a warning that indicates the additional

statements will never execute.

Though C# allows a method to have multiple return statements, code

is generally more readable and easier to maintain if there is a single exit

location rather than multiple returns sprinkled through various code

paths of the method.

Specifying void as a return type indicates that there is no return value

from the method. As a result, a call to the method may not be assigned

to a variable or used as a parameter type at the call site. A void method

call may be used only as a statement. Furthermore, within the body of the

method the return statement becomes optional, and when it is specified,

there must be no value following the return keyword. For example, the

return of Main() in Listing 5.4 is void, and there is no return statement

within the method. However, DisplayGreeting() includes an (optional)

return statement that is not followed by any returned result.

Although, technically, a method can have only one return type, the

return type could be a tuple. As a result, starting with C# 7.0, it is possible

to return multiple values packaged as a tuple using C# tuple syntax. For

example, you could declare a GetName() method, as shown in Listing 5.6.

Listing 5.6: Returning Multiple Values Using a Tuple

class Program
{
 static string GetUserInput(string prompt)
 {
 System.Console.Write(prompt);
 return System.Console.ReadLine();
 }
 static (string First, string Last) GetName()
 {
 string firstName, lastName;
 firstName = GetUserInput("Enter your first name: ");

Begin 7.0

 194 Chapter 5: Methods and Parameters

 lastName = GetUserInput("Enter your last name: ");
 return (firstName, lastName);
 }
 static public void Main()
 {
 (string First, string Last) name = GetName();
 System.Console.WriteLine($"Hello { name.First } { name.Last }!");
 }
}

Technically, of course, we are still returning only one data type, a

ValueTuple<string, string>; however, effectively, you can return any

(preferably reasonable) number you like.

Expression Bodied Methods
To support the simplest of method declarations without the formality of a

method body, C# 6.0 introduced expression bodied methods, which are

declared using an expression rather than a full method body. Listing 5.4’s

GetFullName() method provides an example of the expression bodied method:

static string GetFullName(string firstName, string lastName) =>
 $"{ firstName } { lastName }";

In place of the curly brackets typical of a method body, an expression bodied

method uses the “goes to” operator (fully introduced in Chapter 13), for

which the resulting data type must match the return type of the method. In

other words, even though there is no explicit return statement in the expres-

sion bodied method implementation, it is still necessary that the return type

from the expression match the method declaration’s return type.

Expression bodied methods are syntactic shortcuts to the fuller method

body declaration. As such, their use should be limited to the simplest of

method implementations—generally expressible on a single line.

Language Contrast: C++—Header Files
Unlike in C++, C# classes never separate the implementation from the declaration. In C#,
there is no header (.h) file or implementation (.cpp) file. Instead, declaration and imple-
mentation appear together in the same file. (C# does support an advanced feature called
partial methods, in which the method’s defining declaration is separate from its imple-
mentation, but for the purposes of this chapter, we consider only nonpartial methods.)
The lack of separate declaration and implementation in C# removes the requirement to
maintain redundant declaration information in two places found in languages that have
separate header and implementation files, such as C++.

End 7.0

 The using Directive 195

B E G I N N E R T O P I C

Namespaces
As described earlier, namespaces are an organizational mechanism for

categorizing and grouping together related types. Developers can dis-

cover related types by examining other types within the same namespace

as a familiar type. Additionally, through namespaces, two or more types

may have the same name as long as they are disambiguated by different

namespaces.

The using Directive
Fully qualified namespace names can become quite long and unwieldy. It

is possible, however, to import all the types from one or more namespaces

into a file so that they can be used without full qualification. To achieve

this, the C# programmer includes a using directive, generally at the top of

the file. For example, in Listing 5.7, Console is not prefixed with System.

The namespace may be omitted because of the using System directive

that appears at the top of the listing.

Listing 5.7: using Directive Example

// The using directive imports all types from the
// specified namespace into the entire file
using System;

class HelloWorld
{
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above
 Console.WriteLine("Hello, my name is Inigo Montoya");
 }
}

The results of Listing 5.7 appear in Output 5.2.

Output 5.2

Hello, my name is Inigo Montoya

 196 Chapter 5: Methods and Parameters

A using directive such as using System does not enable you to

omit System from a type declared within a child namespace of System.

For example, if your code accessed the StringBuilder type from the

System.Text namespace, you would have to either include an additional

using System.Text; directive or fully qualify the type as System.Text
.StringBuilder, not just Text.StringBuilder. In short, a using direc-

tive does not import types from any nested namespaces. Nested name-

spaces, which are identified by the period in the namespace, always need

to be imported explicitly.

Language Contrast: Java—Wildcards in import Directive
Java allows for importing namespaces using a wildcard such as the following:

import javax.swing.*;

In contrast, C# does not support a wildcard using directive but instead requires
each namespace to be imported explicitly.

Language Contrast: Visual Basic .NET—Project Scope
Imports Directive
Unlike C#, Visual Basic .NET supports the ability to specify the using directive equiv-
alent, Imports, for an entire project rather than for just a specific file. In other words,
Visual Basic .NET provides a command-line means of the using directive that will span
an entire compilation.

Frequent use of types within a particular namespace implies that the

addition of a using directive for that namespace is a good idea, instead

of fully qualifying all types within the namespace. Accordingly, almost

all C# files include the using System directive at the top. Throughout the

remainder of this book, code listings often omit the using System direc-

tive. Other namespace directives are included explicitly, however.

One interesting effect of the using System directive is that the string

data type can be identified with varying case: String or string. The for-

mer version relies on the using System directive and the latter uses the

string keyword. Both are valid C# references to the System.String data

 The using Directive 197

type, and the resultant Common Intermediate Language (CIL) code is

unaffected by which version is chosen.2

A D V A N C E D T O P I C

Nested using Directives
Not only can you have using directives at the top of a file, but you also

can include them at the top of a namespace declaration. For example, if a

new namespace, EssentialCSharp, were declared, it would be possible

to add a using declarative at the top of the namespace declaration (see

Listing 5.8).

Listing 5.8: Specifying the using Directive inside a Namespace Declaration

namespace EssentialCSharp
{
 using System;

 class HelloWorld
 {
 static void Main()
 {
 // No need to qualify Console with System
 // because of the using directive above
 Console.WriteLine("Hello, my name is Inigo Montoya");
 }
 }
}

The results of Listing 5.8 appear in Output 5.3.

Output 5.3

Hello, my name is Inigo Montoya

The difference between placing the using directive at the top of a file

and placing it at the top of a namespace declaration is that the directive is

active only within the namespace declaration. If the code includes a new

 2. I prefer the string keyword, but whichever representation a programmer selects, the

code within a project ideally should be consistent.

 198 Chapter 5: Methods and Parameters

namespace declaration above or below the EssentialCSharp declaration,

the using System directive within a different namespace would not be

active. Code seldom is written this way, especially given the standard

practice of providing a single type declaration per file.

using static Directive
The using directive allows you to abbreviate a type name by omitting the

namespace portion of the name—such that just the type name can be speci-

fied for any type within the stated namespace. In contrast, the using static

directive allows you to omit both the namespace and the type name

from any member of the stated type. A using static System.Console

directive, for example, allows you to specify WriteLine() rather than

the fully qualified method name of System.Console.WriteLine().

Continuing with this example, we can update Listing 5.2 to leverage the

using static System.Console directive to create Listing 5.9.

Listing 5.9: using static Directive

using static System.Console;

class HeyYou
{
 static void Main()
 {
 string firstName;
 string lastName;

 WriteLine("Hey you!");

 Write("Enter your first name: ");

 firstName = ReadLine();
 Write("Enter your last name: ");
 lastName = ReadLine();
 WriteLine(
 $"Your full name is { firstName } { lastName }.");
 }
}

In this case, there is no loss of readability of the code: WriteLine(),

Write(), and ReadLine() all clearly relate to a console directive. In fact,

one could argue that the resulting code is simpler and therefore clearer

than before.

Begin 6.0

 The using Directive 199

However, sometimes this is not the case. For example, if your code

uses classes that have overlapping behavior names, such as an Exists()

method on a file and an Exists() method on a directory, then perhaps a

using static directive would reduce clarity when you invoke Exists().

Similarly, if the class you were writing had its own members with overlap-

ping behavior names—for example, Display() and Write()—then perhaps

clarity would be lost to the reader.

This ambiguity would not be allowed by the compiler. If two members

with the same signature were available (through either using static

directives or separately declared members), any invocation of them that

was ambiguous would result in a compile error.

Aliasing
The using directive also allows aliasing a namespace or type. An alias

is an alternative name that you can use within the text to which the

using directive applies. The two most common reasons for aliasing

are to disambiguate two types that have the same name and to abbreviate

a long name. In Listing 5.10, for example, the CountDownTimer alias is

declared as a means of referring to the type System.Timers.Timer. Sim-

ply adding a using System.Timers directive will not sufficiently enable

the code to avoid fully qualifying the Timer type. The reason is that

System.Threading also includes a type called Timer; therefore, using just

Timer within the code will be ambiguous.

Listing 5.10: Declaring a Type Alias

using System;
using System.Threading;
using CountDownTimer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {
 CountDownTimer timer;

 // ...
 }
}

Listing 5.10 uses an entirely new name, CountDownTimer, as the alias. It

is possible, however, to specify the alias as Timer, as shown in Listing 5.11.

End 6.0

 200 Chapter 5: Methods and Parameters

Listing 5.11: Declaring a Type Alias with the Same Name

using System;
using System.Threading;

// Declare alias Timer to refer to System.Timers.Timer to
// avoid code ambiguity with System.Threading.Timer
using Timer = System.Timers.Timer;

class HelloWorld
{
 static void Main()
 {
 Timer timer;

 // ...
 }
}

Because of the alias directive, “Timer” is not an ambiguous reference. Further-

more, to refer to the System.Threading.Timer type, you will have to

either qualify the type or define a different alias.

Returns and Parameters on Main()
So far, declaration of an executable’s Main() method has been the simplest

declaration possible. You have not included any parameters or non-void

return type in your Main() method declarations. However, C# supports the

ability to retrieve the command-line arguments when executing a program,

and it is possible to return a status indicator from the Main() method.

The runtime passes the command-line arguments to Main() using a

single string array parameter. All you need to do to retrieve the parame-

ters is to access the array, as demonstrated in Listing 5.12. The purpose of this

program is to download a file whose location is given by a URL. The first

command-line argument identifies the URL, and the optional second argu-

ment is the filename to which to save the file. The listing begins with a switch

statement that evaluates the number of parameters (args.Length) as follows:

 1. If there are not two parameters, display an error indicating that it is

necessary to provide the URL and filename.

 2. The presence of two arguments indicates the user has provided both

the URL of the resource and the download target filename.

 Returns and Parameters on Main() 201

Listing 5.12: Passing Command-Line Arguments to Main

using System;
using System.Net;

class Program
{
 static int Main(string[] args)
 {
 int result;
 string targetFileName;
 string url;
 switch (args.Length)
 {
 default:
 // Exactly two arguments must be specified; give an error
 Console.WriteLine(
 "ERROR: You must specify the "
 + "URL and the file name");
 targetFileName = null;
 url = null;
 break;
 case 2:
 url = args[0];
 targetFileName = args[1];
 break;
 }

 if (targetFileName != null && url != null)
 {
 WebClient webClient = new WebClient();
 webClient.DownloadFile(url, targetFileName);
 result = 0;
 }
 else
 {
 Console.WriteLine(
 "Usage: Downloader.exe <URL> <TargetFileName>");
 result = 1;
 }
 return result;
 }

}

The results of Listing 5.12 appear in Output 5.4.

Output 5.4

>Downloader.exe
ERROR: You must specify the URL to be downloaded
Downloader.exe <URL> <TargetFileName>

 202 Chapter 5: Methods and Parameters

If you were successful in calculating the target filename, you would

use it to save the downloaded file. Otherwise, you would display the help

text. The Main() method also returns an int rather than a void. This is

optional for a Main() declaration, but if it is used, the program can return

a status code to a caller (such as a script or a batch file). By convention, a

return other than zero indicates an error.

Although all command-line arguments can be passed to Main() via

an array of strings, sometimes it is convenient to access the arguments

from inside a method other than Main(). The System.Environment
.GetCommandLineArgs() method returns the command-line arguments

array in the same form that Main(string[] args) passes the arguments into

Main().

A D V A N C E D T O P I C

Disambiguate Multiple Main() Methods
If a program includes two classes with Main() methods, it is possible to

specify on the command line which class to use for the Main() declara-

tion. csc.exe includes an /m option to specify the fully qualified class

name of Main().

B E G I N N E R T O P I C

Call Stack and Call Site
As code executes, methods call more methods, which in turn call addi-

tional methods, and so on. In the simple case of Listing 5.4, Main() calls

GetUserInput(), which in turn calls System.Console.ReadLine(),

which in turn calls even more methods internally. Every time a new

method is invoked, the runtime creates an activation frame that contains

information about the arguments passed to the new call, the local variables

of the new call, and information about where control should resume when

the new method returns. The set of calls within calls within calls, and so

on, produces a series of activation frames that is termed the call stack.3

 3. Except for async or iterator methods, which move their activator records onto the heap.

 Advanced Method Parameters 203

As program complexity increases, the call stack generally gets larger and

larger as each method calls another method. As calls complete, however,

the call stack shrinks until another method is invoked. The process of

removing activation frames from the call stack is termed stack unwinding.

Stack unwinding always occurs in the reverse order of the method calls.

When the method completes, execution returns to the call site—that is, the

location from which the method was invoked.

Advanced Method Parameters
So far this chapter’s examples have returned data via the method return

value. This section demonstrates how methods can return data via their

method parameters and how a method may take a variable number of

arguments.

Value Parameters
Arguments to method calls are usually passed by value, which means the

value of the argument expression is copied into the target parameter. For

example, in Listing 5.13, the value of each variable that Main() uses when

calling Combine() will be copied into the parameters of the Combine()

method. Output 5.5 shows the results of this listing.

Listing 5.13: Passing Variables by Value

class Program
{
 static void Main()
 {
 // ...
 string fullName;
 string driveLetter = "C:";
 string folderPath = "Data";
 string fileName = "index.html";

 fullName = Combine(driveLetter, folderPath, fileName);

 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(
 string driveLetter, string folderPath, string fileName)

 204 Chapter 5: Methods and Parameters

 {
 string path;
 path = string.Format("{1}{0}{2}{0}{3}",
 System.IO.Path.DirectorySeparatorChar,
 driveLetter, folderPath, fileName);
 return path;
 }
}

Output 5.5

C:\Data\index.html

Even if the Combine() method assigns null to driveLetter, folderPath,

and fileName before returning, the corresponding variables within

Main() will maintain their original values because the variables are

copied when calling a method. When the call stack unwinds at the end of

a call, the copied data is thrown away.

B E G I N N E R T O P I C

Matching Caller Variables with Parameter Names
In Listing 5.13, the variable names in the caller exactly matched the param-

eter names in the called method. This matching is provided simply for

readability purposes; whether names match is entirely irrelevant to the

behavior of the method call. The parameters of the called method and the

local variables of the calling method are found in different declaration

spaces and have nothing to do with each other.

A D V A N C E D T O P I C

Reference Types versus Value Types
For the purposes of this section, it is inconsequential whether the param-

eter passed is a value type or a reference type. Rather, the important issue

is whether the called method can write a value into the caller’s original

variable. Since a copy of the caller variable’s value is made, the caller’s vari-

able cannot be reassigned. Nevertheless, it is helpful to understand the dif-

ference between a variable that contains a value type and a variable that

contains a reference type.

 Advanced Method Parameters 205

The value of a reference type variable is, as the name implies, a reference to

the location where the data associated with the object is stored. How the run-

time chooses to represent the value of a reference type variable is an imple-

mentation detail of the runtime; typically it is represented as the address of

the memory location in which the object’s data is stored, but it need not be.

If a reference type variable is passed by value, the reference itself is

copied from the caller to the method parameter. As a result, the target

method cannot update the caller variable’s value but it may update the

data referred to by the reference.

Alternatively, if the method parameter is a value type, the value itself

is copied into the parameter, and changing the parameter in the called

method will not affect the original caller’s variable.

Reference Parameters (ref)
Consider Listing 5.14, which calls a function to swap two values, and Out-

put 5.6, which shows the results.

Listing 5.14: Passing Variables by Reference

class Program
{
 static void Main()
 {
 // ...
 string first = "hello";
 string second = "goodbye";
 Swap(ref first, ref second);

 Console.WriteLine(
 $@"first = ""{ first }"", second = ""{ second }""");
 // ...
 }

 static void Swap(ref string x, ref string y)
 {
 string temp = x;
 x = y;
 y = temp;
 }
}

Output 5.6

first = "goodbye", second = "hello"

 206 Chapter 5: Methods and Parameters

The values assigned to first and second are successfully switched.

To do this, the variables are passed by reference. The obvious difference

between the call to Swap() and Listing 5.13’s call to Combine() is the

inclusion of the keyword ref in front of the parameter’s data type. This

keyword changes the call such that the variables used as arguments are

passed by reference, so the called method can update the original caller’s

variables with new values.

When the called method specifies a parameter as ref, the caller is

required to supply a variable, not a value, as an argument and to place

ref in front of the variables passed. In so doing, the caller explicitly rec-

ognizes that the target method could reassign the values of the variables

associated with any ref parameters it receives. Furthermore, it is neces-

sary to initialize any local variables passed as ref because target methods

could read data from ref parameters without first assigning them. In List-

ing 5.14, for example, temp is assigned the value of first, assuming that

the variable passed in first was initialized by the caller. Effectively, a ref

parameter is an alias for the variable passed. In other words, it is essen-

tially giving a parameter name to an existing variable, rather than creating

a new variable and copying the value of the argument into it.

Output Parameters (out)
As mentioned earlier, a variable used as a ref parameter must be assigned

before it is passed to the called method, because the called method might

read from the variable. The “swap” example given previously must read

and write from both variables passed to it. However, it is often the case

that a method that takes a reference to a variable intends to write to the

variable but not to read from it. In such cases, clearly it could be safe to

pass an uninitialized local variable by reference.

To achieve this, code needs to decorate parameter types with the key-

word out. This is demonstrated in the TryGetPhoneButton() method in

Listing 5.15, which returns the phone button corresponding to a character.

Listing 5.15: Passing Variables Out Only

class ConvertToPhoneNumber
{
 static int Main(string[] args)
 {
 if(args.Length == 0)

Begin 7.0

 Advanced Method Parameters 207

 {
 Console.WriteLine(
 "ConvertToPhoneNumber.exe <phrase>");
 Console.WriteLine(
 "'_' indicates no standard phone button");
 return 1;
 }
 foreach(string word in args)
 {
 foreach(char character in word)
 {
 if(TryGetPhoneButton(character, out char button))
 {
 Console.Write(button);
 }
 else
 {
 Console.Write('_');
 }
 }
 }
 Console.WriteLine();
 return 0;
 }

 static bool TryGetPhoneButton(char character, out char button)
 {
 bool success = true;
 switch(char.ToLower(character))
 {
 case '1':
 button = '1';
 break;
 case '2': case 'a': case 'b': case 'c':
 button = '2';
 break;

 // ...

 case '-':
 button = '-';
 break;
 default:
 // Set the button to indicate an invalid value
 button = '_';
 success = false;
 break;
 }
 return success;
 }
}

7.0

 208 Chapter 5: Methods and Parameters

Output 5.7 shows the results of Listing 5.15.

Output 5.7

>ConvertToPhoneNumber.exe CSharpIsGood>ConvertToPhoneNumber.exe CSharpIsGood
274277474663

In this example, the TryGetPhoneButton() method returns true if

it can successfully determine the character’s corresponding phone but-

ton. The function also returns the corresponding button by using the

button parameter, which is decorated with out.

An out parameter is functionally identical to a ref parameter; the only

difference is which requirements the language enforces regarding how

the aliased variable is read from and written to. Whenever a parameter is

marked with out, the compiler checks that the parameter is set for all code

paths within the method that return normally (i.e., the code paths that do

not throw an exception). If, for example, the code does not assign button

a value in some code path, the compiler will issue an error indicating that

the code didn’t initialize button. Listing 5.15 assigns button to the under-

score character because even though it cannot determine the correct phone

button, it is still necessary to assign a value.

A common coding error when working with out parameters is

to forget to declare the out variable before you use it. Starting with

C# 7.0, it is possible to declare the out variable inline when invok-

ing the function. Listing 5.15 uses this feature with the statement

TryGetPhoneButton(character, out char button) without ever declaring

the button variable beforehand. Prior to C# 7.0, it would be necessary

to first declare the button variable and then invoke the function with

TryGetPhoneButton(character, out button).

Another C# 7.0 feature is the ability to discard an out parameter

entirely. If, for example, you simply wanted to know whether a char-

acter was a valid phone button but not actually return the numeric

value, you could discard the button parameter using an underscore:

TryGetPhoneButton(character, out _).

Prior to C# 7.0’s tuple syntax, a developer of a method might declare one

or more out parameters to get around the restriction that a method may

have only one return type; a method that needs to return two values can

do so by returning one value normally, as the return value of the method,

7.0

 Advanced Method Parameters 209

and a second value by writing it into an aliased variable passed as an out

parameter. Although this pattern is both common and legal, there are usu-

ally better ways to achieve that aim. For example, if you are considering

returning two or more values from a method and C# 7.0 is available, it is

likely preferable to use C# 7.0 tuple syntax. Prior to that, consider writing

two methods, one for each value, or still using the System.ValueTuple type

(which would require referencing the System.ValueTuple NuGet package)

but without C# 7.0 syntax.

NOTE
Each and every normal code path must result in the assignment of all

out parameters.

Read-Only Pass by Reference (in)
In C# 7.2, support was added for passing a value type by reference that

was read only. Rather than passing the value type to a function so that it

could be changed, read-only pass by reference was added so that the value

type could be passed by reference so that not only copy of the value type

occurred but, in addition, the invoked method could not change the value

type. In other words, the purpose of the feature is to reduce the memory

copied when passing a value while still identifying it as read only, thus

improving the performance. This syntax is to add an in modifier to the

parameter. For example:

int Method(in int number) { ... }

With the in modifier, any attempts to reassign number (number++, for

example) will result in a compile error indicating that number is read only.

Return by Reference
Another C# 7.0 addition is support for returning a reference to a variable.

Consider, for example, a function that returns the first pixel in an image

that is associated with red-eye, as shown in Listing 5.16.

Listing 5.16: ref Return and ref Local Declaration

// Returning a reference
public static ref byte FindFirstRedEyePixel(byte[] image)

Begin 7.2

End 7.2

7.0

 210 Chapter 5: Methods and Parameters

{
 // Do fancy image detection perhaps with machine learning
 for (int counter = 0; counter < image.Length; counter++)
 {
 if(image[counter] == (byte)ConsoleColor.Red)
 {
 return ref image[counter];
 }
 }
 throw new InvalidOperationException("No pixels are red.");
}
public static void Main()
{
 byte[] image = new byte[254];
 // Load image
 int index = new Random().Next(0, image.Length - 1);
 image[index] =
 (byte)ConsoleColor.Red;
 System.Console.WriteLine(
 $"image[{index}]={(ConsoleColor)image[index]}");
 // ...

 // Obtain a reference to the first red pixel
 ref byte redPixel = ref FindFirstRedEyePixel(image);
 // Update it to be Black
 redPixel = (byte)ConsoleColor.Black;
 System.Console.WriteLine(
 $"image[{index}]={(ConsoleColor)image[redPixel]}");
}

By returning a reference to the variable, the caller is then able to

update the pixel to a different color, as shown in the highlighted line of List-

ing 5.16. Checking for the update via the array shows that the value is

now black.

There are two important restrictions on return by reference—both due

to object lifetime: Object references shouldn’t be garbage collected while

they’re still referenced, and they shouldn’t consume memory when they

no longer have any references. To enforce these restrictions, you can only

return the following from a reference-returning function:

• References to fields or array elements

• Other reference-returning properties or functions

• References that were passed in as parameters to the by-reference-

returning function

7.0

 Advanced Method Parameters 211

For example, FindFirstRedEyePixel() returns a reference to an item in

the image array, which was a parameter to the function. Similarly, if the

image was stored as a field within the class, you could return the field by

reference:

byte[] _Image;
public ref byte[] Image { get { return ref _Image; } }

Second, ref locals are initialized to refer to a particular variable and can’t

be modified to refer to a different variable.

There are several return-by-reference characteristics of which to be

cognizant:

• If you’re returning a reference, you obviously must return it. This means,

therefore, that in the example in Listing 5.16, even if no red-eye pixel

exists, you still need to return a reference byte. The only workaround

would be to throw an exception. In contrast, the by-reference parame-

ter approach allows you to leave the parameter unchanged and return a

bool indicating success. In many cases, this might be preferable.

• When declaring a reference local variable, initialization is required.

This involves assigning it a ref return from a function or a reference

to a variable:

ref string text; // Error

• Although it’s possible in C# 7.0 to declare a reference local variable,

declaring a field of type ref isn’t allowed:

class Thing { ref string _Text; /* Error */ }

• You can’t declare a by-reference type for an auto-implemented

property:

class Thing { ref string Text { get;set; } /* Error */ }

• Properties that return a reference are allowed:

class Thing { string _Text = "Inigo Montoya";
ref string Text { get { return ref _Text; } } }

• A reference local variable can’t be initialized with a value (such as

null or a constant). It must be assigned from a by-reference-returning

member or a local variable, field, or array element:

ref int number = null; ref int number = 42; // ERROR
End 7.0

 212 Chapter 5: Methods and Parameters

Parameter Arrays (params)
In the examples so far, the number of arguments that must be passed has

been fixed by the number of parameters declared in the target method

declaration. However, sometimes it is convenient if the number of argu-

ments may vary. Consider the Combine() method from Listing 5.13. In that

method, you passed the drive letter, folder path, and filename. What if the

path had more than one folder, and the caller wanted the method to join

additional folders to form the full path? Perhaps the best option would be to

pass an array of strings for the folders. However, this would make the call-

ing code a little more complex, because it would be necessary to construct

an array to pass as an argument.

To make it easier on the callers of such a method, C# provides a key-

word that enables the number of arguments to vary in the calling code

instead of being set by the target method. Before we discuss the method

declaration, observe the calling code declared within Main(), as shown in

Listing 5.17.

Listing 5.17: Passing a Variable Parameter List

using System;
using System.IO;
class PathEx
{
 static void Main()
 {
 string fullName;

 // ...

 // Call Combine() with four arguments
 fullName = Combine(
 Directory.GetCurrentDirectory(),
 "bin", "config", "index.html");
 Console.WriteLine(fullName);

 // ...

 // Call Combine() with only three arguments
 fullName = Combine(
 Environment.SystemDirectory,
 "Temp", "index.html");
 Console.WriteLine(fullName);

 // ...

 Advanced Method Parameters 213

 // Call Combine() with an array
 fullName = Combine(
 new string[] {
 "C:\\", "Data",
 "HomeDir", "index.html"});
 Console.WriteLine(fullName);
 // ...
 }

 static string Combine(params string[] paths)
 {
 string result = string.Empty;
 foreach (string path in paths)
 {
 result = Path.Combine(result, path);
 }
 return result;
 }
}

Output 5.8 shows the results of Listing 5.17.

Output 5.8

C:\Data\mark\bin\config\index.html
C:\WINDOWS\system32\Temp\index.html
C:\Data\HomeDir\index.html

In the first call to Combine(), four arguments are specified. The second

call contains only three arguments. In the final call, a single argument

is passed using an array. In other words, the Combine() method takes a

variable number of arguments—presented either as any number of string

arguments separated by commas or as a single array of strings. The former

syntax is called the expanded form of the method call, and the latter form is

called the normal form.

To allow invocation using either form, the Combine() method does the

following:

 1. Places params immediately before the last parameter in the method

declaration

 2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each corre-

sponding argument as a member of the params array. In the Combine()

 214 Chapter 5: Methods and Parameters

method implementation, you iterate over the elements of the paths array

and call System.IO.Path.Combine(). This method automatically com-

bines the parts of the path, appropriately using the platform-specific

directory-separator character. Note that PathEx.Combine() is identical to

Path.Combine() except that PathEx.Combine() handles a variable num-

ber of parameters rather than simply two.

There are a few notable characteristics of the parameter array:

• The parameter array is not necessarily the only parameter on a method.

• The parameter array must be the last parameter in the method dec-

laration. Since only the last parameter may be a parameter array, a

method cannot have more than one parameter array.

• The caller can specify zero arguments that correspond to the param-

eter array parameter, which will result in an array of zero items being

passed as the parameter array.

• Parameter arrays are type-safe: The arguments given must be com-

patible with the element type of the parameter array.

• The caller can use an explicit array rather than a comma-separated

list of parameters. The resulting CIL code is identical.

• If the target method implementation requires a minimum number

of parameters, those parameters should appear explicitly within the

method declaration, forcing a compile error instead of relying on run-

time error handling if required parameters are missing. For example,

if you have a method that requires one or more integer arguments,

declare the method as int Max(int first, params int[] operands)

rather than as int Max(params int[] operands) so that at least

one value is passed to Max().

Using a parameter array, you can pass a variable number of arguments

of the same type into a method. The section “Method Overloading,” which

appears later in this chapter, discusses a means of supporting a variable

number of arguments that are not necessarily of the same type.

Guidelines
DO use parameter arrays when a method can handle any number—
including zero—of additional arguments.

 Recursion 215

Recursion
Calling a method recursively or implementing the method using

recursion refers to use of a method that calls itself. Recursion is some-

times the simplest way to implement a particular algorithm. Listing 5.18

counts the lines of all the C# source files (*.cs) in a directory and its

subdirectory.

Listing 5.18: Counting the Lines within *.cs Files, Given a Directory

using System.IO;

public static class LineCounter
{
 // Use the first argument as the directory
 // to search, or default to the current directory
 public static void Main(string[] args)
 {
 int totalLineCount = 0;
 string directory;
 if (args.Length > 0)
 {
 directory = args[0];
 }
 else
 {
 directory = Directory.GetCurrentDirectory();
 }
 totalLineCount = DirectoryCountLines(directory);
 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines(string directory)
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, "*.cs"))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

 216 Chapter 5: Methods and Parameters

 private static int CountLines(string file)
 {
 string line;
 int lineCount = 0;
 FileStream stream =
 new FileStream(file, FileMode.Open);4

 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();

 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 5.9 shows the results of Listing 5.18.

Output 5.9

104

The program begins by passing the first command-line argument to

DirectoryCountLines() or by using the current directory if no argument

is provided. This method first iterates through all the files in the current

directory and totals the source code lines for each file. After processing each

file in the directory, the code processes each subdirectory by passing the

subdirectory back into the DirectoryCountLines() method, rerunning the

method using the subdirectory. The same process is repeated recursively

through each subdirectory until no more directories remain to process.

Readers unfamiliar with recursion may find it confusing at first.

Regardless, it is often the simplest pattern to code, especially with hierar-

chical type data such as the filesystem. However, although it may be the

most readable approach, it is generally not the fastest implementation. If

 4. This code could be improved with a using statement, a construct that we have avoided

because it has not yet been introduced.

 Method Overloading 217

performance becomes an issue, developers should seek an alternative solu-

tion to a recursive implementation. The choice generally hinges on balanc-

ing readability with performance.

B E G I N N E R T O P I C

Infinite Recursion Error
A common programming error in recursive method implementations

appears in the form of a stack overflow during program execution. This

usually happens because of infinite recursion, in which the method con-

tinually calls back on itself, never reaching a point that triggers the end of

the recursion. It is a good practice for programmers to review any method

that uses recursion and to verify that the recursion calls are finite.

A common pattern for recursion using pseudocode is as follows:

M(x)
{
 if x is trivial
 return the result
 else
 a. Do some work to make the problem smaller
 b. Recursively call M to solve the smaller problem
 c. Compute the result based on a. and b.
 return the result
}

Things go wrong when this pattern is not followed. For example, if you

don’t make the problem smaller or if you don’t handle all possible “smallest”

cases, the recursion never terminates.

Method Overloading
Listing 5.18 called DirectoryCountLines(), which counted the lines of

*.cs files. However, if you want to count code in *.h/*.cpp files or in *.vb

files, DirectoryCountLines() will not work. Instead, you need a method

that takes the file extension but still keeps the existing method definition

so that it handles *.cs files by default.

All methods within a class must have a unique signature, and C#

defines uniqueness by variation in the method name, parameter data types,

or number of parameters. This does not include method return data

types; defining two methods that differ only in their return data types

 218 Chapter 5: Methods and Parameters

will cause a compile error. This is true even if the return type is two dif-

ferent tuples. Method overloading occurs when a class has two or more

methods with the same name and the parameter count and/or data types

vary between the overloaded methods.

NOTE
A method is considered unique as long as there is variation in the

method name, parameter data types, or number of parameters.

Method overloading is a type of operational polymorphism. Poly-

morphism occurs when the same logical operation takes on many

(“poly”) forms (“morphs”) because the data varies. Calling WriteLine()

and passing a format string along with some parameters is implemented

differently than calling WriteLine() and specifying an integer. How-

ever, logically, to the caller, the method takes care of writing the data,

and it is somewhat irrelevant how the internal implementation occurs.

Listing 5.19 provides an example, and Output 5.10 shows the results.

Listing 5.19: Counting the Lines within *.cs Files Using Overloading

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {
 totalLineCount =
 DirectoryCountLines(args[0], args[1]);
 }
 if (args.Length > 0)
 {
 totalLineCount = DirectoryCountLines(args[0]);
 }
 else
 {
 totalLineCount = DirectoryCountLines();
 }

 System.Console.WriteLine(totalLineCount);
 }

 Method Overloading 219

 static int DirectoryCountLines()
 {
 return DirectoryCountLines(
 Directory.GetCurrentDirectory());
 }

 static int DirectoryCountLines(string directory)
 {
 return DirectoryCountLines(directory, "*.cs");
 }

 static int DirectoryCountLines(
 string directory, string extension)
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

 private static int CountLines(string file)
 {
 int lineCount = 0;
 string line;
 FileStream stream =
 new FileStream(file, FileMode.Open);5

 StreamReader reader = new StreamReader(stream);
 line = reader.ReadLine();
 while(line != null)
 {
 if (line.Trim() != "")
 {
 lineCount++;
 }
 line = reader.ReadLine();
 }

 5. This code could be improved with a using statement, a construct that we have avoided

because it has not yet been introduced.

 220 Chapter 5: Methods and Parameters

 reader.Close(); // Automatically closes the stream
 return lineCount;
 }
}

Output 5.10

>LineCounter.exe .\ *.cs
28

The effect of method overloading is to provide optional ways to

call the method. As demonstrated inside Main(), you can call the

DirectoryCountLines() method with or without passing the directory

to search and the file extension.

Not ice that the parameterless implementat ion of

DirectoryCountLines() was changed to call the single-parameter version

(int DirectoryCountLines (string directory)). This is a common pat-

tern when implementing overloaded methods. The idea is that developers

implement only the core logic in one method, and all the other overloaded

methods will call that single method. If the core implementation changes,

it needs to be modified in only one location rather than within each imple-

mentation. This pattern is especially prevalent when using method over-

loading to enable optional parameters that do not have values determined at

compile time, so they cannot be specified using optional parameters.

NOTE
Placing the core functionality into a single method that all other over-

loading methods invoke means that you can make changes in imple-

mentation in just the core method, which the other methods will

automatically take advantage of.

Optional Parameters
Starting with C# 4.0, the language designers added support for optional

parameters. By allowing the association of a parameter with a constant

value as part of the method declaration, it is possible to call a method

without passing an argument for every parameter of the method (see

Listing 5.20).

Begin 4.0

 Optional Parameters 221

Listing 5.20: Methods with Optional Parameters

using System.IO;

public static class LineCounter
{
 public static void Main(string[] args)
 {
 int totalLineCount;

 if (args.Length > 1)
 {
 totalLineCount =
 DirectoryCountLines(args[0], args[1]);
 }
 if (args.Length > 0)
 {
 totalLineCount = DirectoryCountLines(args[0]);
 }
 else
 {
 totalLineCount = DirectoryCountLines();
 }

 System.Console.WriteLine(totalLineCount);
 }

 static int DirectoryCountLines()
 {
 // ...
 }

/*
 static int DirectoryCountLines(string directory)
 { ... }
*/

 static int DirectoryCountLines(
 string directory, string extension = "*.cs")
 {
 int lineCount = 0;
 foreach (string file in
 Directory.GetFiles(directory, extension))
 {
 lineCount += CountLines(file);
 }

 foreach (string subdirectory in
 Directory.GetDirectories(directory))
 {
 lineCount += DirectoryCountLines(subdirectory);
 }

 return lineCount;
 }

4.0

 222 Chapter 5: Methods and Parameters

 private static int CountLines(string file)
 {
 // ...
 }
}

In Listing 5.20, the DirectoryCountLines() method declaration with

a single parameter has been removed (commented out), but the call from

Main() (specifying one parameter) remains. When no extension parameter

is specified in the call, the value assigned to extension within the declara-

tion (*.cs in this case) is used. This allows the calling code to not specify

a value if desired, and it eliminates the additional overload that would be

required in C# 3.0 and earlier. Note that optional parameters must appear

after all required parameters (those that don’t have default values). Also,

the fact that the default value needs to be a constant, compile-time–resolved

value is fairly restrictive. You cannot, for example, declare a method like

DirectoryCountLines(
 string directory = Environment.CurrentDirectory,
 string extension = "*.cs")

because Environment.CurrentDirectory is not a constant. In contrast,

because "*.cs" is a constant, C# does allow it for the default value of an

optional parameter.

Guidelines
DO provide good defaults for all parameters where possible.
DO provide simple method overloads that have a small number of
required parameters.
CONSIDER organizing overloads from the simplest to the most
complex.

A second method call feature made available in C# 4.0 is the use of named

arguments. With named arguments, it is possible for the caller to explicitly

identify the name of the parameter to be assigned a value rather than relying

solely on parameter and argument order to correlate them (see Listing 5.21).

Listing 5.21: Specifying Parameters by Name

class Program
{

4.0

 Optional Parameters 223

 static void Main()
 {
 DisplayGreeting(
 firstName: "Inigo", lastName: "Montoya");
 }

 public static void DisplayGreeting(
 string firstName,
 string middleName = default(string),
 string lastName = default(string))
 {

 // ...

 }
}

In Listing 5.21, the call to DisplayGreeting() from within Main()

assigns a value to a parameter by name. Of the two optional parameters

(middleName and lastName), only lastName is given as an argument.

For cases where a method has lots of parameters and many of them are

optional (a common occurrence when accessing Microsoft COM librar-

ies), using the named argument syntax is certainly a convenience. How-

ever, along with the convenience comes an impact on the flexibility of the

method interface. In the past, parameter names could be changed with-

out causing C# code that invokes the method to no longer compile. With

the addition of named parameters, the parameter name becomes part

of the interface because changing the name would cause code that uses the

named parameter to no longer compile.

Guidelines
DO treat parameter names as part of the API, and avoid changing the
names if version compatibility between APIs is important.

For many experienced C# developers, this is a surprising restriction.

However, the restriction has been imposed as part of the Common Lan-

guage Specification ever since .NET 1.0. Moreover, Visual Basic has always

supported calling methods with named arguments. Therefore, library

developers should already be following the practice of not changing

parameter names to successfully interoperate with other .NET languages

4.0

 224 Chapter 5: Methods and Parameters

from version to version. In essence, C# 4.0 now imposes the same restric-

tion on changing parameter names that many other .NET languages

already require.

Given the combination of method overloading, optional parameters,

and named parameters, resolving which method to call becomes less obvi-

ous. A call is applicable (compatible) with a method if all parameters have

exactly one corresponding argument (either by name or by position) that is

type compatible, unless the parameter is optional (or is a parameter array).

Although this restricts the possible number of methods that will be called,

it doesn’t identify a unique method. To further distinguish which specific

method will be called, the compiler uses only explicitly identified param-

eters in the caller, ignoring all optional parameters that were not specified

at the caller. Therefore, if two methods are applicable because one of them

has an optional parameter, the compiler will resolve to the method without

the optional parameter.

A D V A N C E D T O P I C

Method Resolution
When the compiler must choose which of several applicable methods is the

best one for a particular call, the one with the most specific parameter types

is chosen. Assuming there are two applicable methods, each requiring an

implicit conversion from an argument to a parameter type, the method

whose parameter type is the more derived type will be used.

For example, a method that takes a double parameter will be chosen

over a method that takes an object parameter if the caller passes an argu-

ment of type int. This is because double is more specific than object.

There are objects that are not doubles, but there are no doubles that are not

objects, so double must be more specific.

If more than one method is applicable and no unique best method can

be determined, the compiler will issue an error indicating that the call is

ambiguous.

For example, given the following methods:

static void Method(object thing){}
static void Method(double thing){}
static void Method(long thing){}
static void Method(int thing){}

End 4.0

 Basic Error Handling with Exceptions 225

a call of the form Method(42) will resolve as Method(int thing) because

that is an exact match from the argument type to the parameter type. Were

that method to be removed, overload resolution would choose the long

version, because long is more specific than either double or object.

The C# specification includes additional rules governing implicit con-

version between byte, ushort, uint, ulong, and the other numeric types.

In general, though, it is better to use a cast to make the intended target

method more recognizable.

Basic Error Handling with Exceptions
This section examines how to handle error reporting via a mechanism

known as exception handling.

With exception handling, a method is able to pass information about an

error to a calling method without using a return value or explicitly provid-

ing any parameters to do so. Listing 5.22 contains a slight modification to

Listing 1.16, the HeyYou program from Chapter 1. Instead of requesting the

last name of the user, it prompts for the user’s age.

Listing 5.22: Converting a string to an int

using System;

class ExceptionHandling
{
 static void Main()
 {
 string firstName;
 string ageText;
 int age;

 Console.WriteLine("Hey you!");

 Console.Write("Enter your first name: ");
 firstName = System.Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();
 age = int.Parse(ageText);

 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }
}

 226 Chapter 5: Methods and Parameters

Output 5.11 shows the results of Listing 5.22.

Output 5.11

Hey you!
Enter your first name: InigoInigo
Enter your age: 4242
Hi Inigo! You are 504 months old.

The return value from System.Console.ReadLine() is stored in a

variable called ageText and is then passed to a method with the int data

type, called Parse(). This method is responsible for taking a string value

that represents a number and converting it to an int type.

B E G I N N E R T O P I C

42 as a String versus 42 as an Integer
C# requires that every non-null value have a well-defined type associated

with it. Therefore, not only the data value but also the type associated with

the data is important. A string value of 42, therefore, is distinctly different

from an integer value of 42. The string is composed of the two characters 4

and 2, whereas the int is the number 42.

Given the converted string, the final System.Console.WriteLine()

statement will print the age in months by multiplying the age value by 12.

But what happens if the user does not enter a valid integer string?

For example, what happens if the user enters “forty-two”? The Parse()

method cannot handle such a conversion. It expects the user to enter a

string that contains only digits. If the Parse() method is sent an invalid

value, it needs some way to report this fact back to the caller.

Trapping Errors
To indicate to the calling method that the parameter is invalid,

int.Parse() will throw an exception. Throwing an exception halts fur-

ther execution in the current control flow and jumps into the first code

block within the call stack that handles the exception.

Since you have not yet provided any such handling, the program

reports the exception to the user as an unhandled exception. Assuming

there is no registered debugger on the system, the error will appear on the

console with a message such as that shown in Output 5.12.

 Basic Error Handling with Exceptions 227

Output 5.12

Hey you!
Enter your first name: InigoInigo
Enter your age: forty-two forty-two

Unhandled Exception: System.FormatException: Input string was
 not in a correct format.
 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)
 at ExceptionHandling.Main()

Obviously, such an error is not particularly helpful. To fix this, it is nec-

essary to provide a mechanism that handles the error, perhaps reporting a

more meaningful error message back to the user.

This process is known as catching an exception. The syntax is demon-

strated in Listing 5.23, and the output appears in Output 5.13.

Listing 5.23: Catching an Exception

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }
 catch (FormatException)
 {
 Console.WriteLine(
 $"The age entered, { ageText }, is not valid.");
 result = 1;
 }

 228 Chapter 5: Methods and Parameters

 catch(Exception exception)
 {
 Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 result = 1;
 }
 finally
 {
 Console.WriteLine($"Goodbye { firstName }");
 }

 return result;
 }
}

Output 5.13

Enter your first name: InigoInigo
Enter your age: forty-twoforty-two
The age entered, forty-two, is not valid.
Goodbye Inigo

To begin, surround the code that could potentially throw an exception

(age = int.Parse()) with a try block. This block begins with the try

keyword. It indicates to the compiler that the developer is aware of the

possibility that the code within the block might throw an exception, and if

it does, one of the catch blocks will attempt to handle the exception.

One or more catch blocks (or the finally block) must appear immedi-

ately following a try block. The catch block header (see the Advanced Topic

titled “General Catch” later in this chapter) optionally allows you to specify

the data type of the exception, and as long as the data type matches the excep-

tion type, the catch block will execute. If, however, there is no appropriate

catch block, the exception will fall through and go unhandled as though there

were no exception handling. The resultant control flow appears in Figure 5.1.

For example, assume the user enters “forty-two” for the age in the pre-

vious example. In this case, int.Parse() will throw an exception of type

System.FormatException, and control will jump to the set of catch blocks.

(System.FormatException indicates that the string was not of the correct

format to be parsed appropriately.) Since the first catch block matches the

type of exception that int.Parse() threw, the code inside this block will

execute. If a statement within the try block threw a different exception,

 Basic Error Handling with Exceptions 229

the second catch block would execute because all exceptions are of type

System.Exception.

If there were no System.FormatException catch block, the System
.Exception catch block would execute even though int.Parse throws a

System.Console.Write ("Enter your first name: ");
 firstName = System.Console.ReadLine ();

System.Console.Write ("Enter your age: ");
 ageText = System.Console.ReadLine ();

Try Block:
 age = int.Parse (ageText);
 System.Console.WriteLine (
 "Hi {0}! You are {1} months old.",
 firstName, age*12);

FormatException Catch Block:
 System.Console.WriteLine (
 "The age entered \"{0}\" is not valid .",
 ageText);
 result = 1;

Exception Catch Block:
 System.Console.WriteLine (
 "Unexpected error: {0}",
 exception.Message);
 result = 1;

Finally Block:
 System.Console.WriteLine (
 "Goodbye {0}",
 firstName);

FormatException
exception thrown?

Exception
exception thrown?

Yes

Yes

No

No

Start

Finish

return result;

Figure 5.1: Exception-Handling Control Flow

 230 Chapter 5: Methods and Parameters

System.FormatException. This is because a System.FormatException

is also of type System.Exception. (System.FormatException is a more

specific implementation of the generic exception, System.Exception.)

The order in which you handle exceptions is significant. Catch blocks

must appear from most specific to least specific. The System.Exception data

type is least specific, so it appears last. System.FormatException appears

first because it is the most specific exception that Listing 5.23 handles.

Regardless of whether control leaves the try block normally or because

the code in the try block throws an exception, the finally block of code

will execute after control leaves the try-protected region. The purpose of

the finally block is to provide a location to place code that will execute

regardless of how the try/catch blocks exit—with or without an exception.

Finally blocks are useful for cleaning up resources regardless of whether

an exception is thrown. In fact, it is possible to have a try block with a

finally block and no catch block. The finally block executes regardless of

whether the try block throws an exception or whether a catch block is even

written to handle the exception. Listing 5.24 demonstrates the try/finally

block, and Output 5.14 shows the results.

Listing 5.24: Finally Block without a Catch Block

using System;

class ExceptionHandling
{
 static int Main()
 {
 string firstName;
 string ageText;
 int age;
 int result = 0;

 Console.Write("Enter your first name: ");
 firstName = Console.ReadLine();

 Console.Write("Enter your age: ");
 ageText = Console.ReadLine();

 try
 {
 age = int.Parse(ageText);
 Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
 }

 Basic Error Handling with Exceptions 231

 finally
 {
 Console.WriteLine($"Goodbye { firstName }");
 }

 return result;
 }
}

Output 5.14

Enter your first name: InigoInigo
Enter your age: forty-two forty-two

Unhandled Exception: System.FormatException: Input string was not in a
correct format.
 at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
 at System.Number.ParseInt32(String s, NumberStyles style,
NumberFormatInfo info)
 at ExceptionHandling.Main()
Goodbye Inigo

The attentive reader will have noticed something interesting here: The

runtime first reported the unhandled exception and then ran the finally

block. What explains this unusual behavior?

First, the behavior is legal because when an exception is unhandled, the

behavior of the runtime is implementation defined; any behavior is legal!

The runtime chooses this particular behavior because it knows before it

chooses to run the finally block that the exception will be unhandled; the

runtime has already examined all of the activation frames on the call stack

and determined that none of them is associated with a catch block that

matches the thrown exception.

As soon as the runtime determines that the exception will be unhan-

dled, it checks whether a debugger is installed on the machine, because

you might be the software developer who is analyzing this failure. If a

 debugger is present, it offers the user the chance to attach the debugger to

the process before the finally block runs. If there is no debugger installed

or if the user declines to debug the problem, the default behavior is to

print the unhandled exception to the console and then see if there are any

finally blocks that could run. Due to the “implementation-defined” nature

of the situation, the runtime is not required to run finally blocks in this

situation; an implementation may choose to do so or not.

 232 Chapter 5: Methods and Parameters

Guidelines
AVOID explicitly throwing exceptions from finally blocks. (Implicitly
thrown exceptions resulting from method calls are acceptable.)
DO favor try/finally and avoid using try/catch for cleanup code.
DO throw exceptions that describe which exceptional circumstance
occurred, and if possible, how to prevent it.

A D V A N C E D T O P I C

Exception Class Inheritance
Starting in C# 2.0, all objects thrown as exceptions derive from System
.Exception. (Objects thrown from other languages that do not

derive from System.Exception are automatically “wrapped” by an

object that does.) Therefore, they can be handled by the catch(System
.Exception exception) block. It is preferable, however, to

include a catch block that is specific to the most derived type (e.g.,

System.FormatException), because then it is possible to get the most

information about an exception and handle it less generically. In so doing,

the catch statement that uses the most derived type is able to handle the

exception type specifically, accessing data related to the exception thrown

and avoiding conditional logic to determine what type of exception

occurred.

This is why C# enforces the rule that catch blocks appear from most

derived to least derived. For example, a catch statement that catches System
.Exception cannot appear before a statement that catches System
.FormatException because System.FormatException derives from

System.Exception.

A method could throw many exception types. Table 5.2 lists some of

the more common ones within the framework.

Table 5.2: Common Exception Types

Exception Type Description

System.Exception The “base” exception from which all
other exceptions derive.

 Basic Error Handling with Exceptions 233

Exception Type Description

System.ArgumentException Indicates that one of the arguments
passed into the method is invalid.

System.ArgumentNullException Indicates that a particular argument
is null and that this is not a valid
value for that parameter.

System.ApplicationException To be avoided. The original idea was
that you might want to have one kind
of handling for system exceptions and
another for application exceptions,
which, although plausible, doesn’t
actually work well in the real world.

System.FormatException Indicates that the string format is not
valid for conversion.

System.IndexOutOfRangeException Indicates that an attempt was made
to access an array or other collection
element that does not exist.

System.InvalidCastException Indicates that an attempt to convert
from one data type to another was
not a valid conversion.

System.InvalidOperationException Indicates that an unexpected sce-
nario has occurred such that the
application is no longer in a valid
state of operation.

System.NotImplementedException Indicates that although the method
signature exists, it has not been fully
implemented.

System.NullReferenceException Thrown when code tries to find the
object referred to by a reference that
is null.

System.ArithmeticException Indicates an invalid math operation,
not including divide by zero.

System.ArrayTypeMismatchException Occurs when attempting to store an
element of the wrong type into an
array.

System.StackOverflowException Indicates an unexpectedly deep
recursion.

Table 5.2: Common Exception Types (continued)

 234 Chapter 5: Methods and Parameters

A D V A N C E D T O P I C

General Catch
It is possible to specify a catch block that takes no parameters, as shown in

Listing 5.25.

Listing 5.25: General Catch Blocks

...
try
{
 age = int.Parse(ageText);
 System.Console.WriteLine(
 $"Hi { firstName }! You are { age*12 } months old.");
}
catch (System.FormatException exception)
{
 System.Console.WriteLine(
 $"The age entered ,{ ageText }, is not valid.");
 result = 1;
}
catch(System.Exception exception)
{
 System.Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 result = 1;
}
catch
{
 System.Console.WriteLine("Unexpected error!");
 result = 1;
}
finally
{
 System.Console.WriteLine($"Goodbye { firstName }");
}
...

A catch block with no data type, called a general catch block, is equiva-

lent to specifying a catch block that takes an object data type—for instance,

catch(object exception){...}. Because all classes ultimately derive

from object, a catch block with no data type must appear last.

General catch blocks are rarely used because there is no way to capture

any information about the exception. In addition, C# doesn’t support the

ability to throw an exception of type object. (Only libraries written in

languages such as C++ allow exceptions of any type.)

 Basic Error Handling with Exceptions 235

The behavior starting in C# 2.0 varies slightly from the earlier C#

behavior. In C# 2.0, if a language allows throwing non-System.Exceptions,

the object of the thrown exception will be wrapped in a System
.Runtime.CompilerServices.RuntimeWrappedException that does

derive from System.Exception. Therefore, all exceptions, whether

derived from System.Exception or not, will propagate into C# assemblies

as if they were derived from System.Exception.

The result is that System.Exception catch blocks will catch all excep-

tions not caught by earlier blocks, and a general catch block, following a

System.Exception catch block, will never be invoked. Consequently,

following a System.Exception catch block with a general catch block in

C# 2.0 or later will result in a compiler warning indicating that the general

catch block will never execute.

Guidelines
AVOID general catch blocks and replace them with a catch of
System.ExceptionSystem.Exception.
AVOID catching exceptions for which the appropriate action is
unknown. It is better to let an exception go unhandled than to handle
it incorrectly.
AVOID catching and logging an exception before rethrowing it.
Instead, allow the exception to escape until it can be handled
appropriately.

Reporting Errors Using a throw Statement
C# allows developers to throw exceptions from their code, as demonstrated

in Listing 5.26 and Output 5.15.

Listing 5.26: Throwing an Exception

using System;
public class ThrowingExceptions
{
 public static void Main()
 {
 try
 {
 Console.WriteLine("Begin executing");

Begin 2.0

End 2.0

 236 Chapter 5: Methods and Parameters

 Console.WriteLine("Throw exception");
 throw new Exception("Arbitrary exception");
 Console.WriteLine("End executing");
 }
 catch(FormatException exception)
 {
 Console.WriteLine(
 "A FormateException was thrown");
 }
 catch(Exception exception)
 {
 Console.WriteLine(
 $"Unexpected error: { exception.Message }");
 }
 catch
 {
 Console.WriteLine("Unexpected error!");
 }

 Console.WriteLine(
 "Shutting down...");
 }
}

Output 5.15

Begin executing
Throw exception...
Unexpected error: Arbitrary exception
Shutting down...

As the arrows in Listing 5.26 depict, throwing an exception causes

execution to jump from where the exception is thrown into the first catch

block within the stack that is compatible with the thrown exception type.6

In this case, the second catch block handles the exception and writes out

an error message. In Listing 5.26, there is no finally block, so execution

falls through to the System.Console.WriteLine() statement following

the try/catch block.

To throw an exception, it is necessary to have an instance of an excep-

tion. Listing 5.26 creates an instance using the keyword new followed

by the type of the exception. Most exception types allow a message to be

generated as part of throwing the exception, so that when the exception

occurs, the message can be retrieved.

 6. Technically it could be caught by a compatible catch filter as well.

 Basic Error Handling with Exceptions 237

Sometimes a catch block will trap an exception but be unable to handle

it appropriately or fully. In these circumstances, a catch block can rethrow

the exception using the throw statement without specifying any exception,

as shown in Listing 5.27.

Listing 5.27: Rethrowing an Exception

...
 catch(Exception exception)
 {
 Console.WriteLine(
 $@"Rethrowing unexpected error: {
 exception.Message }");
 throw;
 }
...

In Listing 5.27, the throw statement is “empty” rather than specifying

that the exception referred to by the exception variable is to be thrown.

This illustrates a subtle difference: throw; preserves the call stack informa-

tion in the exception, whereas throw exception; replaces that information

with the current call stack information. For debugging purposes, it is usu-

ally better to know the original call stack.

Guidelines
DO prefer using an empty throw when catching and rethrowing an
exception so as to preserve the call stack.
DO report execution failures by throwing exceptions rather than
returning error codes.
DO NOT have public members that return exceptions as return values
or an outout parameter. Throw exceptions to indicate errors; do not use
them as return values to indicate errors.

Avoid Using Exception Handling to Deal with Expected Situations
Developers should make an effort to avoid throwing exceptions for

expected conditions or normal control flow. For example, developers

should not expect users to enter valid text when specifying their age.7

 7. In general, developers should expect their users to perform unexpected actions; in turn,

they should code defensively to handle “stupid user tricks.”

 238 Chapter 5: Methods and Parameters

Therefore, instead of relying on an exception to validate data entered by

the user, developers should provide a means of checking the data before

attempting the conversion. (Better yet, they should prevent the user from

entering invalid data in the first place.) Exceptions are designed specifi-

cally for tracking exceptional, unexpected, and potentially fatal situations.

Using them for an unintended purpose such as expected situations will

cause your code to be hard to read, understand, and maintain.

Additionally, like most languages, C# incurs a slight performance hit

when throwing an exception—taking microseconds compared to the

nanoseconds most operations take. This delay is generally not noticeable in

human time—except when the exception goes unhandled. For example, when

Listing 5.22 is executed and the user enters an invalid age, the exception is

unhandled and there is a noticeable delay while the runtime searches the

environment to see whether there is a debugger to load. Fortunately, slow

performance when a program is shutting down isn’t generally a factor to

be concerned with.

Guidelines
DO NOT use exceptions for handling normal, expected conditions; use
them for exceptional, unexpected conditions.

A D V A N C E D T O P I C

Numeric Conversion with TryParse()
One of the problems with the Parse() method is that the only way to

determine whether the conversion will be successful is to attempt the

cast and then catch the exception if it doesn’t work. Because throwing

an exception is a relatively expensive operation, it is better to attempt

the conversion without exception handling. In the first release of C#, the

only data type that enabled this behavior was a double method called

double.TryParse(). However, this method is included with all numeric

primitive types starting with the Microsoft .NET Framework 2.0. It requires

the use of the out keyword because the return from the TryParse() func-

tion is a bool rather than the converted value. Listing 5.28 is a code snippet

that demonstrates the conversion using int.TryParse().

Begin 2.0

 Summary 239

Listing 5.28: Conversion Using int.TryParse()

if (int.TryParse(ageText, out int age))
{
 Console.WriteLine(
 $"Hi { firstName }! "
 + $"You are { age*12 } months old.");
}
else
{
 Console.WriteLine(
 $"The age entered, { ageText }, is not valid.");
}

With the Microsoft .NET Framework 4, a TryParse() method was also

added to enum types.

With the TryParse() method, it is no longer necessary to include a

try/catch block simply for the purpose of handling the string-to-numeric

conversion.

SUMMARY

This chapter discussed the details of declaring and calling methods,

including the use of the keywords out and ref to pass and return vari-

ables rather than their values. In addition to method declaration, this chap-

ter introduced exception handling.

A method is a fundamental construct that is a key to writing readable

code. Instead of writing large methods with lots of statements, you should

use methods to create “paragraphs” of roughly 10 or fewer statements

within your code. The process of breaking large functions into smaller

pieces is one of the ways you can refactor your code to make it more read-

able and maintainable.

The next chapter considers the class construct and describes how it

encapsulates methods (behavior) and fields (data) into a single unit.

End 2.0

This page intentionally left blank

945

Index

Symbols
. (dot) operator, 145, 920
?: (question mark, colon) conditional

operator, 142–143
?. (question mark, dot) null-conditional

operator, 144–146
/// (forward slashes), XML comment

delimiter, 447
- (hyphens), in identifier names, 14
- (minus sign)

arithmetic binary operator, 111–112
delegate operator, 583–584
precedence, 112
subtraction operator, overloading,

426–428
unary operator, 110–111, 428–430

-= (minus sign, equal)
delegate operator, 583–584
minus assignment operator, 428

-- (minus signs), decrement operator
C++ vs. C#, 124
decrement, in a loop, 121–124
description, 121
guidelines, 124
lock statement, 125
post-decrement operator, 122–124
postfix decrement operator, 123–124
pre-decrement operator, 123–124
prefix decrement operator, 123–124
race conditions, 125
thread safety, 125
unary operator, 428–430

<> (angle brackets), in XML, 31

& (ampersand) bitwise AND operator,
149–152, 151, 405–406

&& (ampersands) logical AND operator,
140, 428

&= (ampersand, equal sign) bitwise AND
assignment operator, 152–153

* (asterisk) multiplication operator,
111–112, 426–428

*= (asterisk, equal sign) multiplication
assignment operator, 428

@ (at sign)
coding verbatim strings, 57–58
keyword prefix, 15

\ (backslashes), as literals, 58
/ (forward slash) division operator

description, 111–112
overloading, 426–428
precedence, 112

/ (forward slash) in XML, 31
/= (slash, equal) division assignment

operator, 428
/unsafe switch, 912–913
^ (caret) bitwise XOR operator, 140–141,

149–152, 426–428
^= (caret, equal sign) bitwise XOR assign-

ment operator, 152–153
() (cast operator), overloading, 430–431
() (parentheses), associativity/prece-

dence, 430–431
{} (curly braces)

C/C++ code style, 2
defining array literals, 93
formatting code, 20

 946 Index

{} (curly braces) (continued)
forming code blocks, 133
methods definition, 16
omitting, 134
string interpolation, 27, 59
string formatting, 63
type definition, 15
in switch statements, 18

[] (square brackets), array declaration, 92
$ (dollar sign), string interpolation, 26, 59
$@ (dollar sign, at sign), verbatim strings

with interpolation, 59–60
"" (double quotes)

strings, 57–58
escape sequence for string literals, 58

= (equal sign) assignment operator
vs. == (equality operator), C++ vs. C#,

138
assigning variables, 22
definition, 22
overloading, 424, 428
precedence, 112

=> (equal sign, greater than) lambda
operator, 551, 554–555, 557

== (equal equal sign) equality operator
as true/false evaluator, 53
overloading, 390, 424–425
in place of = (equal sign) assignment

operator, 138
! (exclamation point)

logical NOT operator, 141
unary operator, 428–430

!= (exclamation point, equal sign)
inequality operator

overloading, 390, 424–425
testing for inequality, 138–139

< (less than sign) less than operator, 138,
424–426

<= (less than, equal sign) less than or
equal operator, 138, 424–426

<< (less than signs) shift left operator,
148–149, 426–428

<<= (less than signs, equal) shift left
assignment operator, 148–149

> (greater than sign), greater than
 operator, 138, 424–425

>= (greater than, equal sign), greater than
or equal operator, 138, 424–425

>> (greater than signs), shift right operator,
148–149, 426–428

>>= (greater than signs, equal) shift right
assignment operator, 148–149

() (parentheses)
for code readability, 113–114
grouping operands and operators,

113–114
guidelines, 114

% (percent sign) mod operator, 111–112,
426–428

%= (percent sign, equal) mod assignment
operator, 428

+ (plus sign)
addition operator, overloading,

426–428
arithmetic binary operator, 111–112
with char type data, 115
concatenating strings, 114–115
delegate operator, 583–584
determining distance between two

characters, 116
with non-numeric operands, 114–115
precedence, 112
unary operator, 110–111
unary operator, overloading,

428–430
+= (plus sign, equal)

addition assignment operator, 428
delegate operator, 583–584

++ (plus signs) increment operator
C++ vs. C#, 124
increment, in a loop, 121–124
description, 121
guidelines, 124
lock statement, 125
post-increment operator, 122–124
postfix increment operator, 123–124
pre-increment operator, 123–124
prefix increment operator, 123–124
race conditions, 125
thread safety, 125
unary operator, 428–430

? (question mark) nullable modifier,
80–83, 492

?? (question marks) null-coalescing
 operator, 143–144

~ (tilde), bitwise complement operator,
153

unary operator, 428–430
_ (underscore)

as digit separator, 50, 72–73

 Index 947

in identifier names, 14
line continuation character (Visual

Basic), 18
in variable names, 22
tuple item discard, 87

__ (two underscores), in keyword
names, 15

| (vertical bar) bitwise OR operator,
149–152, 151, 405–407, 426–428

|= (vertical bar, equal sign) bitwise OR
assignment operator, 152–153

|| (vertical bars) logical OR operator,
139–140, 428

\ (single backslash character), character
escape sequence, 55

A
Abort(), 786–787
Aborting threads, 786–787
Abstract classes. See also Derivation.

defining, 338–340
definition, 338
derived from System.Object, 344–345
vs. interfaces, 376
polymorphism, 341–343

Abstract members
defining, 338–340
definition, 338
"is a" relationships, 341
overriding, 341
virtual, 341

Access modifiers. See also Encapsulation.
circumventing with reflection, 934
on getters and setters, 274–276
purpose of, 260
types of, 259

Action delegates, 542–544
Add()

appending items to lists, 685
inserting dictionary elements, 691–692
System.Threading.Interlocked

class, 876–878
thread synchronization, 877

add_OnTemperatureChange(), 599–600
Addresses. See Pointers and addresses.
Aggregate functions, 643–644
AggregateException, 590, 803–807
AggregateException.Flatten(), 822
AggregateException.Handle(), 806,

822

Aggregation
derivation, 323–325
interfaces, 371–372
multiple inheritance, interfaces,

371–372
Aliasing

namespaces, 199–200. See also using
directive.

types, 199–200
AllocExecutionBlock(), 905
AllowMultiple member, 746
Alternative control flow statements, 130
Ampersand, equal sign (&=) bitwise

AND assignment operator, 152–153
Ampersand (&) bitwise AND operator,

149–152, 151
Ampersands (&&) logical AND operator,

140
overloading, 428

AND operator, & (ampersand), bitwise
AND operator 149–152, 151,
405–406

AND operator, && (ampersands), logical
AND operator, 140, 428

Angle brackets (<>), in XML, 31
Angle struct, 395–396
Anonymous functions

definition, 551–552
guidelines, 566
type, 555

Anonymous methods. See also Lambda
expressions.

definition, 538, 551, 556
guidelines, 557
internals, 560–561
parameterless, 557–558
passing, 557
type association, 555

Anonymous type arrays, initializing,
653–654

Anonymous types. See also Implicit local
variables; Tuples.

collection initializers, 653–654
description, 82–83
drawbacks, 652
generating, 652–653
history of, 646
immutability, 650–652
with LINQ, 649–650
in query expressions, 662

 948 Index

Anonymous types (continued)
vs. tuples, 652
type safety, 650–652

Antecedent tasks, 797–798
Apartment-threading models, 894–895
APIs (application programming

interfaces)
calls from P/Invoke, wrappers, 909
definition, 38
deprecated, 751–752
as frameworks, 38

Append(), 67
AppendFormat(), 67
Appending items to collections, 685
Applicable method calls, 224
Applications, compiling, 9
Appointment, 315–316
__arglist keyword, 15
ArgumentException, 468
ArgumentNullException, 467, 468
ArgumentOutOfRangeException, 467, 468
Arguments

calling methods, 183, 187
named, calling methods, 222

Arity (number of type parameters), 503–504
Array accessor, 97
Array declaration

C++ vs. C#, 92
code examples, 92, 93, 94
description, 91
Java vs. C#, 92

Array instance methods, 102–103
Array types, constraint limitations, 516
ArrayList type, 391–394
Arrays. See also Collections; Lists;

TicTacToe game.
accessing, 92, 97–98
anonymous type, initializing, 653–654
of arrays. See Jagged arrays.
assigning, 91, 93–97
binary search, 100–102
BinarySearch(), 100–102
buffer overruns, 99
changing the number of items in, 102
Clear(), 100–102
clearing, 100–102
cloning, 103
common errors, 105–106
converting collections to, 683
copying, 103

declaring, 91–93
default keyword, 91
default values, 95
defining array literals, 93
description, 90–92
designating individual items, 90
exceeding the bounds of, 99–100
GetLength(), 102–103
indexers, defining, 702–703
indexes, 90
instantiating, 93–95
iterating over, 607–608
jagged, 97, 98, 100
length, getting, 99–100, 102
length, specifying, 95
Length member, 99–100
multidimensional, 91, 95–96, 98
null, 705
number of dimensions. See

Multidimensional arrays.
number of items, getting, 99
overstepping the bounds of, 99
palindromes, 103–104
rank, 92–93
redimensioning, 102
Reverse(), 104–105
reversing, 104
reversing strings, 103–104
searching, 100–102, 688–689
sorting, 100–102
strings as, 103–105
swapping data elements, 98
three-dimensional, 96–97
ToCharArray(), 104
two-dimensional, 93, 96, 98. See also

TicTacToe game.
type defaults, 91
unsafe covariance, 530–531
zero items, 705

as operator, 349–350
AsParallel(), 620
ASP.NET, 927
AspNetSynchronizationContext, 842
Assemblies, compiling, 9
Assembly, definition, 9
assembly attributes, 736–738
Assert(), 118
Assignment operator. See Equal sign (=)

assignment operator.
Association, 249–251, 292

 Index 949

Associativity of operators, 112–117
Asterisk, equal sign (*=) multiplication

assignment operator, 428
Asterisk (*) multiplication operator,

111–112, 426–428
async keyword

misconceptions about, 826
purpose of, 826, 828
task-based asynchronous pattern,

823–828
Windows UI, 842–844

async methods, return of ValueTask<T>,
828–830

Asynchronous continuations, 796–803
Asynchronous delays, 785
Asynchronous high-latency operations

with the TPL, 819–823
Asynchronous lambdas, 833–835
Asynchronous methods

custom, implementing, 835–838
returning void from, 830–833

Asynchronous operations, 776, 781–783
Asynchronous tasks. See Multithreading,

asynchronous tasks.
AsyncState, 795
At sign (@)

coding verbatim string literals, 58
inserting literal backslashes, 58
keyword prefix for keyword

 identifiers, 15
Atomic operations, threading problems,

778
Atomicity of reading and writing to

variables, 867
AttachedToParent enum, 799
Attributes

adding encryption, 755–756
adding metadata about assemblies,

736–737
alias command-line options, 740
AllowMultiple member, 746
assembly, 736–737
checking for, 740
CIL for, 758
class, 738
custom, 738–739
custom, defining, 738–739
custom, retrieving, 739–740, 742
custom serialization, 755–756
decorating properties with, 735–736

definition, 721
deserializing objects, 755–756
duplicate names, 746–747
guidelines, 738, 740, 744, 746
initializing with a constructor, 740–744
vs. interfaces, 377
looking for, 740–741
method, 738
module, 738
named parameters, 746–747
naming conventions, 738
no-oping a call, 749–750
Parse(), 748
predefined, 748–749
pseudoattributes, 758
retrieving, 740–741
return, 737–738
serialization-related, 748–749, 752–754
setting bits or fields in metadata

tables. See Pseudoattributes.
uses for, 735
warning about deprecated APIs, 751–752

AttributeUsageAttribute
decorating custom attributes, 745–747
predefined attributes, 748–749

Automatically implemented properties
description, 265–267
initializing, 266–267
internals, 276–278
NextId implementation, 296
read-only, 272, 303–304

Average(), 644
await keyword

misconceptions about, 826
non-Task<T> or values, 838–840
task-based asynchronous pattern,

823–828
Windows UI, 842–844

await operators
with catch or finally statements, 846
description, 844–846
multithreading with

System.Threading.Thread
class, 785

B
Backslashes (\), as literals, 58
Base classes

inheritance, 326
vs. interfaces, 354–355

 950 Index

Base classes, overriding. See also
Derivation.

accessing a base member, 336–337
base keyword, 336
brittle base class, 331–334
constructors, 337
fragile base class, 331–334
introduction, 326
new modifier, 330–334
override keyword, 327, 336–337
sealed modifier, 335
sealing virtual members, 335
virtual methods, 326–330
virtual modifier, 326–330

base keyword, 336
Base members, accessing, 336–337
Base type, 244
BCL (Base Class Library), 33, 927, 929, 943
Binary digits, definition, 147
Binary display, string representation of,

151
Binary floating-point types, precision, 116
Binary literals, 51
Binary operators, 426–428
Binary search of arrays, 100–102
BinaryExpression, 568
BinarySearch()

bitwise complement of, 688
searching a list, 688–689
searching arrays, 100–102

BinaryTree<T>, 506–508, 704, 707–708
Bits, definition, 147
Bitwise complement of BinarySearch(),

688
Bitwise complement operator, tilde (~), 153
Bitwise operators

& (ampersand) AND operator, 149–152,
151, 405–406

&= (ampersand, equal sign) bitwise
AND assignment operator,
152–153

^ (caret) XOR operator, 140–141, 149–152
^= (caret, equal sign) bitwise XOR

assignment operator, 152–153
<< (less than signs), shift left operator,

148–149
<<= (less than, equal signs), shift left

assignment operator, 148–149
~ (tilde), bitwise complement operator,

153

| (vertical bar) bitwise OR operator,
149–152, 151, 405–407

|= (vertical line, equal sign) bitwise
OR assignment operator,
152–153

>> (greater than signs), shift right
operator, 148–149

>>= (greater than, equal signs), shift
right assignment operator,
148–149

binary digits, definition, 147
bits, definition, 147
bytes, definition, 147
introduction, 147–148
logical operators, 149–152
masks, 151
multiplication and division with bit

shifting, 149
negative numbers vs. positive, 148
shift operators, 148–149
string representation of a binary

 display, 151
two’s complement notation, 148

Block statements, 133. See also Code
blocks.

BlockingCollection<T>, 888
bool (Boolean) types

description, 53–54
returning from lambda expressions,

552, 558
Boolean expressions. See also Bitwise

operators.
== (equal signs) equality operator,

138–139
!= (exclamation point, equal sign)

inequality operator, 138–139
< (less than sign), less than operator,

138
<= (less than, equal sign), less than or

equal operator, 138
> (greater than sign), greater than

operator, 138
>= (greater than, equal sign), greater

than or equal operator, 138
definition, 137
equality operators, 138–139
evaluating. See if statements.
example, 137–138
in if statements, 130
relational operators, 138–139

 Index 951

Boolean expressions, logical operators
. (dot) operator, 145
?: (question mark, colon), conditional

operator, 142–143
?. (question mark, dot), null-conditional

operator, 144–146
&& (ampersands), logical AND

 operator, 140
^ (caret), XOR operator, 140–141
! (exclamation point), logical negation

operator, 141
?? (question marks), null-coalescing

operator, 143–144
|| (vertical lines), logical OR operator,

139–140
introduction, 139

Boolean values, replacing with enums,
400

Bounds of an array, overstepping, 99–100
Boxing

avoiding during method calls, 396–398
code examples, 391–392
introduction, 390–391
InvalidCastException, 393–394
performance, 393
subtle problems, 393–396
synchronizing code, 394–396
unboxing, 390–394
value types in the lock statement,

394–396
Break(), 856
break statement, 129, 165–166
Breaking parallel loop iterations, 855–856
Brittle base, 331–334
BubbleSort(), 538–547
byte type, 44
Bytes, definition, 147

C
C language

pointer declaration, vs. C#, 914
similarities to C#, 2

C# language
case sensitivity, 2
compiler, 9
description, 943

C++ language vs. C#
= (assignment operator) vs.

== (equality operator), 138
buffer overflow bugs, 99
declaring arrays, 102

delete operator, 248
deterministic destruction, 460, 933
explicit deterministic resource

cleanup, 248
garbage collection, 932–934
global methods, 190
global variables and functions, 289
header files, 194
implicit deterministic resource

cleanup, 248
implicit nondeterministic resource

cleanup, 248
implicit overriding, 327
implicitly typed variables, 82
increment/decrement operators, 124
local variable scope, 137
main(), 17
method calls during construction, 330
multiple inheritance, 323
operator-only statements, 111
operator order of precedence, 124
order of operations, 114
partial methods, 194
pointer declaration, 914
preprocessing, 171
pure virtual functions, 341
similarities, 2
string concatenation at compile time, 59
switch statement fall-through, 164
void*, 82
void type, 68

Caching data in class collections, 626
Calculate(), 793
Call site, 203
Call stack, 202–203
Callback function, 537
Caller, 183
CallerMemberName parameter, 734
Calling

constructors, 279, 285–286
methods. See Methods, calling.
object initializers, 281–282

camelCase
tuple names, 86–87
variable names, 22

Cancel(), 812
Canceling

parallel loop iterations, 852–854
PLINQ queries, 859–861
tasks. See Multithreading, canceling

tasks.

 952 Index

CancellationToken property, 810–814,
855

CancellationTokenSource property,
812, 854

CancellationTokenSource.Cancel(), 812
Capacity(), 683–686
Captured variables, 561–563
Capturing loop variables, 564–566
Caret, equal sign (̂ =) bitwise XOR

assignment operator, 152–153
Caret (̂) bitwise XOR operator, 140–141,

149–152, 426–428
Cartesian products, 634, 675
Casing

formats for identifiers, 14
local variables, 22

Cast operator
defining, 319–320
definition, 69
overloading, 430–431

Casting
between arrays of enums, 402–403
between base and derived types,

317–318
definition, 69
explicit cast, 69–70, 317–318
implicit conversion, 317–318
with inheritance chains, 318
inside generic methods, 523–524
type conversion without, 73–74

Catch(), 472
Catch blocks

catching different exception types,
469–471

description, 228–232
general, 234–235, 473–475
internals, 475
with no type parameter, 234–235

catch clause, 803
catch statements, await operators, 846
Catching exceptions

catch blocks, 469–471
code sample, 227–228
conditional clauses, 470–471
definition, 227
description, 227–232, 469
different exception types, 469–471
exception conditions, 470–471
general catch blocks, 473–475
rethrowing existing exceptions, 471

switch statements, 469
when clauses, 470

Central processing unit (CPU), definition.
See CPU (central processing unit).

Chaining
constructors, 285–286
inheritance, 316
multicast delegates, 586–587
tasks, 797–798

Changing strings, 65–67
char (character) types, 21, 54
Checked block example, 71
Checked conversions, 70–72
Checking for null

guidelines, 582
multicast delegates, 580–582

Chess game, declaring an array for, 93
Child type, 244
Church, Alonzo, 558
CIL (Common Intermediate Language).

See also CLI (Common Language
Infrastructure).

compiling C# source code into, 32
compiling into machine code, 924, 930
CTS (Common Type System), 32,

939–940
custom attributes, 942
description, 943
disassembling, tools for, 34. See also

ILDASM.
ILDASM, 34
late binding, 942
managed execution, 32–33
metadata, 941–942
objects, 940
sample output, 35–37
source language support, 939,

940–941
type structure, 32, 939–940
values, 940

CIL disassembler. See ILDASM.
class attributes, 738
Class collections. See also IEnumerable

interface; IEnumerable<T>
interface.

cleaning up after iteration, 611–612
error handling, 612
iterating over using while(), 609
resource cleanup, 612
sharing state, 610

 Index 953

Class collections, foreach loops
with arrays, 607–608
code example, 611–612
with IEnumerable interface, 612
with IEnumerable<T> interface,

608–610
modifying collections during, 613

Class collections, sorting. See also
Standard query operators, sorting.

ascending order ThenBy(), 626–628
ascending order with OrderBy(),

626–628
descending order with

OrderByDescending(), 628
descending order with

ThenByDescending(), 628
Class definition

definition, 15
guidelines, 15
naming conventions, 15
syntax, 15

Class hierarchy, 244
class keyword, 511
Class libraries

adding NuGet packages, 436–439
definition, 432–433

Class libraries, referencing
with Dotnet CLI, 434–436
with Visual Studio 2017, 435–436

Class members, definition, 248
Class type

combining with class or struct, 515
constraints, 509–510

class vs. struct, 715
Classes

abstract. See Abstract classes.
adding instance methods, 299
association, 249–251, 292
association with methods, 183
base. See Base classes.
within classes. See Nested, classes.
declaring, 245–247
definition, 246–247
derived. See Derivation.
fields, 249–251
guidelines, 246
identifying support for generics, 731–732
inextensible, 298
instance fields, 249–251
instance methods, 251–252
instances of. See Objects.

instantiating, 245–247
vs. interfaces, 375–376
member variables, 249–251
nested, 304–306
partial, 307–308
polymorphism, 245
private members, 260
refactoring, 314–315
sealed, 325
spanning multiple files, Java vs. C#, 9.

See also Partial methods.
splitting across multiple files. See

Partial methods.
static, 297–298
uses for, 243

Clear(), 100–102, 173
Clearing arrays, 100–102
CLI (Common Language Infrastructure).

See also CIL (Common Intermediate
Language); VES (Virtual Execution
System).

assemblies, 936–938
compilers, 925–928
contents of, 925
definition, 924
description, 924–925, 943
implementations, 925–928
managed execution, 32–33
manifests, 936–938
modules, 936–938
xcopy deployment, 938

Clone(), 103
Cloning arrays, 103
Closed over variables, 561–563
Closures, 564
CLR (Common Language Runtime), 944.

See also Runtime.
CLS (Common Language Specification),

940–941
description, 944
managed execution, 33

CLU language, 706
Code. See CPU (central processing unit).
Code access security, 33
Code blocks, 132–135
Code readability

vs. brevity, 189
improving with whitespace, 19–20
matching caller variables with

 parameter names, 204
TAP language pattern, 844

 954 Index

Code safety. See Unsafe code.
Coding the publish-subscribe pattern

with multicast delegates
checking for null, 580–582
connecting publisher with subscribers,

578–579
defining subscriber methods, 576–577
defining the publisher, 578
delegate operators, 583–584
getting a list of subscribers, 590
guidelines, checking for null, 582
invoking a delegate, 579–580
method returns, 590
multicast delegate internals, 586–587
new delegate instances, 582
passing by reference, 590
removing delegates from a chain, 583
sequential invocation, 584–586
thread safe delegate invocation, 582

Cold tasks, 792
Collect(), 450
Collection classes

dictionary collections, 690–695
linked list collections, 701
list collections, 682–686
queue collections, 700
sorted collections, 697–698
sorting lists, 686–687
stack collections, 699–700

Collection initializers
with anonymous types, 653–654
basic requirements, 605–606
definition, 604
description, 282–283
for dictionaries, 606
initializing anonymous type arrays,

653–654
initializing collections, 605

Collection interfaces, customizing
appending items to, 685
comparing dictionary keys, 695–696
converting to arrays, 683
counting collection elements, 683
dictionary class vs. list, 680–683
finding even elements, 690
finding multiple items, 689–690
generic hierarchy, 681
inserting new elements, 691–693
lists vs. dictionaries, 680–683
order of elements, 687–688

removing elements, 686
search element not found, 689
searching arrays, 688–689
searching collections, 688–689
specifying an indexer, 682

Collection interfaces with standard
query operators

caching data, 626
counting elements with Count(),

621–622
deferred execution, 622–626
definition, 613
filtering with Where(), 616–617,

622–626
guidelines, 622
projecting with Select(), 618–619
queryable extensions, 644–645
race conditions, 620–621
running LINQ queries in parallel,

620–621
sample classes, 614–616
sequence diagram, 625
table of, 644

Collections. See also Anonymous types;
Arrays; Class collections; Lists.

discarding duplicate members,
675–676

empty, 705
filtering, 658
projecting, 658
returning distinct members, 675–676

Collections, customizing
accessing elements without modifying

the stack, 699
appending items to, 685
counting elements of, 683
empty, 705
FIFO (first in, first out), 700
finding even elements, 690
finding multiple items, 689–690
indexers, defining, 702–703
inserting new elements, 691–693, 699
LIFO (last in, first out), 699–700
order of elements, 687–688
removing elements, 686
requirements for equality comparisons,

695–696
search element not found, 689
searching, 688–689

Collections, iterating over with while, 609

 Index 955

Collections, sorting. See also Standard
query operators, sorting.

by file size, 669–670
by key, 697–698
with query expressions, 668–669
by value, 697–698

Collections of collections, join operations,
640–641

COM DLL registration, 939
COM threading model, controlling,

894–895
Combine()

combining delegates, 584
event internals, 600
parameter arrays, 212–214
vs. Swap() method, 206

CommandLine, 304–306
CommandLineAliasAttribute, 740–741
CommandLineInfo, 725–730, 735
CommandLineSwitchRequiredAttribute,

738–739
Comments

vs. clear code, 30
delimited, 30
guidelines, 31
multi-line, 173
overview, 28–31
preprocessor directives as, 173
single-line, 30
types of, 30
XML delimited, 30
XML single-line, 30

Common Intermediate Language (CIL).
See CIL (Common Intermediate
Language).

The Common Language Infrastructure
Annotated Standard, 32

Common Language Infrastructure
(CLI). See CLI (Common Language
Infrastructure).

Common Language Runtime (CLR), 944.
See also Runtime.

Common Language Specification (CLS).
See CLS (Common Language
Specification).

Common Type System (CTS), 32
Compare(), 54, 537
CompareExchange(), 876–877
CompareExchange<T>, 876–877
CompareTo(), 509, 686–687

Comparing
dictionary keys, 695–696
for equality, float type, 117–120

Comparison operators, 424–425
ComparisonHandler delegate, 545
Compatible method calls, 224
Compile(), 568
Compilers

AOT (ahead of time), compilation,
942–943

C# compilation to machine code,
929–931

C# language, 9
DotGNU Portable NET, 926
JIT (just-in-tme) compiler, 930

Compiling
applications, 3
assemblies, 9
into CIL, 32
jitting, 930
just-in-time, 32, 928
NGEN tool, 930

Complex memory models, threading
problems, 779–780

Composite formatting, 27–28
Compress(), 354–355
Concat(), 643
Concatenating strings, 114–115
Concrete classes, 338, 341
Concurrent collection classes, 888–889
Concurrent operations, definition, 776
ConcurrentBag<T>, 888
ConcurrentDictionary<T>, 889
ConcurrentQueue<T>, 888
ConcurrentStack<T>, 888
Conditional

clauses, catching exceptions, 470–471
expressions, guidelines, 143
logical operators, overloading, 428

ConditionalAttribute, 749–751
Conditions, 130
ConnectionState vs. ConnectionStates,

400
Consequence statements, 130
Console input, 24–25
Console output

comments, types of, 30
composite formatting, 27
format items, 27–28
format strings, 27

 956 Index

Console output (continued)
formatting with string interpolation, 26
with System.Console.Write(),

26–28
ConsoleListControl, 355–360, 364
const field, encapsulation, 301
const keyword, 125
Constant expressions, 125
Constant locals, 125
Constants

declaring, 126
definition, 125
guidelines, 125
vs. variables, guidelines, 125

Constraints on type parameters. See also
Contravariance; Covariance.

class type constraints, 510–511
constructor constraints, 512–513
generic methods, 514, 522–523
inheritance, 513–515
interface type constraints, 510
introduction, 505–508
listing, 508
multiple constraints, 512
non-nullable value types, 511–512
reference types, 511–512

Constraints on type parameters,
limitations

array types, 516–517
combining class type with class, 515
combining class type with struct,

515
on constructors, 517–519
delegate types, 516–517
enumerated types, 516–517
operator constraints, 515–516
OR criteria, 516
restricting inheritance, 514
sealed types, 516–517

Construction initializers, 285–286
Constructor constraints, 512–513
Constructors

calling, 279
calling one from another, 285–286
centralizing initialization, 286–287
chaining, 285–286
collection initializers, 282–283
constraints, 517–519
declaring, 278–280
default, 280–281

exception propagation from, 460
expression-bodied member

 implementation, 285
finalizers, 283
in generic types, declaring, 501
guidelines, 285
initializing attributes with, 740–744
introduction, 278
new operator, 279, 280
object initializers, 281–282
overloading, 283–285
overriding base classes, 337
static, 294–296

Contains(), 688–689, 699–700
ContainsKey(), 693
ContainsValue(), 693
Context switch, definition, 776
Context switching, 777
Contextual keywords, 13, 718
Continuation clauses, query expressions,

673–674
Continuation tasks, 796–803
continue statement

description, 167–169
guidelines, 163
syntax, 128

ContinueWith(), 796–798, 806–807, 821
Contracts vs. inheritance, 368–369
Contravariance

definition, 528
delegates, 559
enabling with in modifier, 528–530

Control flow. See also Flow control.
guidelines, 158, 159
misconceptions, 826
task continuation, 796–803
within tasks, 827

Control flow statements. See also specific
statements.

alternative statements, 130
block statements. See Code blocks.
Boolean expressions, evaluating. See

if statement.
break, 129
code blocks, 132–135. See also Scope.
combining. See Code blocks.
conditions, 130
consequence, 130
continue, 128
declaration spaces, 135–136

 Index 957

definition, 109
do while, 128, 153–156
for, 128, 156–159
foreach, 128, 159–161
goto, 129
if, 127, 130, 168–169
if/else, examples, 130, 132
indentation, 134
nested if, 130–132
scopes, 135–136. See also Code blocks.
switch, 129, 161–165
true/false evaluation, 130
while, 127, 153–156

Conversion operator
consequences of using, 431–432
overloading, 430–432

Converting
collections to arrays, 683
enums to and from strings, 403–404
between interfaces and implementing

types, 366
types. See Types, conversions

between.
Cooler objects, 576–577
Cooperative cancellation, definition, 810
Coordinate, 430–431
Copying

arrays, 103
Copy(), 294, 299–300
DirectoryInfoExtension.Copy(),

294, 299–300
reference types, 383

CopyTo(), 683
CoreCLR, 925
Count(), 621–622, 644
Count property, 622, 683
CountdownEvent, 888
Counting

class collection elements with
Count(), 621–622

collection elements, 683
lines within a file, example, 215–220

CountLines(), 183
Covariance

definition, 524–525
delegates, 559
enabling with out modifier, 526–528
guidelines, 531
introduction, 524–525
preventing, 525

type safety, 530–531
unsafe covariance in arrays, 530–531

Covariant conversion
definition, 524–525
restrictions, 527–528

.cpp file, C++ vs. C#, 194
CPU (central processing unit), 774
Create(), 504–505
Create() factory, 763–764
.cs file extension, 8
CTS (Common Type System), 32, 939–940,

944
Curly braces ({})

in the body of constructs, 17
defining array literals, 93
formatting code, 20
forming code blocks, 133
in methods, 16
omitting, 134–135
string interpolation, 27, 59
as string literals, 63
in switch statements, 18

CurrentTemperature property, 578–579
Custom asynchronous methods, 835–838
Custom dynamic objects, 766–769
Custom serialization attributes, 755–756
Customizing

collection interfaces. See Collection
interfaces, customizing.

collections. See Collections,
customizing.

events, 600–601
IEnumerable interface. See Iterators.
IEnumerable<T> interface. See

Iterators.
IEnumerator<T> interface. See

Iterators.
Customizing, exceptions

defining, 479–481
guidelines, 481
InnerException property, 481
serializable exceptions, 482

D
Data

on interfaces, 355
retrieval from files, 257–259

Data persistence, 256–257
Data types. See Types.
DataStorage, 256–259

 958 Index

Deadlocks. See also Thread synchronization.
avoiding, 879–880
causes of, 880
non-reentrant locks, 880
prerequisites for, 880
thread synchronization, 881
threading problems, 780

Deallocating memory, finalizers, 454
Debugging with preprocessor directives,

173
decimal type, 46–47
Declaration spaces, 135–136
Declaring

arrays, 92–93
classes, 245–247
constants, 126
constructors, 278–280
delegate types, 542–545
events, 593–594
finalizers, 453–454
generic classes, 496
instance fields, 249–250
local variables, 20–21
methods. See Methods, declaring.
properties, 262–265

Deconstruct(), 287–289
Deconstructors, 287–289
Decrement(), 125, 877–878
Decrement operator. See Increment/

decrement operators (++, --).
Default constructors, 280–281
default keyword, 95
default operator, 388–389
Default types, 48
default(bool) keyword, 95
DefaultIfEmpty(), 639–640
default(int) keyword, 95
Deferred execution

implementing, 667
query expressions, 663–666
standard query operators, 622–626

#define preprocessor directive, 172–174
Delay(), 785, 893–894
Delaying code execution. See Thread

 synchronization, timers.
delegate keyword, 542, 586
Delegate operators, 583–584. See also

specific operators.
Delegate types, 516–517, 540–545

Delegates
-= (minus sign, equal sign), delegate

operator, 583–584
BubbleSort() example, 538–547
contravariance, 559
covariance, 559
creating with a statement lambda,

551–554
deferred execution, 667
definition, 537, 540
executing unsafe code, 920–922
vs. expression trees, 570–571
general purpose, 542–544
guidelines, 557
immutability, 547
instantiating, 545–547
internals, 547–550
invocation sequence diagram, 585
mapping to function pointers, 910
method group conversion, 546
method groups, 546
method names as arguments, 546
multicast, 575, 580
nesting, 545
with the null-conditional operator,

146–147
passing with expression lambdas, 554
structural equality, 558–560
synchronous, 791
System.Action, 542–544
System.Func, 542–544
vs. tasks, 791
thread safety, 582

delete operator, C++ vs. C#, 248
Delimited comments, 30
DenyChildAttach enum, 799
Deprecated APIs, 751–752
Dequeue(), 700
Dereferencing pointers, 917–919
Derivation

abstract classes. See Abstract classes.
aggregation, 323–325
casting between base and derived

types, 317–318
casting with inheritance chains, 318
classes derived from System.Object,

344–345
data conversion with the as operator,

349–350

 Index 959

defining custom conversions, 319–320
determining the underlying type,

345–346
explicit cast, 317–318
extension methods, 322–323
implicit conversion, 317–318
inheritance chains, 316
"is a" relationships, 317–318
is operator, 345–346
multiple inheritance, simulating,

323–325
overriding base classes. See Base

classes, overriding.
private access modifier, 319–320
protected access modifier, 321–322
refactoring a class, 314–315
sealed classes, 325
single inheritance, 323–325

Derived types, 244–245
Deserialize(), 754
Deserializing

document objects, 754
documents, 756–758
objects, 755–756

Deterministic finalization with the
using statement, 454–457

Diagnostics.ConditionalAttribute,
749–751

Diagramming multiple inheritance, 373
Dictionaries, indexers, 702–703
Dictionary classes

customized collection sorting,
686–687

definition, 690–691
diagrams, 691
hash codes, 693, 696–697
inserting elements, 691
list collections, 683–686
vs. lists, 680–683
removing elements, 693

Dictionary collection classes, 680–682
Dictionary collections, 690–695
Dictionary keys, comparing, 695–696
Dictionary<>, initializing, 606
Dictionary<TKey, TValue>, 606,

690–695
Directives. See Preprocessor directives.
DirectoryCountLines(), 216
Directory.GetFiles(), 661, 669

DirectoryInfoExtension.Copy(), 294,
299–300

DirectoryInfo.GetFiles(), 299–300,
632

DirectoryInfo.Move(), 299–300
Disassembling CIL, tools for, 34. See also

ILDASM; specific tools.
Discarding duplicate collection members,

675–676
Discards, 87
DispatcherSynchronizationContext,

842
Disposable tasks, 816
Dispose(), 455–460
Distinct(), 644, 675–677
Dividing by zero, 119–120
Division with bit shifting, 149
DLL (dynamic link Library), 9
.dll file extension, 9
do while loops, 128, 153–156
Documentation

deserializing, 756–758
serializing, 756–758
tools for, 448–449
versioning, 756–758
XML, 448–449

Dollar sign, at sign ($@), string
 interpolation, 59–60

Dollar sign ($), string interpolation, 59
Dot (.) operator, 145, 920
DotGNU Portable NET, 926
Dotnet CLI

dotnet.exe command, 4–5
referencing class libraries, 434–436

Double quotes (""), escape sequence for
string literals, 58

double type, precision, 116
double.TryParse(), 238–239
Dropping namespaces. See using

directive.
Dump(), 365
Duplicate names for attributes, 746–747
dynamic as System.Object, 763
Dynamic binding, 764–765
dynamic directive, 761–763
Dynamic member invocation, 762
dynamic principles and behaviors, 761–763
dynamic type. See Programming with

dynamic objects.

 960 Index

E
E-mail domain, determining, 168
Editors recommended for C#, 3. See also

Microsoft Visual Studio 2017;
Visual Studio Code.

#elif preprocessor directive, 172–173
Eliminating namespaces. See using

directive.
else clauses, 130
#else preprocessor directive, 172–173
Empty collections, 705
Empty<T>, 705
Encapsulation. See also Access modifiers.

circumventing with reflection, 934
const field, 301
definition, 248
description, 248
information hiding, 259–261
introduction, 243
public constants, permanent values,

302
read-only fields, 302–304
readonly modifier, 302–304
of types, 439

Encryption for documents, 755–756
#endif preprocessor directive, 172–173
#endregion preprocessor directive,

176–178
Enqueue(), 700
Enter(), 394, 868–870, 874–875
EntityBase, 510–511
EntityBase<T>, 514
EntityDictionary, 511–513
EntityDictionary<T>, 510–511
EntityDictionary<TKey, TValue>,

512–513
Enumerated types, constraint limitations,

516–517
Enums

casting between arrays of, 402–403
characteristics of, 399–400
conversion to and from strings, 403–404
defining, 400
definition, 399–400
as flags, 405–409
FlagsAttribute, 407–409
joining values, 405–407
replacing Boolean values, 400
type compatibility, 402–403
underlying type, 400

Enums, guidelines
creating enums, 401
default type, 401
enum flags, 407
string conversions, 405

Equal sign (=) assignment operator
vs. == (equality operator), C++ vs. C#,

138
assigning variables, 22
definition, 22
overloading, 424, 428
precedence, 112

Equal sign, greater than (=>) lambda
operator, 551, 554–555, 557

Equal signs (==) equality operator
overloading, 424–425
in place of = (equal sign) assignment

operator, 138
Equal signs (==), true/false evaluator, 53
Equality operators, 138
Equals() equality operator

implementing, 420–423
overriding, 415–423
requirements for equality comparisons,

695–696
Equals() method, overloading, 390
Equi-joins, 638
Error handling. See also Exception

handling.
APIs, 903–905
class collections, 612
multicast delegates, 587–590
P/Invoke, 903–905

Error messages, disabling/restoring,
175–176

#error preprocessor directive, 172,
174–175

Errors. See also Exception handling.
emitting with directives, 174–175
infinite recursion error, 217
reporting. See Exception handling.

Escape sequences
\ (single backslash character), 55
displaying a smiley face, 56
list of, 55–56
\n, newline character, 55, 56
\t, tab character, 55
for Unicode characters, 56

EssentialCSharp.sln file, 10
Even(), 690

 Index 961

event keyword, 591, 593–594
Event notification

with multiple threads, 878–879
thread-safe, 879

Events
coding conventions, 594–596
customizing, 600–601
declaring, 593–594
encapsulating the publication, 592–593
encapsulating the subscription,

591–592
generics and delegates, 597–598
guidelines, 596, 598
internals, 598–600
registering listeners for, 802–803

Exception class inheritance, 233
Exception conditions, 470
Exception handling. See also Errors;

 specific exceptions.
with AggregateException, parallel

loop iterations, 851–852
appropriate use of, 237–238
basic procedures, 225–226
catch blocks, 228–232, 234–235
catching exceptions, 227–232
catching exceptions from async void

methods, 830–833
common exception types, 232–233.

See also specific types.
control flow, 229
examples, 225–228
for expected situations, 237–238
finally blocks, 228–232
general catch blocks, 234–235
guidelines, 232, 235, 237, 238, 468,

475–479
handling order, 230
Java vs. C#, 473
multiple exception types, 465–468
numbers as strings vs. integers, 226
numeric conversion, 238–239
Parse(), 238–239
reporting errors. See throw statement;

Throwing exceptions.
task-based asynchronous pattern,

821–822
throwing exceptions, 226–232, 235–238.

See also throw statements.
trapping errors, 226–232
try blocks, 228–232

TryParse(), 238–239
unhandled exceptions, 226–232

Exception propagation from constructors,
resource cleanup, 460

ExceptionDispatchInfo.Throw(), 472
Exceptions, custom. See also Errors.

defining, 479–481
guidelines, 481
serializable exceptions, 482

Exchange<T>, 877
Exclamation point (!)

logical NOT operator, 141
unary operator, overloading, 428–430

Exclamation point, equal sign (!=)
inequality operator

overloading, 390, 424–425
testing for inequality, 138–139

Exclamation point notation, 533
Excluding/including code with

 preprocessor directives, 172–173
ExecuteSynchronously enum, 800
Execution time, definition, 33
Exit(), 394, 868–870, 874–875
Exiting a switch section, guidelines, 164
Explicit cast, 69–70
Explicit deterministic resource cleanup,

C++ vs. C#, 248
Explicit implementation of interfaces,

362–363, 364–365
Explicit member implementation, 362–363
Explicitly declared parameter types, 553
Expression bodied methods, 194
Expression lambdas, 554–556
Expression trees

BinaryExpression, 568
building LINQ queries, 570–571
Compile(), 568
deferred execution, 667
definition, 538, 566
vs. delegates, 570–571
examining, 571–573
lambda expressions as data, 566–568
LoopExpression, 568
MethodCallExpression, 568
NewExpression, 568
as object graphs, 568–569
ParameterExpression, 568
UnaryExpression, 568

Extensible Markup Language (XML).
See XML.

 962 Index

Extension methods
definition, 299
derivation, 322–323
inheritance, 322–323
on interfaces, 369–371
introduction, 299–300
reflection support for, 762–763
requirements, 300

extern methods, 899
External functions

calling with P/Invoke, 906–908
declaring with P/Invoke, 898–899

F
F-reachable (finalization) queue, resource

cleanup, 458
Factory methods, generic types, 504–505
FailFast(), 468, 468
false, unary operator, overloading,

428–430
Fat arrow notation. See Lambda operator.
FCL (Framework Class Library), 929, 944
Fibonacci calculator, 153–154
Fibonacci numbers, 154
Fibonacci series, 154
Fields

accessing properties, 64
declaring as volatile, 875–876
getter/setter methods, 261–262
guidelines, 267–268
identifying owner of, 252–253
marking as private, 261–262
nonstatic. See Instance fields.
static, 289–292
virtual, properties as, 273–274

FIFO (first in, first out), 700
File extensions, 8. See also specific

extensions.
FileInfo collections, projecting, 669–670
FileInfo object, 618–619
FileInfo.Directory(), 632
Filename matching class name, Java vs.

C#, 9
Files

data persistence, 256–257
data retrieval, 257–259
storage and loading, 256–259

FileSettingsProvider, 369
FileStream property, 461–463

Filtering collections
definition, 658
filtering criteria, 667–668
predicates, 667–668
query expressions, 667–668

Finalization
guidelines, 459–460
resource cleanup, 453–460

Finalization (f-reachable) queue, resource
cleanup, 458

Finalizers
deallocating memory, 454
declaring, 453–454
description, 283, 453
deterministic finalization with the

using statement, 454–457
Finally blocks, 230–232
finally statements, await operators, 846
FindAll(), 689–690
Finding

even elements in collections, 690
multiple items in collections, 689–690

Fixed statement, 915–916
Fixing (pinning) data, 915–916
Flags, enums, 405–409
FlagsAttribute

code sample, 747–748
custom serialization, 755–756
Deserialize(), 754
deserializing document objects, 754
effects on ToString() and Parse(),

407–409
ISerializable interface, 755–756
no-oping a call, 749
non-serializable fields, 754
predefined attributes, 748–749
serialization-related attributes, 748–749
serializing document objects, 754
System.Diagnostics

.ConditionalAttribute,
749–751

System.NonSerializable, 754
System.ObsoleteAttribute, 751–752
System.SerializableAttribute,

752–754
versioning serialization, 756–758

Flatten(), 822
Flattening a sequence of sequences, 674–675
flNewProtect, 902

 Index 963

float type
negative infinity, 119
negative zero, 120
overflowing bounds of, 119
positive infinity, 119
positive zero, 120
unexpected inequality, 117

Floating-point types
binary float, 47
decimal, 46–47
double, 45–46
for financial calculations. See decimal

type.
float, 45–46

Flow control. See also Control flow.
definition, 774
introduction, 126–129
statements. See Control flow statements.

for loops
CIL equivalent for, 611–612
description, 156–159
parallel, 867–868

for statements, 128, 156–159
foreach loops, class collections

code example, 611–612
with IEnumerable interface, 612
with IEnumerable<T> interface, 608–610
interleaving loops, 610
iterating over arrays, 607–608
modifying collections during, 613

foreach statement, 128, 159–161
ForEach<T>(), 854
Formal declaration, methods. See

Methods, declaring.
Formal parameter declaration, 191
Formal parameter list, 191
Format(), 60
Format items, 27
Format strings, 27
FormatMessage(), 903
Formatting

numbers as hexadecimal, 52
with string interpolation, 26
strings, 63

Forward slash (/) division operator
description, 111–112
overloading, 426–428
precedence, 112

Forward slash (/) in XML, 31
Forward slashes (///), XML comment

delimiter, 447

Fragile base, 331–334
Framework Class Library (FCL), 929
Frameworks, definition, 38
from clause, 659–660, 674–675
FromCurrentSynchronization

Context(), 840–842
Full outer join, definition, 629
Func delegates, 542–544
Function pointers, mapping to delegates,

910
Functions

global, C++ vs. C#, 289
pure virtual, 341

G
Garbage collection

Collect(), 450
introduction, 449–450
managed execution, 33
in .NET, 450–451
object references, 210
resource cleanup, 458–460
root references, 450
strong references, 451
weak references, 451–452

Garbage collector, definition, 248
GC.ReRegisterFinalize(), 461
General catch blocks, 234–235, 473–475
General purpose delegates, 542–544
Generic classes

declaring, 496
type parameters, 496
undo, with a generic Stack class,

494–496
Generic delegates, events, 597–598
Generic internals

CIL representation, 532–533
instantiating based on reference

types, 534–535
instantiating based on value types,

533–534
introduction, 531–532

Generic methods
casting inside, 523–524
constraints, 514
constraints on type parameters,

514–515
guidelines, 524
introduction, 519–520
specifying constraints, 522–523
type inference, 520–522

 964 Index

Generic types
arity (number of type parameters),

503–504
benefits of, 497
constraints. See Constraints on type

parameters.
constructors, declaring, 501
Create(), 504–505
factory methods, 504–505
finalizers, declaring, 501
generic classes, 494–497
guidelines, 506
implementing, 499–500
interfaces, description, 498–499
interfaces, implementing multiple

versions, 499–500
introduction, 493–494
multiple type parameters, 502–503
nesting, 505
overloading a type definition, 504
parameter arrays, 505
parameterized types, 493
specifying default values, 501–502
structs, 498–499
System.ValueTuple class, 503–505
Tuple class, 503–505
type parameter naming guidelines, 498
ValueTuple class, 503–505
variadic, 505

Generic types, generic classes
declaring, 496
type parameters, 496
undo, with a generic Stack class,

494–496
Generic types, reflection on

classes, identifying support for
 generics, 731–732

determining parameter types, 731–733
methods, identifying support for

generics, 731–732
type parameters for generic classes or

methods, 731–732
typeof operator, 731

Generics, C# without generics
multiple undo operations, 488–489
nullable value types, 492–493
System.Collections.Stack class,

488–491
type safety, 491
using value types, 491

get_PropertyName, 65
get keyword, 264
GetCurrentProcess(), 899
GetCustomAttributes(), 740–741
GetDynamicMemberNames(), 769
GetEnumerator(), 613–616, 707
GetFiles(), 183, 299, 632, 661, 669
GetFirstName(), 264
GetFullName(), 189–194
GetGenericArguments(), 732–733
GetHashCode(), 389–390, 413–415,

696–697
GetInitials(), 189–192
GetInvocationList(), 590
GetLastError API, 903
GetLastName(), 264
GetLength(), 102
GetName(), 251–252
GetProperties(), 723–724
GetResponse(), 818
GetResponseAsync(), 821
GetReverseEnumerator(), 718–719
GetSetting(), 367–369
GetSummary(), 341
GetSwitches(), 741–744
Getter/setter methods, 261–262, 274–276
Getter/setter properties, declaring,

262–265
GetType(), 555, 723–724
GetUserInput(), 189–194, 202
GetValue(), 729
GhostDoc tool, 449
Global methods, C++ vs. C#, 190
Global variables and functions, C++ vs.

C#, 289
goto statement, 129, 169–171
Greater than, equal sign (>=), greater than

or equal operator, 138, 424–425
Greater than sign (>), greater than

 operator, 138, 424–425
Greater than signs (>>), shift right

 operator, 148–149, 426–428
Greater than signs, equal (>>=) shift right

assignment operator, 148–149
GreaterThan(), 547
group by clause, 671
group clause, 659
GroupBy(), 636–637
Grouping query results, 670–673
GroupJoin(), 637–640

 Index 965

H
.h file, C++ vs. C#, 194
Handle(), 806, 822
Hardcoding values, 48–50
HasFlags(), 405
Hash codes, dictionary classes, 693,

696–697
Hash tables, balancing, 413–415
Header files, C++ vs. C#, 194
Heaps, 79–80
Heater objects, 576–577
HelloWorld program

assemblies, 9
compiling source code, 3–4, 4–5, 9
creating a project, 8–9
creating source code, 3–4, 4–5
declaring local variables, 20–21
with Dotnet CLI, 4–5, 10
editing source code, 3
executing, 4, 4–5, 9
getting started, 2–3
in an IDE (integrated development

environment), 6–8
libraries, 8–9
.NET framework, choosing, 3
project files, 8–9
running source code, 3
with Visual Studio 2017, 6–8

HelloWorld.dll file, 9
Hexadecimal numbers

as binary literal numbers, 51
formatting numbers as, 52
notation, 50–51
specifying as values, 51

HideScheduler enum, 800
Hill climbing, 850–851
Hot tasks, 792
Hungarian notation, 14
Hyper-Threading, definition, 774
Hyphens (-), in identifier names, 14

I
I/O-bound latency, definition, 772
IAngle interface, 395–396
IAngle.MoveTo interface, 395
ICollection<T> interface, 682–683
IComparable interface, 389, 686–687
IComparable<string>.CompareTo(),

686–687
IComparable<T>, 509, 686–687

IComparer<T>, 686–687
Id property, 795
IDE (integrated development

environment)
debugging support, 7
HelloWorld program, 6–8

Identifier names
- (hyphens), 14
_ (underscore), 14

Identifiers
camelCase, 14
casing formats, 14
definition, 13
guidelines for, 14
keywords as, 15
naming conventions, 13–14
PascalCase, 14
syntax, 13–14

IDictionary<TKey, TValue>, 680–682
IDisposable interface

cleaning up after iterating, 611–612
resource cleanup, 455–460
Task support for, 816

IDisposable.Dispose(), 455–460
IDistributedSettingsProvider

 interface, 374–375
IEnumerable interface

class diagram, 608
CopyTo(), 683
Count(), 683
customizing. See Iterators.
foreach loops, 612
foreach loops, class collections, 612

IEnumerable<T> interface
class diagram, 608
customizing. See Iterators.
foreach loops, 608–610

IEnumerator<T> interface, customizing.
See Iterators.

IEqualityComparer<T> interface,
695–696

if/else statements, examples, 130, 132
#if preprocessor directive, 172–173
if statements, 127, 130, 168–169
IFileCompression interface, 354–355
IFormattable interface, 389, 397–398,

512, 515
IL. See CIL (Common Intermediate

Language).
IL Disassembler. See ILDASM.

 966 Index

IL (intermediate language), 943
ILDASM (IL Disassembler), 34. See also

Obfuscators.
IListable interface, 355–360, 370–371
IList<T>, 680–682
ILMerge.exe utility, 938
Immutability

delegates, 547
strings, 65–67
value types, 385

Immutable strings, 24
Implicit conversion, 72–73
Implicit deterministic resource cleanup,

C++ vs. C#, 248
Implicit implementation of interfaces,

363–365
Implicit local variables. See also

Anonymous types.
declaring as anonymous, 647–648, 651
history of, 646
var type, 647–649, 651

Implicit member implementation, inter-
faces, 363–365

Implicit nondeterministic resource
cleanup, C++ vs. C#, 248

Implicit overriding, Java vs. C#, 327
Implicitly typed local variables, 69, 81–82
Importing types from namespaces. See

using directive.
Imports directive, 196
in modifier, 528–530
in type parameter, 528–530
Increment(), 125, 877–878
Increment/decrement operators (++, --)

C++ vs. C#, 124
decrement, in a loop, 121–124
description, 121
lock statement, 125
post-increment operator, 122–124
postfix increment operator, 123–124
pre-increment operator, 123–124
prefix increment operator, 123–124
race conditions, 125
thread safety, 125

Indentation, flow control statement, 134
IndexerNameAttribute, 703
Indexers

arrays, 702–703
defining, 702–704
dictionaries, 702–703

inserting new elements, 692–693
naming, 703
specifying, 682

IndexOf(), 688–689
Inextensible classes, 298
Inference, type parameters in generic

methods, 521–522
Infinite recursion error, 217
Information hiding. See Encapsulation.
Inheritance

base classes, 326
base type, 244
chaining, 316
child type, 244
constraint limitations, 515
constraints on type parameters,

513–515
vs. contracts, 368–369
derived types, 244–245
extension methods, 322–323
interfaces, 366–369
introduction, 243–245
“is a kind of” relationships, 314
multiple, C++ vs. C#, 323
multiple, simulating, 323–325
parent type, 244
private members, 319–320
purpose of, 314
single, 323–325
specializing types, 245
subtypes, 244
super types, 244
value types, 389–390

Initialize(), 268–269, 287
Initializing. See also Collection

initializers.
anonymous type arrays, 653–654
collections, 605
collections that don’t support

ICollection<T>, 606
a Dictionary<>, 606
versions of, 606

Initializing attributes with a constructor,
740–744

inner classes, Java, 307
Inner join, 629, 632–635
InnerException property, 481
InnerExceptions property, 590, 806,

822, 852
Insert(), 67

 Index 967

Inserting
elements in dictionary classes, 691
new elements in collections, 688–689

Instance fields. See also Static, fields.
accessing, 250–251
declaring, 249–250
definition, 249–251

Instance methods
adding to a class, 299
definition, 60
introduction, 251–252

Instantiating
arrays, 93–97
classes, 245–247
delegates, 545–547
interfaces, 361

Instantiation, 17, 247
int (integer) type, 21, 44, 225
Integer literals, determining type of, 49–50
Integers, type for, 44–45
Integral types, 115
Interface type constraints, 510
Interfaces

vs. abstract classes, 353–354, 376
aggregation, 371–372
vs. attributes, 377
vs. base classes, 354–355
vs. classes, 375–376
contracts vs. inheritance, 368–369
converting between interfaces and

implementing types, 366
data, 355
defining, 355
deriving one from another, 366–369,

374–375
extension methods, 369–371
inheritance, 366–369
instantiating, 361
introduction, 354–355
method declarations in, 355
naming conventions, 355
polymorphism, 355–360
post-release changes, 374–375
purpose of, 354–355
value types, 389–390
versioning, 374–375

Interfaces, generic types
description, 498–499
finalizers, declaring, 501
implementing multiple versions,

499–500

Interfaces, implementing and using
accessing methods by name, 365
code example, 356–359
explicit implementation, 362–365
explicit member implementation,

362–363
guidelines, 364–365
implicit implementation, 363–365
implicit member implementation,

363–365
mechanism relationships, 365
overview, 354–355
semantic relationships, 365

Interfaces, multiple inheritance
aggregation, 371–372
diagramming, 373
implementing, 369, 371–372
working around single inheritance,

371–372

internal access modifiers on type
 declarations, 439–440

internal accessibility modifier, 441
Interpolating strings, 59–62
Intersect(), 644
into keyword, 673–674
IntPtr, 901
InvalidAddressException, 479
InvalidCastException, 394
Invoke(), 580–582
IObsolete interface, 377
IOrderedEnumerable<T> interface, 627
IPairInitializer<T> interface, 530
IProducerConsumerCollection<T>, 889
IQueryable<T> interface, 644–645
IReadableSettingsProvider interface,

366–369
IReadOnlyPair<T> interface, 526–528
“Is a kind of” relationships, 314
“Is a” relationships, 317–318, 341
is operator

pattern matching, 346–347
verifying underlying types, 345–346

IsAlive property, 784
IsBackground property, 783
IsCancellationRequested property,

812, 854
IsCompleted property, 795, 856
IsDefined(), 407
ISerializable interface, 482, 755–756
ISettingsProvider interface, 367–369,

374–375

 968 Index

IsInvalid, 906
IsKeyword(), 664
Items property, 500
Iterating over

arrays, 607–608
class collections using

IEnumerable<T>. See
IEnumerable<T> interface.

class collections using while(), 609
a collection, using while, 609
maintaining state during, 610
properties of objects in a collection.

See Reflection.
Iterators

canceling iteration, 715–716
contextual keywords, 718
creating your own, 705
defining, 706
functional description, 716–718
guidelines, 715
multiple in one class, 718–719
nested, 714–715
origins of, 705–706
recursive, 714–715
reserved keywords, 718
return statement, 708–709
returning values from, 707–709
state, 709–711
struct vs. class, 715
syntax, 707
yield break statement, 715–716
yield return statement, 708–709, 718

ITrace interface, 365
IWriteableSettingsProvider interface,

369

J
Jagged arrays

declaring, 98
definition, 97
getting the length of, 100

Java vs. C#
classes spanning multiple files, 9
declaring arrays, 102
exception specifiers, 473
filename matching class name, 9
generics, 535
implicit overriding, 327
implicitly typed variables, 82
importing namespaces with

wildcards, 196

inner classes, 307
main(), 17
partial class, 9
similarities to C#, 2
var, 82
virtual methods by default, 326

JIT (just-in-tme) compiler, 32, 930
Jitting, 32, 930. See also Compilers;

Compiling; Just-in-time
compilation.

Join(), 632–635, 783
Join operations. See Standard query

 operators, join operations.
Jump statements

break statement, 165–166
continue statement, 167–169
goto statement, 169–171
if statement, 168–169

Just-in-time compilation, 32

K
KeyNotFoundException, 693
Keys property, 695
Keywords. See also specific keywords.

contextual, 13
definition, 11
as identifiers, 15
incompatibilities, 13
list of, 12
placement, 11
reserved, 13, 15
syntax, 11–13, 15

Kill(), 837

L
Lambda calculus, 558
Lambda expressions. See also

Anonymous methods.
captured variables, 561–563
capturing loop variables, 564–566
closed over variables, 561–563
closures, 564
as data, 566–568
definition, 538, 550–551
explicitly declared parameter types, 553
expression lambdas, 551
GetType(), 555
guidelines, 553
internals, 560–561
lifetime of captured variables, 563
name origin, 558

 Index 969

notes and examples, 555–556
outer variable CIL implementation,

563–564
outer variables, 561–563
predicate, definition, 555, 616
returning a bool, 552, 558
sequence of operations, 625
statement lambdas, 551–554
typeof() operator, 555

Lambda operator
=> (equal sign, greater than) lambda

operator, 551, 554–555, 557
Lambdas, asynchronous, 833–835
Language contrast. See specific languages.
Language interoperability, 33
Last in, first out (LIFO), 699–700
LastIndexOf(), 688–689
Late binding, 942
Latency

asynchronous high-latency operations
with the TPL, 819–823

definition, 772
synchronous high-latency operations,

817–818
Latitude, 430–431
Lazy initialization, 461–462
Lazy loading, 462–463
LazyCancellation enum, 801
Left-associative operators, 113
Left outer join, definition, 629
Length

arrays, 99–100
strings, 64–65

Length member, 64–65, 99–100
Less than, equal sign (<=) less than or

equal operator, 138, 424–425
Less than sign (<) less than operator, 138,

424–425
Less than signs, equal (<<=) shift left

assignment operator, 148–149
Less than signs (<<) shift left operator,

148–149, 426–428
let clause, 669–670
Libraries

class, 432–433
definition, 9, 432
file extension, 9
TPL (Task Parallel Library). See

Pseudoattributes.
Library implementation. See CLS

(Common Language Specification).

Lifetime of captured variables in lambda
expressions, 563

LIFO (last in, first out), 699–700
Line-based, statements, Visual Basic vs

C#, 18
#line preprocessor directive, 172, 176
Linked list collections, 701
LinkedListNode<T>, 701
LinkedList<T>, 701
LINQ (Link Integrated Query)

anonymous types, 649–650
definition, 603

LINQ queries
building with expression trees,

570–571
with query expressions. See Query

expressions with LINQ.
running in parallel, 620–621

Linq.ParallelEnumerable, 857–859
Liskov, Barbara, 705–706
List collections, 683–686
Listeners, registering for events, 802–803
Lists. See also Collections.

vs. dictionaries, 680–683
indexers, defining, 702–703
sorting, 686–687

List<T>
covariance, 525
description, 683–686

List<T>.Sort(), 686–687
Literal values

case sensitivity, suffixes, 49–50
definition, 47–48
exponential notation, 50
specifying, 47–48
strings, 57

Loading
files, 256–259
lazy, 462–463

 Local functions, 39, 540, 834–835
Local variable scope, C++ vs. C#, 137
Local variables

assigning values to, 22–23
casing, 22
changing values, 22–23
data types, specifying, 21
declaring, 20–21
guidelines for naming, 22
implicitly typed, 69, 81–82
naming conventions, 22, 191
unsynchronized, 867–868

 970 Index

Localizing applications, Unicode
 standard, 54

lock keyword, 870–872
lock objects, 873–874
Lock performance, locking on this

 keyword, 874–875
lock statement, 394–396, 780
Lock synchronization, 870–872
Locking

guidelines, 875, 881
on this, typeof, and string, 874–875
threading problems, 780

lockTaken parameter, 870
Logical operators, 149–152. See also Boolean

expressions, logical operators.
Lollipops, in interface diagrams, 373
Long-running tasks, 815–816
long type, 44
Longitude, 430–431
LongRunning enum, 799
Loop variables, 156, 564–566
LoopExpression, 568
Loops

break statement, 129
continue statements, 128
with decrement operator, 121–124
do while, 128, 153–156
escaping, 165–166
for, 128, 156–159
foreach, 128, 159–161
goto, 129
guidelines, 158, 159
if, 127, 130
if/else, examples, 130, 132
iterations, definition, 155
nested if, 130–132
switch, 129
while, 127, 153–156

Loops, jump statements
break, 165–166
continue, 167–169
goto, 169–171
if, 168–169

LowestBreakIteration, 856
lpflOldProtect, 901

M
Machine code, compiling, 924–925
Main()

activation frames, 202–203
args parameter, 17

call site, 203
call stack, 203
declaring, 16–17
definition, 16
disambiguating multiple Main()

methods, 202
invoking location, 203
multiple, disambiguating, 202
nonzero return code, 16–17
parameters, 200–202
passing command-line arguments to,

200–202
returns from, 200–202
stack unwinding, 203
syntax, 16–17

main() method, Java vs. C#, 17
__makeref keyword, 15
MakeValue(), 512–513
Managed code, definition, 32
Managed execution

BCL (Base Class Library), 33
CIL (Common Intermediate

Language), 32–34
CLI (Common Language

Infrastructure) specification,
32–33

CLS (Common Language
Specification), 33

code access security, 33
CTS (Common Type System), 32
definition, 31
execution time, 33
garbage collection, 33
just-in-time compilation, 32
language interoperability, 33
managed code, definition, 32
native code, definition, 32
platform portability, 33
runtime, definition, 32, 33
type safety, 33
unmanaged code, definition, 32
VES (Virtual Execution System), 32

Many-to-many relationships, definition,
629

Masks, 151
Max(),297, 644
MaxDegreeOfParallelism property, 855
Max<T>, 519–520
Me keyword, 254
Member invocation, reflection, 725–730
Member names, retrieving, 769

 Index 971

Member variables, 249–251
MemberInfo, 729–730
Memory, deallocating, 454. See also

Garbage collector.
Metadata

about assemblies, adding, 736–737
within an assembly, examining. See

Reflection.
definition, 31
reflection, 942
for types, accessing with System.Type,

723–724. See also Reflection.
XML, 31

Metadata tables, setting bits or fields in.
See Pseudoattribute.

method attributes, 738
Method calls

avoiding boxing, 396–398
during construction, C++ vs. C#, 330
as ref or out parameter values, 276
vs. statements, 188–189
translating query expressions to, 676–678

Method group conversion, delegates, 546
Method names

as arguments, delegates, 546
calling, 187

Method resolution, 224–225
Method return type declaration,

192–194
Method returns, multicast delegates, 590
MethodCallExpression, 568
MethodImplAttribute, 874
MethodImplOptions.Synchronized(),

875
Methods. See also Anonymous methods;

specific methods.
accessing by name, on interfaces, 365
class association, 183
declaring in interfaces, 355
definition, 16, 182–183
derived from System.Object,

344–345
falling through, 192
global, C++ vs. C#, 190
guidelines for naming, 183
identifying support for generics,

731–732
instance, 251–252
naming conventions, 183
operational polymorphism, 218

overloading, 217–220
overriding, 328–330
partial, 308–311
passing as arguments, 557
return type declaration, 192–194
return values, 188
returning multiple values with tuples,

193–194
syntax, 16
uniqueness, 217–218
unreachable end point, 192
void, 193

Methods, calling
applicable calls, 224
arguments, 183, 187
caller, 183
compatible calls, 224
method call example, 184
method name, 187
method resolution, 224–225
method return values, 188
named arguments, 222
namespaces, 184–186. See also specific

namespaces.
recursively. See Recursion.
return values, 183
scope, 187
statements vs. method calls, 188–189
type name qualifier, 186–187

Methods, declaring
example, 189–190
expression bodied methods, 194
formal parameter declaration, 191
formal parameter list, 191
method return type declaration,

192–194
refactoring, 190–191
return statements, example, 192–193
specifying no return value, 193
type parameter list, 191
void as a return type, 193

Methods, extension
derivation, 322–323
on interfaces, 369–371
overview, 299–300

Microsoft IL (MSIL), 943. See also CIL
(Common Intermediate Language).

Microsoft .NET Framework. See .NET
Framework.

Microsoft Silverlight, 926

 972 Index

Microsoft Visual Studio 2017, 3
Microsoft.CSharp.RuntimeBinder

.RuntimeBinderException, 762
Min(),297, 644
Min(<T>), 519–520
Minus sign (-)

arithmetic binary operator, 111–112
delegate operator, 583–584
precedence, 112
subtraction operator, overloading,

426–428
unary operator, 110–111
unary operator, overloading, 428–430

Minus sign, equal (-=)
minus assignment operator, 428
delegate operator, 583–584

Minus signs (--) decrement operator
C++ vs. C#, 124
decrement, in a loop, 121–124
description, 121
guidelines, 124
lock statement, 125
post-increment operator, 122
postfix increment operator, 123–124
pre-increment operator, 123–124
prefix increment operator, 123–124
race conditions, 125
thread safety, 125

Minus signs (--) unary operator, over-
loading, 428–430

Mod operator, percent sign (%), 111–112,
426–428

module attributes, 738
Monitor, 868–870
Mono, 37, 926
Montoya, Inigo, 2
Move(), 299–300, 385
MoveNext(), 710–711
MSIL (Microsoft intermediate language),

943. See also CIL (Common
Intermediate Language).

MTA (Multithreaded Apartment), 895
Multicast delegates

adding methods to, 586
chaining, 587
definition, 575, 580
error handling, 587–590
internals, 586–587
new delegate instances, 582
passing by reference, 590
removing delegates from a chain, 583

Multidimensional arrays
assignment, 91
declaring, 91
indexes, 98
initializing, 95–96

Multiple inheritance
C++ vs. C#, 323
simulating, 323–325

Multiple inheritance, interfaces
aggregation, 371–372
diagramming, 373
implementing, 369, 371–372
working around single inheritance,

371–372
Multiple Main() methods, disambiguating,

202
Multiplication with bit shifting, 149
Multithreaded Apartment (MTA), 895
Multithreading

asynchronous operations, definition,
776

clock speeds over time, 772
concurrent operations, definition, 776
context switch, definition, 776
CPU (central processing unit), 774
flow of control, definition, 774
Hyper-Threading, definition, 774
I/O-bound latency, definition, 772
latency, definition, 772
multithreaded programs, definition,

774
parallel programming, definition, 776
performance guidelines, 778
PLINQ (Parallel LINQ). See

Pseudoattributes.
PLINQ queries. See PLINQ queries,

multithreading.
process, definition, 774
processor-bound latency, definition, 772
programs. See Pseudoattributes.
purpose of, 775–776
quantum, definition, 776
simultaneous multithreading, defini-

tion, 774
single-threaded programs, definition,

774
TAP (Task-based Asynchronous

Pattern). See Pseudoattributes.
task, definition, 775
thread, definition, 774
thread pool, definition, 775

 Index 973

thread safe code, definition, 774
threading model, definition, 774
time slice, definition, 776
time slicing, definition, 776
TPL (Task Parallel Library). See

Pseudoattributes.
Multithreading, asynchronous tasks

antecedent tasks, 797–798
associating data with tasks, 795
asynchronous continuations, 796–803
chaining tasks, 797–798
cold tasks, 792
composing large tasks from smaller

one, 796–798
continuation tasks, 797–798
control flow, 796
creating threads and tasks, 790–791
hot tasks, 792
Id property, 795
introduction, 791–795
invoking, 791–795
multithreaded programming

 complexities, 789–790
observing unhandled exceptions,

806–807
polling a Task<T>, 793–794
registering for notification of task

behavior, 801–802
registering for unhandled exceptions,

803–807
registering listeners for events, 802–803
returning void from an asynchronous

method, 830–833
synchronous delegates, 791
task continuation, 796–803
task identification, 795
task scheduler, 790–791
task status, getting, 794
Task.Run(), 792
tasks, definition, 790–791
tasks vs. delegates, 791
Task.WaitAll(), 793
Task.WaitAny(), 793
unhandled exception handling with

AggregateException, 803–807
unhandled exceptions on a thread,

803–807
Multithreading, canceling tasks

cooperative cancellation, definition, 810
disposable tasks, 816

long-running tasks, 810–814
obtaining a task, 814–815

Multithreading, guidelines
aborting threads, 787
long-running tasks, 816
parallel loops, 849
performance, 777, 781
thread pooling, 789
Thread.Sleep(), 784–785
unhandled exceptions, 810

Multithreading, parallel loop iterations
breaking, 855–856
canceling, 852–854
exception handling with

AggregateException, 851–852
hill climbing, 850–851
introduction, 846–850
options, 854–855
TPL performance tuning, 850–851
work stealing, 850–851

Multithreading, performance
context switching, 777
overview, 776–777
switching overhead, 777
time slicing costs, 777

Multithreading, task-based asynchronous
pattern

with async and await, 824–829
async and await with the Windows

UI, 843–845
async keyword, purpose of, 827
async void method, 830–833
asynchronous high-latency operations

with the TPL, 820–824
asynchronous lambdas, 833–835
await keyword, 838–840
await operators, 844–846
awaiting non-Task<T> or values,

838–840
control flow misconceptions, 826
control flow within tasks, 827
custom asynchronous methods, 835–838
handling exceptions, 821–822
problems addressed by, 846
progress update, 837–838
synchronization context, 840–842
synchronous high-latency operations,

817–818
task drawbacks, overview, 817–823
task schedulers, 840–842

 974 Index

Multithreading, threading problems
atomic operations, 778
complex memory models, 779–780
deadlocks, 780
lock statement, 780
locking leading to deadlocks, 780
race conditions, 778–779

Multithreading, with
System.Threading.Thread

Abort(), 786–787
aborting threads, 786–787
asynchronous delays, 785
asynchronous operations, 781–783
await operator, 785
checking threads for life, 784
foreground threads vs. background, 783
IsAlive property, 784
IsBackground property, 783
Join(), 783
Priority property, 784
putting threads to sleep, 784–785
reprioritizing threads, 783
Task.Delay(), 785
thread management, 783–784
thread pooling, 787–789
ThreadAbortException, 786–787
Thread.Sleep() method, putting

threads to sleep, 784–785
ThreadState property, 784
waiting for threads, 783

N
\n, newline character, 55, 57
Name property, 273–274
Named arguments, calling methods, 222
Named parameters, attributes, 746–747
nameof operator

properties, 270–271, 733–734
throwing exceptions, 467, 468

Namespaces
aliasing, 199–200. See also using

directive.
calling methods, 184–186
in the CLR (Common Language

Runtime), 442
common, list of, 185–186
defining, 442–445
definition, 184, 195
dropping. See using directive.
eliminating. See using directive.
guidelines, 186, 445

importing types from. See using
directive.

introduction, 442–445
naming conventions, 186, 442
nested, 196, 443–444

Naming conventions
avoiding ambiguity, 254
class definition, 15
identifiers, 13–14
for interfaces, 355
local variables, 22
methods, 183
namespaces, 186, 442
parameters, 191, 223
properties, 267
type parameter, 498

Native code, definition, 32
NDoc tool, 449
Negation operator. See NOT operator.
Negative infinity, 119
Negative numbers vs. positive, bitwise

operators, 148
Negative zero, 120
Nested

classes, 304–306
delegates, 545
generic types, 505–506
if statements, 130–132
iterators, 714–715
namespaces, 196, 443–444
types, 306
using directives, 197–198

.NET
description, 943
garbage collection, 450–451, 933–934

.NET Compact Framework, 926

.NET Core
default .NET framework, 3
description, 37, 925, 927–928

.NET Framework
description, 925
vs. .NET framework, 927

.NET framework
choosing, 3
default, 3. See also .NET Core.
downloading, 3
installing, 3
vs. .NET Framework, 927
predominant implementations, 37.

See also specific frameworks.
.NET Micro Framework, 926

 Index 975

.NET Native, 942–943

.NET standard, 928–929

.NET versions, mapped to C# releases,
39–40

new keyword, 94
New line, starting

/n (newline character), 55, 57, 64
/r/n (newline character), 64
strings, 55, 57
verbatim string literals, 57
WriteLine() method, 64

new modifier, 330–335
new operator

constructors, 279, 280
value types, 388

NewExpression, 568
NextId initialization, 295
No-oping a call, 749–750
Non-nullable value types, 511–512
Non-serializable fields, 754
NonSerializable, 754
Normalized data, 633
NOT operator, 141
NotImplementedException, 233
NotOnCanceled enum, 800
NotOnFaulted enum, 799
NotOnRanToCompletion enum, 799
nowarn option, 175–176
nowarn:<warn list> option, 175–176
NuGet packages, adding to class libraries,

436–439
null, checking for

arrays, 705
collections, 705
empty arrays or collections, 705
guidelines, 582
invoking delegates, 594
multicast delegates, 580–582

Null-conditional operator
delegates, 146–147
question mark, dot (?.), 144–146
short circuiting with, 144–146

null type
description, 67–68
use for, 67–68

Nullable modifier, 80–83
Nullable<T>, 493
NullReferenceException

invoking delegates, 594
throwing exceptions, 467, 468

Numbers, formatting as hexadecimal, 52
Numeric conversion, exception handling,

238–239

O
Obfuscators, 34. See also ILDASM (IL

Disassembler).
Object graphs, expression trees as, 568–569
Object initializers

calling, 281–282
constructors, 281–282
definition, 281–282

object members, overriding, 416–419
Object-oriented programming,

 definition, 242–243
Object types. See Types.
Objects. See also Constructors.

associations, 292
CIL (Common Intermediate

Language), 940
definition, 246–247
destroying, 283
identity vs. equal object values, 416–419
instantiation, 247

Obsolete APIs. See Deprecated APIs.
ObsoleteAttribute, 751–752
Obtaining a task, 814–815
OfType<T>(), 643
One-to-many relationships, 630, 637–638
OnFirstNameChanging(), 310–311
OnLastNameChanging(), 310–311
OnlyOnCanceled enum, 799
OnlyOnFaulted enum, 800
OnlyOnRanToCompletion enum, 800
OnTemperatureChange event, 598–599
OnTemperatureChanged(), 577–578
Operational polymorphism, 218
OperationCanceledException, 814, 854,

859–861
Operator constraints, constraint limita-

tions, 515–516
Operator-only statements, C++ vs. C#, 111
Operator order of precedence, C++ vs.

C#, 124
Operators. See also specific operators.

arithmetic binary (+, -, *, /, %), 111–112
assignment (=), 22
associativity (()) parenthesis, 112–117
bitwise (&, |, ^), 149–152)
characters in arithmetic operations, 115

 976 Index

Operators (continued)
comparison, 424–425
compound mathematical assignment

(+=, -=, *=, /=, %=), 120
compound bitwise assignment (&=, |=,

^=, >>=, <<=), 152
const keyword, 125
constant expressions, 125
constant locals, 125
definition, 109
left-associative, 113
operands, 110
operator-only statements, C++ vs. C#,

111
order of operations, 112, 114
plus and minus unary (+, -), 110–111
precedence, 112–114, 178–179
results, 110
right-associative, 113
uses for, 110

Operators, increment/decrement (++, --)
C++ vs. C#, 124
decrement, in a loop, 121–124
description, 121
guidelines, 124
lock statement, 125
post-increment/post-decrement

 operator, 122
postfix increment/decrement

 operator, 123–124
pre-increment/pre-decrement

 operator, 123–124
prefix increment/decrement operator,

123–124
race conditions, 125
thread safety, 125

Optional parameters, 220–224
OR criteria, constraint limitations, 516
OR operator, | (vertical bar), 405–407
Order of operations, 112, 114. See also

Precedence.
OrderBy(), 626–629
orderby clause, 668–669
OrderByDescending(), 628
out parameter, 206–209, 276, 526–528
Out property, 740
out vs. pointers, P/Invoke, 901–902
Outer joins, 639–642
Outer variables, lambda expressions,

561–563
OutOfMemoryException, 468, 476

Output, passing parameters, 206–209
Overloading

constructors, 283–285
equality operators on value types, 390
methods, 217–220
type definitions, 504
type definitions with tuples, 503–504

Overloading operators. See also specific
operators.

= (equal sign) assignment operator, 423
binary operators, 426–428
binary operators combined with

assignment operators, 428
cast operator, 430–431
comparison operators, 424–425
conditional logical operators, 428
conversion operators, 430
unary operators, 428–430

override keyword, 327, 336–337
Overriding

abstract members, 341
base classes. See Base classes,

overriding.
base classes, virtual methods, 326–330
implicit, C++ vs. C#, 327
methods, 328–330
properties, 326–327

Overriding object members
Equals() equality operator, 415–423
GetHashCode(), 413–415
ToString(), 412–413

P
P/Invoke

allocating virtual memory, 900
calling external functions, 906–908
declaring external functions, 898–899
declaring types from unmanaged

structs, 902–903
description, 898
error handling, 903–905
function pointers map to delegates,

910
guidelines, 905, 910
out vs. pointers, 901–902
parameter types, 899–901
ref vs. pointers, 901–902
SafeHandle, 905–906
sequential layout, 902–903
Win32 error handling, 903–905
wrappers for API calls, 909

 Index 977

PairInitializer<T> interface, 530
Pair<T>, 525
Palindromes, 103–104
Parallel LINQ (PLINQ) queries,

 multithreading. See PLINQ queries,
multithreading.

Parallel loop iterations. See Multithreading,
parallel loop iterations.

Parallel programming, definition, 776
Parallel.For() loops, 855–856
Parallel.ForEach() loops, 856
Parallel.ForEach<T>(), 854
ParallelOptions object, 855
ParallelQuery<T>, 858, 861
Parameter arrays, 212–214, 505
Parameter names, identifying when

throwing exceptions, 467, 468
Parameter types

determining, 731–732
explicitly declared, 553
P/Invoke, 899–901

ParameterExpression, 568
Parameterized types, 493
Parameters

calling methods, 183, 187
guidelines, 191, 222–223
on the Main(), 200–202
matching caller variables with

 parameter names, 203–204
method overloads, 222
names, generating. See Nameof

operator.
names, getting. See nameof operator.
naming conventions, 191, 223
optional, 220–224
reference types vs. value types, 204–205
specifying by name, example, 222–223

Parameters, passing
out, 206–209
output, 206–209
ref type, 205–206
by reference, 205–206
by value, 203–204

ParamName property, 468
params keyword, 212–214
Parent type, 244
Parentheses (())

for code readability, 113–114
grouping operands and operators,

113–114
guidelines, 113

Parse(), 73–76, 238–239, 404, 407–409,
748

Partial classes, 9, 307–308
Partial methods, C++ vs. C#, 194
PascalCase

definition, 14
tuple names, 86–87

Passing
anonymous methods, 557
command-line arguments to Main(),

200–202
delegates with expression lambdas,

554–555
methods as arguments, 557
by reference, multicast delegates, 590

Passing, parameters
out, 206–209
output, 206–209
ref type, 205–206
by reference, 205–206
by value, 203–204

Passing variable parameter lists, 212–213
Pattern matching

with the is operator, 346–347
with a switch statement, 347–349

Peek(), 699–700
Percent sign, equal (%=) mod assignment

operator, 428
Percent sign (%) mod operator, 111–112,

426–428
Performance

effects of boxing, 393
locks. See Lock performance.
multithreading, 776–777, 780
runtime, 935–936
TPL (Task Parallel Library), 850–851

Periods (....), download progress indi-
cator, 821

Pi, calculating, 846–850
PiCalculator.Calculate(), 793
PingButton_Click(), 843
Ping.Send(), 843
Platform interoperability. See P/Invoke;

Unsafe code.
Platform invoke. See P/Invoke.
Platform portability, managed execution,

33
PLINQ queries, multithreading

AggregateException, 861
canceling, 859–861
CancellationToken, 861

 978 Index

PLINQ queries, multithreading (continued)
CancellationTokenSource, 861
introduction, 856–859
Linq.ParallelEnumerable, 857–859
OperationCanceledException, 815,

854, 859–861
ParallelQuery<T> object, 861
with query expressions, 858–859
TaskCancelledException, 861

Plus sign (+)
addition operator, overloading, 426–428
arithmetic binary operator, 111–112
with char type data, 115
concatenating strings, 114
delegate operator, 583–584
determining distance between two

characters, 116
with non-numeric operands, 114
precedence, 112
unary operator, 110–111

Plus sign, equal (+=)
plus assignment operator, 428
delegate operator, 583–584

Plus sign (+), unary operator, overloading,
428–430

Plus signs (++) increment operator
C++ vs. C#, 124
decrement, in a loop, 121–124
description, 121
guidelines, 124
lock statement, 125
post-increment operator, 122
postfix increment operator, 123–124
pre-increment operator, 123–124
prefix increment operator, 123–124
race conditions, 125
thread safety, 125

Plus signs (++) unary operator, overloading,
428–430

Pointers and addresses
accessing members of a referent type,

920
allocating data on the call stack, 917
assigning pointers, 914–915
dereferencing pointers, 917–919
fixing (pinning) data, 915–916
pointer declaration, 913–917
referent types, 913
unmanaged types, 913
unsafe code, 911–913

Polling a Task<T>, 793–794
Polymorphism. See also Inheritance;

Interfaces.
abstract classes, 341–343
description, 245
interfaces, 355–360

Pop(), 488–491, 699–700
Positive infinity, 119
Positive numbers vs. negative, bitwise

operators, 148
Positive zero, 120
#pragma preprocessor directive, 172,

175–176
Precedence, 112–117, 178–179. See also

Order of operations.
Precision

binary floating-point types, 116
double type, 116
float type, 117–120

Predefined attributes, 748–749
Predefined types, 43
Predicates

definition, 555, 616
filtering class collections, 616
lambda expressions, 555, 667–668

PreferFairness enum, 799
Preprocessing, C++ vs. C#, 171
Preprocessor directives. See also Control

flow; Flow control.
as comments, 173
as debugging tool, 173
defining preprocessor symbols,

173–174
disabling/restoring warning messages,

175–176
emitting errors and warnings, 174–175
excluding/including code, 172–173
handling differences among

 platforms, 173
specifying line numbers, 176
summary of, 171–172. See also specific

directives.
undefining preprocessor symbols,

173–174
visual code editors, 176–178

Preprocessor symbols
defining with preprocessor directives,

173–174
undefining with preprocessor

 directives, 173–174

 Index 979

The Princess Bride, 2
Print(), 342
Priority property, 784
private access modifier, 259–261,

319–320, 441
Private fields, 261–262
private keyword, 261
Private members

accessing, 320–321
definition, 260
inheritance, 320

private protected accessibility
 modifier, 441

Procedural programming. See Structured
programming.

Process, definition, 774
Process.Kill(), 837
Processor-bound latency, definition, 772
Program, accessing static fields, 291
Programming, object-oriented definition,

242–243
Programming with dynamic objects

dynamic binding, 764–765
dynamic directive, 761–763
dynamic member invocation, 762
dynamic principles and behaviors,

761–763
dynamic System.Object, 763
implementing a custom dynamic

object, 766–769
introduction, 759
invoking reflection with dynamic,

759–761
reflection, support for extension

methods, 762–763
retrieving member names, 769
signature verification, 762
vs. static compilation, 765–766
type conversion, 761–763
type safety, 760–761, 766

Progress update display, 837–838
Projecting collections

definition, 658
FileInfo collections, 669–670
with query expressions, 660–663
with Select(), 618–619

Properties
accessing with fields, 64
automatically implemented, 265–267,

272, 278, 296

automatically implemented, read-
only, 303–304

declaring, 262–265
decorating with attributes, 735–736
definition, 262
getter and setter, 262–265
getting names of. See

CallerMemberName parameter;
nameof operator.

guidelines, 267–268, 272, 282
internal CIL code, 277–278
introduction, 261–262
nameof operator, 270–271, 733–734
naming conventions, 267
overriding, 326–327
read-only, 271–272
read-only automatically implemented,

303–304
as ref or out parameter values, 276
static, 296
validation, 268–270
as virtual fields, 273–274
write-only, 271–272

protected access modifier, 321–322, 441
protected internal accessibility

 modifier, 441
protected internal type modifier,

440–441
Protected members, accessing, 321–322
Pseudoattributes, 758
public access modifier, 259–261, 439–441
Publishing code, checking for null,

580–582
Pulse(), 870
Pure virtual functions, C++ vs. C#, 341
Push(), 488–491, 699–700

Q
Quantum, definition, 776
Query continuation clauses, 673–674
Query expressions with LINQ

anonymous types, 662
code example, 658–659
continuation clauses, 673–674
deferred execution, 663–667
definition, 657
discarding duplicate members, 675–676
filtering collections, 667–668
flattening a sequence of sequences,

674–675

 980 Index

Query expressions with LINQ (continued)
from clause, 659–660
group by clause, 671
group clause, 659
grouping query results, 670–673
into keyword, 673–674
introduction, 658–660
let clause, 669–670
projecting collections, 660–663
range variables, 659
returning distinct members, 675–676
select clause, 659–660
sorting collections, 668–669
translating to method calls, 676–678
tuples, 662
where clause, 659–660

Query operators. See Standard query
operators.

Question mark, colon (?:) conditional
operator, 142–143

Question mark, dot (?.) null-conditional
operator, 144–146

Question mark (?) nullable modifier,
80–83, 492

Question marks (??) null-coalescing
operator, 143–144

Queue collections, 700
Queue<T>, 700

R
Race conditions. See also Thread

synchronization.
class collections, 620–621
threading problems, 778–779

Range variables, 659
Rank, arrays

declaring, 93
definition, 92
getting the length of, 99–100

Read(), 25, 877
Read-only

automatically implemented properties,
303–304

fields, encapsulation, 302–304
properties, 271–272

Readability. See Code readability.
ReadKey(), 25
ReadLine(), 24–25
readonly modifier

encapsulation, 302–304
guidelines, 304

ReadToAsync(), 821
ReadToEnd(), 818
ReadToEndAsync(), 821
Recursion. See also Methods, calling.

definition, 215
example, 215–217
infinite recursion error, 217

Recursive iterators, 714–715
ref parameter, properties as values, 276
ref type parameters, passing, 205–206
ref vs. pointers, 901–902
Refactoring

classes, 314–315
methods, 190–191

Reference
passing parameters by, 205–206
returning parameters by, 209–211

Reference types
constraints on type parameters,

511–512
copying, 383
vs. value types, 204–206, 381–383

ReferenceEquals(), 418
Referencing other assemblies

changing the assembly target, 433
class libraries, 433–438
encapsulation of types, 439
internal access modifiers on type

declarations, 439–440
protected internal type modifier,

440–441
public access modifiers on type

 declarations, 439–440
referencing assemblies, 434–436
type member accessibility modifiers,

441
Referent types

accessing members of, 920
definition, 913

Referential identity, 388
Reflection

accessing using System.Type class,
723–724

circumventing encapsulation and
access modifiers, 934

definition, 722
GetProperties(), 723–724
getting an object’s public properties,

723–724
GetType(), 723–724
invoking with dynamic, 759–761

 Index 981

member invocation, 725–730
metadata, 942
retrieving Type objects, 723–725
support for extension methods,

762–763
TryParse(), 729–730
typeof(), 723–725
uses for, 722

Reflection, on generic types
classes, identifying support for

 generics, 731–732
determining parameter types, 731–732
methods, identifying support for

generics, 731–732
type parameters for generic classes or

methods, 732–733
typeof operator, 731

__reftype keyword, 15
__refvalue keyword, 15
#region preprocessor directive, 172,

176–178
Registering

listeners for events, 802–803
for notification of task behavior,

801–802
for unhandled exceptions, 808–810

Relational operators, 138–139
ReleaseHandle(), 906
Remainder operator. See Mod operator.
Remove(), 67

event internals, 600
removing delegates from chains, 584
removing dictionary elements, 693
System.Delegate, 686

RemoveAt(), 686
remove_OnTemperatureChange(),

599–600
Removing

delegates from a chain, 583
dictionary elements, 693
elements from collections, 686

Replace(), 67
ReRegisterFinalize(), 461
Reserved keywords, 13, 15, 718
Reset(), 609
Reset events, 884–887
Resource cleanup. See also Garbage

collection.
class collections, 612
exception propagation from

 constructors, 460

finalization, 453–460
finalization (f-reachable) queue,

resource cleanup, 458
finalizers, 453–454
garbage collection, 458–460
guidelines, 459–460
with IDisposable, 455–460
invoking the using statement, 455–457
resurrecting objects, 461

Result property, 794
Results, 110
Resurrecting objects, 461
Rethrowing

existing exceptions, 471
wrapped exceptions, 483–484

Retrieving
attributes, 740–741
member names, 769
Type objects, reflection, 723–725

return attributes, 737–738
return statements, 192–193, 708–709
Return values

calling methods, 183
from iterators, 707–709
from Main(), 200–202
methods, 188
from the ReadLine(), 24–25

Reverse(), 100–102, 104, 644
Reversing

arrays, 104
strings, 104

Right-associative operators, 113
Right outer join, definition, 629
Root references, 450
Round-trip formatting, 52–53
Run(), 792, 814–815
RunContinuationAsynchronously

enum, 801
Running applications, 3
RunProcessAsync(), 835–837
Runtime. See also VES (Virtual Execution

System).
circumnavigation encapsulation and

access modifiers, 934
definition, 32–33
garbage collection, 932–934
managed code, definition, 932
managed data, definition, 932
managed execution, definition, 932
performance, 935–936
platform portability, 935

 982 Index

Runtime (continued)
reflection, 934, 942
type checking, 934
type safety, 934

RuntimeBinderException, 762

S
SafeHandle, 905–906
Save(), 255–256
sbyte type, 44
Scope

calling methods, 187
flow control statements, 135–136

SDK (software development kit), 3
Sealed classes, 325
sealed modifier, 335
Sealed types constraint limitations, 516–517
Sealing virtual members, 335
Search element not found, 689
Searching

arrays, 100–102, 688–689
collections, 688–689
lists, 688–689

Select()
projecting class collection data, 618–619
vs. SelectMany(), 641

select clause, 659–660, 667
SelectMany()

calling, 640–641
creating outer joins, 639–642
vs. Select(), 641

Semaphore, 887–888
SemaphoreSlim, 887–888
SemaphoreSlim.WaitAsync(), 887–888
Semicolon (;), ending statements, 17–18
Send(), 843
SendTaskAsync(), 844
SequenceEquals(), 644
Sequential invocation, multicast delegates,

584–586
Serializable objects, 482
SerializableAttribute, 752–754
Serialization(), 754
Serialization, versioning, 756–758
Serialization-related attributes, 748–749,

752–754
Serializing

business objects into a database. See
Reflection.

documents, 756–758

Serializing document objects, 754
set_PropertyName, 64
Set(), 884–887
set keyword, 264
SetName(), 252–253
SetResult(), 837
Setter properties. See Getter/setter

properties.
Shared Source CLI, 926
Shift operators, 148–149
Short circuiting

with the null-conditional operator,
144–146

with the OR operator, 140
short types, 44, 45
SignalAndWait(), 883
Signature verification, 762
Simple assignment operator. See Equal

sign (=) assignment operator.
Simultaneous multithreading, definition,

774
Single backslash character (\), escape

sequence, 55
Single inheritance, 323–325, 371–372
Single-line comments, 30
Single-threaded programs, definition,

774
Slash, equal (/=) division assignment

operator, 428
Sleep(), 784–785
Smiley face, displaying, 56
Sort(), 100–102, 686–687
SortedDictionary<T>, 697–698
SortedList<T>, 697–698
Sorting

in alphabetical order, 550
arrays, 100–102
class collections, 626–628. See also

Standard query operators,
sorting.

collections, 686–687, 697–698
integers in ascending order. See

BubbleSort().
lists, 686–687

Sorting, collections. See also Standard
query operators, sorting.

by file size, 669–670
by key, 697–698
with query expressions, 668–669
by value, 697–698

 Index 983

Source code
compiling, 3–4, 4–5, 9. See also

Compilers.
creating, 3–4, 4–5
editing, 3
running, 3
used in this text, solution file, 10

Specializing types, 245
SqlException, 481
Square brackets ([]), array declaration,

92
Stack

allocating data on, 917
definition, 381
unwinding, 203
values, accessing, 699–700

Stack, 494–496
Stack collections, 699–700
stackalloc data, 917
Stack<int>, 533–534
StackOverflowException, 233
Stack<T>, 532–533, 699–700
Standard query operators

AsParallel(), 620–621
caching data, 626
Concat(), 643
counting elements with Count(),

621–622
deferred execution, 622–626
definition, 613
Distinct(), 644
filtering with Where(), 616–617,

622–626
guidelines, 622, 678
Intersect(), 644
OfType(), 643
projecting with Select(), 618–619
queryable extensions, 644–645
race conditions, 620–621
Reverse(), 644
running LINQ queries in parallel,

620–621
sample classes, 614–616
sequence diagram, 625
SequenceEquals(), 644
sorting, 626–628
System.Linq.Enumerable method

calls, 642–643
table of, 644
Union(), 643

Standard query operators, join
operations

Cartesian products, 634
collections of collections, 640–641
DefaultIfEmpty(), 639–640
equi-joins, 638
full outer join, 629
grouping results with GroupBy(),

636–637
inner join, 629, 632–635
introduction, 628–629
left outer join, 629
many-to-many relationships, 629
normalized data, 633
one-to-many relationships, 630
one-to-many relationships, with

GroupJoin(), 637–638
outer joins, with GroupJoin(),

639–640
outer joins, with SelectMany(),

639–642
right outer join, 629

Start(), 329–330, 803–804
StartNew(), 814–815
State

iterators, 709–711
sharing, class collections, 610

Statement delimiters, 18–19
Statement lambdas, 551–554
Statements

combining. See Code blocks.
delimiters, 17–18
ending, 17–18
ending punctuation, 17–18
vs. method calls, 188–189
multiple, on the same line, 18, 20
splitting across multiple lines, 18–19
syntax, 18–19
without semicolons, 18

STAThreadAttribute, 895
Static

classes, 297–298
compilation vs. programming with

dynamic objects, 765–766
constructors, 294–295
fields, 289–292. See also Instance fields;

static keyword.
methods, 60–61, 293–294
properties, 296

static keyword, 289. See also Static, fields.

 984 Index

Status property, 795
Stop(), 329–330, 856
Storage

disk, 700
files, 256–259
reclaiming. See Finalizers; Garbage

collection.
Store(), 256–259
String interpolation

formatting with, 26
syntax prefixes, 59–60

string keyword, 57, 874–875
String methods

instance methods, 60
list of, 61–62
static methods, 60–61. See also using

directive; using static
directive.

string type, 57, 226
string.Compare(), 54
string.Format, 60
string.join statement, 849
Strings

@ (at sign), coding verbatim strings, 58
$ (dollar sign), string interpolation, 59
$@ (dollar sign, at sign), verbatim

string interpolation, 59–60
"" (double quotes), coding string

literals, 57–58
as arrays, 103–104
changing, 65–67
concatenation at compile time, vs.

C++, 59
converting text to uppercase, 66
determining length of, 64–65
formatting, 63
having no value vs. empty, 68
immutability, 24, 65–67
interpolation, 59–62
length, 64–65
Length member, 64–65
literals, 57–59
\n, newline character, 55, 58
\r\n, newline character, 64
read-only properties, 65
representing a binary display, 151
setting to null, 67–68
starting a new line, 55, 57
type for, 57
verbatim string interpolation, 59–60

verbatim string literals, 58
void type, 68

Strong references, garbage collection,
451–452

struct keyword
vs. class, 715
constraints, 511–512
declaring a struct, 384

StructLayoutAttribute, 902–903
Structs

declaring, 384
default value for, 388–389
definition, 384
finalizer support, 388
generic types, 498–499
guidelines, 387
initializing, 385–387
referential identity, 388

Structural equality, delegates, 558–560
Structured programming, 181
subscriber methods, 576–577
Subtypes, 244
Sum(), 644
Super types, 244
SuppressFinalize(), 458–460
Surrogate pairs, 55
Swap(), 206
Swapping array data elements, 98
switch statements

{} (curly braces), 18
catching exceptions, 469
code example, 161–162
fall-through, C++ vs. C#, 164
pattern matching, 347–349
replacing if statements, 163–164
syntax, 129

Switching overhead, 777
Synchronization. See Thread

synchronization.
Synchronization context, 840–842
Synchronization types. See Thread

 synchronization, synchronization
types.

Synchronized(), 875
Synchronizing

code, boxing, 394–396
local variables, 867–868
multiple threads with Monitor class,

868–870
threads. See Thread synchronization.

 Index 985

Synchronous delegates, 791
Synchronous high-latency operations,

817–818
Syntax

class definition, 15
identifiers, 13–14
keywords, 11–13, 15
methods, 16–18
statement delimiters, 18–19
statements, 18–19
type definition, 15
variables, 20–21

System, 185
System.Action delegates, 542–544
System.ApplicationException, 233,

468, 468
System.ArgumentException, 233, 465, 479
System.ArgumentNullException, 233
System.ArithmeticException, 233
System.Array, 516–517
System.Array.Reverse(), 104
System.ArrayTypeMismatchException,

233
System.Attribute, 738
System.AttributeUsageAttribute,

745–747
System.Collection.Generic.List<T>

.FindAll(), 689–690
System.Collections, 185
System.Collections.Generic

.IEnumerable<T>. See
IEnumerable<T> interface.

System.Collections.Generics, 185
System.Collections.Generic

.Stack<T>, 496, 609
System.Collections.IEnumerable.

See IEnumerable interface.
System.Collections.Stack.Pop(),

488–491
System.Collections.Stack.Push(),

488–491
System.ComponentModel

.Win32Exception, 903–904
System.Console.Clear(), 173
System.Console.Read(), 25
System.Console.ReadKey(), 25
System.Console.ReadLine() method

calling, 183–184
reading from the console, 24–25
return values, 188

System.Console.Write() method
calling, 183–184
return values, 188
starting a new line, 57, 64
writing to the console, 26–28

System.Console.WriteLine()
outputting a blank line, 64
round-trip formatting, 52–53
starting a new line, 57, 64
writing to the console, 26–28

System.Console.WriteLine() method
calling, 183–184
overloading ToString(), 412–413
return values, 188

System.Convert, 73
System.Data, 185
System.Data.SqlClient

.SqlException(), 481
System.Delegate

constraint limitations, 516–517
delegate internals, 547–550
multicast delegate internals, 586–587

System.Delegate.Combine()
combining delegates, 584
event internals, 600

System.Delegate.Remove()
event internals, 600
removing delegates from chains, 584
removing list elements, 686

System.Diagnostics
.ConditionalAttribute, 749–751

System.Diagnostics.Processor, 899
System.Diagnostics.Trace.Write()

method, 412
System.Drawing, 185
System.Dynamic.DynamicObject, 766
System.Dynamic

.IDynamicMetaObjectProvider
interface, 766–769

System.Enum, 517
System.Enum.IsDefined(), 407
System.Enum.Parse(), 404
System.Environment.CommandLine, 17
System.Environment.FailFast(), 468,

468
System.EventArgs, 595–596
System.EventHandler<T>, 598
System.Exception, 232, 468, 468
System.ExecutionEngineException,

468

 986 Index

System.FormatException, 233
System.Func delegates, 542–544
System.GC object, 450
System.GC.SuppressFinalize(),

458–460
System.IndexOutOfRangeException,

233
System.IntPtr, 901
System.InvalidCastException, 233
System.InvalidOperationException,

233, 470
System.IO, 185
System.IO.DirectoryInfo, 299–300
System.IO.FileAttributes, 405
System.Lazy<T>, 462–463
System.Linq, 185
System.Linq.Enumerable

aggregate functions, 644
Average(), 644
Count(), 644
GroupBy() method, grouping results,

636–637
GroupJoin(), 637–638
Join(), 632–635
Max(), 644
method calls, 642–643
Min(), 644
Select(), 618–619
Sum(), 644
Where(), 616–617

System.MulticastDelegate, 547–550
System.MultiCastDelegate, 516–517
System.NonSerializable, 754
System.NotImplementedException, 233
System.NullReferenceException, 233
System.Object, 344–345
System.ObsoleteAttribute, 751–752
System.OutOfMemoryException, 468, 476
System.Reflection.MethodInfo

 property, 547
System.Runtime.CompilerServices

.CallSite<T>, 763–764
System.Runtime.ExceptionServices

.ExceptionDispatchInfo

.Catch(), 472
System.Runtime.ExceptionServices

.ExceptionDispatchInfo

.Throw(), 472
System.Runtime.InteropServices

.COMException, 468

System.Runtime.InteropServices
.SafeHandle, 906

System.Runtime.InteropServices
.SEHException, 468

System.Runtime
.SerializationException, 757–758

System.Runtime.Serialization
.ISerializable, 755–756

System.Runtime.Serialization
.OptionalFieldAttribute, 758

System.Runtime.Serialization
.SerializationInfo, 755–756

System.Runtime.Serialization
.StreamingContext, 755–756

System.Security.AccessControl
.MutexSecurity objects, 882

System.SerializableAttribute,
752–754, 758

System.StackOverflowException, 233,
468

System.String(), 57
System.SystemException, 468, 479
System.Text, 185
System.Text.RegularExpressions, 185
System.Text.StringBuilder, 67, 510
System.Threading, 185
System.Threading.AutoResetEvent,

884, 887
System.Threading.Interlocked, 125

Add(), 877
CompareExchange(), 876–877
CompareExchange<T>, 877
Decrement(), 877
Exchange<T>, 877
Increment(), 877–878
Read(), 877

System.Threading.Interlocked
 methods, 876–877

System.Threading.ManualResetEvent,
884–887

System.Threading
.ManualResetEventSlim, 884–887

System.Threading.Monitor, 868–870
System.Threading.Monitor.Enter(),

394, 868–870, 874–875
System.Threading.Monitor.Exit(),

394, 870, 874–875
System.Threading.Monitor.Pulse(),

870
System.Threading.Mutex, 882–883

 Index 987

System.Threading.Tasks, 185
System.Threading.Tasks

.TaskCanceledException, 813–814
System.Threading.Thread, 774.

See also Multithreading, with
System.Threading.Thread.

System.Threading.Timer, 894
System.Threading.WaitHandle, 883
System.Timers.Timer, 894
System.Type class, accessing metadata,

723–724
System.UnauthorizedAccessException,

483
System.ValueTuple, 88–90, 503–505
System.ValueType, 389–390
System.WeakReference, 452
System.Web, 185
System.Windows, 186
System.Windows.Forms.Timer, 894
System.Windows.Threading

.DispatcherTimer, 894
System.Xml, 186

T
TAP language pattern, code readability,

844
TAP (Task-based Asynchronous Pattern).

See Multithreading, task-based
asynchronous pattern.

Target property, 547
Task-based Asynchronous Pattern (TAP).

See Multithreading, task-based
asynchronous pattern.

Task Parallel Library (TPL). See TPL (Task
Parallel Library).

Task schedulers, 790–791, 840–842
TaskCanceledException, 813–814
TaskCompletionSource.SetResult(),

836
TaskCompletionSource<T> object,

835–837
TaskContinuationOptions enums,

799–801
Task.ContinueWith(), 796–798, 806–807,

841–842, 845
TaskCreationOptions.LongRunning

option, 815–816
Task.Delay(), 785, 893–894
Task.Factory.StartNew(), 814–815
Task.Run(), 814–815

Tasks
antecedent, 797–798
associating data with, 795
asynchronous. See Multithreading,

asynchronous tasks.
canceling. See Multithreading,

 canceling tasks.
chaining, 797–798
cold, 792
composing large from smaller,

796–798
continuation, 796–803
control flow within, 827
creating, 790–791
definition, 775, 790–791
vs. delegates, 791
disposable, canceling, 816
drawbacks, 817–823
hot, 792
identification, 795
long-running, canceling, 810–814
registering for notification of

 behavior, 801–802
status, getting, 795

TaskScheduler property, 840–842, 855
TaskScheduler

.UnobservedTaskException
event, 807

Task<T>, 793–794
Task.WaitAll(), 793
Task.WaitAny(), 793
Temporary storage pool. See Stack.
Ternary operators, definition, 142
TextNumberParser.Parse(), 466
textToUpper(), 66
ThenBy(), 626–628
ThenByDescending(), 628
Thermostat, 577–578
this keyword

avoiding ambiguity, 253–256
definition, 252–253
identifying field owner, 252–253
locking, 874–875
with a method, 254–255
passing in a method call, 255–256
in static methods, 294

Thread management, 783–784
Thread pool, definition, 775
Thread pooling, definition, 787–789
Thread safe code, definition, 774

 988 Index

Thread safe delegate invocation, 582
Thread-safe event notification, 879
Thread safety

definition, 867
delegates, 582
thread synchronization, 867

Thread synchronization. See also
Deadlocks; Race conditions;
Synchronization.

best practices, 879–881
deadlocks, 881
monitors, 868–870
multiple threads, 868–870
with no await operator, 872–873
timers, 893–894
using a monitor, 868–870

Thread synchronization, synchronization
types

concurrent collection classes, 888–889
reset events, 884–887

Thread synchronization, thread local
storage

definition, 889–890
ThreadLocal<T>, 890–891
ThreadStaticAttribute, 891–893

Thread synchronization, uses for
atomicity of reading and writing to

variables, 867
declaring fields as volatile, 875–876
event notification with multiple

threads, 878–879
guidelines, 875
lock keyword, 870–872
lock objects, 873–874
lock synchronization, 870–872
locking guidelines, 875
locking on this, typeof, and string,

874–875
with MethodImplAttribute
with MethodImplOptions

.Synchronized() method, 875
multiple threads and local variables,

867–868
sample pseudocode execution, 866
synchronizing local variables, 867–868
synchronizing multiple threads with

Monitor class, 868–870
with System.Threading.Interlocked

methods, 876–877
thread-safe event notification, 879

thread safety, 867
thread safety, definition, 867
torn read, definition, 867
unsynchronized local variables,

867–868
unsynchronized state, 864–865
volatile keyword, 875–876

ThreadAbortException, 786–787
Threading model, definition, 774
ThreadLocal<T>, 890–891
Threads

aborting, 786–787
checking for life, 784
creating, 790–791
definition, 774
foreground vs. background, 783
putting to sleep, 784–785
reprioritizing, 784
unhandled exceptions, 807–810
waiting for, 783

Thread.Sleep(), putting threads to
sleep, 784–785

ThreadState property, 784
ThreadStaticAttribute, 891–893
Three-dimensional arrays, initializing, 96
Throw(), 472
throw statements, 235–238
ThrowIfCancellationRequested(), 814
Throwing exceptions. See also Catching

exceptions; Exception handling.
ArgumentNullException, 468
ArgumentOutOfRangeException, 468
checked and unchecked conversions,

484–486
code sample, 466
description, 226–232
guidelines, 483
identifying the parameter name, 467,

468
nameof operator, 467, 468
NullReferenceException, 468
rethrowing, 471
rethrowing wrapped exceptions,

483–484
throw statement, 235–238
without replacing stack information,

471–472
TicTacToe game. See also Arrays.

checking player input, 161–162
conditional operators, 142–143

 Index 989

declaring an array for, 93
determining remaining moves, 160
#endregion preprocessor directive,

example, 176–178
escaping out of, 165–166
if/else example, 130
initializing, 95–96
nested if statements, 130–132
#region preprocessor directive,

example, 176–178
tracking player moves, 166–167

Tilde (~) unary operator, overloading,
428–430

Tilde (~) bitwise complement operator,
153

Time slicing, definition, 776
Time slicing costs, 777
Timers. See Thread synchronization,

timers.
TKey parameter, 512
ToArray(), 624
ToCharArray(), 104
ToDictionary(), 624
ToList(), 624
ToLookup(), 624
Torn read, definition, 867
ToString(), 74, 397–398, 407–409,

412–413, 652–653, 748
TPL (Task Parallel Library). See also

Multithreading, parallel loop
iterations.

asynchronous high-latency
 operations, 819–823

performance tuning, 850–851
Trapping errors, 226–232. See also

Exception handling.
TrimToSize(), 683–686, 700
True/false evaluations. See also Boolean

expressions.
== (equal equal) syntax, 53
flow control statements, 130

true unary operator, overloading,
428–430

Try blocks, 228–232
TryGetMember(), 767
TryGetPhoneButton(), 206–209
TryParse(), 74–76, 238–239, 729–730
TryParse<T>(), 404
TrySetMember(), 767
Tuple, 503–505

Tuple.Create(), 504–505
Tuples. See also Anonymous types.

vs. anonymous types, 652
code sample, 84–85
combining data elements, 83
definition, 83
discarding, 87
naming conventions, 86
overloading type definitions, 503–504
in query expressions, 662
returning multiple values with, 193–194
syntax, 86
System.ValueTuple… Type, 88–90

TValue parameter, 512
Two-dimensional arrays

declaring, 93
initializing, 96, 98

Two’s complement notation, 148
Type categories, reference types

definition, 78–80
description, 67–68, 78–80
heaps, 79–80
memory area of the referenced data,

79–80
Type categories, value types

? (question mark), nullable modifier,
80–83

description, 67–68, 78
Type definition

casing, 15
naming conventions, 15
overloading, 504
syntax, 15

Type objects, retrieving, 723–725
Type parameter list, 191
Type parameters, 504

constraints on. See Constraints on
type parameters.

generic classes, 496
for generic classes or methods,

732–733
naming guidelines, 498

Type parameters in generic methods
constraints, 522–523
inference, 521–522

Type safety
covariance, 530–531
managed execution, 33
programming with dynamic objects,

760–761, 766

 990 Index

Type.ContainsGenericParameters
property, 731–732

typeof(), 723–725
typeof keyword, locking, 874–875
typeof operator, 555, 731
Types. See also specific types.

aliasing, 199–200. See also using
directive.

anonymous, 82–83
array defaults, 95
bool (Boolean), 53–54
char (character), 21, 54
compatibility, enums, 400
conversion, programming with

dynamic objects, 761–763
data conversion with the as operator,

349–350
declaring on the fly. See Anonymous

types.
definition, 21
encapsulating, 439
extending. See Inheritance.
implicitly typed local variables, 69
inference, generic methods, 520–522
integral, 115
name qualifier, calling methods,

186–187
null, 67–68
predefined, 43
string, 57
underlying, determining, 345–346
Unicode standard, 54
void, 67–68
well formed. See Well-formed types.

Types, conversions between. See also
Overloading operators; Overriding
object members.

cast operator, 69
casting, 69
checked block example, 71
checked conversions, 70–72
defining custom conversions, 319–320
explicit cast, 69–70
implicit conversion, 72–73
numeric to Boolean, 72
overflowing a float value, 119–120
overflowing an integer value, 70
Parse(), 73–76
System.Convert class, 73
ToString(), 74

TryParse(), 74–76
unchecked block example, 71–72
unchecked conversions, 70–72
without casting, 73–74

Types, fundamental numeric. See also
Literal values.

byte, 44
C# vs. C++ short type, 45
defaults, 48
floating-point types. See Floating-

point types.
formatting numbers as hexadecimal,

52
hardcoding values, 48–50
hexadecimal notation, 50–51
int (integer), 21, 44
integer literals, determining type of,

49–50
integers, 44–45
keywords associated with, 44
long, 44
sbyte, 44
short, 44
uint, 44
ulong, 44
ushort, 44

U
uint type, 44
ulong type, 44
UML (Unified Modeling Language), 373
Unary operators

definition, 141
overloading, 428–430

UnaryExpression, 568
UnauthorizedAccessException, 483, 852
Unboxing, 390–394
Unchecked block example, 71–72
Unchecked conversions, 70–72
Uncompress(), 354–355
#undef preprocessor directive, 172–174
Underscore (_)

as digit separator, 50
discarding tuples, 87
in identifier names, 14
line continuation character, 18
in variable names, 22

Underscores (__), in keyword names, 15
Undo(), 488–490
Undo, with a generic Stack, 494–496

 Index 991

Unexpected inequality, float type,
117–120

Unhandled exceptions
error messages, 226–231
handling with AggregateException,

803–807
observing, 806–807
registering for, 808–810
on a thread, 807–810

UnhandledException event, 808
Unicode standard

character representation, 54–56
localizing applications, 54

Unified Modeling Language (UML), 373
Union(), 643
Unity, 37
Universal Windows Applications, 928, 930
Unmanaged code, definition, 32
Unmanaged types, 913
Unmodifiable. See Immutable.
UnobservedTaskException event., 807
Unsafe code. See also P/Invoke; Pointers

and addresses.
definition, 897
description, 911–913
executing by delegate, 920–922. See

also P/Invoke.
unsafe

code blocks, 911–912
modifier, 911
statement, 911

Unsynchronized local variables, 867–868
Unsynchronized state, 864–865
Unwrap(), 821
Uppercase, converting text strings to, 66
ushort type, 44
using directives

dropping namespaces, 62–63
example, 62–63, 195
importing types from namespaces, 196
nested namespaces, 196
nesting, 197–198
wildcards, Java vs. C#, 196

using statement
deterministic finalization, 454–457
resource cleanup, 455–457

using static directive
abbreviating a type name, 198–199
dropping namespaces, 62–63
example, 62–63, 198

UWP (Windows 10 Universal Windows
Platform) applications. See
Universal Windows Applications.

V
Validating properties, 268–270
Value, passing parameters by, 203–204
value keyword, 264
Value parameters, 203–204
Value type conversion

to an implemented interface. See
Boxing.

to its root base class. See Boxing.
Value types

custom types. See Enums; Structs.
default operator, 388–389
guidelines, 381, 390
immutability, 385
inheritance, 389–390
interfaces, 389–390
introduction, 380–381
new operator, 388
vs. reference types, 204–206, 381–383
stack, 381
temporary storage pool. See Stack.

Values
CIL (Common Intermediate

Language), 940
hardcoding, 48–50

Values property, 695
ValueTuple class, 503–505
var type, 647–649, 651
Variable names

camelCase, 22
underscore (_) in, 22

Variable parameter lists, passing,
212–213

Variables
assigning values to, 22–23
changing string values, 24
declaring, 21–22
definition, 20
global, C++ vs. C#, 289
local. See Local variables.
naming conventions, 22
setting to null, 67
syntax, 20–21
type, 21
using, 23

Variadic generic types, 505

 992 Index

Verbatim string literals
description, 58
displaying a triangle, 58
starting a new line, 57

Verbatim strings
coding, 57, 58
escape sequence, 58

VerifyCredentials(), 372
Versioning, 756–758
Versioning interfaces, 374–375
Versioning serialization, 756–758
Vertical bar, equal sign (|=) bitwise OR

assignment operator, 152–153
Vertical bar (|) bitwise OR operator,

149–152, 151, 426–428
Vertical bars (||) OR operator, 139–140,

428
VES (Virtual Execution System). See

also CIL (Common Intermediate
Language); CLI (Common
Language Infrastructure);
Runtime.

definition, 924
description, 944
managed execution, 32

Virtual abstract members, 341
Virtual Execution System (VES). See VES

(Virtual Execution System).
Virtual fields, properties as, 273–274
Virtual functions, pure, 341
Virtual members, sealing, 335
Virtual memory, allocating with

P/Invoke, 900
Virtual methods

custom dynamic objects, 766–769
Java vs. C#, 473
overriding base classes, 326–330

virtual modifier, 326–330
VirtualAllocEx(), 900
VirtualAllocEx() API, 900–901
VirtualMemoryManager, 899
VirtualMemoryPtr, 906
Visual Basic vs C#

changing the number of items in an
array, 102

implicitly typed variables, 82
importing namespaces, 196
line-based, statements, 18
Me keyword, 254
Redim statement, 102

redimensioning arrays, 102
Variant, 82
void type, 69

Visual code editors, 176–178
Visual Studio 2017, 435–436
Visual Studio Code, 3
void methods, 193
void type

C++ vs. C#, 68
dereferencing, 918
description, 68
no value vs. empty string, 68
in partial methods, 310–311
as a return, 193
returning from an asynchronous

method, 830–833
strings, 68
use for, 68

volatile keyword, 875–876

W
Wait(), 884–887
WaitAll(), 883–884
WaitAny(), 883–884
WaitAsync(), 887–888
WaitForExit(), 875
WaitHandle, 816
WaitOne(), 883–887
Warning messages, disabling/restoring,

175–176
#warning preprocessor directive, 172,

174–175
Weak references, garbage collection,

451–452
WebRequest.GetResponseAsync(), 821
Well-formed types

determining whether two objects are
equal, 420–423

implementing Equals() equality
operator, 420–423

lazy initialization, 461–463
object identity vs. equal object values,

416–419
overriding Equals() equality operator,

420–423
Well-formed types, garbage collection.

See also Resource cleanup.
Collect(), 450
introduction, 449–450
in .NET, 450–451

 Index 993

root references, 450
strong references, 451
weak references, 451–452

Well-formed types, namespaces
in the CLR (Common Language

Runtime), 442
guidelines, 445
introduction, 442–445
naming conventions, 442
nesting, 443–444

Well-formed types, overloading
operators

binary operators, 426–428
binary operators combined with

assignment operators, 428
cast operator, 430–431
conditional logical operators, 428
conversion operators, 430–432
unary operators, 428–430

Well-formed types, overriding object
members

Equals() equality operator, 415–423
GetHashCode(), 413–415
ToString(), 412–413

Well-formed types, referencing other
assemblies

changing the assembly target, 433
class libraries, 433–438
encapsulation of types, 439
internal access modifiers on type

declarations, 439–440
protected internal type modifier,

440–441
public access modifiers on type

 declarations, 439–440
referencing assemblies, 434–436
type member accessibility modifiers,

441. See also specific modifiers.
Well-formed types, resource cleanup

exception propagation from
 constructors, 460

finalization, 453–460
finalization (f-reachable) queue, 458
garbage collection, 458–460
guidelines, 459–460
with IDisposable, 455–460
invoking the using statement, 455–457
resurrecting objects, 461

Well-formed types, XML comments
associating with programming

 constructs, 446–447

generating an XML documentation
file, 448–449

guidelines, 449
introduction, 445–446

when clauses, catching exceptions, 470
Where(), 616–617, 622–626
where clause, 659–660, 667
while(), iterating over collections, 609
while loops, 127, 153–156
while statement, 127, 153, 153–154,

154–155
Whitespace

definition, 19
formatting code, 19–20
improving code readability, 19
indenting code, 19

Win32, error handling in P/Invoke,
903–905

Windows 10 Universal Windows
Platform (UWP) applications. See
Universal Windows Applications.

word.Contains("*"), 664
Work stealing, 850–851
WPF (Windows Presentation

Foundation), 927
Wrappers for API calls from P/Invoke, 909
Write() method

starting a new line, 57, 64
writing to the console, 26–28

Write-only properties, 271–272
WriteLine()

round-trip formatting, 52–53
starting a new line, 57, 64
writing to the console, 26–28

WriteWebRequestSizeAsync(), 822, 825

X
Xamarin, 37, 926, 928
XML comments

/// (forward slashes), XML comment
delimiter, 447

associating with programming con-
structs, 446–447

delimited comments, 30
generating an XML documentation

file, 448–449
guidelines, 449
introduction, 445–446
single-line, 30

XML documentation file, 448–449
XML (Extensible Markup Language), 31

 994 Index

Y
yield break statement, 715–716
yield return statement

contextual keyword, 13
early prototype implementations, 13
implementing BinaryTree<T>, 708–709

within a loop, 712–714
requirements, 719–720
returning iterator values, 708–709

Z
ZipCompression, 365

995

Index of 7.0 Topics

Symbols
_ (underscore)

in C# 7.2, 51
as digit separator, 50
discarding out parameter, 208
discarding tuples, 87

==, != (equals, exclamation point, equal
sign) implementing on tuple
(ValueTuple) in C# 7.3, 424

A
Anonymous types

drawbacks, 652
vs. tuples, 652

async keyword
ValueTask<T> return, 829–830

async Main method, 828
in C# 7.1, 828, 872

async methods, return of ValueTask<T>,
828–830

await operators, with catch or finally
statements, 846

B
 Binary literals, 51

C
C# 7.1

async Main methods, 828, 872
default without type parameter, 389,

502
inferring tuple element names,

85, 87

C# 7.2
_ (underscore), 51
digit separator before and after

numeric literal, 51
pass read-only value type by

reference, 209
private protected, 441
readonly struct, 385

C# 7.3
==, != (equals, exclamation point,

equal sign) implementing on
tuple (ValueTuple), 424

camelCase, tuple names, 86–87
catch statements, await operators, 846
CIL (Common Intermediate Language)

disassembling, tools for, 34
ILDASM, 34
sample output, 35–37

Class libraries, referencing with Dotnet
CLI, 436

Constructors
expression-bodied member

implementation, 283
finalizers, 283

Create(), tuple instantiation, 504–505

D
Deconstruct(), 287–288
Deconstructors, 287–288
Default without type parameter in C# 7.1,

389, 502
Digit separator before and after numeric

literal in C# 7.2, 51

 996 Index of 7.0 Topics

Disassembling CIL, tools for, 34
Discards, 87
Discarding out parameter, 208
Dotnet CLI, referencing class libraries, 436

E
Exception handling, catching exceptions

from async void methods, 830–833
Expression bodied members

constructors, 285
finalizers, 283
properties, 264–265

F
Finalizers with expression bodied

members, 283
finally statements with await

operators, 846
Frameworks, definition, 38

G
Garbage collection, return by reference, 210
Generic types

Create() tuple, 504–505
System.ValueTuple, 503–505
Tuple, 503–505
ValueTuple, 503–505

GroupBy(), with tuples, 636–637
GroupJoin(), with tuples, 637–640

H
Hexadecimal numbers as binary literal

numbers, 51

I
ILDASM (IL Disassembler), 34
Inferring tuple element names in C# 7.1,

85, 87
Inner join, with tuples 632–635
is operator, pattern matching, 346–347

J
Join() with tuples, 632–635

L
LINQ with tuples, 632–641
Local functions, 39, 540, 834–835

M
Methods, returning multiple values with

tuples, 193–194

Multithreading, task-based
asynchronous pattern

with async and await returning
ValueTuple, 824–829

async Main method, 830–833
asynchronous lambdas with local

functions, 834–835

N
.NET Core, description, 37
.NET Framework, 37
.NET frameworks, predominant

implementations, 37
.NET versions, mapped to C# releases,

39–40

O
One-to-many relationships with tuples,

637–638
out

discarding out parameter, 208
no longer declaring beforehand, 75,

206–209
Outer joins with tuples, 639–642
Output, passing parameters,

206–209
Overloading type definitions with

tuples, 503–504

P
Parameters, passing

discarding out parameter, 208
out, 75, 206–209
output, 75, 206–209
returning multiple values with tuples,

206–209
PascalCase, tuple names, 86–87
Pass read-only value type by reference in

C# 7.2, 209
Passing, parameters

out, 75, 206–209
output, 75, 206–209

Pattern matching
introduction, 165
with the is operator, 346–347
with a switch statement, 347–349

private protected
accessibility modifier, 441
in C# 7.2, 441

Properties with expression bodies,
264–265

 Index of 7.0 Topics 997

R
readonly struct in C# 7.2, 385
ref return, 209–211
Return by reference, 209–211

S
Select() vs. SelectMany() with tuples,

641
Standard query operators with tuples,

collections of collections, 640–641
equi-joins, 638
grouping results with GroupBy(),

636–637
inner join, 632–635
normalized data, 633
one-to-many relationships, with

GroupJoin(), 637–638
outer joins, with GroupJoin(), 639–640
outer joins, with SelectMany(), 639–642

switch statements with pattern
matching, 164, 347–349

System.Linq.Enumerable with tuples
GroupBy() method, grouping results,

636–637
GroupJoin(), 637–638
Join(), 632–635

System.ValueTuple, 88–90, 503–505

T
Throwing exceptions with expressions,

466, 471

TryParse(), 74–76
Tuple, 503–505
Tuple.Create(), 504–505
Tuples

vs. anonymous types, 652
code sample, 84–85
combining data elements, 83
definition, 83
discarding, 87
Equals() with tuples, 423-424
GetHashCode() with tuples, 424
naming conventions, 86
returning multiple values with,

193–194
syntax, 86
System.ValueTuple Type, 88–90,

503–504
Type definition overloading, with

ValueTuple, 503–504

U
Underscore (_)

as digit separator, 50
discarding out parameter, 208
discarding tuples, 87

Unity, 37

V
ValueTuple, 503–505
ValueTask<T>, returning from an

asynchronous method, 828–830

Index of 6.0 Topics

Symbols
$@ (dollar sign, at sign), string interpolation,

59–60
?. (question mark, dot) null-conditional

operator, 144–146
. (dot) operator, 145

A
APIs (application programming

interfaces)
definition, 38
as frameworks, 38

ArgumentException, 468
ArgumentNullException, 467, 468
ArgumentOutOfRangeException, 467, 468
Automatically implemented properties

initializing, 266–267
NextId implementation, 296
read-only, 272, 304

B
Boolean expressions, logical operators

?. (question mark, dot), null-conditional
operator, 144–146

. (dot) operator, 145

C
CallerMemberName parameter, 734
Catching exceptions

conditional clauses, 470–471
exception conditions, 470–471

Checking for null, multicast delegates,
580–581

CIL (Common Intermediate Language)
disassembling, tools for, 34
ILDASM, 34
sample output, 35–37

Classes, static, 297
Collection initializers, basic requirements,

605–606
Conditional clauses, catching exceptions,

470–471
Console output, formatting with string

interpolation, 26

D
default operator, 388–389
Delegates, with the null-conditional

operator, 146–147
Disassembling CIL, tools for, 34
Dollar sign, at sign ($@), string

 interpolation, 59–60
Dot (.) operator, 145

E
Exception handling, guidelines, 468,

477–478

F
FailFast(), 468, 468
Formatting with string interpolation, 26
Frameworks, definition, 38

I
ILDASM (IL Disassembler), 34
Immutability, value types, 385

 998

 Index of 6.0 Topics 999

M
Managed execution, CIL (Common

Intermediate Language), 32–34
Method declaration, example, 189–190
Mono, 37
Move(), 385
Multicast delegates, checking for null,

580–581

N
nameof operator

properties, 270–271, 733–734
throwing exceptions, 467, 468

.NET Core description, 37

.NET Framework, 37

.NET frameworks, predominant
 implementations, 37

.NET versions, mapped to C# releases,
39–40

new operator, value types, 388
Null-conditional operator

delegates, 146–147
question mark, dot (?.), 144–146
short circuiting with, 144–146

NullReferenceException, throwing
exceptions, 467, 468

O
Obfuscators, 34
OutOfMemoryException, 468

P
Parameter name, identifying when

throwing exceptions, 467, 468
ParamName property, 468
Properties

automatically implemented, 272, 296
automatically implemented, read-only,

303–304
guidelines, 272
nameof operator, 270–271
read-only, 272
read-only automatically implemented,

303–304
static, 296

Q
Question mark, dot (?.) null-conditional

operator, 144–146

R
Read-only

automatically implemented properties,
303–304

properties, 272
readonly modifier, guidelines, 304
Referential identity, 388

S
Short circuiting with the null-conditional

operator, 144–146
Static

classes, 297
properties, 296

String interpolation
formatting with, 26
syntax prefixes, 59–60

struct keyword, declaring a struct, 384
Structs

declaring, 384
default value, 387
default value for, 388–389
definition, 384
finalizer support, 388
guidelines, 387
initializing, 385–387
referential identity, 388

System.ApplicationException, 468, 468
System.Environment.FailFast(), 468,

468
System.Exception, 468, 468
System.ExecutionEngineException,

468
System.OutOfMemoryException, 468
System.Runtime.InteropServices.

COMException, 468
System.Runtime.InteropServices

.SEHException, 468
System.StackOverflowException, 468
System.SystemException, 468

T
Throwing exceptions

ArgumentNullException, 468
ArgumentOutOfRangeException, 468
code sample, 466
identifying the parameter name, 467, 468
nameof operator, 467, 468
NullReferenceException, 468

 1000 Index of 6.0 Topics

U
Unity, 37
using directives

dropping namespaces, 62–63
example, 62–63

using static directive
abbreviating a type name, 198–199
dropping namespaces, 62–63
example, 62–63, 198

V
Value types

default operator, 388–389
immutability, 385
new operator, 388

W
when clauses, catching exceptions, 470

X
Xamarin, 37

1001

Index of 5.0 Topics

A
APIs (application programming interfaces)

definition, 38
as frameworks, 38

C
Capturing loop variables, 564–566
Catch(), 472
Catching exceptions, rethrowing existing

exceptions, 471
CIL (Common Intermediate Language)

disassembling, tools for, 34
ILDASM, 34
sample output, 35–37

Closures, 564

D
Delay(), 893–894
Disassembling CIL, tools for, 34

E
ExceptionDispatchInfo.Throw(), 472

F
Frameworks, definition, 38

I
ILDASM (IL Disassembler), 34

L
Lambda expressions

capturing loop variables, 564–566

closures, 564
outer variable CIL implementation,

563–564
Loop variables, 564–566

M
Managed execution, CIL (Common

Intermediate Language), 32–34
Mono, 37

N
.NET Core, description, 37
.NET Framework, 37
.NET frameworks, 37
.NET versions, mapped to C# releases,

39–40

O
Obfuscators, 34

R
Rethrowing existing exceptions, 471
Run(), 814–815

S
Semaphore, 887–888
SemaphoreSlim, 887–888
SemaphoreSlim.WaitAsync(), 887–888
StartNew(), 814–815
System.Runtime.ExceptionServices

.ExceptionDispatchInfo

.Catch(), 472

 1002 Index of 5.0 Topics

System.Runtime.ExceptionServices
.ExceptionDispatchInfo
.Throw(), 472

System.Threading.Timer, 894
System.Timers.Timer, 894
System.Windows.Forms.Timer, 894
System.Windows.Threading

.DispatcherTimer, 894

T
Task.Delay(), 893–894
Task.Factory.StartNew(), 814–815
Task.Run(), 814–815
Thread synchronization

with no await operator, 872–873

timers, 893–894
Throw(), 472
Throwing exceptions

rethrowing, 471
without replacing stack information,

471–472

U
Unity, 37

W
WaitAsync(), 887–888

X
Xamarin, 37

1003

Credits

Item Title Attribution

Figure 1.1 The New Project dialog Courtesy of Microsoft Corporation.

Figure 1.2 Dialog that shows the Program.cs file Courtesy of Microsoft Corporation.

Figure 4.5 Collapsed Region in Microsoft

Visual Studio .NET

Courtesy of Microsoft Corporation.

Figure 10.2 The Project Menu Courtesy of Microsoft Corporation.

Figure 10.3 The Browse Filter Courtesy of Microsoft Corporation.

Figure 10.4 XML Comments as Tips in Visual

Studio IDE

Courtesy of Microsoft Corporation.

Output 12.1 Output of a Program Similar to the

Etch A Sketch Game

Courtesy of Microsoft Corporation.

Output 12.2 Implementing Undo with a

Generic Stack Class

Courtesy of Microsoft Corporation.

Figure 18.2 BinaryFormatter Does Not

Encrypt Data

Courtesy of Microsoft Corporation.

Figure 19.1 Clock Speeds over Time Graph compiled by Herb Sutter Used with

permission. Original at www.gotw.ca.

Figure 19.3 CancellationTokenSource and

CancellationToken Class Diagrams

Courtesy of Microsoft Corporation.

http://www.gotw.ca

	Cover
	Title Page
	Copyright Page
	Contents
	Figures
	Tables
	Foreword
	Preface
	Acknowledgments
	About the Author
	5 Methods and Parameters
	Calling a Method
	Declaring a Method
	The using Directive
	Returns and Parameters on Main()
	Advanced Method Parameters
	Recursion
	Method Overloading
	Optional Parameters
	Basic Error Handling with Exceptions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index of 7.0 Topics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Index of 6.0 Topics
	A
	B
	C
	D
	E
	F
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index of 5.0 Topics
	A
	C
	D
	E
	F
	I
	L
	M
	N
	O
	R
	S
	T
	U
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

