
		 D-1

A P P E N D I X D

Class library for Sense HAT sensors

In this appendix, I show you how to develop the Portable Class Library (PCL) and reference it in other
projects. The idea is to build a reusable PCL that can be shared across various projects. You can even

reuse the common C# code between different platforms.

You use the I2C interface to associate communication with all the Sense HAT sensors. To read and write
data through this interface, UWP implements the I2cDevice class. Given the raw bytes obtained from
a sensor, you then convert them to meaningful values. The conversion logic is platform-independent,
contrary to the I2cDevice object, which is inherent to UWP. Hence, the conversion logic could be used
on different platforms, which most likely use objects other than an I2cDevice to handle I2C communication.

Isolating platform-independent from platform-dependent code is a good practice. Cross-platform
programming uses that approach extensively. Here, I divide the code of the SenseHat project (compan-
ion code: Chapter 05/SenseHat) into three separate projects. As shown in Figure D-1, the solution has a
hierarchical structure:

■■ The bottom layer consists of the PCL, implementing platform-independent helpers and conver-
sion logic.

■■ Above the PCL, I have the UWP Class Library—converters, I2C-related logic, and additional
helpers, which use objects from the UWP.

■■ On the top of this stack, I have the main UWP app, which uses the code from the PCL and UWP
class library.

You can find the whole implementation in the companion code under the Appendix D folder.

FIGURE D-1  A structure of a typical project utilizing the Portable Class Library to isolate platform-independent logic.

D-2		 APPENDIX D  Class library for Sense HAT sensors

Portable Class Library

Start by creating the PCL project as follows:

1.	 Open the New Project window.

2.	 In the search text box, type Class Library Portable.

3.	 Choose the Class Library (Portable) Visual C# project template.

4.	 Set the project name to SenseHat.Portable and the solution name to SenseHat. (See Figure D-2.)
Then click OK.

FIGURE D-2  The New Project dialog box for creating the SenseHat.Portable PCL.

A new dialog box, Add Portable Class Library, appears. This dialog box allows you to choose target
platforms supported by the SenseHat.Portable PCL. If the Add Portable Class Library dialog box does
not appear, go to the SenseHat.Portable properties. Then, on the Library tab, click the Change button.
It activates the Change Targets dialog box (see Figure D-3), which looks the same as the Add Portable
Class Library dialog box. They differ by the caption only.

Using either the Add Portable Class Library or Change Targets dialog box, choose the following
platforms:

■■ .NET Framework 4.5

■■ Windows 8

■■ Windows Phone Silverlight 8

■■ ASP.NET Core 1.0

■■ Windows Phone 8.1

The PCL will be compatible with these platforms. You can always modify your choice by reopening
the Change Targets dialog box.

	 APPENDIX D  Class library for Sense HAT sensors	 D-3

FIGURE D-3  The Change Targets dialog box lets you configure target platforms.

Under the Sense Hat.Portable project, create the Helpers folder (right-click on SenseHat.Portable,
choose Add, and select New Folder). Then open the same menu, choose Add, and select Existing
Item to add to this folder the following files from the SenseHat project (see the companion code in
Chapter 05/SenseHat/Helpers):

■■ Check.cs

■■ Constants.cs

■■ ConversionHelper.cs

■■ HumiditySensorHelper.cs

■■ InertialSensorHelper.cs

■■ MagneticFieldSensorHelper.cs

■■ TemperatureAndPressureSensorHelper.cs

■■ Vector3D.cs

Finally, change the namespace used in every file from SenseHat.Helpers to SenseHat.Portable.
Helpers.

Universal Windows Class Library

Given the PCL, you can now build the UWP class library by performing the following steps:

1.	 In the Solution Explorer, right-click Solution ‘SenseHat’ and choose Add/New Project from
the context menu.

2.	 In the search box of the Add New Project dialog box, type Class Library Universal.

D-4		 APPENDIX D  Class library for Sense HAT sensors

3.	 Choose the Class Library (Universal Windows) Visual C# project template and change its
name to SenseHat.UWP.

4.	 Set the target and minimum version to Windows 10 Anniversary Edition (10.0; Build 14393)
and Windows 10 (10.0; Build 10586), respectively.

Now, reference the PCL in the SenseHat.UWP project as follows:

1.	 In the Solution Explorer, right-click the References node of the SenseHat.UWP project and
select Add Reference from the context menu. The Reference Manager dialog box appears.

2.	 In the Reference Manager dialog box, navigate to Projects/Solution and choose
SenseHat.Portable. (See Figure D-4.)

FIGURE D-4  Referencing SenseHat.Portable PCL in the SenseHat.UWP project.

3.	 Finally, reference the Windows IoT Extensions for the UWP (version 14393) and close the
Reference Manager dialog box.

Under the SenseHat.UWP Class Library, I create three folders—Converters, Helpers, and Sensors—and
add appropriate files from the corresponding folders of the SenseHat app from Chapter 5, “Reading
data from sensors.” So, the SenseHat.UWP project has the structure depicted in Figure D-5. Note that
SenseHat.UWP contains all the files that use the I2cDevice class. This object is unavailable in platforms
that are targeted by SenseHat.Portable.

FIGURE D-5  The structure of the SenseHat.UWP project.

	 APPENDIX D  Class library for Sense HAT sensors	 D-5

I also modify the namespaces by adding the UWP acronym:

■■ SenseHat.Converters becomes SenseHat.UWP.Converters

■■ SenseHat.Helpers becomes SenseHat.UWP.Helpers

■■ SenseHat.Sensors becomes SenseHat.UWP.Sensors

Note that after you change the namespaces, you also need to update the corresponding using
statements. You can do this automatically by using the Visual Studio refactoring module. It activates a
hint (yellow light bulb) whenever you change the name of variable, class, struct, or namespace.

Universal Windows Platform application

On top of the preceding class libraries, I create the main application, which displays sensor readings
from the Sense HAT add-on board. I first supplement the SenseHat solution with the new project,
SenseHat.Sensors, created by using the Blank App (Universal Windows) Visual C# project template.
I set the target and minimum to the SenseHat.UWP Class Library. Subsequently, I reference the
SenseHat.Portable and SenseHat.UWP projects, and set the SenseHat.Sensors as the startup project
(right-click SenseHat.Sensors and choose Set as StartUp Project).

Before going further, let’s inspect the project dependencies and build order. You can visualize them
by using a dedicated dialog box. You activate this dialog box in the Solution Explorer by right-clicking
the SenseHat solution and choosing Project Dependencies from the context menu. Portions of the
Project Dependencies dialog box appear in Figure D-6. This dialog box includes two tabs: Dependen-
cies and Build Order. Use the first tab to review the hierarchy of your projects and the second to see
how your solution will be built.

FIGURE D-6  Project dependencies and build order of the SenseHat solution.

Figure D-6 shows that the SenseHat.Portable project will be compiled first, and then the compiler will
build the SenseHat.UWP project, and finally the SenseHat.Sensors project. It follows from the fact that the
SenseHat.Portable is referenced by the SenseHat.UWP, which is used in the SenseHat.Sensors app.

D-6		 APPENDIX D  Class library for Sense HAT sensors

The SenseHat.Sensors app was implemented in a similar way as the SenseHatTelemeter app (see
Chapter 12, “Remote device monitoring”). Namely, to periodically read data from sensors, I implement
the Telemetry and TelemetryEvent-Args classes. Both are built by extending classes from SenseHat-
Telemeter to include pressure, linear and angular acceleration, and magnetic field sensor readings.

The Telemetry class (see the companion code at Appendix D/SenseHat.Sensors/TelemetryControl/
Telemetry.cs) does not implement any public constructors. Instead, it has the static asynchronous fac-
tory method CreateAsync, which appears in Listing D-1.

LISTING D-1  Asynchronous factory method of the Telemetry class

public static async Task<Telemetry> CreateAsync(TimeSpan readoutDelay)
{
 Check.IsNull(readoutDelay);

 var telemetry = new Telemetry(readoutDelay);

 await telemetry.InitializeSensors();

 return telemetry;
}

private TimeSpan readoutDelay;

private Telemetry(TimeSpan readoutDelay)
{
 this.readoutDelay = readoutDelay;
}

By inspecting the code snippet from Listing D-1, you see that because I initialize sensors there, the
Telemetry class must be created by using the asynchronous static factory method. As you know from
Chapter 5, sensor classes use asynchronous code. However, in C#, constructors cannot be asynchronous,
so I use the static asynchronous factory method.

The InitializeSensors private method appears in Listing D-2. As you can see, I invoke the Initialize
method of each class, representing a sensor. Then, I verify that the particular class was initialized using
the VerifyInitialization method (bottom part of Listing D-2). If it turns out that a sensor is unavail-
able (was not initialized), I throw an exception with an appropriate message. This informs the caller that
the Telemetry class was unable to access all required sensors and cannot proceed further.

LISTING D-2  Sensors initialization

private TemperatureAndPressureSensor temperatureAndPressureSensor =
 TemperatureAndPressureSensor.Instance;
private HumidityAndTemperatureSensor humidityAndTemperatureSensor =
 HumidityAndTemperatureSensor.Instance;
private InertialSensor inertialSensor = InertialSensor.Instance;
private MagneticFieldSensor magneticFieldSensor = MagneticFieldSensor.Instance;

	 APPENDIX D  Class library for Sense HAT sensors	 D-7

private async Task InitializeSensors()
{
 await temperatureAndPressureSensor.Initialize();
 VerifyInitialization(temperatureAndPressureSensor,
 "Temperature and pressure sensor is unavailable");

 await humidityAndTemperatureSensor.Initialize();
 VerifyInitialization(humidityAndTemperatureSensor,
 "Humidity sensor is unavailable");

 await inertialSensor.Initialize();
 VerifyInitialization(inertialSensor, "Inertial sensor is unavailable");

 await magneticFieldSensor.Initialize();
 VerifyInitialization(magneticFieldSensor, "Magnetic field sensor is unavailable");
}

private void VerifyInitialization(SensorBase sensorBase, string exceptionMessage)
{
 if(!sensorBase.IsInitialized)
 {
 throw new Exception(exceptionMessage);
 }
}

After a successful initialization, start a periodic background operation of sensor readings by using
the Start method of the Telemetry class instance (see Listing D-3). This method first checks whether
the telemetry is active; if not, it initializes and then starts the Telemetry worker thread.

LISTING D-3  Starting telemetry task

public bool IsActive { get; private set; } = false;

public void Start()
{
 if (!IsActive)
 {
 InitializeTelemetryTask();

 telemetryTask.Start();

 IsActive = true;
 }
}

The Telemetry worker thread is configured within InitializeTelemetryTask (see Listing D-4).
This method creates a Task instance, which is implemented to periodically take sensor readings and re-
port them to listeners through a DataReady event. Under the while loop from Listing D-4, I also check
whether the IsActive flag is true before raising an event.

D-8		 APPENDIX D  Class library for Sense HAT sensors

LISTING D-4  Initializing telemetry task

private Task telemetryTask;
private CancellationTokenSource telemetryCancellationTokenSource;

private void InitializeTelemetryTask()
{
 telemetryCancellationTokenSource = new CancellationTokenSource();

 telemetryTask = new Task(() =>
 {
 while (!telemetryCancellationTokenSource.IsCancellationRequested)
 {
 if (IsActive)
 {
 var telemetryEventArgs = GetSensorReadings();

 DataReady(this, telemetryEventArgs);

 Task.Delay(readoutDelay).Wait();
 }
 }
 }, telemetryCancellationTokenSource.Token);
}

As in the SenseHatTelemeter app, the worker thread (background operation) can be stopped
through a dedicated CancellationTokenSource (the Stop method from Listing D-5).

LISTING D-5  Stopping method

public void Stop()
{
 if (IsActive)
 {
 telemetryCancellationTokenSource.Cancel();

 IsActive = false;
 }
}

When the worker thread is active, sensor readings are obtained by using the GetSensorReadings
method from Listing D-6. This function sequentially invokes dedicated methods of classes representing
sensors, e.g. temperatureAndPressureSensor.GetTemperature, inertialSensor.GetLinearAccel-
eration, and so on. The resulting values are wrapped into an instance of the TelemetryEventArgs
object (see Listing D-7), which is then passed to listeners.

	 APPENDIX D  Class library for Sense HAT sensors	 D-9

LISTING D-6  Reading values from sensors

private TelemetryEventArgs GetSensorReadings()
{
 var temperature = temperatureAndPressureSensor.GetTemperature();
 var humidity = humidityAndTemperatureSensor.GetHumidity();
 var pressure = temperatureAndPressureSensor.GetPressure();

 var linearAcc = inertialSensor.GetLinearAcceleration();
 var angularSpeed = inertialSensor.GetAngularSpeed();
 var magneticField = magneticFieldSensor.GetMagneticField();

 return new TelemetryEventArgs(temperature, humidity, pressure,
 linearAcc, angularSpeed, magneticField);
}

public class TelemetryEventArgs
{
 public float Temperature { get; private set; }

 public float Humidity { get; private set; }

 public float Pressure { get; private set; }

 public Vector3D<float> LinearAcceleration { get; private set; }

 public Vector3D<float> AngularSpeed { get; private set; }

 public Vector3D<float> MagneticField { get; private set; }

 public TelemetryEventArgs(float temperature, float humidity, float pressure,
 Vector3D<float> linearAcc, Vector3D<float> angularSpeed,
 Vector3D<float> magneticField)
 {
 Temperature = temperature;
 Humidity = humidity;
 Pressure = pressure;

 LinearAcceleration = linearAcc;
 AngularSpeed = angularSpeed;
 MagneticField = magneticField;
 }
}

Figure D-7 depicts the UI of SenseHat.Sensors, when the app is executed on the desktop platform.
The UI is composed of three tabs: Control, Weather, and Inertial. The first tab has three buttons, which
initialize sensors and start and stop telemetry. The Weather and Inertial tabs present values from sen-
sors. The Weather tab shows temperature, humidity, and pressure, while the Inertial tab displays linear
acceleration (from accelerometer) and angular speed (from gyroscope) and the magnetic field (from
magnetometer).

D-10		 APPENDIX D  Class library for Sense HAT sensors

FIGURE D-7  The two first tabs of the SenseHat.Sensors UI, when run on the desktop platform.

To associate a connection with the Sense HAT add-on board and initialize sensor classes, you click
the Connect and Initialize button. Doing so invokes the ButtonConnect_Click event handler from
Listing D-7. This method checks whether sensors are already initialized and then creates a Telemetry
object by invoking the Telemetry.CreateAsync method. Subsequently, the handler is attached to
the DataReady event, which is raised whenever new sensor readings are available. Note that a method
from Listing D-7 also configures properties of the SensorsViewModel class instance, which I tell you
about later in this section.

LISTING D-7  Sensors initialization

private Telemetry telemetry;

private SensorsViewModel sensorsViewModel = new SensorsViewModel()
{
 ReadoutDelay = TimeSpan.FromSeconds(1)
};

private async void ButtonConnect_Click(object sender, RoutedEventArgs e)
{
 if (!sensorsViewModel.IsConnected)
 {
 try
 {
 telemetry = await Telemetry.CreateAsync(sensorsViewModel.ReadoutDelay);
 telemetry.DataReady += Telemetry_DataReady;

 sensorsViewModel.IsConnected = true;
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

	 APPENDIX D  Class library for Sense HAT sensors	 D-11

Within the event handler of the DataReady event, shown in Listing D-8, I use an instance of
TelemetryEventArgs to display sensor readings in the UI. I do this indirectly by updating corresponding
properties of the SensorsViewModel class. Since the DataReady event is raised from the worker thread,
I need to dispatch property rewriting to the UI thread.

LISTING D-8  Displaying sensor readings

private void Telemetry_DataReady(object sender, TelemetryEventArgs e)
{
 DisplaySensorReadings(e);
}

private async void DisplaySensorReadings(TelemetryEventArgs telemetryEventArgs)
{
 await Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 sensorsViewModel.SensorReadings.Temperature = telemetryEventArgs.Temperature;
 sensorsViewModel.SensorReadings.Humidity = telemetryEventArgs.Humidity;
 sensorsViewModel.SensorReadings.Pressure = telemetryEventArgs.Pressure;

 sensorsViewModel.SensorReadings.Accelerometer = telemetryEventArgs.
 LinearAcceleration;
 sensorsViewModel.SensorReadings.Gyroscope = telemetryEventArgs.AngularSpeed;
 sensorsViewModel.SensorReadings.Magnetometer = telemetryEventArgs.MagneticField;
 });
}

Listing D-9 shows event handlers of Start and Stop sensor readings. These simply invoke corre-
sponding methods of the Telemetry class instance and update button status through SensorsView-
Model properties.

LISTING D-9  Starting and stopping telemetry

private void ButtonStartSensorReading_Click(object sender, RoutedEventArgs e)
{
 telemetry.Start();
 sensorsViewModel.IsTelemetryActive = telemetry.IsActive;
}

private void ButtonStopSensorReading_Click(object sender, RoutedEventArgs e)
{
 telemetry.Stop();
 sensorsViewModel.IsTelemetryActive = telemetry.IsActive;
}

SensorsViewModel controls the state and updates the UI (see the companion code in Appendix D/
SenseHat.Sensors/MainPage.xaml). The main elements of SensorsViewModel are the following six
public properties (see the companion code in Appendix D/SenseHat.Sensors/ViewModels/Sensors-
ViewModel.cs):

D-12		 APPENDIX D  Class library for Sense HAT sensors

■■ SensorReadings  This stores values obtained from sensors. Members of the SensorReadings
class are one-way bound to the UI. Whenever you change the SensorReadings property of
SensorsViewModel, the UI is updated.

■■ ReadoutDelay  This specifies a delay between consecutive sensor readings. Its default value,
configured in Listing D-7, is 1 second.

■■ IsConnected  This indicates whether the Telemetry class was initialized. If so, the Start Sensor
Reading button can be enabled.

■■ IsTelemetryActive  This is a flag that informs the UI whether the background operation of
sensor reading is active. If so, the Start Sensor Reading button is enabled, and the Stop Sensor
Reading Button is disabled. Otherwise, the Enabled property of these buttons is reversed.

■■ IsStartSensorReadingButtonEnabled  This controls the Enabled property of the Start Sensor
Reading button.

■■ IsStopSensorReadingButtonEnabled  This controls the Enabled property of the Stop Sensor
Reading button.

When you run the app, you can click the Connect and Initialize button. If the Sense HAT add-on
board is present, and everything went correctly, the Start Sensor Reading button will be enabled. If you
click it, the background operation starts, and actual sensor readings are displayed in the UI until you click
the Stop Sensor Reading button. The sample readings from the inertial sensor are given in Figure D-8.

FIGURE D-8  The Inertial tab of the SenseHat.Sensors app.

