

201 West 103rd Street
Indianapolis, Indiana 46290

B Y E X A M P L E

Benoît Marchal

XML

XML by Example
Copyright © 2000 by Que ®

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
Although every precaution has been taken in the
preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the
use of the information contained herein.

International Standard Book Number: 0-7897-2242-9

Library of Congress Catalog Card Number: 99-66449

Printed in the United States of America

First Printing: December 1999

01 00 4

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately
capitalized. Que cannot attest to the accuracy of this
information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as com-
plete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from
the information contained in this book.

Publisher
John Pierce

Acquisitions Editor
Todd Green

Development Editor
Susan Hobbs

Technical Editor
Karl Fast

Managing Editor
Thomas F. Hayes

Project Editor
Karen S. Shields

Copy Editor
Sossity Smith

Indexer
Tina Trettin

Proofreader
Maribeth Echard

Team Coordinator
Julie Otto

Media Developer
Jay Payne

Interior Designer
Karen Ruggles

Cover Designer
Rader Design

Copy Writer
Eric Borgert

Production
Louis Porter Jr.

Contents at a Glance

Introduction .1
1 The XML Galaxy .5
2 The XML Syntax .41
3 XML Schemas .69
4 Namespaces .107
5 XSL Transformation .125
6 XSL Formatting Objects and Cascading Style Sheet 161
7 The Parser and DOM .191
8 Alternative API: SAX .231
9 Writing XML .269
10 Modeling for Flexibility .307
11 N-Tiered Architecture and XML .345
12 Putting It All Together: An e-Commerce Example 381
Appendix A: Crash Course on Java .457
Glossary .485
Index .489

iii

Table of Contents

Introduction .1
The by Example Series .1
Who Should Use This Book .1
This Book’s Organization .2
Conventions Used in This Book .3

1 The XML Galaxy .5
Introduction .6
A First Look at XML .8

No Predefined Tags .9
Stricter .10

A First Look at Document Structure .10
Markup Language History .14

Mark-Up .14
Procedural Markup .14
Generic Coding .17
Standard Generalized Markup Language 18
Hypertext Markup Language .20
eXtensible Markup Language .26

Application of XML .28
Document Applications .29
Data Applications .29

Companion Standards .32
XML Namespace .33
Style Sheets .33
DOM and SAX .35
XLink and XPointer .35

XML Software .36
XML Browser .36
XML Editors .37
XML Parsers .37
XSL Processor .37

2 The XML Syntax .41
A First Look at the XML Syntax .42

Getting Started with XML Markup 42
Element’s Start and End Tags .44
Names in XML .45
Attributes .46
Empty Element .47
Nesting of Elements .47
Root .48
XML Declaration .49

Advanced Topics .50
Comments .50
Unicode .50
Entities .52
Special Attributes .53
Processing Instructions .53
CDATA Sections .54

Frequently Asked Questions on XML .55
Code Indenting .55
Why the End Tag? .56
XML and Semantic .58

Four Common Errors .59
Forget End Tags .59
Forget That XML Is Case Sensitive 60
Introduce Spaces in the Name of Element 60
Forget the Quotes for Attribute Value 60

XML Editors .60
Three Applications of XML .61

Publishing .62
Business Document Exchange .63
Channel .65

3 XML Schemas .69
The DTD Syntax .70

Element Declaration .71
Element Name .72
Special Keywords .72
The Secret of Plus, Star, and Question Mark 73
The Secret of Comma and Vertical Bar 73
Element Content and Indenting .74
Nonambiguous Model .74
Attributes .75
Document Type Declaration .76
Internal and External Subsets .77
Public Identifiers Format .79
Standalone Documents .79

Why Schemas? .80
Well-Formed and Valid Documents .81

Relationship Between the DTD and the Document 82
Benefits of the DTD .84
Validating the Document .84

Entities and Notations .85
General and Parameter Entities .86
Internal and External Entities .87

Notation .89
Managing Documents with Entities 90

v

vi

Conditional Sections .91
Designing DTDs .91

Main Advantages of Using Existing DTDs 92
Designing DTDs from an Object Model .92

On Elements Versus Attributes .96
Creating the DTD from Scratch .97

On Flexibility .97
Modeling an XML Document .100
Naming of Elements .103

A Tool to Help .104
New XML Schemas .104

4 Namespaces .107
The Problem Namespaces Solves .108
Namespaces .112

The Namespace Name .114
URIs .114

What’s in a Name? .115
Registering a Domain Name .116
Creating a Sensible URL .117
URNs .117

Scoping .118
Namespaces and DTD .119
Applications of Namespaces .120

XML Style Sheet .121
Links .122

5 XSL Transformation .125
Why Styling? .126

CSS .126
XSL .126

XSL .127
LotusXSL .127
Concepts of XSLT .128

Basic XSLT .128
Viewing XML in a Browser .129
A Simple Style Sheet .131
Stylesheet Element .134
Template Elements .134
Paths .135
Matching on Attributes .136
Matching Text and Functions .136
Deeper in the Tree .137
Following the Processor .138
Creating Nodes in the Resulting Tree 140

Supporting a Different Medium .141
Text Conversion .141
Customized Views .144

vii

Where to Apply the Style Sheet .145
Internet Explorer 5.0 .145
Changes to the Style Sheet .148

Advanced XSLT .149
Declaring HTML Entities in a Style Sheet 153
Reorganizing the Source Tree .153
Calling a Template .154
Repetitions .154

Using XSLT to Extract Information .155
6 XSL Formatting Objects and Cascading Style Sheet 161

Rendering XML Without HTML .162
The Basics of CSS .163

Simple CSS .164
Comments .166
Selector .166
Priority .167
Properties .168

Flow Objects and Boxes .168
Flow Objects .168
Properties Inheritance .169
Boxes .169

CSS Property Values .172
Length .172
Percentage .173
Color .173
URL .173

Box Properties .174
Display Property .174
Margin Properties .174
Padding Properties .175
Border-Style Properties .175
Border-Width Properties .175
Border Shorthand .175

Text and Font Properties .176
Font Name .176
Font Size .176
Font Style and Weight .177
Text Alignment .177
Text Indent and Line Height .177
Font Shorthand .178

Color and Background Properties .178
Foreground Color .178
Background Color .178
Border Color .178
Background Image .178

Some Advanced Features .179
Child Selector .180
Sibling Selector .181
Attribute Selector .181
Creating Content .182
Importing Style Sheets .182

CSS and XML Editors .182
Text Editor .183
Tree-Based Editor .183
WYSIWYG Editors .184

XSLFO .185
XSLT and CSS .185
XSLFO .187

7 The Parser and DOM .191
What Is a Parser? .191

Parsers .192
Validating and Nonvalidating Parsers 193

The Parser and the Application .193
The Architecture of an XML Program 193
Object-Based Interface .194
Event-Based Interface .196
The Need for Standards .197

Document Object Model .198
Getting Started with DOM .198

A DOM Application .199
DOM Node .202
Document Object .203
Walking the Element Tree .204
Element Object .206
Text Object .206

Managing the State .207
A DOM Application That Maintains the State 208

Attributes .210
NamedNodeMap .217
Attr .217
A Note on Structure .218

Common Errors and How to Solve Them 218
XML Parsers Are Strict .218
Error Messages .219
XSLT Common Errors .220

DOM and Java .220
DOM and IDL .220
A Java Version of the DOM Application 221
Two Major Differences .223
The Parser .224

viii

DOM in Applications .225
Browsers .225
Editors .229
Databases .229

8 Alternative API: SAX .231
Why Another API? .231

Object-Based and Event-Based Interfaces 232
Event-Based Interfaces .233
Why Use Event-Based Interfaces? 236

SAX: The Alternative API .237
Getting Started with SAX .237
Compiling the Example .241

SAX Interfaces and Objects .242
Main SAX Events .242
Parser .242
ParserFactory .243
InputSource .243
DocumentHandler .243
AttributeList .244
Locator .245
DTDHandler .246
EntityResolver .246
ErrorHandler .246
SAXException .246

Maintaining the State .247
A Layered Architecture .260
States .261
Transitions .262
Lessons Learned .265

Flexibility .265
Build for Flexibility .265
Enforce a Structure .266

9 Writing XML .269
The Parser Mirror .269
Modifying a Document with DOM .270

Inserting Nodes .274
Saving As XML .276

DOM Methods to Create and Modify Documents 277
Document .277
Node .277
CharacterData .278
Element .278
Text .279

Creating a New Document with DOM .279
Creating Nodes .281
Creating the Top-Level Element .282

ix

Using DOM to Create Documents .283
Creating Documents Without DOM .283

A Non-DOM Data Structure .288
Writing XML .289
Hiding the Syntax .290

Creating Documents from Non-XML Data Structures 291
Doing Something with the XML Documents 292

Sending the Document to the Server 292
Saving the Document .295

Writing with Flexibility in Mind .296
Supporting Several DTDs with XSLT 296
Calling XSLT .303
Which Structure for the Document? 304
XSLT Versus Custom Functions .304

10 Modeling for Flexibility .307
Structured and Extensible .307

Limiting XML Extensibility .308
Building on XML Extensibility .312
Lessons Learned .321

XLink .323
Simple Links .323
Extended Links .326
XLink and Browsers .327

Signature .327
The Right Level of Abstraction .330

Destructive and Nondestructive Transformations 330
Mark It Up! .334
Avoiding Too Many Options .336

Attributes Versus Elements .339
Using Attributes .340
Using Elements .341
Lessons Learned .342

11 N-Tiered Architecture and XML .345
What Is an N-Tiered Application? .345

Client/Server Applications .346
3-Tiered Applications .347
N-Tiers .348

The XCommerce Application .348
Simplifications .349
Shop .349
XML Server .353

How XML Helps .356
Middleware .356
Common Format .357

x

XML for the Data Tiers .359
Extensibility .359
Scalability .361
Versatility .365

XML on the Middle Tier .366
Client .372

Server-Side Programming Language .375
Perl .376
JavaScript .376
Python .377
Omnimark .377
Java .377

12 Putting It All Together: An e-Commerce Example 381
Building XCommerce .381

Classpath .381
Configuration File .382
Directories .383
Compiling and Running .383
URLs .384
Database .384

The Middle Tier .386
MerchantCollection .393
Merchant .397
Product .404
Checkout .407

Encapsulating XML Tools .417
The Data Tier .429
Viewer and Editor .444

Appendix A: Crash Course on Java .457
Java in Perspective .457

Server-Side Applications .458
Components of the Server-Side Applications 458

Downloading Java Tools .459
Java Environment .459
XML Components .460
Servlet Engine .460

Your First Java Application .461
Flow of Control .464
Variables .465
Class .465
Creating Objects .466
Accessing Fields and Methods .466
Static .466
Method and Parameters .467
Constructors .467
Package .468

xi

Imports .468
Access Control .468
Comments and Javadoc .469
Exception .470

Servlets .472
Your First Servlet .473

Inheritance .476
doGet() .477

More Java Language Concepts .478
This and Super .478
Interfaces and Multiple Inheritance 479
Understanding the Classpath .480
JAR Files .481
Java Core API .482

Glossary .485
Index .489

xii

Dedication
To Pascale for her never-failing trust and patience.

Acknowledgments
This book is an important station on a long journey. I would like to thank all
the people who have helped me and trusted me along the way. In chronological
order, Ph. Capelle, who helped a confused student; Ph. van Bastelaer and
J. Berge, who were curious about SGML; H. Karunaratne and K. Kaur and the
folks at Sitpro, who showed me London; S. Vincent, who suggested I get serious
about writing; V. D’Haeyere, who taught me everything about the Internet;
Ph. Vanhoolandt, who published my first article; M. Gonzalez, N. Hada,
T. Nakamura, and the folks at Digital Cats, who published my first U.S. papers;
S. McLoughlin, who helps with the newsletter; and T. Green, who trusted me
with this book.

Thanks the XML/EDI Group and, in particular, M. Bryan, A. Kotok, B. Peat,
and D. Webber.

Special thanks to my mother for making me curious.

Writing a book is a demanding task, both for a business and for a family.
Thanks to my customers for understanding and patience when I was late.
Special thanks to Pascale for not only showing understanding, but also for
encouraging me!

xiii

About the Author
Benoît Marchal runs the consulting company, Pineapplesoft, which specializes
in Internet applications, particularly e-commerce, XML, and Java. He has
worked with major players in Internet development such as Netscape and
EarthWeb, and is a regular contributor to developer.com and other Internet
publications.

In 1997, he cofounded the XML/EDI Group, a think tank that promotes the
use of XML in e-commerce applications. Benoît frequently leads corporate
training on XML and other Internet technologies. You can reach him at
bmarchal@pineapplesoft.com.

xiv

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of wis-
dom you’re willing to pass our way.

As a Publisher for Que, I welcome your comments. You can fax, email, or write
me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of
this book, and that due to the high volume of mail I receive, I might not be able
to reply to every message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Fax: 317-581-4666

Email: que.programming@macmillanusa.com

Mail: John Pierce
Publisher
Que-Programming
201 West 103rd Street
Indianapolis, IN 46290 USA

xv

This page intentionally left blank

Introduction

The by Example Series
How does the by Example series make you a better programmer? The by
Example series teaches programming using the best method possible. After
a concept is introduced, you’ll see one or more examples of that concept in use.
The text acts as a mentor by figuratively looking over your shoulder and show-
ing you new ways to use the concepts you just learned. The examples are
numerous. While the material is still fresh, you see example after example
demonstrating the way you use the material you just learned.

The philosophy of the by Example series is simple: The best way to teach
computer programming is using multiple examples. Command descriptions,
format syntax, and language references are not enough to teach a newcomer
a programming language. Only by looking at many examples in which new
commands are immediately used and by running sample programs can pro-
gramming students get more than just a feel for the language.

Who Should Use This Book
XML by Example is intended for people with some basic HTML coding experi-
ence. If you can write a simple HTML page and if you know the main tags (such
as <P>, <TITLE>, <H1>), you know enough HTML to understand this book. You
don’t need to be an expert, however.

Some advanced techniques introduced in the second half of the book (Chapter 7
and later) require experience with scripting and JavaScript. You need to under-
stand loops, variables, functions, and objects for these chapters. Remember
these are advanced techniques, so even if you are not yet a JavaScript wizard,
you can pick up many valuable techniques in the book.

This book is for you if one of the following statements is true:

• You are an HTML whiz and want to move to the next level in
Internet publishing.

• You publish a large or dynamic document base on the Web, on CD-
ROM, in print, or by using a combination of these media, and you
have heard XML can simplify your publishing efforts.

• You are a Web developer, so you know Java, JavaScript, or CGI
inside out, and you have heard that XML is simple and enables
you to do many cool things.

• You are active in electronic commerce or in EDI and you want to
learn what XML has to offer to your specialty.

• You use software from Microsoft, IBM, Oracle, Corel, Sun, or any of
the other hundreds of companies that have added XML to their prod-
ucts, and you need to understand how to make the best of it.

You don’t need to know anything about SGML (a precursor to XML) to under-
stand XML by Example. You don’t need to limit yourself to publishing; XML by
Example introduces you to all applications of XML, including publishing and
nonpublishing applications.

This Book’s Organization
This book teaches you about XML, the eXtensible Markup Language. XML is a
new markup language developed to overcome limitations in HTML.

XML exists because HTML was successful. Therefore, XML incorporates many
successful features of HTML. XML also exists because HTML could not live up
to new demands. Therefore, XML breaks new ground when it is appropriate.

This book takes a hands-on approach to XML. Ideas and concepts are intro-
duced through real-world examples so that you not only read about the concepts
but also see them applied. With the examples, you immediately see the benefits
and the costs associated with XML.

As you will see, there are two classes of applications for XML: publishing and
data exchange. Data exchange applications include most electronic commerce
applications. This book draws most of its examples from data exchange applica-
tions because they are currently the most popular. However, it also includes a
very comprehensive example of Web site publishing.

I made some assumptions about you. I suppose you are familiar with the Web,
insofar as you can read, understand, and write basic HMTL pages as well as
read and understand a simple JavaScript application. You don’t have to be a
master at HTML to learn XML. Nor do you need to be a guru of JavaScript.

Most of the code in this book is based on XML and XML style sheets. When pro-
gramming was required, I used JavaScript as often as possible. JavaScript,
however, was not appropriate for the final example so I turned to Java.

You don’t need to know Java to understand this book, however, because there is
very little Java involved (again, most of the code in the final example is XML).
Appendix A, “Crash Course on Java,” will teach you just enough Java to under-
stand the examples.

2 Introduction

Conventions Used in This Book
Examples are identified by the icon shown at the left of this sentence:

Listing and code appears in monospace font, such as

<?xml version=”1.0”?>

N O T E
Special notes augment the material you read in each chapter. These notes clarify concepts
and procedures.

T I P
You’ll find numerous tips offering shortcuts and solutions to common problems.

C A U T I O N
The cautions warn you about pitfalls that sometimes appear when programming in XML.
Reading the caution sections will save you time and trouble.

What’s Next
XML was introduced to overcome the limitations of HTML. Although the two
will likely coexist in the foreseeable future, the importance of XML will only
increase. It is important that you learn the benefits and limitations of XML so
that you can prepare for the evolution.

Please visit the by Example Web site for code examples or additional material
associated with this book:

<http://www.quecorp.com/series/by_example/>

Turn to the next page and begin learning XML by examples today!

3Introduction

E X A M P L E

http://www.quecorp.com/series/by_example/

3

XML Schemas
In Chapter 2, “The XML Syntax,” you learned how to write and read XML
documents. More importantly, you learned that XML emphasizes the struc-
ture of documents.

This chapter further develops that theme by looking at the DTD, short for
Document Type Definition, a mechanism to describe the structure of docu-
ments. Specifically, you will learn how to

• model XML documents

• express the model in a DTD

• validate a document against its model

The DTD is the original modeling language or schema for XML. However,
for historical reasons, the DTD is somewhat limited and people are looking
for solutions to overcome these limitations. The W3C is working on an
alternative to DTD. We will review the current status of that effort.

This chapter is probably the most abstract chapter in this book. You might
want to temporarily skip the second half (starting from the section
“Entities and Notations”) and revisit it after you have read through the
book.

The DTD Syntax
The syntax for DTDs is different from the syntax for XML documents.
Listing 3.1 is the address book introduced in Chapter 2 but with one differ-
ence: It has a new <!DOCTYPE> statement. The new statement is introduced
in the section “Document Type Declaration.” For now, it suffices to say that
it links the document file to the DTD file. Listing 3.2 is its DTD.
Listing 3.1: An Address Book in XML

<?xml version=”1.0”?>

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

<!-- loosely inspired by vCard 3.0 -->

<address-book>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

Listing 3.2: The DTD for the Address Book

<!-- top-level element, the address book

is a list of entries -->

<!ELEMENT address-book (entry+)>

<!-- an entry is a name followed by

addresses, phone numbers, etc. -->

70 Chapter 3: XML Schemas

E X A M P L E

<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT fname (#PCDATA)>

<!ELEMENT lname (#PCDATA)>

<!-- definition of the address structure

if several addresses, the preferred

attribute signals the “default” one -->

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!-- phone, fax and email, same preferred

attribute as address -->

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred (true | false) “false”>

<!ELEMENT fax (#PCDATA)>

<!ATTLIST fax preferred (true | false) “false”>

<!ELEMENT email EMPTY>

<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Element Declaration
1. DTD is a mechanism to describe every object (element, attribute, and

so on) that can appear in the document, starting with elements. The
following is an example of element declaration:

<!ELEMENT address-book (entry+)>

After the <!ELEMENT markup comes the element name followed by its
content model. The element declaration is terminated with a right angle
bracket.

71The DTD Syntax

E X A M P L E

Element declarations are easy to read: The right side (the content model)
defines the left side (the element name). In other words, the content model
lists the children that are acceptable in the element.

The previous declaration means that an address-book element contains one
or more entry elements. address-book is on the left side, entry on the right.
The plus sign after entry means there can be more than one entry element.

2. Parentheses are used to group elements in the content model, as in
the following example:

<!ELEMENT name (lname, (fname | title))>

Element Name
As we saw in Chapter 2, XML names must follow certain rules. Specifically,
names must start with either a letter or a limited set of punctuation char-
acters (“_”,“:”). The rest of the name can consist of the same characters plus
letters, digits and new punctuation characters (“.”, “-”). Spaces are not
allowed in names.

Names cannot start with the string “xml,” and as we will see in Chapter 4,
“Namespaces,” the colon plays a special role so it is advised you don’t use it.

Special Keywords
For most elements, the content model is a list of elements. It also can be
one of the following keywords:

• #PCDATA stands for parsed character data and means the element can
contain text. #PCDATA is often (but not always) used for leaf elements.
Leaf elements are elements that have no child elements.

• EMPTY means the element is an empty element. EMPTY always indicates
a leaf element.

• ANY means the element can contain any other element declared in the
DTD. This is seldom used because it carries almost no structure infor-
mation. ANY is sometimes used during the development of a DTD,
before a precise rule has been written. Note that the elements must be
declared in the DTD.

Element contents that have #PCDATA are said to be mixed content. Element
contents that contain only elements are said to be element content. In
Listing 3.2, tel is a leaf element that contains only text while email is an
empty element:
<!ELEMENT tel (#PCDATA)>

<!ELEMENT email EMPTY>

Note that CDATA sections appear anywhere #PCDATA appears.

72 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

The Secret of Plus, Star, and Question Mark
The plus (“+”), star (“*”), and question mark (“?”) characters in the element
content are occurrence indicators. They indicate whether and how elements
in the child list can repeat.

• An element followed by no occurrence indicator must appear once and
only once in the element being defined.

• An element followed by a “+” character must appear one or several
times in the element being defined. The element can repeat.

• An element followed by a “*” character can appear zero or more times
in the element being defined. The element is optional but, if it is
included, it can repeat indefinitely.

• An element followed by a “?” character can appear once or not at all in
the element being defined. It indicates the element is optional and, if
included, cannot repeat.

The entry and name elements have content model that uses an occurrence
indicator:
<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!ELEMENT address (street,region?,postal-code,locality,country)>

Acceptable children for the entry are name, address, tel, fax, and email.
Except for name, these children are optional and can repeat.

Acceptable children for address are street, region, postal-code, locality,
and country. None of the children can repeat but the region is optional.

The Secret of Comma and Vertical Bar
The comma (“,”) and vertical bar (“|”) characters are connectors.
Connectors separate the children in the content model, they indicate the
order in which the children can appear. The connectors are

• the “,” character, which means both elements on the right and the left
of the comma must appear in the same order in the document.

• the “|” character, which means that only one of the elements on the
left or the right of the vertical bar must appear in the document.

The name and address elements are good examples of connectors.
<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT address (street,region?,postal-code,locality,country)>

73The DTD Syntax

E X A M P L E

E X A M P L E

Acceptable children for name are #PCDATA or a fname element or a lname ele-
ment. Note that it is one or the other. However, the whole model can repeat
thanks to the “*” occurrence indicator.

Acceptable children for address are street, region, postal-code, locality,
and country, in exactly that order.

The various components of mixed content must always be separated by a
“|” and the model must repeat. The following definition is incorrect:
<!ELEMENT name (#PCDATA, fname, lname)>

It must be
<!ELEMENT name (#PCDATA | fname | lname)*>

Element Content and Indenting
In the previous chapter, you learned that the XML application ignores
indenting in most cases. Here again, a DTD can help.

If a DTD is associated with the document, then the XML processor knows
that spaces in an element that has element content must indent (because
the element has element content, it cannot contain any text). The XML
processor can label the spaces as ignorable whitespaces. This is a very
powerful hint to the application that the spaces are indenting.

Nonambiguous Model
The content model must be deterministic or unambiguous. In plain English,
it means that it is possible to decide which part of the model applies to the
current element by looking only at the current element.

For example, the following model is not acceptable:
<!ELEMENT cover ((title, author) | (title, subtitle))>

because when the XML processor is reading the element
<title>XML by Example</title>

in
<cover><title>XML by Example</title><author>Benoît Marchal</author></cover>

it cannot decide whether the title element is part of (title, author) or
of (title, subtitle) by looking at title only. To decide that title is part
of (title, author), it needs to look past title to the author element.

In most cases, however, it is possible to reorganize the document so that the
model becomes acceptable:
<!ELEMENT cover (title, (author | subtitle))>

Now when the processor sees title, it knows where it fits in the model.

74 Chapter 3: XML Schemas

E X A M P L E

Attributes
Attributes also must be declared in the DTD. Element attributes are
declared with the ATTLIST declaration, for example:
<!ATTLIST tel preferred (true | false) “false”>

The various components in this declaration are the markup (<!ATTLIST), the
element name (tel), the attribute name (preferred), the attribute type
((true | false)), a default value (“false”), and the right angle bracket.

For elements that have more than one attribute, you can group the declara-
tions. For example, email has two attributes:
<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Attribute declaration can appear anywhere in the DTD. For readability, it
is best to list attributes immediately after the element declaration.

C A U T I O N
If used in a valid document, the special attributes xml:space and xml:lang must be
declared as

xml:space (default|preserve) “preserve”

xml:lang NMTOKEN #IMPLIED

The DTD provides more control over the content of attributes than over the
content of elements. Attributes are broadly divided into three categories:

• string attributes contain text, for example:
<!ATTLIST email href CDATA #REQUIRED>

• tokenized attributes have constraints on the content of the attribute,
for example:
<!ATTLIST entry id ID #IMPLIED>

• enumerated-type attributes accept one value in a list, for example:

<!ATTLIST entry preferred (true | false) “false”>

Attribute types can take any of the following values:

• CDATA for string attributes.

• ID for identifier. An identifier is a name that is unique in the docu-
ment.

• IDREF must be the value of an ID used elsewhere in the same docu-
ment. IDREF is used to create links within a document.

• IDREFS is a list of IDREF separated by spaces.

75The DTD Syntax

E X A M P L E

E X A M P L E

E X A M P L E

• ENTITY must be the name of an external entity; this is how you assign
an external entity to an attribute.

• ENTITIES is a list of ENTITY separated by spaces.

• NMTOKEN is essentially a word without spaces.

• NMTOKENS is a list of NMTOKEN separated by spaces.

• Enumerated-type list is a closed list of nmtokens separated by |, the
value has to be one of the nmtokens. The list of tokens can further be
limited to NOTATIONs (introduced in the section “Notation,” later in this
chapter).

Optionally, the DTD can specify a default value for the attribute. If the doc-
ument does not include the attribute, it is assumed to have the default
value. The default value can take one of the four following values:

• #REQUIRED means that a value must be provided in the document

• #IMPLIED means that if no value is provided, the application must use
its own default

• #FIXED followed by a value means that attribute value must be the
value declared in the DTD

• A literal value means that the attribute will take this value if no value
is given in the document.

N O T E
Information that remains constant between documents is an ideal candidate for
#FIXED attributes. For example, if prices are always given in dollars, you could declare
a price element as

<!ELEMENT price (#PCDATA)>

<!ATTLIST price currency NMTOKEN #FIXED “usd”>

When the application reads

<price>19.99</price>

in a document, it appears as though it reads

<price currency=”usd”>19.99</price>

The application has received additional information but it didn’t require additional
markup in the document!

Document Type Declaration
The document type declaration attaches a DTD to a document. Don’t con-
fuse the document type declaration with the document type definition
(DTD). The document type declaration has the form:

76 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

It consists of markup (<!DOCTYPE), the name of the top-level element
(address-book), the DTD (SYSTEM “address-book.dtd”) and a right angle
bracket. As Listing 3.1 illustrates, the document type declaration appears
at the beginning of the XML document, after the XML declaration.

The top-level element of the document is selected in the declaration.
Therefore, it is possible to create a document starting with any element in
the DTD. Listing 3.3 has the same DTD as Listing 3.1, but its top-level ele-
ment is an entry.
Listing 3.3: An Entry

<?xml version=”1.0”?>

<!DOCTYPE entry SYSTEM “address-book.dtd”>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

Internal and External Subsets
The DTD is divided into internal and external subsets. As the name
implies, the internal subset is inserted in the document itself, whereas the
external subset points to an external entity.

The internal and the external subsets have different rules for parameter
entities. The differences are explained in the section “General and
Parameter Entities,” later in this chapter.

The internal subset of the DTD is included between brackets in the docu-
ment type declaration. The external subset is stored in a separate entity
and referenced from the document type declaration.

77The DTD Syntax

E X A M P L E

The internal subset of a DTD is stored in the document, specifically in the
document type declaration, as in
<!DOCTYPE address [

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>
]>

The external subset is not stored in the document. It is referenced from the
document type declaration through an identifier as in the following exam-
ples:
<!DOCTYPE address-book SYSTEM “http://www.xmli.com/dtd/address-book.dtd”>

<!DOCTYPE address-book PUBLIC “-//Pineapplesoft//Address Book//EN”
➥“http://catwoman.pineapplesoft.com/dtd/address-book.dtd”>

<!DOCTYPE address-book SYSTEM “../dtds/address-book.dtd”>

There are two types of identifiers: system identifiers and public identifiers.
A keyword, respectively SYSTEM and PUBLIC, indicates the type of identi-
fier.

• A system identifier is a Universal Resource Identifier (URI) pointing to
the DTD. URI is a superset of URLs. For all practical purposes, a URI
is a URL.

• In addition to the system identifier, the DTD identifier might include
a public identifier. A public identifier points to a DTD recorded with
the ISO according to the rules of ISO 9070. Note that a system identi-
fier must follow the public identifier.

The system identifier is easy to understand. The XML processor must
download the document from the URI.

Public identifiers are used to manage local copies of DTDs. The XML
processor maintains a catalog file that lists public identifiers and their
associated URIs. The processor will use these URIs instead of the system
identifier.

78 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

E X A M P L E

Obviously, if the URIs in the catalog point to local copies of the DTD, the
XML processor saves some downloads.

Listing 3.4 is an example of a catalog file.
Listing 3.4: A Catalog File

<XMLCatalog>

<Base HRef=”http://catwoman.pineapplesoft.com/dtd/”/>

<Map PublicId=”-//Pineapplesoft//Address Book//EN”

HRef=”address-book.dtd”/>

<Map PublicId=”-//Pineapplesoft//Article//EN”

HRef=”article.dtd”/>

<Map PublicId=”-//Pineapplesoft//Simple Order//EN”

HRef=”order.dtd”/>

<Extend Href=”http://www.w3.org/xcatalog/mastercat.xml”/>

</XMLCatalog>

Finally, note that a document can have both an internal and an external
subset as in
<!DOCTYPE address SYSTEM “address-content.dtd” [

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

]>

Public Identifiers Format
The following public identifiers point to the address book:
“-//Pineapplesoft//Address Book//EN”

There are four parts, separated by “//”:

• The first character is + if the organization is registered with ISO,
- otherwise (most frequent).

• The second part is the owner of the DTD.

• The third part is the description of the DTD; spaces are allowed.

• The final part is the language (EN for English).

Standalone Documents
As you have seen, the DTD not only describes the document, but it can
affect how the application reads the document. Specifically, default and
fixed attribute values will add information to the document. Entities, which
are also declared in the DTD, modify the document.

79The DTD Syntax

E X A M P L E

E X A M P L E

If all the entries that can influence the document are in the internal subset
of the DTD, the document is said to be standalone. In other words, an XML
processor does not need to download external entities to access all the infor-
mation (it might have to download external entities to validate the docu-
ment but that does not impact the content).

Conversely, if default attribute values or entities are declared in the
external subset of the document, then the XML processor has to read the
external subset, which might involve downloading more files.

Obviously, a standalone document is more efficient for communication over
a network because only one file needs to be downloaded. The XML declara-
tion has an attribute, standalone, that declares whether the document is a
standalone document or not. It accepts only two values: yes and no. The
default is no.
<?xml version=”1.0” standalone=”yes”?>

Note that a standalone document might have an external DTD subset but
the external subset cannot modify how the application reads the document.
Specifically, the external subset cannot

• declare entities

• declare default attribute values

• declare element content if the elements include spaces, such as for
indenting. The last rule is the easiest to break but it is logical: If the
DTD declares element content, then the processor reports indenting as
ignorable whitespaces; otherwise, it reports as normal whitespaces.

Why Schemas?
Why do we need DTDs or schemas in XML? There is a potential conflict
between flexibility and ease of use. As a rule, more flexible solutions are
more difficult, if only because you have to work your way through the
options. Specific solutions might also be optimized for certain tasks.

Let’s compare a closed solution, HTML, with an open one such as XML.
Both can be used to publish documents on the Web (XML serves many
other purposes as well). HTML has a fixed set of elements and software
can be highly optimized for it. For example, HTML editors offer templates,
powerful visual editing, image editing, document preview, and more.

XML, on the other hand, is a flexible solution. It does not define elements
but lets you, the developer, define the structure you need. Therefore, XML
editors must accept any document structure. There are very little opportu-
nities to optimize the XML editors because, by definition, they must be as
generic as XML is. HTML, the close solution, has an edge here.

80 Chapter 3: XML Schemas

E X A M P L E

The DTD is an attempt to bridge that gap. DTD is a formal description of
the document. Software tools can read it and learn about the document
structure. Consequently, the tools can adapt themselves to better support
the document structure.

For example, some XML editors use DTDs to populate their element lists as
well as adopt default styling, based on the DTD. Finally, these XML editors
will guide the author by making certain the structure is followed.

In other words, the editor is a generic tool that accepts any XML document,
but it is configured for a specific application (read specific structure)
through the DTD.

Figure 3.1 is a screenshot from a DTD-aware editor. Notice that the editor
prompts for elements based on the structure.

81Why Schemas?

E X A M P L E

Figure 3.1: XML editor uses the DTD to guide the user.

Well-Formed and Valid Documents
XML recognizes two classes of documents: well-formed and valid. The
documents in Chapter 2 were well-formed, which in XML jargon means
they follow the XML syntax. Well-formed documents have the right mix of
start and end tags, attributes are properly quoted, entities are acceptable,
character sets are properly used, and so on.

Well-formed documents have no DTD, so the XML processor cannot check
their structure. It only checks that they follow the syntax rules.

Valid documents are stricter. They not only follow the syntax rules, they
also comply with a specific structure, as described in a DTD.

Valid documents have a DTD. The XML processor will check that the docu-
ments are syntactically correct but it also ensures they follow the structure
described in the DTD.

Why two classes of documents? Why not have only valid documents? In
practice, some applications don’t need a DTD. Also, among those applica-
tions that do, they need the DTD only at specific steps in the process.

The DTD is useful during document creation, when it makes sense to
enforce the document structure. However, it is less useful after the creation.
For example, in most cases, it is useless to distribute the DTD with the doc-
ument. Indeed, a reader cannot fix errors in the structure of a document
(that’s the role of the author and editor), so what is a reader to do with the
DTD?

Relationship Between the DTD and the Document
Unless it’s overlooked, let me stress the relationship between the DTD and
the XML document. The role of the DTD is to specify which elements are
allowed where in the document.

The documents in Listings 3.6 and 3.7 are valid and respect the DTD in
Listing 3.5. The document in Listing 3.6 has a region element, whereas the
one in Listing 3.7 has none. It works because region is a conditional ele-
ment in the DTD.
Listing 3.5: The DTD

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

Listing 3.6: A Valid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

82 Chapter 3: XML Schemas

E X A M P L E

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

Listing 3.7: Another Valid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>Rue du Lombard 345</street>

<postal-code>5000</postal-code>

<locality>Namur</locality>

<country>Belgium</country>

</address>

However, Listings 3.8 and 3.9 are not valid documents. Listing 3.8 is miss-
ing a country element and country is not optional. In Listing 3.9, the
region element has a code attribute that is not declared in the DTD.
Listing 3.8: An Invalid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

</address>

Listing 3.9: An Invalid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region code=”OH”>Ohio</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

Another way to look at the relationship between DTD and document is to
say that the DTD describes the tree that is acceptable for the document.
Figure 3.2 shows the tree described by the DTD in Listing 3.5.

83Relationship Between the DTD and the Document

Figure 3.2: The tree for the address

Benefits of the DTD
The main benefits of using a DTD are

• The XML processor enforces the structure, as defined in the DTD.

• The application accesses the document structure, such as to populate
an element list.

• The DTD gives hints to the XML processor—that is, it helps separate
indenting from content.

• The DTD can declare default or fixed values for attributes. This might
result in a smaller document.

Validating the Document
You can validate documents with an XML processor. I invite you to down-
load XML for Java from the IBM Web site at www.alphaworks.ibm.com.
There are other XML processors, but I will use the IBM one in Chapter 5,
“XSL Transformation,” and Chapter 8, “Alternative API: SAX.”

XML for Java is a Java application. You don’t need to be a Java program-
mer to use it, but you must have installed a Java runtime on your system.
You can download a Java runtime from java.sun.com.

Tools are sometimes updated. If the status of XML for Java changes, we
will post an update on the Macmillan Web site at www.quecorp.com/series/
by_example. If you experience a problem finding the tool, visit www.quecorp.
com/series/by_example.

The XML for Java comes with a command-line version that you can use to
validate documents against their DTD. To validate the document in Listing
3.1, save it in a file called “abook.xml,” save its DTD in the file called
“address-book.dtd,” and issue the command:
java -classpath c:\xml4j\xml4j.jar;c:\xml4j\xml4jsamples.jar

➥XJParse -p com.ibm.xml.parsers.ValidatingSAXParser abook.xml

This looks like a long and complex command line. If you are curious,
Appendix A breaks it into smaller pieces.

This command assumes XML for Java is installed in the c:\xml4j directory.
You might have to update the classpath for your system. If everything goes
well, the result is a message similar to

84 Chapter 3: XML Schemas

O U T P U T

E X A M P L E

www.alphaworks.ibm.com
www.quecorp.com/series/by_example
www.quecorp.com/series/by_example
www.quecorp.com/series/by_example
www.quecorp.com/series/by_example

abook.xml: 1420 ms (24 elems, 9 attrs, 105 spaces, 97 chars)

If the document contains errors (either syntax errors or it does not respect
the structure outlined in the DTD), you will have an error message.

C A U T I O N
The IBM for Java processor won’t work unless you have installed a Java runtime.

If there is an error message similar to “Exception in thread “main”
java.lang.NoClassDefFoundError,” it means that either the classpath is incorrect
(make sure it points to the right directory) or that you typed an incorrect class name for
XML for Java (XJParser and com.ibm.xml.parsers.ValidatingSAXParser).

If there is an error message similar to “Exception in thread “main”
java.io.FileNotFoundException: d:\xml\abook.xm”, it means that the filename is incor-
rect (in this case, it points to “abook.xm” instead of “abook.xml”).

T I P
You can save some typing with batch files (under Windows) or shell scripts (under
UNIX). Adapt the path to your system, replace the filename (abook.xml) with “%1” and
save in a file called “validate.bat”. The file should contain the following command:

java -classpath c:\xml4j\xml4j.jar;c:\xml4j\xml4jsamples.jar

➥XJParse -p com.ibm.xml.parsers.ValidatingSAXParser %1

Now you can validate any XML file with the following (shorter) command:

validate abook.xml

Entities and Notations
As already mentioned in the previous chapter, XML doesn’t work with files
but with entities. Entities are the physical representation of XML docu-
ments. Although entities usually are stored as files, they need not be.

In XML the document, its DTD, and the various files it references (images,
stock-phrases, and so on) are entities. The document itself is a special
entity because it is the starting point for the XML processor. The entity of
the document is known as the document entity.

XML does not dictate how to store and access entities. This is the task of
the XML processor and it is system specific. The XML processor might have
to download entities or it might use a local catalog file to retrieve the enti-
ties.

In Chapter 7, “The Parser and DOM,” you’ll see how SAX parsers (a SAX
parser is one example of an XML processor) enable the application to
retrieve entities from databases or other sources.

85Entities and Notations

XML has many types of entities, classified according to three criteria:
general or parameter entities, internal or external entities, and parsed or
unparsed entities.

General and Parameter Entities
General entity references can appear anywhere in text or markup. In prac-
tice, general entities are often used as macros, or shorthand for a piece of
text. External general entities can reference images, sound, and other docu-
ments in non-XML format. Listing 3.10 shows how to use a general entity
to replace some text.
Listing 3.10: General Entity

<?xml version=”1.0”?>

<!DOCTYPE address-book [

<!ENTITY jacksmith

‘<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>’>

]>

<address-book>

&jacksmith;

</address-book>

General entities are declared with the markup <!ENTITY followed by the
entity name, the entity definition, and the customary right angle bracket.

T I P
General entities also are often used to associate a mnemonic with character refer-
ences as in

<!ENTITY icirc “î”>

As we saw in Chapter 2, “The XML Syntax,” the following entities are pre-
defined in XML: “<”, “&”, “>”, “'”, and “"”.

Parameter entity references can only appear in the DTD. There is an extra
% character in the declaration before the entity name. Parameter entity ref-
erences also replace the ampersand with a percent sign as in
<!ENTITY % boolean “(true | false) ‘false’”>

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred %boolean;>

86 Chapter 3: XML Schemas

E X A M P L E

Parameter entities have many applications. You will learn how to use para-
meter entities in the following sections: “Internal and External Entities,”
“Conditional Sections,” “Designing DTDs from an Object Model.”

C A U T I O N
The previous example is valid only in the external subset of a DTD. In the internal sub-
set, parameter entities can appear only where markup declaration can appear.

Internal and External Entities
XML also distinguishes between internal and external entities. Internal
entities are stored in the document, whereas external entities point to a
system or public identifier. Entity identifiers are identical to DTD identi-
fiers (in fact, the DTD is a special entity).

The entities in the previous sections were internal entities because their
value was declared in the entity definition. External entities, on the other
hand, reference content that is not part of the current document.

T I P
External entities might start with an XML declaration—for example, to declare a special
encoding.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

External general entities can be parsed or unparsed. If parsed, the entity
must contain valid XML text and markup. External parsed entities are
used to share text across several documents, as illustrated by Listing 3.11.

In Listing 3.11, the various entries are stored in separate entities (separate
files). The address book combines them in a document.
Listing 3.11: Using External Entities

<?xml version=”1.0”?>

<!DOCTYPE address-book [

<!ENTITY johndoe SYSTEM “johndoe.ent”>

<!ENTITY jacksmith SYSTEM “jacksmith.ent”>

]>

<address-book>

&johndoe;

&jacksmith;

</address-book>

Where the file “johndoe.ent” contains:
<entry>

<name>John Doe</name>

87Entities and Notations

E X A M P L E

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

</entry>

And “jacksmith.ent” contains
<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

However, unparsed entities are probably the most helpful external general
entities. Unparsed entities are used for non-XML content, such as images,
sound, movies, and so on. Unparsed entities provide a mechanism to load
non-XML data into a document.

The XML processor treats the unparsed entity as an opaque block, of
course. By definition, it does not attempt to recognize markup in unparsed
entities.

A notation must be associated with unparsed entities. Notations are
explained in more detail in the next section but, in a nutshell, they identify
the type of a document, such as GIF, JPEG, or Windows bitmap for images.
The notation is introduced by the NDATA keyword:
<!ENTITY logo SYSTEM “http://catwoman.pineapplesoft.com/logo.gif”

NDATA GIF>

External parameter entities are similar to external general entities.
However, because parameter entities appear in the DTD, they must contain
valid XML markup.

External parameter entities are often used to insert the content of a file in
the markup. Let’s suppose we have created a list of general entities for
every country, as in Listing 3.12 (saved in the file countries.ent).
Listing 3.12: A List of Entities for the Countries

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!ENTITY be “Belgium”>

88 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

<!ENTITY ch “Switzerland”>

<!ENTITY de “Germany”>

<!ENTITY it “Italy”>

<!ENTITY jp “Japan”>

<!ENTITY uk “United Kingdom”>

<!ENTITY us “United States”>

<!-- and more -->

Creating such a list is a large effort. We would like to reuse it in all our
documents. The construct illustrated in Listing 3.13 pulls the list of coun-
tries from countries.ent in the current document. It declares a parameter
entity as an external entity and it immediately references the parameter
entity. This effectively includes the external list of entities in the DTD of
the current document.
Listing 3.13: Using External Parameter Entities

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd” [

<!ENTITY % countries SYSTEM “countries.ent”>

%countries;

]>

<address>

<street>34 Fountain Square Plaza</street>

<region>Ohio</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>&us;</country>

</address>

C A U T I O N
Given the limitation on parameter entities in the internal subset of the DTD, this is the
only sensible application of parameter entities in the internal subset.

Notation
Because the XML processor cannot process unparsed entities, it needs a
mechanism to associate them with the proper tool. In the case of an image,
it could be an image viewer.

Notation is simply a mechanism to declare the type of unparsed entities
and associate them, through an identifier, with an application.
<!NOTATION GIF89a PUBLIC “-//CompuServe//NOTATION Graphics

➥ Interchange Format 89a//EN” “c:\windows\kodakprv.exe”>

89Entities and Notations

E X A M P L E

E X A M P L E

This declaration is unsafe because it points to a specific application. The
application might not be available on another computer or it might be
available but from another path. If your system has defined the appropriate
file associations, you can get away with a declaration such as
<!NOTATION GIF89a SYSTEM “GIF”>

<!NOTATION GIF89a SYSTEM “image/gif”>

The first notation uses the filename, while the second uses the MIME type.

Managing Documents with Entities
External entities are helpful to modularize and help manage large DTDs
and large document sets.

The idea is very simple: Try to divide your work into smaller pieces that are
more manageable. Save each piece in a separate file and include them in
your document with external entities.

Also try to identify pieces that you can reuse across several applications. It
might be a list of entities (such as the list of countries) or a list of notations,
or some text (such as a copyright notice that must appear on every docu-
ment). Place them in separate files and include them in your documents
through external entities.

Figure 3.3 shows how it works. Notice that some files are shared across
several documents.

90 Chapter 3: XML Schemas

E X A M P L E

Figure 3.3: Using external entities to manage large projects

This is like eating a tough steak: You have to cut the meat into smaller
pieces until you can chew it.

Conditional Sections
As your DTDs mature, you might have to change them in ways that are
partly incompatible with previous usage. During the migration period,
when you have new and old documents, it is difficult to maintain the DTD.

To help you manage migrations and other special cases, XML provides con-
ditional sections. Conditional sections are included or excluded from the
DTD depending on the value of a keyword. Therefore, you can include or
exclude a large part of a DTD by simply changing one keyword.

Listing 3.13 shows how to use conditional sections. The strict parameter
entity resolves to INCLUDE. The lenient parameter entity resolves to IGNORE.
The application will use the definition of name in the %strict; section
((fname, lname)) and ignores the definition in the %lenient; section
((#PCDATA | fname | lname)*).
Listing 3.13: Using Conditional Sections

<!ENTITY % strict ‘INCLUDE’>

<!ENTITY % lenient ‘IGNORE’>

<![%strict;[

<!-- a name is a first name and a last name -->

<!ELEMENT name (fname, lname)>

]]>

<![%lenient;[

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

]]>

However, to revert to the lenient definition of name, it suffices to invert the
parameter entity declaration:
<!ENTITY % strict ‘IGNORE’>

<!ENTITY % lenient ‘INCLUDE’>

Designing DTDs
Now that you understand what DTDs are for and that you understand how
to use them, it is time to look at how to create DTDs. DTD design is a cre-
ative and rewarding activity.

91Designing DTDs

E X A M P L E

It is not possible, in this section, to cover every aspect of DTD design. Books
have been devoted to that topic. Use this section as guidance and remember
that practice makes proficient.

Yet, I would like to open this section with a plea to use existing DTDs when
possible. Next, I will move into two examples of the practical design of prac-
tically designing DTDs.

Main Advantages of Using Existing DTDs
There are many XML DTDs available already and it seems more are being
made available every day. With so many DTDs, you might wonder whether
it’s worth designing your own.

I would argue that, as much as possible, you should try to reuse existing
DTDs. Reusing DTDs results in multiple savings. Not only do you not have
to spend time designing the DTD, but also you don’t have to maintain and
update it.

However, designing an XML application is not limited to designing a DTD.
As you will learn in Chapter 5, “XSL Transformation,” and subsequent
chapters, you might also have to design style sheets, customize tools such
as editors, and/or write special code using a parser.

This adds up to a lot of work. And it follows the “uh, oh” rule of project
planning: Uh, oh, it takes more work than I thought.” If at all possible, it
pays to reuse somebody else’s DTD.

The first step in a new XML project should be to search the Internet for
similar applications. I suggest you start at www.oasis-open.org/sgml/
xml.html. The site, maintained by Robin Cover, is the most comprehensive
list of XML links.

In practice, you are likely to find DTDs that almost fit your needs but
aren’t exactly what you are looking for. It’s not a problem because XML is
extensible so it is easy to take the DTD developed by somebody else and
adapt it to your needs.

Designing DTDs from an Object Model
I will take two examples of DTD design. In the first example, I will start
from an object model. This is the easiest solution because you can reuse the
objects defined in the model. In the second example, I will create a DTD
from scratch.

Increasingly, object models are made available in UML. UML is the Unified
Modeling Language (yes, there is an ML something that does not stand for
markup language). UML is typically used for object-oriented applications
such as Java or C++ but the same models can be used with XML.

92 Chapter 3: XML Schemas

E X A M P L E

www.oasis-open.org/sgml/xml.html
www.oasis-open.org/sgml/xml.html

An object model is often available when XML-enabling an existing Java or
C++ application. Figure 3.4 is a (simplified) object model for bank accounts.
It identifies the following objects:

• “Account” is an abstract class. It defines two properties: the balance
and a list of transactions.

• “Savings” is a specialized “Account” that represents a savings account;
interest is an additional property.

• “Checking” is a specialized “Account” that represents a checking
account; rate is an additional property.

• “Owner” is the account owner. An “Account” can have more than one
“Owner” and an “Owner” can own more than one “Account.”

93Designing DTDs from an Object Model

Figure 3.4: The object model

The application we are interested in is Web banking. A visitor would like to
retrieve information about his or her various bank accounts (mainly his or
her balance).

The first step to design the DTD is to decide on the root-element. The top-
level element determines how easily we can navigate the document and
access the information we are interested in. In the model, there are two
potential top-level elements: Owner or Account.

Given we are doing a Web banking application, Owner is the logical choice
as a top element. The customer wants his list of accounts.

Note that the choice of a top-level element depends heavily on the applica-
tion. If the application were a financial application, examining accounts, it
would have been more sensible to use account as the top-level element.

At this stage, it is time to draw a tree of the DTD under development. You
can use a paper, a flipchart, a whiteboard, or whatever works for you (I
prefer flipcharts).

In drawing the tree, I simply create an element for every object in the
model. Element nesting is used to model object relationship.

Figure 3.5 is a first shot at converting the model into a tree. Every object in
the original model is now an element. However, as it turns out, this tree is
both incorrect and suboptimal.

94 Chapter 3: XML Schemas

Figure 3.5: A first tree for the object model

Upon closer examination, the tree in Figure 3.5 is incorrect because, in the
object model, an account can have more than one owner. I simply cannot
add the owner element into the account because this would lead to infinite
recursion where an account includes its owner, which itself includes the
account, which includes the owner, which… You get the picture.

The solution is to create a new element co-owner. To avoid confusion, I
decided to rename the top-level element from owner to accounts. The new
tree is in Figure 3.6.

Figure 3.6: The corrected tree

The solution in Figure 3.6 is a correct implementation of the object model.
To evaluate how good it is, I like to create a few sample documents that fol-
low the same structure. Listing 3.14 is a sample document I created.
Listing 3.14: Sample Document

<?xml version=”1.0”?>

<accounts>

<co-owner>John Doe</co-owner>

<co-owner>Jack Smith</co-owner>

<account>

<checking>170.00</checking>

</account>

<co-owner>John Doe</co-owner>

<account>

<savings>5000.00</savings>

</account>

</accounts>

This works but it is inefficient. The checking and savings elements are com-
pletely redundant with the account element. It is more efficient to treat

account as a parameter entity that groups the commonality between the
various accounts. Figure 3.7 shows the result. In this case, the parameter
entity is used to represent a type.

95Designing DTDs from an Object Model

Figure 3.7: The tree, almost final

We’re almost there. Now we need to flesh out the tree by adding the object
properties. I chose to create new elements for every property (see the fol-
lowing section “On Elements Versus Attributes”).

Figure 3.8 is the final result. Listing 3.15 is a document that follows the
structure. Again, it’s useful to write a few sample documents to check
whether the DTD makes sense. I can find no problems with this structure
in Listing 3.15.

Figure 3.8: The final tree

Listing 3.15: A Sample Document

<?xml version=”1.0”?>

<accounts>

<co-owner>John Doe</co-owner>

<co-owner>Jack Smith</co-owner>

<checking>

<balance>170.00</balance>

<transaction>-100.00</transaction>

<transaction>-500.00</transaction>

<fee>4.00</fee>

</checking>

<co-owner>John Doe</co-owner>

<savings>

<balance>5000.00</balance>

<interest>212.50</interest>

</savings>

</accounts>

Having drawn the tree, it is trivial to turn it into a DTD. It suffices to list
every element in the tree and declare their content model based on their
children. The final DTD is in Listing 3.16.
Listing 3.16: The DTD for Banking

<!ENTITY % account “(balance,transaction*)”>

<!ELEMENT accounts (co-owner+,(checking | savings))+>

<!ELEMENT co-owner (#PCDATA)>

<!ELEMENT checking (%account;,fee)>

<!ELEMENT savings (%account;,interest)>

<!ELEMENT fee (#PCDATA)>

<!ELEMENT interest (#PCDATA)>

<!ELEMENT balance (#PCDATA)>

<!ELEMENT transaction (#PCDATA)>

Now I have to publish this DTD under a URI. I like to place versioning
information in the URI (version 1.0, and so on) because if there is a new
version of the DTD, it gets a different URI with the new version. It means
the two DTDs can coexist without problem.

It also means that the application can retrieve the URI to know which ver-
sion is in use.
http://catwoman.pineapplesoft.com/dtd/accounts/1.0/accounts.dtd

If I ever update the DTD (it’s a very simplified model so I can think of
many missing elements), I’ll create a different URI with a different version
number:
http://catwoman.pineapplesoft.com/dtd/accounts/2.0/accounts.dtd

You can see how easy it is to create an XML DTD from an object model.
This is because XML tree-based structure is a natural mapping for objects.

As more XML applications will be based on object-oriented technologies
and will have to integrate with object-oriented systems written in Java,
CORBA, or C++, I expect that modeling tools will eventually create DTDs
automatically.

Already modeling tools such as Rational Rose or Together/J can create Java
classes automatically. Creating DTDs seems like a logical next step.

On Elements Versus Attributes
As you have seen, there are many choices to make when designing a DTD.
Choices include deciding what will become of an element, a parameter
entity, an attribute, and so on.

96 Chapter 3: XML Schemas

http://catwoman.pineapplesoft.com/dtd/accounts/1.0/accounts.dtd
http://catwoman.pineapplesoft.com/dtd/accounts/2.0/accounts.dtd

Deciding what should be an element and what should be an attribute is a
hot debate in the XML community. We will revisit this topic in Chapter 10,
“Modeling for Flexibility,” but here are some guidelines:

• The main argument in favor of using attributes is that the DTD offers
more controls over the type of attributes; consequently, some people
argue that object properties should be mapped to attributes.

• The main argument for elements is that it is easier to edit and view
them in a document. XML editors and browsers in general have more
intuitive handling of elements than of attributes.

I try to be pragmatic. In most cases, I use element for “major” properties of
an object. What I define as major is all the properties that you manipulate
regularly.

I reserve attributes for ancillary properties or properties that are related to
a major property. For example, I might include a currency indicator as an
attribute to the balance.

Creating the DTD from Scratch
Creating a DTD without having the benefit of an object model results in
more work. The object model provides you with ready-made objects that you
just have to convert in XML. It also has identified the properties of the
objects and the relationships between objects.

However, if you create a DTD from scratch, you have to do that analysis as
well.

A variant is to modify an existing DTD. Typically, the underlying DTD does
not support all your content (you need to add new elements/attributes) or is
too complex for your application (you need to remove elements/attributes).

This is somewhat similar to designing a DTD from scratch in the sense that
you will have to create sample documents and analyze them to understand
how to adapt the proposed DTD.

On Flexibility
When designing your own DTD, you want to prepare for evolution. We’ll
revisit this topic in Chapter 10 but it is important that you build a model
that is flexible enough to accommodate extensions as new content becomes
available.

The worst case is to develop a DTD, create a few hundred or a few thou-
sand documents, and suddenly realize that you are missing a key piece of
information but that you can’t change your DTD to accommodate it. It’s bad
because it means you have to convert your existing documents.

97Creating the DTD from Scratch

To avoid that trap you want to provide as much structural information as
possible but not too much. The difficulty, of course, is in striking the right
balance between enough structural information and too much structural
information.

You want to provide enough structural information because it is very easy
to degrade information but difficult to clean degraded information.

Compare it with a clean, neatly sorted stack of cards on your desk. It takes
half a minute to knock it down and shuffle it. Yet it will take the best part
of one day to sort the cards again.

The same is true with electronic documents. It is easy to lose structural
information when you create the document. And if you lose structural infor-
mation, it will be very difficult to retrieve it later on.

Consider Listing 3.17, which is the address book in XML. The information
is highly structured—the address is broken down into smaller components:
street, region, and so on.
Listing 3.17: An Address Book in XML

<?xml version=”1.0”?>

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

<!-- loosely inspired by vCard 3.0 -->

<address-book>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

98 Chapter 3: XML Schemas

E X A M P L E

Listing 3.18 is the same information as text. The structure is lost and,
unfortunately, it will be difficult to restore the structure automatically. The
software would have to be quite intelligent to go through Listing 3.18 and
retrieve the entry boundaries as well as break the address in its compo-
nents.
Listing 3.18: The Address Book in Plain Text

John Doe

34 Fountain Square Plaza

Cincinnati, OH 45202

US

513-555-8889 (preferred)

513-555-7098

jdoe@emailaholic.com

Jack Smith

513-555-3465

jsmith@emailaholic.com

However, as you design your structure, be careful that it remains usable.
Structures that are too complex or too strict will actually lower the quality
of your document because it encourages users to cheat.

Consider how many electronic commerce Web sites want a region, province,
county, or state in the buyer address. Yet many countries don’t have the
notion of region, province, county, or state or, at least, don’t use it for their
addresses.

Forcing people to enter information they don’t have is asking them to cheat.
Keep in mind the number one rule of modeling: Changes will come from the
unexpected. Chances are that, if your application is successful, people will
want to include data you had never even considered. How often did I
include for “future extensions” that were never used? Yet users came and
asked for totally unexpected extensions.

There is no silver bullet in modeling. There is no foolproof solution to strike
the right balance between extensibility, flexibility, and usability. As you
grow more experienced with XML and DTDs, you also will improve your
modeling skills.

My solution is to define a DTD that is large enough for all the content
required by my application but not larger. Still, I leave hooks in the DTD—
places where it would be easy to add a new element, if required.

99Creating the DTD from Scratch

Modeling an XML Document
The first step in modeling XML documents is to create documents. Because
we are modeling an address book, I took a number of business cards and
created documents with them. You can see some of the documents I created
in Listing 3.20.
Listing 3.20: Examples of XML Documents

<address-book>

<entry>

<name><fname>John</fname><lname>Doe</lname></name>

<address>

<street>34 Fountain Square Plaza</street>

<state>OH</state>

<zip>45202</zip>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel>513-555-8889</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jean</fname><lname>Dupont</lname></name>

<address>

<street>Rue du Lombard 345</street>

<postal-code>5000</postal-code>

<locality>Namur</locality>

<country>Belgium</country>

</address>

<email href=”mailto:jdupont@emailaholic.com”/>

</entry>

<entry>

<name><fname>Olivier</fname><lname>Rame</lname></name>

<email href=”mailto:orame@emailaholic.com”/>

</entry>

</address-book>

As you can see, I decided early on to break the address into smaller compo-
nents. In making these documents, I tried to reuse elements over and over
again. Very early in the project, it was clear there would be a name ele-
ment, an address element, and more.

100 Chapter 3: XML Schemas

E X A M P L E

Also, I decided that addresses, phone numbers, and so on would be condi-
tional. I have incomplete entries in my address book and the XML version
must be able to handle it as well.

I looked at commonalties and I found I could group postal code and zip code
under one element. Although they have different names, they are the same
concepts.

This is the creative part of modeling when you list all possible elements,
group them, and reorganize them until you achieve something that makes
sense. Gradually, a structure appears.

Building the DTD from this example is easy. I first draw a tree with all the
elements introduced in the document so far, as well as their relationship. It
is clear that some elements such as state are optional. Figure 3.9 shows the
tree.

101Creating the DTD from Scratch

Figure 3.9: The updated tree

This was fast to develop because the underlying model is simple and well
known. For a more complex application, you would want to spend more
time drafting documents and trees.

At this stage, it is a good idea to compare my work with other similar
works. In this case, I choose to compare with the vCard standard (RFC
2426). vCard (now in its third version) is a standard for electronic business
cards.

vCard is a very extensive standard that lists all the fields required in an
electronic business card. vCard, however, is too complicated for my needs so
I don’t want to simply duplicate that work.

By comparing the vCard structure with my structure, I realized that names
are not always easily broken into first and last names, particularly foreign
names. I therefore provided a more flexible content model for names.

I also realized that address, phone, fax number, and email address might
repeat. Indeed, it didn’t show up in my sample of business cards but there
are people with several phone numbers or email addresses. I introduced a
repetition for these as well as an attribute to mark the preferred address.
The attribute has a default value of false.

In the process, I picked the name “region” for the state element. For some
reason, I find region more appealing.

Comparing my model with vCard gave me the confidence that the simple
address book can cope with most addresses used. Figure 3.10 is the result.

T I P
There is a group working on the XML-ization of the vCard standard. Its approach is dif-
ferent: It starts with vCard as its model, whereas this example starts from an existing
document and uses vCard as a check.

Yet, it is interesting to compare the XML version of vCard (available from www.imc.
org/ietf-vcard-xml) with the DTD in this chapter. It proves that there is more than
one way to skin a cat.

102 Chapter 3: XML Schemas

Figure 3.10: The final tree

Again converting the tree in a DTD is trivial. Listing 3.21 shows the result.

Listing 3.21: A DTD for the Address Book

<!ENTITY % boolean “(true | false) ‘false’”>

<!-- top-level element, the address book

is a list of entries -->

<!ELEMENT address-book (entry+)>

<!-- an entry is a name followed by

addresses, phone numbers, etc. -->

<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT fname (#PCDATA)>

www.imc.org/ietf-vcard-xml
www.imc.org/ietf-vcard-xml

<!ELEMENT lname (#PCDATA)>

<!-- definition of the address structure

if several addresses, the preferred

attribute signals the “default” one -->

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!-- phone, fax and email, same preferred

attribute as address -->

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred (true | false) “false”>

<!ELEMENT fax (#PCDATA)>

<!ATTLIST fax preferred (true | false) “false”>

<!ELEMENT email EMPTY>

<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Naming of Elements
Again, modeling requires imagination. One needs to be imaginative and
keep an open mind during the process. Modeling also implies making deci-
sions on the name of elements and attributes.

As you can see, I like to use meaningful names. Others prefer to use mean-
ingless names or acronyms. Again, as is so frequent in modeling, there are
two schools of thought and both have very convincing arguments. Use what
works better for you but try to be consistent.

In general, meaningful names

• are easier to debug

• provide some level of document for the DTD.

However, a case can be made for acronyms:

• Acronyms are shorter, and therefore more efficient.

• Acronyms are less language-dependent.

103Creating the DTD from Scratch

• Name choice should not be a substitute for proper documentation;
meaningless tags and acronyms might encourage you to properly docu-
ment the application.

A Tool to Help
I find drawing trees on a piece of paper an exercise in frustration. No
matter how careful you are, after a few rounds of editing, the paper is
unreadable and modeling often requires several rounds of editing!

Fortunately, there are very good tools on the market to assist you while you
write DTDs. The trees in this book were produced by Near & Far from
Microstar (www.microstar.com).

Near & Far is as intuitive as a piece of paper but, even after 1,000 changes,
the tree still looks good. Furthermore, to convert the tree in a DTD, it suf-
fices to save it. No need to remember the syntax, which is another big plus.

Figure 3.11 is a screenshot of Near & Far.

104 Chapter 3: XML Schemas

E X A M P L E

Figure 3.11: Using a modeling tool

New XML Schemas
The venerable DTD is very helpful. It provides valuable services to the
application developer and the XML author. However, DTD originated in
publishing and it shows.

www.microstar.com

For one thing, content is limited to textual content. Also, it is difficult to
put in repetition constraints: You cannot say that an element can appear
only four times. It’s 0, 1, or infinite.

Furthermore, the DTD is based on a special syntax that is different from
the syntax for XML documents. It means that it is not possible to use XML
tools, such as editors or browsers, to process DTD!

These so-called limitations of the DTD are inherited directly from SGML.
XML was originally designed as a subset of SGML and therefore it could
not differ too much from the SGML DTD.

However, as XML takes a life of its own, people would like a new, more
modern, replacement for the DTD. Various groups have made several pro-
posals. Collectively, these proposals are known as schemas. The details of
the proposals vary greatly but all:

• propose to use the same syntax as XML documents

• improve XML data typing to support not only strings but also num-
bers, dates, and so on

• introduce object-oriented concepts such as inheritance (an element
could inherit from another)

The W3C has formed a working group to develop a new standard based
on the existing proposals. At the time of this writing, the effort has just
started and little is known about the final result.

You can find up-to-date information on new XML schemas on the W3C Web
site at www.w3.org/XML.

The main proposals being considered are

• XML-Data, which offers types inspired from SQL types.

• DCD (Document Content Description), positioned as a simplified ver-
sion of XML-Data.

• SOX (Schema for Object-oriented XML), as the name implies, is heavy
on object-orientation aspects.

• DDML (Document Definition Markup Language), developed by the
XML-Dev mailing list. It is intended as a simple solution to form a
basis for future work.

What’s Next
The next chapter is dedicated to the namespace proposal. Namespace is an
often-overlooked but very useful standard that greatly enhances XML
extensibility.

105What's Next

www.w3.org/XML

Symbols
* (asterisk), 73
, (comma), 73-74
+ (plus), 73
? (question mark), 73
_ (underscore), 45
| (vertical bar), 73-74

A
AAP (Association of

American Publishers),
20

accessing
classpaths, 242
entities, 85
Web sites, 6

acronyms, 103
Active Server Page

(ASP), 376
ActiveX, 294
adding

CDATA sections, 55
comments, 50
elements, 128
headers, 276
links (XLink), 326
nodes, 274-276
non-XML statements,

53-54
objects, 275
properties, 95
tiers, 348

address books, 308-309,
312

Ælfred, 237, 460

alignment of text, 177
alternate style sheet,

310-311
ancestors, Java inheri-

tance, 477
anchor elements, 140,

324
anonymous boxes, 171
APIs, see DOM
appendChild() method,

277, 283
appendData() method,

278
applications, 231

business documents,
63-65

client/server, 346-347
data, 29-32
documents, 29
event handlers, 233
n-tiered, 345, 348
object-based interface,

194, 196
publishing, 62-63
scientific, 7
server-side, 458-459
standards, 197-198
three-tiered, 347-348
XML architecture,

193-194
applying style sheets,

145-148
architecture

applications, 193-194
classes, 260-261
parsers, 193-194

Index

archives, JAR (Java),
481-482

arguments
arrays declaring, 465
XSLT functions, 137

ASP, 6, 295-296
Association of American

Publishers (AAP), 20
asterisk (*), 73
attaching, see linking
Attr object, 217-218
attributes, 46-47, 97

Attr object, 217-218
content, 339-340
conversion utility, 212,

214-216
creating, 278
currency, 211, 217
data, 218
DTDs, 96
elements, 75
enumerated type, 75
exchange rates, 211,

216-217
HTML, 21-23
languages, 53
links (XLink), 324
NamedNodeMap object,

217
names, 217
nodes, 202
parents, 340
price list, 216-217
properties, 342
SAX, 244-245
selectors, 181
signatures, 328
spaces, 53
string, 75
structure, 218
tokenized, 75
values, 60, 75-76, 217, 341
XSLT, 136, 305

490

B
backend parsers, 193
background, 178-179
batch files, validation,

85
block boxes, 171
boolean primitive type,

465
borders

boxes, 175
color, 178

boxes
borders, 175
display property, 174
flow objects, 169-172
margins, 174-175
padding, 175

browsers
compatibility, 9
conversion utility, 225-227
CSS, 163, 227-228
documents, 295-296
DOM, 199, 225-229
DTDs, 296
elements, 341
frames, 225
images, 324
InDelv, 187-189
parsers, 219
style sheets, 145
XLink, 327
XML, 36-37, 129-130

built-in
business documents
semantics, 64-65
XSLT templates, 138-139

business documents
application, 63-65

C
C++, 48
calling

templates, 154
XSLT, 303-304

CALS (Continuous
Acquisition and Life-
cycle Support) stan-
dard MIL-M-28001B, 20

canvases, 168
Cascading Style Sheets,

see CSS
case-sensitive

element names, 45
syntax, 60

CGI (Common Gateway
Interface), 6, 376, 473

channels
defining, 65-66
subscriptions, 65-66

character data (CDATA),
43, 54-55
methods, 278
references, 53
Unicode, 51
whitespace() event, 244

checkout (XCommerce),
351, 407-417

child elements, 48
nodes, 202, 275
selectors (CSS2), 180
trees, 206

Clark, James, 460
classes

architecture, 260-261
imports, 459, 466, 468
package, 469
private, 469
protected, 469
public, 469
SAX, 242
static modifier, 467

classpaths
accessing, 242
Java, 475, 480-481
libraries, 381-382, 384
XCommerce, 381-382

client/server applica-
tions, 346-347
4GL, 346
common formats, 357-359

archives

491creating

cost, 347
database servers, 347
distributed, 346
email, 346-347
file servers, 346
middle tier, 372-375
middleware, 356-357
print servers, 346
roles of computers, 346
services, 346
see also browsers; server-

side applications
cloneNode() method, 277
code, see source code
colon, 45
color, 173, 178
combining style sheets,

319
comma (,), 73-74
command-line version

(Java), 84
comments, 166

adding, 50
Java, 469-470

commerce applications,
see XCommerce

common elements,
319-320

common formats,
357-359

Common Gateway
Interface (CGI), 6, 376,
473

Common Object
Request Broker
Architecture, see
middleware

companion standards,
32

comparing
CSS with XSLT, 162-163
Java with JavaScript,

223-224
prices, 312-313

ComparisonMachine
class, 260

compatibility
browsers, 9
CSS, 164
XSLT, 128

compiling
data extracts, 157
Java files, 383-384
parsers, 193
SAX, 241-242

components, server-side
applications, 458-459

computer platforms, 219
conditional

documents/sections, 91,
101

configuration files
(XCommerce), 382-383
attributes, 278
document handlers, 243
entity resolvers, 243
named items, 217
request headers, 294

conflicts in namespaces,
108, 112

connectors
DTD, 73-74
or, 338

constructors (Java), 467
content

attributes, 339-340
creating, 182
DTDs, 74
elements, 339-340
model, 71

Continuous Acquisition
and Life-cycle Support
(CALS), 20

control (Java), 468-469
conversion

attributes, 212, 214-216
browsers, 225-227
currency, 199-200, 271

DTDs, 128, 322
formats, 29
HTML, 332
Java, 221-223
JavaScript, 200-201
text, 141-144
XSLT style sheets,

131-132
CORBA objects, 221
core APIs (Java), 482
cost, 359

client/server applications,
347

domain name registra-
tion, 116

middle tier, 366
Notepad, 61

creating
attributes, 277-278
CDATA section, 277
comments, 277
content, 182
document fragments, 187,

277
DTDs, 97-99
elements, 277
entity references, 277
HTML, 284

DOM, 279-281, 283
JavaScript, 280-281,

284-288
non-XML data struc-

tures, 291-292
Java, 466
nodes, 281-282
objects, 140
parsers, 296
processing instructions,

277
style sheets, 149-151
text nodes, 277
top-level elements, 138,

282-283
URLs, 114, 117

CSS (Cascading Style
Sheets)
advanced style sheets,

179-180
boxes, 174-175
browsers, 163, 227-228
color, 173, 178
comments, 166
compatibility, 164
development, 163
documents, 126, 165-166,

187
editors, 182-184
flow objects, 168-172, 189
fonts, 176-178
images, 178-179
priorities, 167-168
properties, 168, 172-173
selectors, 166-167
simple, 164-165
tables of contents,

185-186
text, 177
versions, 163
XSLFO, 187-189
XSLT, 162-163, 185

CSS2
attribute selectors, 181
child selectors, 180
content, 182
development, 163
sibling selectors, 181
style sheets, 182

currency, 199-200, 211,
217, 271

customizing middle tier,
367

D
data

applications, 29-32
attributes, 218
directories, 383
EDI, 322

492

extracting, 155-157
HTML, 284
non-DOM, 288-289
styling, 157-158
tier, 348, 353-355, 429-444

databases
DOM, 229
offloading, 7
relational, 30
reloading, 7
servers, 347
standards, 197
updating, 32
XCommerce, 361-364,

384-385
DCD (Document

Content Description),
105

DCOM, see middleware
DDML (Document

Definition Markup
Language), 105

declarations
arrays, 465
attributes, 75, 80
document types, 76-77
elements, 71-72, 77
encoding, 51
entities, 80, 246
HTML, 153
namespaces, 114, 120
notations, 246
SAX events, 243-244
XML, 49

default settings
attribute values, 76, 80,

84
DTDs, 303-304

defining
channels, 65-66
elements, 80, 162
entities, 52

deleteData() method,
278

descendants
Java inheritance, 476-477
Text object, 206

designing DTDs
attributes, 96-97
automating, 96
elements, 96-97
nested elements, 93
object models, 92-93
owner elements, 94
parameter entities, 95
properties, 95
root-elements, 93-94
top-level elements, 93
trees, 95
URIs, 96
Web sites, 26-27

destructive document
transformations, 332

deterministic content
model, 74

development of name-
spaces, 120

digital signatures,
328-329

directories
Java, 480-481
XCommerce, 383

display property, 174
DocBook, 20
docs directory, 383
documents

applications, 29
attributes, 278
business, 63-65
Content Description

(DCD), 105
creating, 187

DOM, 279-281, 283
HTML, 284
JavaScript, 280-281,

284-288
non-XML data struc-

tures, 291-292
CSS, 165-166

CSS

493DTDs

declarations, 76-77
Document Definition

Markup Language
(DDML), 105

DTDs, 79-80
Dump service, 293
elements, 265-266,

335-336
ending, 244
entities, 52, 85-89
events, 242-243
format conversion, 29
JavaScript, 295
markups, 334-336
methods, 277
modeling, 100-104
nodes, 274-276, 281-282
objects, 203-204
posting to Web servers,

293-294
retrieving from Web

servers, 293-295
saving, 295-296
semantics, 58, 64-65
sending to the server,

292-294
sharing, 321
starting, 244
storage, 229
structural information,

10-14, 18, 63, 266, 334
top-level elements,

282-283
transformations, 330-334
trees, 204
types, 204
validation, 81-82, 84-85
viewing, 126
well-formed, 81-82
XML

creating, 187
linking CSS, 165-166
modeling, 100-104
structure, 63

DoGet() method, 477-478

DOM (Document Object
Model), 35, 198
browsers, 199, 225-229
databases, 229
documents

creating, 279-281, 283,
292

creating without,
283-288

types, 204
editors, 229
IBM parsers, 224
interface, 232-233
Java, 221-223, 482
JavaScript, 199-202
levels, 198
nodes, 202-203
OMG IDL, 220-221
SAX, 35, 231
state, 207-210, 276
Text object, 206-207
trees, 236

domain names, 115-116
DoPost() method, 477
DoPut() method, 477
double primitive type,

465
downloading

GMD-IPSI engines, 155,
229

HTML tags, 7
images, 324
Java, 84, 459-461
JDK, 241
Jetty, 381
LotusXSL, 381
Notepad, 61
parsers, 192
standalone documents, 80
XCommerce, 349-351
XML, 84, 381

DTDs (Document Type
Definitions), 69
attributes, 75-76, 96-97
automating, 96

browsers, 296
conditional sections, 91
connectors, 73-74
content model, 71, 74
conversion, 322
creating, 97
default, 76, 304
designing, 91-93
documents, 79-81
editors, 71-72, 74, 81-83,

97
elements, 96-97
entities, 80, 95
events, 242
existing, 92
extensions, 97
functions, 296
inheritance, 105
interface, 246
keywords, 72
limitations, 105
managing, 90
namespaces, 119-120
nested, 93
occurrence indicators, 73
online help, 104
owners, 94
properties, 95
public identifiers, 78-79
repetition, 105
root, 93-94
schemas, 105
SGML, 18-19, 105
sharing, 321
standards, 296
structural information,

84, 98-99, 336-339
subsets, 77-79
support, 296
syntax, 70-71, 105
top-level, 93
trees, 95
UML, 92
URIs, 96

WYSIWYG editors, 184
XSLT, 128, 296, 303

Dump service, 293
duplication of name-

spaces, 112-113
dynamic invocation, 357
dynamic servlets, 472

E
EDI (Electronic Data

Interchange), 64,
322-323

editors, 37, 60-61
CSS, 182-183
documents, 276
DOM, 229
DTDs, 81, 97, 184
elements, 341
parsers, 219
SGML, 37
style sheets, 148-149
text, 183
tree-based, 183
WYSIWYG, 184

Electronic Data
Interchange (EDI), 64,
322-323

electronic markup, 14-15
elements, 96-97, 290

attributes, 46-47, 75,
244-245

browsers, 341
common, 319-320
content, 339-340
declaration, 71-72
defining, 80, 162
documents, 11-14, 82-83,

203, 265-266
editors, 47, 72, 341
end tags, 44-45, 244
HTML, 80
indenting, 74
links (XLink), 324
names, 45-46, 60, 103-104

494

namespaces, 314-315
nesting, 47-48, 93,

340-341
nodes, 203
objects, 206, 278
owners, 94
parsers, 244, 248
properties, 342
reducing, 335-336
repeating, 341
reusing, 342
roots, 48-49, 93-94
selecting, 166
signatures, 328
start tags, 44-45, 244
state, 261, 264
subelements, 319
text, 72
Text object, 206
top-level, 77, 93, 138
trees, 204-206
XSLT, 128, 134, 140, 149,

154-155
email, 346-347
emailaholic directory,

318, 383
empty elements, 47, 72
encapsulation, 417-428
encoding

declarations, 51
end tags, 44-45, 59
parameters, 51-52
source codes, 56-57
UTF, 51

eNotepad, 183
entities, 52

accessing, 85
characters, 53
declaration, 80
defining, 52
documents, 85
DTDs, 80, 90
external, 86-89
general, 86

HTML, 153
internal, 86-89
parameters, 86-87, 95
parsed, 86-87
references, 52
resolution, 242, 246
standalone documents, 79
storing, 85
unparsed, 86-90, 246

enumerated type attrib-
utes, 75

errors
Document object, 204
Java, 470-471
messages, 132, 242, 246
parsers, 218-220
SAX, 246-247

escapeXML() function,
291

events
generating, 234-236
handlers, 233, 242
interface, 233-236
parsers, 196-197, 242-244,

248
see also SAX

exceptions, Java errors,
470-471

exchange formats, 356
exchange rate attribute,

211, 216-217
existing DTDs, 92
exportProduct() func-

tion, 303
extended links (XLink),

326-327
extends keyword (Java),

477
extensibility, 308
eXtensible Markup

Language (XML), 6
extensions, 97, 320
external entities, 86-90
external subsets, 77-80

DTDs

495InDelv XML Browser

extracting data, 155-158
extranets, 31

F
fatalError() method, 246
fields in Java, 466
files, configuration,

382-383
filters

middle tier, 369
ratings, 111

fixed attributes
namespaces, 119-120
values, 84

Flash, 6
flexibility

documents, 265-266
XSLT, 296

float primitive type, 465
flow objects, 168

boxes, 169-172
CSS, 189
Java, 464-465
properties, 169

fonts, 176-178
forcing document struc-

ture, 266
foreground color, 178
formats

common, 357-359
conversion, 29
DTDs, 303
electronic markup lan-

guages, 15
HTML, 24-25
XSLFO, 189
XSLT, 304

frames, 225
functions

DTDs, 296
XSLT, 136-137

G
general entities, 86
generating

events, 234-236
parsers, 269-270
XCommerce, 351-353
XSLT style sheets,

132-133
generic coding

HTML, 24
identifier (GI), 17

getAttribute() method,
278

getColumnNumber()
method, 245

getLength() method, 245
getLineNumber()

method, 245
getName(i) method, 245
getNamedItem()

method, 217
getPublicId() method,

245
getSystemId() method,

245
getTopLevel() function,

282
getType(i)/getType

(name) method, 245
getValue(i)/getValue

(name) method, 245
global classpaths, 480
GMD-IPSI engines, 155,

229
Goldfarb, Charles (Dr.),

18
graphics, 349
grouping font proper-

ties, 178

H
HandlerBase class, 242
hasChildNodes()

method, 278

help tools, 104
hiding syntax, 290-291
hierarchy, XSLT tem-

plates, 141
highlighting text, 183
Hotmail, 347
HTML (Hypertext

Markup Language)
attributes, 21-23
client/server applications,

358
conversions, 332
data structure, 284
documents, 152, 292-294
elements, 80
entities, 153
formatting, 24-25
generic coding, 24
limitations, 7, 162
popularity, 6
procedural markup, 24
structural information, 21
style sheets, 132-133
syntax, 333-334
tags, 6-7, 20-21
XSLT, 128, 297

HTTPPost class, 414-417
hyperlinks, 189

I
IBM, 224-225
identifiers, 78-79
IETF (Internet

Engineering Task
Force), 117

images
background, 178-179
downloading, 324

importing
classes, 468
style sheets, 182

InDelv browser, 187-189
InDelv XML Browser, 37

indenting
elements, 74
source codes, 55-56
text, 177

indexes, 185
indicators, occurrence,

73
inheritance

DTDs, 105
flow objects, 169
Java, 476-477, 479-480

inline boxes, 171
InputSource interface,

243
insertBefore() function,

276-277
insertData() method, 278
instructions, SAX, pro-

cessing, 244
int primitive type, 465
interface

applications with parsers,
194, 196

DTDHandler, 246
EntityResolver, 246
ErrorHandler, 246
event-based, 196-197,

233-236
IDL, 220
InputSource, 243
Java, 479-480
object-based, 232-233, 236
ParserFactory, 243
SAX, 231, 246-247, 260,

479
vendors, 197

internal entities, 86-89
internal subsets, 77-79
international standards

SGML, 18
Unicode, 51

Internet Engineering
Task Force (IETF), 117,
328

496

Internet Explorer
channels, 65-66
DOM support, 276
links (XLink), 325
style sheets, 145-149, 302
support, 36, 372
XML, 129-130
XSLT, 147-148, 296

InterNIC, 115
intranets, 308-309, 375
islands, 202, 276

J
Java, 6, 8, 48, 377-378

access control, 468-469
applications, 458
archives, 481-482
classes, 459, 466
classpaths, 475, 480-481
code, 462-463
command-line version, 84
comments, 469-470
constructors, 467
conversion utility, 221-223
core APIs, 482
Development Kit (JDK),

127, 241, 459-460
errors, 470-471
fields, 466
files, 383-384
flow, 464-465
imports, 468
inheritance, 476-480
interfaces, 479-480
Java Runtime

Environment (JRE), 85,
127, 459

Javadoc, 469-470
JavaScript, 223-224
keywords, 471, 477-478
methods, 467, 477-478
objects, 466
packages, 468
parameters, 467
parsers, 221, 460
price list, 249-260

servlets, 473-475
downloading, 460-461
properties, 475-476

tools, 459
variables, 465-467
Virtual Machine (JVM),

459
Web Server, 461
XCommerce, 349
XML, 237
see also SAX

JavaBean, 294
JavaScript, 6, 8, 48,

376-377
clients, 373, 375
code, 272-274
conversion.js, 200-201
documents, 280-281,

284-288, 295-296
DOM application, 199-202
Java, 223-224
methods, 289
object constructors, 289
XSLT, 298-301

JDBC, 382
JDK (Java Development

Kit), 127, 241, 459-460
Jetty, 381, 461
JRE (Java Runtime

Environment), 127
JRun, 461

K-L
keywords

DTDs, 72
Java, 471, 477-478

languages, 53, 376
length property, 172-173
libraries, 381-382, 384
limitations, 105
line height, 177
linking, 10, 165

documents, 165-166
style sheets, 276

indenting

497listings

templates, 313
XLink

adding, 326
attributes, 324
browsers, 327
elements, 324
extended, 326-327
Internet Explorer, 325
simple, 323-325
storing, 326

listings
address books, 42-43,

70-71, 98-99, 102-103
articles, 129-130
attribute conversion, 212,

214-216
catalog files, 79
channel definitions, 65-66
conditional sections, 91
configuration files,

382-383
conversion utility, 212,

221-223, 225-227
conversion.js, 200-201
CORBA, 356-357
country entities, 88
CSS

boxes, 169-170
linking XML docu-

ments, 165-166
simple, 164
style sheets, 179-180,

227-228
tables of contents,

185-186
currency, 199-200, 211
documents, 27-28, 100,

330-331
DOM, 270-271, 279
DTDs, 82, 94-96, 337
element names, 46
Emailaholic style sheet,

368-369
end tags, 56

entries, 77
exchange rate attribute,

211
external entities, 86-87,

89
extracting data, 156-157
frames, 225
HTML

attributes, 21-23
code, 20-21, 24-25, 297
conversions, 332-333
documents, 132-133,

152, 284
results, 333-334
sending document to

server, 293
writing, 363-364

indexes, 157-158
Internet Explorer,

145-148, 302
invalid document, 83
Java

application, 462-463
Checkout class, 407-414
Comlet class, 390-393
Editor class, 444-446
HTTPPost class,

414-417
Merchant class, 398-403
MerchantCollection

class, 393-396
NotImplementedError

class, 428
Product object, 404-407
Shop class, 386-390
Viewer class, 451-454
XMLServer class,

429-434
XMLServerConsole

class, 435-444
XMLUtil class, 417-427

JavaScript, 280-281,
284-288, 373-374,

447-450
links , 35
memo, 10

merging files, 156
names, 58
namespaces, 33, 121-122

attributes, 118-120
different names, 111-112
duplication, 112-113
prefix declaration, 114,

119
ratings, 109-111
scoping, 118

newsletters, 62-63
orders, 63-64
phone lists, 308-310
price lists, 195, 234,

248-260, 312-316
product lists, 31, 359-360,

366-367, 370-371
resources, 108-109
RTF, 15-16
SAX, 237-241, 479
Server Configuration File,

475
Service-Side JavaScript,

376
servlets, 473-476
SGML, 19
state information, 208-209
style sheets, 34-35,

149-151
alternate, 310-311
combining, 320
common elements,

318-319
conversions, 131-132
Editor class, 450-451
Emailaholic, 318
Merchants, 397
Playfield, 316-317
Viewer class, 454-455
WriteIT, 317
XMLi, 317

TeX, 17
text style sheet, 142-143
valid documents, 82-83
valid invoices, 338

Web servers, 294-295
writing, 361-363
XCommerce, 359-361, 365
XSLFO, 187-189

loading
style sheets, 320
XSLT, 305

location
elements in documents,

82-83
state, 261
XSLT templates, 138-139

Locator object, 245
Locomotive, 461
long primitive type, 465
LotusXSL, 37, 132, 310,

320, 381, 460
browsers, 296
processors, 127
XSLT style sheets, 132

M
macros, 17-18
maintaining

DOM
state, 208-210
SAX, 247-260

makeXML() function,
289

managing DTDs with
entities, 90

mapping, 220, 322
margins, boxes, 174-175
markup languages

comments, 50
documents, 334-336
electronic, 14
formatting, 15
plain text, 43
procedural, 15
readability, 43
software, 44
source codes, 14

498

structure, 43
tags, 17

matching XSLT items,
136-139

Megginson, David, 237
Merchant class, 397-403
MerchantCollection

class, 315-316, 393-397
merging data extracts,

156-157
messages, 219-220
methods

ActiveX, 294
CharacterData, 278
Document, 277
Element, 278
Java, 467, 477-478
JavaScript, 289
NamedNodeMap object,

217
Node, 277-278
SAX, 243
Text, 279

Microsoft, 224, 460
middle tier application,

347
clients, 372, 374-375
cost, 366
customizing, 367
filters, 369
style sheets, 369-371
tools, 366
XCommerce, 349, 386-393

middleware
applications, 356
CORBA, 356-357
dynamic invocation, 357
protocols, 356
tools, 356

modeling XML docu-
ments, 100-104

Mozilla, 36, 145
MP3, 6

multiple inheritance,
Java, 479-480

multiple items, select-
ing, 154-155, 166

N
n-tiered applications,

345
adding, 348
client/server, 346-347
three-tiered, 347-348

NameNodeMap object,
217

names
attributes, 217
elements, 45-46, 103-104
fonts, 176
nodes, 203, 217
parent, 203
spaces, 60
syntax, 58

namespaces
conflicts, 108, 112
declaration, 114, 120
domain parking, 116
DTDs, 119-120
duplication, 112-113
elements, 120, 314-315
fixed attributes, 119-120
names, 114
prefixes, 113-114
PURLs, 118
ratings, 108-111
scoping, 118
style sheets, 121-122
TLDs, 115
URLs, 114-115, 117
URNs, 117-118
Xlink, 122
XML resources, 108-109

Near & Far, 104
nesting elements, 47-48,

93, 340-341

listings

499parsers

Netscape
Communicator, 36

newsletters, 62-63
nodes

adding, 274-276
attributes, 202
child, 202, 275
codes, 203
creating, 281-282
DOM, 202-203
elements, 203
names, 217
objects, 206-207, 217
parent, 202
preceding, 202
properties, 277-278
trees, 205
types, 202
values, 203
XSLT functions, 136-137

nonvalidation parsers,
193, 225

non-XML data struc-
tures
adding, 53-54
documents, 291-292
DOM, 288-289
nondestructive transfor-

mations, 332
notations

declaring, 246
unparsed entities, 89-90

Notepad, 60-61, 183
NotImplementedError

class, 428

O
Object Management

Group (OMG IDL),
220-221, 377

object models, 232-233
adding, 275

attributes, 96-97, 218
automating, 96
constructors, 289
designing, 92-93
elements, 96-97
Java, 466
limitations, 236
nested, 93
owners, 94
parameter entities, 95
parsers, 194, 196, 243
properties, 95, 218
removing, 275
root, 93-94
top-level, 93
trees, 95
UML, 92
URIs, 96
XSLT, 140

occurrence indicators,
73

offloading databases, 7
OMG IDL (Object

Management Group
Interface Definition
Language), 220-221, 377

open() method, 294
open-source software,

461
or connector, 338
Oracle, 37, 224
orders (XCommerce),

353-355
forms, 63-64
generating, 351-353
processing, 365-366

output
DTDs, 303
XSLT style sheets, 134

owner elements, 94

P
package classes (Java),

468-469
padding boxes, 175
pages, printing, 168
parameters

encoding, 51-52
entities, 86-87, 95
Java, 467

parents
attributes, 340
elements, 48
nodes, 202

parsers, 191, 231
attributes, 216-217
backend, 193
code, 224
compilers, 193
CORBA objects, 221, 296
documents, 204, 295
downloading, 192
elements, 244, 248
entities, 86-87
errors, 218-220
events, 196-197, 234-236
files, 243
generators, 269-270
IBM, 224-225
Java, 221, 460
Microsoft, 224
nonvalidation, 193, 225
objects, 194, 196, 204,

243-244
Oracle, 224
parse() method, 243
ParserFactory interface,

243
SAX, 242, 246-247
standards, 197-198
Sun, 224
switching, 243
syntax, 37, 192-193

validation, 193, 225
XML architecture,

193-194
paths

length, 153
XSLT syntax, 135

payments (XCommerce),
349

#PCDATA keyword, 72
PDAs, 6-7, 144
PDOM (Persistent

DOM), 229
percentage property,

173
Perl, 237, 376
Permanent URLs

(PURLs), 118
Persistent DOM

(PDOM), 229
personal digital assis-

tants (PDAs), 6
phone list style sheet,

309-310
platforms, 144, 219
Playfield style sheet,

316-317
plug-ins, grid posting to

Web servers, 294
plus (+), 73
posting documents to

Web servers, 293-294
preceding nodes, 202
predefined tags, 9
prefixes, namespaces,

113-114
presentation tier (three-

tiered application), 347
price lists

attributes, 216-217
comparison, 312-313
merchants, 315-316

print servers, 346
printing pages, 168
priorities, CSS, 167-168
private classes, 469

500

procedural markup
HTML, 24
RTF, 15-16

processing
instructions (PI), 53-54,

244
XCommerce orders, 349,

365-366
products (XCommerce)

databases, 361-364
downloading, 349-351
listing, 359-361
objects, 404-407
uploading, 364

programming lan-
guages, 376
Java, 377-378
JavaScript, 376-377
Omnimark, 377
Perl, 376
Python, 377

ProjectX, 237, 460
properties

adding, 95
attributes, 342
CharacterData, 278
CSS, 168, 172-173
directories, 383
documents, 277
elements, 278, 342
flow objects, 169
Java, 475-476
nodes, 277-278
protected classes, 469
text, 279

protocols, middleware,
356

public classes, 469
public identifiers, 78-79
publishing application,

62-63
PURLs (Permanent

URLs), 118
Python, 237, 377

Q-R
question mark (?), 73
quotes, attribute values,

60

ratings
different names, 111-112
namespaces, 109-111

RDF (Resource
Definition
Framework), 58

reading parser files, 243
recommendations

namespaces, 108
XSL, 127

recording state ele-
ments, 264

reducing elements,
335-336

references, 52-53
registration

domain names, 115-116
event handlers, 242
TLDs, 116

relational databases, 30
reloading databases, 7
Remote Procedure Call

(RPC), see middleware
removing

attributes, 278
child from relationship,

277
named items, 217
objects, 275

rendering screens, 168
repeating elements, 341
repetition, DTD, 105
replaceChild() method,

277
replaceData() method,

278
Resource Definition

Framework (RDF), 58
resources, namespaces,

108-109

parsers

501spaces

retrieving documents
from Web servers,
293-295

reusing elements, 120,
342

root elements, 48-49,
93-94

RPC (Remote Procedure
Call), see middleware

RTF (Rich Text Format),
15-16

S
saving documents, 276,

295-296
SAX (Simple API for

XML), 35, 198
architecture, 260-261
AttributeList, 244-245
classes, 242, 260
code, 237-241
compiling, 241-242
documents ending, 244
elements event handlers,

242-244
IBM parsers, 224
instructions, 244
interface, 246, 260, 479
Java, 237
Locator object, 244-245
methods, 243
notations, 246
parsers, 243, 246-247
Perl, 237
ProjectX, 237
Python, 237
state

efficiency, 265
elements, 261
location, 261
maintaining, 247-260
recording elements, 264

transition values,
262-265

updating, 264
trees, 263

scalability, 358
schemas, 105
scientific applications, 7
scoping namespaces, 118
screens, 168, 376
scripting languages, 458
search engines, 6
security, 6, 349
selectors, 166-167
semantics, 58, 64-65
send() method, 294
sending documents to

the server, 292-294
server-side applications

CGI, 473
components, 458-459
documents, 292-295
Java, 377-378, 458
JavaScript (SSJS),

376-377
Omnimark, 377
Perl, 376
Python, 377
see also client/server

applications
servlets

classpaths, 475
downloading, 460-461
dynamic, 472
Java, 473-475
properties, 475-476
writing, 293

settings, see configura-
tion

SGML (Standard
Generalized Markup
Language)
CALS, 20
DocBook, 20
documents, 18

DTDs, 18-19, 105
editors, 37
international standards,

18
models, 18
syntax, 19

sharing documents, 321
shell scripts, 85
shopping carts

(XCommerce), 349
short primitive type, 465
sibling selectors (CSS2),

181
signatures

attributes, 328
digital, 328-329
elements, 328
standards, 327

Simple API, see SAX
simple CSS, 164-165
simple links (XLink),

323-325
sizing fonts, 176
smart phones, 6-7
software

open-source, 461
speed, 44

source code
Document object, 204
HTML, 297
indenting, 55-56
Java, 462-463
JavaScript, 272-274
mark-up, 14
nodes, 203
parsers, 224
SAX, 237-241
trees, 153

SOX (Schema for Object-
oriented XML), 105

spaces
attributes, 53
element names, 60
speed, 44

splitText() method, 279
SQL language, 44
standalone documents

downloading, 80
DTD, 79-80
entities, 79
external subsets, 80

Standard Generalized
Markup Language, see
SGML

standards
applications, 197-198
CALS, 20
companions, 32
CSS, 33-35
databases, 197
DTDs, 296
EDI, 322
international, 18
namespaces, 33
parsers, 197-198
schemas, 105
signatures, 327
syntax, 10
Unicode, 50-52
vCard, 101-102
W3C, 32
XLink, 35-36, 323
XPointer, 35-36
XQL, 155
XSL, 33-35

start tags, 44-45
start() event, 244
Startmail, 347
state

DOM, 207-210
elements, 261, 264
location, 261
SAX

efficiency, 265
maintaining, 247-260
transition values,

262-265
updating, 264

502

statements, 53-54
static modifier, 467
storage

attributes, 339-340
documents, 229
elements, 339-340
entities, 85
links (XLink), 326
XCommerce, 353-355

streaming tags, 6
string attributes, 75
structural information

attributes, 218
documents, 10-14, 18, 266
DTDs, 84, 98-99, 303,

336-339
HTML, 21
markup, 43
non-XML, 291-292
tree-like, 42
XSLT source trees, 153

style sheets, 10, 318
advanced, 179-180
alternate, 310-311
applying, 145-148
attaching, 276
combining, 319
common elements, 319,

367
data extracts, 157-158
documents, 331
editing, 148-149
Emailaholic, 318
fonts, 177
HTML, 153
importing, 182
Internet Explorer, 302
loading, 320
middle tier, 369-371
namespaces, 121-122
phone lists, 309-310
Playfield, 316-317
text, 141-144
WriteIT, 317
XMLi, 317

XSLT, 304-305
automating, 305
conversion, 131-132
creating, 149-151
elements, 134
generating, 132-133
LotusXSL, 132
output, 134

see also CSS
subelements, 319
subscriptions to Web

sites, 65-66
subsets, 77-79, 263
substringData() method,

278
Sun

parsers, 224
ProjectX, 237

super keyword (Java),
478

support
DOM, 276
DTDs, 296
Internet Explorer, 372

switching parsers, 243
syntax

attributes, 46-47, 60
case-sensitive, 60
CDATA sections, 54-55
character data, 43
DTD, 70-71, 105
elements, 45-46
end tags, 44-45, 56-57, 59
entities, 52-53
hiding, 290-291
HTML, 333-334
markup, 43-44
parsers, 37, 192-193
rules, 59
SGML, 19
source codes, 55-56
spaces, 60
standards, 10
start tags, 44-45

splitText() method

503viewing

Unicode, 50-52
XSLT paths, 135

system identifiers, 78

T
tables of contents,

185-186
tags

development, 8
HTML, 6-7, 20-21
macros, 17-18
markup languages, 17
names, 206
predefined, 9
search engines, 6
security, 6
specialized, 8
streaming, 6
XML, 27-28

targets, processing
instructions (PI), 54

templates
calling, 154
links, 313
XSLT

built-in, 138-139
elements, 134
hierarchy, 141
locating, 138-139
matching, 137, 139-140

text
alignment, 177
conversion, 141-144
editors, 183
elements, 72
indent, 177
line height, 177
objects, 206-207
plain, 43
properties, 279

this keyword (Java), 478
three-tiered applica-

tions, 347-348

throw keyword (Java),
471

TLD (Top Level
Domain), 93, 115-116,
138, 282-283

tokenized attributes, 75
tools

Java, 459
middle tier, 366
middleware, 356
XCommerce, 417-428

Top Level Domain
(TLD), 93, 115-116, 138,
282-283

toXML() function, 289
transformations in doc-

uments, 330-334
transformNode()

method, 304
transitions, SAX state,

262-265
trees

Document object, 204
DOM, 236
editors, 183
elements, 204-206
objects, 275
structures, 42
subsets, 263

types, documents, 202,
204

U
UML (Unified Modeling

Language), 92
underscore (_), 45
Unicode, 50-52
unparsed entities, 86-90
updating

address books, 308-309,
312

databases, 32

phone lists, 312
state, 264

uploading XCommerce
products, 364

URIs (Universal
Resource Identifiers),
78, 96

URLs (Uniform
Resource Locators),
384
creating, 114, 117
domain names, 115
flexibility, 115
namespaces, 114-115
properties, 173

URNs (Uniform
Resource Names),
117-118

UTF encodings, 51, 81-82

V
validation

batch files, 85
documents, 84-85
parsers, 193, 225
shell scripts, 85

values
attributes, 60, 75-76, 84,

217, 341
default, 80
nodes, 203
SAX, 262-265

variables, 465-467
vCard, 43, 101-102
vendor interface, 197
vertical bar (|), 73-74
viewing

documents, 126
extensions, 320
Web sites, 144
XML in browsers, 129-130

W
W3C (World Wide Web

Consortium), 6, 32, 105
walking

nodes, 210
products, 210, 246
tree elements, 204-206

Web sites
access, 6
designing, 26-27
development, 6
EDI, 323
Hotmail, 347
InterNIC, 115
Microsoft, 224
Near & Far, 104
Omnimark, 377
Oracle, 224
platforms, 144
servers, 293-295
Startmail, 347
subscriptions, 65-66
Sun, 224
Unicode, 50
viewing, 144
W3C, 6
XML links, 92
XTransGen (IBM), 305

Webmail, 347
WebSTAR, 461
weight, fonts, 177
well-formed documents,

81-82
whitespace, parsers, 244
World Wide Web

Consortium (W3C), 6,
32, 105

WriteIT style sheet, 317
writing

applications, 356
servlets, 293
XML, 289-290

WYSIWYG editors, 184

504

X-Z
XCommerce, 348

checkout, 351, 407-417
classpaths, 381-382, 384
common formats, 358-359
configuration files,

382-383
data tier, 353-355
databases, 361-364,

384-385
directories, 383
Editor class, 444-446
graphics, 349
HTTPPost class, 414-417
Java files

classes, 349
compiling, 383-384

JavaScript, 447-450
Merchant class, 397-403
MerchantCollection class,

393-397
middle tier, 349

clients, 372-375
Comlet class, 390-393
cost, 366
customizing, 367
filters, 369
Shop class, 386-390
tools, 366

NotImplementedError
class, 428

orders, 351-353, 365-366
payments, 349
products

downloading, 349-351
listing, 359-361
objects, 404-407
uploading, 364

security, 349
shopping carts, 349
style sheets, 369-371,

450-451
tools, encapsulation,

417-428

Viewer class, 451-455
XMLServer class data

tier, 429-434
XMLServerConsole class

data tier, 435-444
XMLUtil class, 417-427

XHTML, 144
XJParse, 237, 460
XLink, 35-36, 323

adding links, 326
attributes, 324
browsers, 327
elements, 324
extended, 326-327
Internet Explorer, 325
namespaces, 122
simple, 323-325
standards, 323
storing, 326

XMetaL, 37, 54, 184
XML (eXtensible

Markup Language), 6
XML for Java, 237, 381,

460
XML-Data, 105
XMLi

Editor class, 444-446
JavaScript, 447-450
style sheets, 317, 450-451
Viewer class, 451-455
XCommerce

directories, 383
XMLUtil class, 417-427
XP (James Clark), 237
XPointer, 35-36
XQL (XML Query

Language), 155
XSL (XML Stylesheet

Language), 33-35
directories, 383
documents, 126
processors, 37, 127
recommendations, 127
style sheets, 148-149

W3C

505XTransGen

XSLFO (XSL Formatting
Objects), 127, 161,
187-189

XSLT (XSL
Transformation), 127
advantages, 304
attributes, 136
calling, 303-304
CSS, 162-163, 185-187
data extracts, 155-158
DTDs, 128, 296, 303
elements, 128, 140, 149,

154-155
errors, 220
flexibility, 296
formats, 304
functions, 136-137
HTML, 128, 152-153, 297
Internet Explorer, 296
Internet Explorer 5.0,

147-148
JavaScript, 298-301
loading, 305
objects, 140
paths, 135, 153
source trees, 153
style sheets, 304

automating, 305
conversion, 131-132
creating, 149-151
elements, 134
generating documents,

132-133
LotusXSL, 132
output, 134

templates
built-in, 138-139
calling, 154
elements, 134
hierarchy, 141
locating, 138-139
matching, 137, 139-140

XTransGen, 305

	Table of Contents
	Introduction
	The by Example Series
	Who Should Use This Book
	This Book’s Organization
	Conventions Used in This Book

	3 XML Schemas
	The DTD Syntax
	Element Declaration
	Element Name
	Special Keywords
	The Secret of Plus, Star, and Question Mark
	The Secret of Comma and Vertical Bar
	Element Content and Indenting
	Nonambiguous Model
	Attributes
	Document Type Declaration
	Internal and External Subsets
	Public Identifiers Format
	Standalone Documents

	Why Schemas?
	Well-Formed and Valid Documents

	Relationship Between the DTD and the Document
	Benefits of the DTD
	Validating the Document

	Entities and Notations
	General and Parameter Entities
	Internal and External Entities

	Notation
	Managing Documents with Entities

	Conditional Sections
	Designing DTDs
	Main Advantages of Using Existing DTDs

	Designing DTDs from an Object Model
	On Elements Versus Attributes

	Creating the DTD from Scratch
	On Flexibility
	Modeling an XML Document
	Naming of Elements

	A Tool to Help
	New XML Schemas

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

