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Introduction
Microsoft Access 2013 is just one part of Microsoft’s overall data management product 
strategy. Like all good relational databases, it allows you to link related information easily—
for example, customer and order data that you enter. But Access 2013 also complements 
other database products because it has several powerful connectivity features. As its name 
implies, Access can work directly with data from other sources, including many popular PC 
database programs, with many SQL (Structured Query Language) databases on the desk-
top, on servers, on minicomputers, or on mainframes, and with data stored on Internet or 
intranet web servers.

Access provides a very sophisticated application development system for the Microsoft 
Windows operating system. This helps you build applications quickly, whatever the data 
source. In fact, you can build simple applications by defining forms and reports based on 
your data and linking them with a few macros or Microsoft Visual Basic statements; there’s 
no need to write complex code in the classic programming sense. Because Access uses 
Visual Basic, you can use the same set of skills with other applications in the Microsoft 
Office system or with Visual Basic.

For small businesses (and for consultants creating applications for small businesses), the 
Access desktop development features are all that’s required to store and manage the data 
used to run the business. Access coupled with Microsoft SQL Server—on the desktop or 
on a server—is an ideal way for many medium-size companies to build new applications 
for Windows quickly and inexpensively. To enhance workgroup productivity, you can use 
Access 2013 to create an Access Services web app using Microsoft’s Office 365 service or on 
a server with SharePoint 2013, Access Services, and SQL Server 2012. Users of your web app 
can view, edit, and delete data from your app directly in their web browser. For large corpo-
rations with a large investment in mainframe relational database applications and a prolif-
eration of desktop applications that rely on personal computer databases, Access provides 
the tools to easily link mainframe and personal computer data in a single Windows-based 
application. Access 2013 includes features to allow you to export or import data in XML 
format (the lingua franca of data stored on the web).

Who this book is for
If you have never used a database program—including Access—you’ll find Access 2013 
very approachable. The Backstage view and ribbon technology makes it easy for novice 
users to get acquainted with Access and easily discover its most useful features. To get 
a new user jump-started, Microsoft provides web app and desktop database templates 
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available for download that you can use to begin creating an application that helps solve 
your personal or business needs.

If you’re developing a web app or desktop database application with the tools in Access 
2013, Microsoft Access 2013 Inside Out gives you a thorough understanding of “program-
ming without pain.” It provides a solid foundation for designing web apps, desktop data-
bases, forms, and reports and getting them all to work together. You’ll learn that you can 
quickly create complex applications by linking design elements with macros or Visual Basic. 
This book will also show you how to take advantage of some of the more advanced fea-
tures of Access 2013. You’ll learn how to build an Access web app that you can use with 
Microsoft’s Office 365 service offering. You’ll learn all about the new design surfaces for cre-
ating objects in Access web apps and how to use apps in your web browser. 

If you’re new to developing applications, particularly web apps and database applications, 
this probably should not be the first book you read about Access. I recommend that you 
first take a look at Microsoft Access 2013 Plain & Simple or Microsoft Access 2013 Step By 
Step.

How this book is organized
Microsoft Access 2013 Inside Out is divided into eight major parts:

Part 1 shows you how to create and work with the all new Access Services web apps:

●● Chapter 1, “What is Access,” explains the major features that a database should pro-
vide, explores those features in Access, and discusses some of the main reasons why 
you should consider using database software.

●● Chapter 2, “Exploring the Access 2013 web app interface,” thoroughly explores the 
web app user interface introduced in the Access 2013 release. The chapter also 
explains working in the web app environment and installing web app packages.

●● Chapter 3, “Designing tables in a web app,” teaches you how to design web app 
tables and how to import and link data into web apps.

●● Chapter 4, “Creating data macros in web apps,” focuses on how to create data macros 
and work with table events to attach business logic to your tables.

●● Chapter 5, “Working with queries in web apps,” shows you how to build queries in 
web apps and work with data in query Datasheet view. 

●● Chapter 6, “Working with views and the web browser experience,” and Chapter 7, 
“Advanced view design,” exploree the new App Home View, show how to create all 
the view different view types, work with controls, and understand the properties you 
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can use with controls in web apps. You’ll also learn how to create and work with views 
in a web browser, and how to manage external connections.

●● Chapter 8, “Automating a web app using macros,” shows how to work with view and 
control events to automate your web app.

Part 2 shows you how to create and work with tables in a desktop database:

●● Chapter 9, “Exploring the Access 2013 desktop database interface,” thoroughly 
explores the desktop database interface. The chapter also explains content secu-
rity, working with the Backstage view, ribbon, and the Navigation pane, and setting 
options that customize how you work with Access 2013.

●● Chapter 10, “Designing tables in a desktop database,” and Chapter 11, “Modifying 
your table design,” teach you how to design desktop databases and tables and show 
you the ins and outs of modifying tables, even after you’ve already begun to load 
data and build other parts of your application.

The Appendix explains how to install the Office 2013 release, including which options you 
should choose for Access 2013 to be able to open all the samples in this book.

Part 3 through Part 8, which includes Chapter 12 through Chapter 27, can be found in the 
Companion Content section on the book’s catalog page. The Companion Content also 
includes seven additional articles with important reference information.

Note
This book is current as of the general availability release date of Microsoft Access 2013 
and Office 365 in February 2013. Microsoft is continually updating the Office 365 service 
offerings, and new features could be implemented after this release date . As a result, 
some of the features in the product might not exactly match what you see if you are 
working through the book’s examples at a later date . 

This book does not discuss the following deprecated features in Access 2013: Access 
Data Projects (ADP), PivotCharts, PivotTables, Access data collection through email, 
support for Jet 3 .x IISAM, support for dBASE, Access 2003 toolbars and menus, Access 
Replication Options, Access Source Code Control, Access Three-State Workflow, and the 
Access Upsizing Wizard . Also, Microsoft removed the ability to create new Access 2010-
style web databases with Access 2013 in favor of the new Access 2013 web apps . You 
can edit existing 2010-style web databases with Access 2013, but you cannot create new 
ones . Therefore, this book does not discuss how to create and edit 2010-style web data-
bases . If you want to learn about Access 2010-style web databases, see Microsoft Access 
2010 Inside Out .  
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Features and conventions used in this book
The following conventions are used in the syntax descriptions for Visual Basic statements 
in Chapter 24, “Understanding Visual Basic fundamentals,” Chapter 25, “Automating your 
application with Visual Basic,” SQL statements in Article 2, “Understanding SQL,” and any 
other chapter where you find syntax defined. These conventions do not apply to code 
examples listed within the text; all code examples appear exactly as you’ll find them in the 
sample databases.

You must enter all other symbols, such as parentheses and colons, exactly as they appear in 
the syntax line. Much of the syntax shown in the Visual Basic chapter has been broken into 
multiple lines. You can format your code all on one line, or you can write a single line of 
code on multiple lines using the Visual Basic line continuation character (_).

Text conventions

Convention Meaning

Bold Bold type indicates keywords and reserved words that you must 
enter exactly as shown. Microsoft Visual Basic understands key-
words entered in uppercase, lowercase, and mixed case type. Access 
stores SQL keywords in queries in all uppercase, but you can enter 
the keywords in any case.

Italic Italicized words represent variables that you supply.
Angle brackets < > Angle brackets enclose syntactic elements that you must supply. 

The words inside the angle brackets describe the element but do 
not show the actual syntax of the element. Do not enter the angle 
brackets.

Brackets [ ] Brackets enclose optional items. If more than one item is listed, the 
items are separated by a pipe character (|). Choose one or none 
of the elements. Do not enter the brackets or the pipe; they’re not 
part of the element. Note that Visual Basic and SQL in many cases 
require that you enclose names in brackets. When brackets are 
required as part of the syntax of variables that you must supply in 
these examples, the brackets are italicized, as in [MyTable].[MyField].

Braces { } Braces enclose one or more options. If more than one option is 
listed, the items are separated by a pipe character (|). Choose one 
item from the list. Do not enter the braces or the pipe.

Ellipsis … Ellipses indicate that you can repeat an item one or more times. 
When a comma is shown with an ellipsis (,…), enter a comma 
between items.



  xvii

Convention Meaning

Underscore _ You can use a blank space followed by an underscore to continue 
a line of Visual Basic code to the next line for readability. You can-
not place an underscore in the middle of a string literal. You do 
not need an underscore for continued lines in SQL, but you cannot 
break a literal across lines.

Design conventions

INSIDE OUT This statement illustrates an example of an “Inside Out” 
heading

These are the book’s signature tips . In these tips, you get the straight scoop on what’s 
going on with the software—inside information about why a feature works the way it 
does. You’ll also find handy workarounds to deal with software problems. 

Sidebar
Sidebars provide helpful hints, timesaving tricks, or alternative procedures related to the 
task being discussed . 

Troubleshooting

This statement illustrates an example of a “Troubleshooting” problem 
statement.
Look for these sidebars to find solutions to common problems you might encounter. 
Troubleshooting sidebars appear next to related information in the chapters. You can 
also use “Index to Troubleshooting Topics” at the back of the book to look up problems 
by topic.

 

Cross-references point you to locations in the book that offer additional information about 
the topic being discussed .

CAUTION!
Cautions identify potential problems that you should look out for when you’re com-
pleting a task or that you must address before you can complete a task.
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Reader Aid
Notes offer additional information related to the task being discussed .

Your companion ebook
With the ebook edition of this book, you can do the following:

●● Search the full text

●● Print

●● Copy and paste

To download your ebook, please see the instruction page at the back of the book.

About the companion content
I have included companion content to enrich your learning experience. The companion 
content for this book can be downloaded from the following page: 

 http://aka.ms/Access2013IO/files

The companion content is organized as follows: 

Part 3 focuses on how to build desktop database queries to analyze and update data in 
your tables.

●● Chapter 12, “Creating and working with simple queries,” shows you how to build 
simple desktop database queries and how to work with data in Datasheet view.

●● Chapter 13, “Building complex queries,” discusses how to design desktop database 
queries to work with data from multiple tables, summarize information, and build 
queries that require you to work in SQL view.

●● Chapter 14, “Modifying data with action queries,” focuses on modifying sets of data 
with desktop database queries—updating data, inserting new data, deleting sets of 
data, or creating a new table from a selection of data from existing tables.

Part 4 discusses how to build and work with forms in desktop databases.

●● Chapter 15, “Using forms in a desktop database,” introduces you to forms—what they 
look like and how they work.
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●● Chapter 16, “Building a form,” Chapter 17, “Customizing a form,” and Chapter 18, 
“Advanced form design,” teach you all about form design in desktop databases, from 
simple forms you build with a wizard to complex, advanced forms that use embed-
ded forms and navigation and web browser controls. 

Part 5 explains how to work with reports in desktop databases.

●● Chapter 19, “Using reports,” leads you on a guided tour of reports and explains their 
major features.

●● Chapter 20, “Constructing a report,” and Chapter 21, “Advanced report design,” teach 
you how to design, build, and implement both simple and complex reports in your 
application.

Part 6 shows you how to make your desktop database “come alive” using macros.

●● Chapter 22, “Creating data macros in desktop databases,” explores the macro Logic 
Designer and shows how to work with events and named data macros within desktop 
databases.

●● Chapter 23, “Using macros in desktop databases,” discusses the concept of event pro-
cessing in Access, provides a comprehensive list of events, and explains the sequence 
in which critical events occur. It also covers user interface macro design in depth and 
explains how to use error trapping and embedded macro features.

Part 7 shows you how to use the programming facilities in Microsoft Visual Basic to inte-
grate your database objects and automate your desktop database.

●● Chapter 24, “Understanding Visual Basic fundamentals,” is a comprehensive reference 
to the Visual Basic language and object models implemented in Access. It presents 
two complex coding examples with a line-by-line discussion of the code. The final 
section shows you how to work with 64-bit Access Visual Basic.

●● Chapter 25, “Automating your desktop database with Visual Basic,” thoroughly dis-
cusses some of the most common tasks that you might want to automate with Visual 
Basic. Each section describes a problem, shows you specific form or report design 
techniques you must use to solve the problem, walks you through the code from one 
or more of the sample databases that implements the solution, and discusses calling 
named data macros.

Part 8 covers tasks you might want to perform after completing your application.

●● Chapter 26, “The finishing touches,” teaches you how to automate custom ribbons, 
create a custom Backstage view, and how to set Startup properties.
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●● Chapter 27, “Distributing your desktop database,” teaches you tasks for setting up 
your application so that you can distribute it to others. It also shows you how to cre-
ate your own custom Data Type Parts, Application Parts, and application templates.

The companion content includes an additional seven articles that contain important refer-
ence information:

●● Article 1 explains a simple technique that you can use to design a good relational 
database application with little effort. Even if you’re already familiar with Access or 
creating database applications in general, getting the table design right is so impor-
tant that this article is a “must read” for everyone.

●● Article 2 is a complete reference to SQL as implemented in desktop databases. It also 
contains notes about differences between SQL supported natively by Access and SQL 
implemented in SQL Server.

●● Article 3 explains how to link to or import data from other sources.

●● Article 4 discusses how to export data and Access objects to various types of other 
data formats from your Access application.

●● Article 5 lists the functions most commonly used in an Access application, catego-
rized by function type. You’ll also find a list of functions that you can use with Access 
web apps.

●● Article 6 lists common color names and codes you can use in Access.

●● Article 7 lists the macro actions for both desktop databases and web apps you can 
use in Access.

Using the sample files

Throughout Microsoft Access 2013 Inside Out, you’ll see references to sample Access web 
apps and desktop databases. To access and download the sample applications, visit:

http://aka.ms/Access2013IO/files 

For detailed instructions on where to place the sample files on your local computer, see the 
Appendix. For information on how to install the web app samples (discussed in Part 1 of 
this book) in your SharePoint site, see the section “Installing app packages,” in Chapter 2. 

The examples in this book assume you have installed the 32-bit version of Microsoft Office 
2013, not just the 32-bit version of Access 2013. You can also download versions of the 
sample databases that have been modified to work with the 64-bit version of Access 2013. 
Several examples in this book assume that you have installed all optional features of Access 
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through the Office 2013 setup program. If you have not installed these additional features, 
your screen might not match the illustrations in this book or you might not be able to run 
the sample files. A list of the additional features you will need to run all the samples in this 
book is included in the Appendix.

A list of the key database files and their descriptions follows. (I have not listed all the 
smaller support files for the chapters or articles.) 

●● Back Office Software System Restaurant Management Web App (BOSS.app). This 
comprehensive web app demonstrates how a restaurant might manage food orders, 
maintain employee records, and create weekly work schedules. Examples of nearly all 
features with Access web apps are contained in this large sample web app.

●● Auctions App (Auctions.app). This sample web app demonstrates using Access to track 
donated items for auctions and the users bidding on the auction items. This sample 
contains examples of using data macros to control the data entry by applying logic at 
the table level.

●● Training Tracker App (TrainingTracker.app). This web app tracks different training 
courses completed by employees. You can also use the app to record employee feed-
back and the number of hours spent on each training.

●● Conrad Systems Contacts (Contacts.accdb and ContactsData.accdb). This desktop 
database application is both a contacts management and order entry database. This 
sample database demonstrates how to build a client/server application using only 
desktop tools. You’ll also find a ContactsDataCopy.accdb file that contains additional 
query, form, and report examples.

●● Housing Reservations (Housing.accdb). This desktop database application demon-
strates how a company housing department might track and manage reservations in 
company-owned housing facilities for out-of-town employees and guests. You’ll also 
find HousingDataCopy.accdb and HousingDataCopy2.accdb files that contain many 
of the query, form, and report examples.

●● Back Office Software System Restaurant Management Application (BOSSDesktopDa-
tabase.accdb). This desktop application contains similar functionality to the BOSS.app 
sample web app, but this sample utilizes desktop database objects and features.

●● Wedding List (WeddingMC.accdb and WeddingList.accdb). This application is an exam-
ple of a simple desktop database that you might build for your personal use. It has a 
single main table where you can track the names and addresses of invitees, whether 
they’ve said that they will attend, the description of any gift they sent, and whether a 
thank-you note has been sent. Although you might be tempted to store such a sim-
ple list in an Excel spreadsheet or a Word document, this application demonstrates 
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how storing the information in Access makes it easy to search and sort the data and 
produce reports. The WeddingMC database is automated entirely using macros, and 
the WeddingList database is the same application automated with Visual Basic.

Here is a list of databases that are discussed in the chapters:

Chapter Content

Chapter 1 ContactsMap.accdb and Contacts.accdb
Chapter 2 BOSS.app
Chapter 3 RestaurantData.accdb, Contacts.app, BOSS.

app, and RestaurantSample.app
Chapters 4 and 5 BOSSDataCopy.app
Chapter 6 RestaurantSampleWithData.app, BOSS.app, 

and ControlDefinitions.accdb
Chapter 7 RestaurantSampleChapter7.app, BOSS.app, 

and BOSSReportsMaster.accdb
Chapter 8 RestaurantSampleChapter8.app, BOSS.app 

sample app, and Auctions.app
Chapter 9 TasksSample.accdb
Chapter 10 WeddingList.accdb, Housing.accdb, and 

Contacts.accdb
Chapter 11 Housing.accdb, Contacts.accdb, and  

ContactTracking.accdb
Chapters 12, 13, and 14 ContactsDataCopy.accdb and  

HousingDataCopy.accdb
Chapter 15 Contacts.accdb and ContactsNavigation.

accdb
Chapter 16 ContactsDataCopy.accdb
Chapter 17 HousingDataCopy.accdb and  

ContactsNavigation.accdb
Chapter 18 HousingDataCopy.accdb, ContactsDataCopy.

accdb, and ContactsNavigation.accdb
Chapter 19 ContactsDataCopy.accdb and Housing.accdb
Chapter 20 ContactsDataCopy.accdb
Chapter 21 HousingDataCopy2.accdb
Chapter 22 BOSSDesktopDatabase.accdb
Chapter 23 WeddingMC.accdb and  

BOSSDesktopDatabase.accdb
Chapter 24 Contacts.accdb and Housing.accdb
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Chapter Content

Chapter 25 Housing.accdb, Contacts.accdb, and  
WeddingList.accdb

Chapter 26 Contacts.accdb, Housing.accdb, HousingSP.
accdb, and BOSSDesktopDatabase.accdb

Chapter 27 Contacts.accdb, Housing.accdb, and  
ContactsNavigation.accdb

Please note that the person names, company names, email addresses, and web addresses 
in all the databases are fictitious. Although I pre-loaded all databases with sample data, the 
Housing Reservations and Conrad Systems Contacts databases also include a special form 
(zfrmLoadData) that has code to load random data into the sample tables based on param-
eters that you supply.

Note
All the screen images in this book were taken on a Windows 8 system with the Office 
theme set to White and using the Internet Explorer web browser . Your results might look 
different if you are using a different operating system, a different theme, or a different 
web browser . Also, the results you see from the samples might not exactly match what 
you see in this book if you have changed the sample data in the files.

System requirements

The following are the system requirements you need to install Office 2013, Access 2013, 
and the sample files on a Microsoft Windows–compatible computer or device.

●● A gigahertz (Ghz) or faster x86-bit or x64-bit processor with SSE2 instruction set.

●● Microsoft Windows 7 (32-bit or 64-bit), Microsoft Windows 8 (32-bit or 64-bit), Win-
dows Server 2008 R2, or Windows Server 2012 operating systems.

●● At least 1 gigabyte (GB) of random access memory (RAM) for 32-bit operating system 
environments or 2 gigabytes (GB) of RAM for 64-bit operating systems.

●● A hard drive with at least 3.0 gigabytes (GB) available.

●● A DirectX10 graphics card and 1024 x 576 resolution for graphics hardware 
acceleration.

●● Microsoft Internet Explorer 8, 9, 10, or a later version; Mozilla FireFox 10.x or a later 
version; Apple Safari 5; or Google Chrome 17.x or a later version.
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●● Microsoft .NET version 3.5, 4.0, or 4.5.

●● A touch-enabled device for using any multi-touch functionality in Windows 8. (How-
ever, all features and functionality are always available by using a keyboard, mouse, 
or other standard or accessible input device.)

●● Silverlight installed together with Office 2013 is recommended to improve the online 
experience.
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In Microsoft Access 2013, you can define a data macro to respond to different types 
of table events that would otherwise require the use of writing macros attached to 
view and control events. The unique power of data macros in Access 2013 is their abil-

ity to automate responses to several types of table events without forcing you to learn a 
programming language. The event might be a change in the data, the creation of a new 
record, or even the deletion of an existing record. Within a data macro, you can include 
multiple actions and define condition checking so that different actions are performed 
depending on the values in your table fields or criteria you specify.

Note
The examples in this chapter are based on the backup copy of the Back Office Software 
System sample web app (BOSSDataCopy .app), which can be downloaded from the book’s 
catalog page at http://aka.ms/Access2013IO/details . To use the sample, you’ll need to 
upload the app into your corporate catalog or Office 365 team site and install the app. 
Review the instructions at the end of Chapter 2, “Exploring the Access 2013 web app 
interface,” if you need help with those tasks .

In this chapter, you will:

●● Learn about the various types of actions that you can define in data macros and the 
table events that you can use.

●● Tour the logic designer facility and learn how to build both a simple data macro and 
a data macro with multiple defined actions.

●● Learn how to create local variables in data macros to store values temporarily or cal-
culate a result.

●● See how to define parameters and use them inside data macro actions.
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●● Learn how to create return variables in data macros to return data to the calling 
macro.

●● See how to add conditional statements to a data macro to control the actions that 
Access performs.

●● Learn how to create named data macros and execute them from other data macros 
or table events.

●● Understand some of the actions automated with data macros in the Back Office Soft-
ware System sample web app.

Uses of data macros
Access 2013 provides various types of data macro actions that you can attach to table 
events as well as inside named data macro objects to automate your web app. With data 
macros, you can do the following:

●● Verify that an invoice is balanced with the invoice detail line items before saving the 
record.

●● Mark an employee as inactive after you create a termination record.

●● Prevent any data from being edited, added, or deleted from a table.

●● Create new schedule records based on the previous week’s schedule or a labor plan 
template.

●● Delete all schedule records within a specific time frame.

As you’ll learn in Chapter 8, “Automating a web app using macros,” Access 2013 sup-
ports user interface macros to control application flow in your views and to respond to 
user actions. You can also utilize user interface macros to enforce complex business logic 
that might not be covered by table relationships, unique properties, validation rules, and 
required properties. However, the potential problem with using user interface macros to 
enforce complex business logic is that you don’t always have complete control over how 
users interact with the data in your tables. For example, users can add, update, and delete 
data through table and query datasheets. (You’ll learn about queries in Chapter 5, “Work-
ing with queries in web apps.”) Users can also link to the tables in one Access app from an 
Access desktop database and add, update, and delete data from that database. In both of 
these examples, users can bypass your complex business logic rules normally stored in user 
interface macros.
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Access 2013 web apps include data macros to provide a place for Access developers to cen-
tralize all their business logic and rules. Data macros get translated to triggers and stored 
procedures in Microsoft SQL Server, and they allow you to attach business logic directly to 
table events. Because data macros are translated into SQL Server triggers and stored proce-
dures, they are performed within a transactional context—each operation is separate. Data 
macros attached to table events respond to data modifications, so no matter how users edit 
data in the web app, SQL Server enforces those rules. This means that you can write busi-
ness logic in one place, and all the data entry views that update those tables inherit that 
logic from the data layer. After you create a data macro for a table event, Access runs the 
data macro no matter how you change the data.

Data macros in Access 2013 can be used in both web apps and desktops databases. How-
ever, the events, actions, and expressions that you can use in data macros are not identical 
between web apps and desktop databases. The Access database engine enforces data mac-
ros when you work with a desktop database. When you are using a web app, SQL Server 
enforces data macros on the server through the use of triggers and stored procedures. (In 
Chapter 22, “Creating data macros in desktop databases,” which can be downloaded from 
the book’s catalog page, you’ll learn how to create data macros in desktop databases.)

Touring the Logic Designer
Install the Back Office Software System backup copy sample web app (BOSSDataCopy.app) 
on your team SharePoint site, and then download the app into Access so that you can fol-
low along with all of the examples in this chapter.

To create data macros, you first need to open a table in Design view. To display all the 
tables in your BOSSDataCopy web app, click the Navigation Pane button in the Show group 
on the Home ribbon tab. Double-click the table called tblCompanyInformation to open 
it in Design view, and then click the Design contextual ribbon tab to see the data macro 
events, as shown in Figure 4-1.
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Figure 4-1 Data macro events are listed on the Design contextual ribbon tab under Table Tools 
in web apps.

You can attach data macros to the On Insert, On Update, and On Delete events of tables. 
In Figure 4-1, in the Back Office Software System sample web app, you can see that Access 
highlighted the On Insert and On Delete buttons on the Design contextual ribbon tab. 
When you create and save a data macro for a table event, Access highlights that event but-
ton in the ribbon as a visual cue for you to show that a data macro already exists for that 
event. To create a new data macro for a table event or edit an existing one, you click the 
corresponding event button in the ribbon.

Let’s explore the existing data macro that I defined for the On Insert event in the  
tblCompanyInformation table to show you the Logic Designer for creating macros. Click 
the On Insert button on the Design contextual ribbon tab, and Access opens the Logic 
Designer, as shown in Figure 4-2.
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Figure 4-2 This is the Logic Designer, where you can create data and user interface macros.

Whenever you need to create or edit data macros or user interface macros in Access 2013, 
this is the design surface that you use. You’ll notice that Access automatically collapsed 
the Navigation pane to show you more of the macro design surface. Access also opens the 
Logic Designer window modally, which means that you cannot open any other database 
objects until you close the designer window.

As you can see in Figure 4-2, the Logic Designer layout looks more like a Visual Basic code 
window in desktop databases. The Expand Actions, Collapse Actions, Expand All, and Col-
lapse All buttons in the Collapse/Expand group selectively expand or collapse the actions 
listed in the macro design surface. In the Show/Hide group on the Design tab, you can 
choose to hide the Action Catalog shown on the right side of the Logic Designer window 
by clicking the Action Catalog toggle button. In the Tracing group, Access displays options 
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to turn on data macro tracing and to display the tracing table to analyze any issues you 
might have executing your data macro logic. In the Close group, you can click Save to save 
any changes to your data macro. Click Close to close the Logic Designer window. If you 
attempt to close the Logic Designer window with unsaved changes, Access asks whether 
you want to save your changes before closing the window.

On the right side of the Logic Designer window is the Action Catalog. The Action Catalog 
shows a contextual list of the program flow constructs, data blocks, and data actions that 
are applicable to the data macro event you are currently viewing. (When you create user 
interface macros, the Action Catalog similarly displays actions that you can use for user 
interface macros.) We’ll discuss the Action Catalog in more detail in the next section.

In the middle of the Logic Designer window is the main macro design surface where you 
define your data macro. You add program flow constructs, macro actions, and arguments 
to the design surface to instruct Access what actions to take for the data macro. If you have 
more actions than can fit on the screen, Access provides a scroll bar on the right side of 
the macro design surface so that you can scroll down to see the rest of your actions. You’ll 
notice in Figure 4-2 that Access displays any arguments directly beneath the action. Access 
displays a combo box called Add New Action at the bottom of the macro design surface. 
This combo box displays a list of all the actions you can use for the type of data macro you 
are creating and the specific context of where you are in the data macro logic.

In the lower-right corner of the Logic Designer window is the Help window. Access displays 
a brief help message in this window, depending on where the focus is located in the Action 
Catalog.

Click the Close button in the Close group on the Design contextual tab to return to the 
Design view of the tblCompanyInformation table, and then close the table.

Working with table events
As I mentioned in the previous section, you can attach data macros to the On Insert, On 
Update, and On Delete table events. In the following sections, you’ll learn about each of 
these events, create new data macros attached to events, and examine other data macros 
attached to these events in the Back Office Software System sample web app.

In On Insert and On Update events, you can look at the incoming values in the current 
record and compare them with a record in other tables using the LookupRecord data block. 
You can use the SetField data action to alter data before Access commits the changes but 
only on the incoming row of data, not on a record returned from the LookupRecord data 
block. In all table events, you can prevent a record from being saved or deleted and display 
custom error messages to the user using the RaiseError data action.
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Using On Insert events
The On Insert event fires whenever you add new records to a table. Let’s create a new data 
macro attached to the On Insert event of the tblWeekDays table to illustrate the process 
of creating, saving, and testing a new data macro. Open the tblWeekDays table in Design 
view, click the Design contextual tab under Table Tools, and then click the On Insert button 
in the Events group to open the Logic Designer, as shown in Figure 4-3.

Figure 4-3 Click the On Insert button on the ribbon to begin creating your data macro.

Note
You might have noticed in Figure 4-3 when you started your new On Insert data macro 
that the caption on the top of the object window displays After Insert . The Logic 
Designer for data macros is shared between web apps and desktop databases . Although 
you’re seeing a different caption, you are, in fact, creating an On Insert table event data 
macro .
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Troubleshooting

Why can’t I add data macros to linked SharePoint lists?
In Chapter 3, “Designing tables in a web app,” you learned how to link SharePoint lists 
into your web app. In web apps, tables linked to SharePoint lists are read-only and can-
not be opened in Design view. Therefore, you cannot attach data macros to any table 
events for linked SharePoint lists. You also cannot reference linked SharePoint lists in 
any LookupRecord, CreateRecord, or ForEachRecord data blocks attached to other web 
app table events or in any named data macros.

In the Action Catalog on the right side of the Logic Designer, you can see three options 
under Program Flow, four options under Data Blocks, and eight options under Data Actions. 
In web apps, program flow options (Comment, Group, and If), data blocks, and data actions 
are available in all data macro table events. (In Chapter 22, you’ll learn that the options 
under Data Blocks and Data Actions change based on whether you are using a before event 
or an after event in desktop databases.) Table 4-1 summarizes the data blocks and data 
actions that you can use in the table events in web apps.

TABLE 4-1 Data blocks and data actions available in table events

Element Name Description

Data blocks CreateRecord Creates a new record in a table.
EditRecord Allows Access to edit a record. This data block must 

be used in conjunction with a ForEachRecord or 
LookupRecord data block.

ForEachRecord Iterate over a recordset from a table or query.
LookupRecord Instructs Access to look up a record in the same 

table, a different table, or a query.
Data actions CancelRecordChange Cancels any record changes currently in progress. 

You can use this action to break out of CreateRecord 
or EditRecord changes.

DeleteRecord Deletes the current record from the table. Access 
determines the current record based on the scope 
of where the action is called. For example, if you are 
inside a LookupRecord data block, Access deletes 
the record found in the Where condition argument.

ExitForEachRecord Exits the innermost ForEachRecord loop. You can 
use this action when you want to break out of a 
long-running loop if a condition is met.
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Element Name Description

RaiseError Displays a custom message to the user interface 
level and cancels the event changes. You can use 
this action to manually throw an error and cancel an 
insert, update, or delete.

RunDataMacro Runs a saved named data macro. You can option-
ally pass parameters to the named data macro and 
return values.

SetField Changes the value of a field. For example, you 
can use the SetField action to change the value of 
another field in the same record before committing 
the changes.

SetLocalVar Creates a temporary local variable and lets you set 
it to a value that you can reference throughout the 
data macro execution. The value of the variable 
stays in memory as long as the data macro runs 
or until you change the value of the local variable 
by assigning it a new value. When the data macro 
completes, Access clears the local variable.

StopMacro Stops the current data macro.

The tblWeekDays table contains seven records, each record listing the name of a day of the 
week. This table helps build a linking table between the tblVendors table and the  
tblVendorOrderDays table. Each vendor in the app can have more than one day that  
they accept orders, and each weekday can be used by more than one vendor. Similarly,  
the tblWeekDays table also serves as a linking table between tblVendors and  
tblVendorDeliveryDays. For the purposes of this app, I consider tblWeekDays to be a  
system table: a table used by other parts of the app, but one in which I don’t ever need to 
add, change, or delete data. (I can’t foresee the names of the weekdays changing any time 
soon.) To prevent new records from being added to this table, we’ll create a data macro in 
the On Insert event and include a RaiseError data action to stop the insert.

Including comments

To start creating your data macro in the On Insert event of the tblWeekDays table, let’s first 
add a comment to the macro design surface. Comments are useful for documenting the 
purpose of your data macro and the various data actions within it. Access ignores any com-
ments as it executes the actions within your data macro. Click the Comment element under 
the Program Flow node in the Action Catalog, hold the mouse key down, drag the Com-
ment element onto the macro design surface, and then release the mouse button, as shown 
in Figure 4-4.
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Figure 4-4 Drag the Comment program flow element from the Action Catalog onto the macro 
design surface.

Access creates a new Comment block on the macro design surface, as shown in Figure 4-5. 
If your cursor is not in the Comment block and you do not have any comments typed into 
the Comment block, Access displays the text Click Here To Type A Comment. You’ll notice 
in Figure 4-5 that Access moved the Add New Action box below the Comment block. You’ll 
also notice that Access places a delete button to the far right of the Comment block. (The 
delete button is a symbol shaped like an X.) If you want to remove the Comment block, 
click the delete button and Access removes the Comment block from the macro design sur-
face. If you delete the Comment block in error, click the Undo button on the Quick Access 
Toolbar to restore the Comment block.

Figure 4-5 Access creates a new Comment block when you drag a Comment program flow onto 
the macro design surface.

Click inside the Comment block, and type the following text:

We don’t want to allow additional records into this system table. If a new record is 
being added, raise an error and inform the user.
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Click outside the Comment block onto the macro design surface. Access collapses the size 
of the Comment block to just fit the text you typed and displays the text in green, as shown 
in Figure 4-6. The /* and */ symbols mark the beginning and end of a block of comments. 
Access designates anything written between those symbols as a comment, which is there 
only to provide information about the purpose of the data macro or particular action to 
follow.

Figure 4-6 Access displays any comments inside comment block characters.

INSIDE OUT Take the time to include comments

You might be asking yourself whether it’s really worth your time including comments 
in your data macros . While it’s true that it takes additional time to include comments 
as you’re creating your data macros, the investment of your time now pays off in the 
future. If you need to modify your app at a later date, you’ll find it much easier to 
understand the purpose of your data macros if you include comments . This is especially 
true if someone else needs to make changes to your app . Trust me; it’s worth your time 
to include comments when you design data macros .

Grouping macros

When you’re creating data macros, you can use a program flow construct called Group. You 
use a Group construct to group a set of actions together logically to make your data macro 
actions easier to read. When you group macro actions inside a Group construct, you can 
also expand or collapse the entire group easily to see more of the macro design surface. 
It’s not required to use the Group construct when you’re creating data macros; however, 
grouping macro actions can be especially helpful if you have many disparate actions inside 
the same event or named data macro.

To add a Group construct to your data macro, click the Group element in the Action Cata-
log, hold down the mouse key, and drag the Group element to just beneath the comment 
block that you inserted previously. As you get close to the comment block, you’ll notice 
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that Access displays a horizontal bar across the macro design surface, as shown in Figure 
4-7. This horizontal bar is your insertion point for the new program flow, data block, or 
data action. If you want to drop your new Group above the comment block, position your 
mouse pointer above the comment block and Access displays the horizontal bar above the 
comments to indicate where it will drop your new Group. We want to have this Group posi-
tioned below the comment block, so place your mouse pointer below the comment block 
and then release the mouse.

Figure 4-7 Access displays a horizontal bar on the macro design surface when you drag items 
from the Action Catalog.

Access displays a new Group block on the macro design surface, as shown in Figure 4-8. 
You need to provide a name for your new Group block, so type PreventNewRecords in 
the text box provided. You are limited to 256 characters, including any spaces, for the name 
of any Group block. 

In Figure 4-8, you’ll notice that Access denotes the end of the Group block by placing the 
words End Group at the bottom of the Group block. When you click on the Group block, 
Access highlights the entire block as a visual cue to indicate where the starting and end-
ing points of the block are. You’ll also notice that Access placed another Add New Action 
combo box inside the Group block when you dropped the Group construct onto the design 
surface. You can use this combo box to add new actions inside the Group block. (We’ll do 
that in just a moment.) Next to the delete button on the right side of the Group block is a 
green up arrow button. Click this button if you want to move the entire Group block above 
the Comment block that you created earlier. For now, leave the Group block where it is.
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Figure 4-8 You can use a Group block to group a set of actions together logically.

Raising errors in data macros to cancel events

In Chapter 8, you’ll learn that user interface macros can interact heavily with the user’s 
experience working with views. With user interface macros, you can display message boxes, 
open pop-up views, and dynamically change properties on a view. Data macros, on the 
contrary, are limited to the data layer and cannot interact with the user interface level. For 
example, in a data macro you cannot display a custom message box to the user and per-
form different steps based on how the user responds to your message. The only tool you 
can use in data macros to display information to the user is the RaiseError data action.

You can use the RaiseError data action whenever you need to force an error to occur and 
display a non-actionable message to the user manually. When you use the RaiseError action 
in a data macro, Access cancels the pending insert, update, or delete if it reaches this action 
during the macro execution. 

In the On Insert event that you’ve been building for the tblWeekDays table, we don’t 
want to allow new records to be created in this table. To add a RaiseError action inside the 
Group block that you previously created, you could drag the RaiseError data action from 
the Action Catalog onto the macro design surface and place the insertion point inside the 
Group block. You’ve already done this type of procedure twice before when creating the 
Comment and Group blocks, so let’s show you an alternative way of adding new elements 
to the macro design surface. Click the Add New Action combo box inside the Group block, 
and Access displays a context-sensitive drop-down list of all the program flow constructs, 
data blocks, and data actions that you can use, based on where your insertion point is 
located. Click the RaiseError option from the drop-down list, as shown in Figure 4-9, to add 
a RaiseError data action to the macro design surface.
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Figure 4-9 Select the RaiseError option from the Add New Action combo box inside the Group 
block.

Instead of using your mouse to select program flow constructs, data blocks, and data 
actions from the Add New Action combo box, you can also tab into the control and start 
typing the first letter or two of the element you want. Access highlights the first construct, 
data block, or data action that matches the letters you type. You can press Enter at any 
time, and Access adds the selected element to the macro design surface. (The macro design 
surface is flexible to allow you to use the mouse for selecting actions or just the keyboard 
if you prefer.) After you select RaiseError from the Add New Action combo box, Access dis-
plays the RaiseError data action inside the Group block, as shown in Figure 4-10.

Figure 4-10 Use the RaiseError data action when you need to cancel an insert, update, or delete.
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The RaiseError data action has one required argument—Error Description. The Error 
Description argument is the message displayed to the user if the RaiseError action is hit 
during execution of the data macro. You can type any custom message you want, up to 
256 characters in length. You can also use an expression for the Error Description by typ-
ing the equal sign (=) as the first character. In the example earlier in this chapter, the text 
string started with an equal sign (=) and was enclosed within quotation marks. You’re not 
required to use this technique with simple text strings. However, if you use an expression, 
you must start the expression with the equal sign (=) and enclose any text string within 
quotation marks. If you type an equal sign (=) at the beginning of the Error Description 
argument, Access displays the Expression Builder button on the far right of the text box if 
you need assistance creating your expression. (You’ll see an example of using an expression 
in a RaiseError action later in this chapter.) For this example, you’d like to display a simple 
message to the user informing them that they cannot enter new records into this table. 
Type the following message, previously shown in Figure 4-10, into the Error Description 
argument:

No additional records can be added to this system table. Please contact the system 
administrator.

If you do not provide an error description in your RaiseError data action, Access displays an 
error message when you try to save your data macro logic, as shown in Figure 4-11. You 
must provide a message in the Error Description to save your data macro.

Figure 4-11 Access displays an error message if you leave the Error Description argument empty.

 Working with table events 187



Chapter 4

INSIDE OUT Pause over elements to see Help information

A very useful feature of the Logic Designer window is the ability to view Help informa-
tion quickly no matter where you are . When you place your mouse over any element on 
the macro design surface, Access displays a tooltip with specific Help information cover-
ing the program flow, data block, data action, or argument that you are currently on. 
Similarly, Access displays tooltips with Help information when you pause over the ele-
ments displayed in the Action Catalog . This feature is especially useful as you are learn-
ing your way around the Logic Designer .

Testing your data macro

You’ve now completed all the steps necessary to prevent any new records from being 
added to the tblWeekDays table. To test the data macro that you’ve created so far, you first 
need to save your changes to the On Insert event. Click the Save button in the Close group 
on the Design contextual tab under Macro Tools, or click the Save button on the Quick 
Access Toolbar. Now click the Close button in the Close group to close the Logic Designer 
window, and return to the Design view of the tblWeekDays table. To test this On Insert 
event, you need to create a new record in this table. Switch to Datasheet view by right-
clicking the tblWeekDays table in the Navigation pane and selecting Open from the short-
cut menu or right-clicking the object tab at the top of the application window and selecting 
Datasheet view from the shortcut menu. Click in the WeekDayText field on the new record 
line of the table datasheet, enter any text other than one of the existing weekday names, 
and then tab or click outside of the new record line. Access displays the custom error that 
you created in the RaiseError data action, as shown in Figure 4-12.

Figure 4-12 Access prevents you from adding new records with the data macro that you created 
for the On Insert event.
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The On Insert event fires because you are inserting a new record into this table. In this 
event, Access checks to see what data macro logic, if any, to execute when you are creat-
ing new records. In this case, the RaiseError data action fires, Access displays the custom 
message that you created, and then Access cancels the insert. When you click OK in the 
message box, Access displays a pencil icon in the row selector on the left to indicate the 
new record is not saved yet. You now need to right-click the row selector and select Delete 
to remove that uncommitted record from the datasheet. You can also choose to close the 
table datasheet with this uncommitted record or click the Refresh command on the ribbon. 
Access prompts you that you have pending changes, as shown in Figure 4-13.

Figure 4-13 Access prompts you when you have unsaved records.

Access attempts to save any record changes when you move off a record or close the table 
datasheet, but in this case, Access cannot save your record changes because of the  
RaiseError action in the On Insert event. If you click OK on the pending changes dialog, 
Access cancels any pending records updates or inserts and then closes the table datasheet. 
If you click Cancel, Access stops the table datasheet from closing and returns focus to the 
datasheet; however, your record inserts or updates are still not saved. There is no way that 
you can add records to this table unless you remove the data macro that you defined in 
the On Insert event of the table. Access enforces this restriction no matter what the entry 
point is for creating a new record. As you can see, data macros are a very powerful feature 
in Access 2013 web apps.

Using If blocks to create conditional expressions

You can define more than one action within a data macro, and you can specify which 
actions get executed or not by adding conditional expressions into your data macro logic. 
For example, you might want to update a field in the same record, but only if a specific field 
was changed. Or, you might want to prevent an update to a record if a value in another 
field is a higher or lower value than you expect. In the preceding section, you designed a 
simple data macro in the On Insert event of the tblWeekDays table to prevent new records 
from being added to the table using a single action. In this section, we’ll create data macro 
logic in the On Insert event of the tblEmployees table to update an image field each time 
you add a new employee record, using a conditional expression and multiple actions. 

Open the tblEmployees table in Design view, click the Design contextual tab under Table 
Tools, and then click the On Insert button in the Events group to open the Logic Designer. 
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The employees table includes an image field—EmployeePicture—that I use to store the 
picture of each employee in our restaurant management app. If the data entry person 
entering a new employee record into the app does not currently have a picture for the new 
employee, we want to save a default generic picture for the new employee record to indi-
cate that we don’t have a current picture. 

Let’s begin creating our data macro logic by first adding a new Comment block to the 
macro design surface. Click inside the Add New Action combo box on the macro design 
surface, type Comment, and then press Enter to create a new Comment block. Type the 
following text into the Comment block to identify easily the logic that we are going to add 
to this data macro:

If no picture was assigned for this new employee, use the generic default image 
instead from tblImageFiles. First check to see if the EmployeePicture field is Null.

Your changes to the On Insert event should now look like Figure 4-14.

Figure 4-14 Add a Comment block to the macro design surface to document the purpose of 
this set of actions.

INSIDE OUT Shortcut keys to adding Comment blocks

To add a new Comment block onto the macro design surface quickly, you can simply 
type two forward slashes (//) when you are in any Add New Action combo box and press 
Enter . Alternatively, you can type a single apostrophe (‘) when you are in an Add New 
Action combo box and press Enter . In both cases, Access creates a new Comment block 
on the macro design surface .

In the Add New Action combo box, type If and press Enter to create a new If block. Access 
creates a new If block under the Comment block, as shown in Figure 4-15. The text box 
next to If is where you type your conditional expression. Each condition is an expression 
that Access can evaluate to True or False. A condition can also consist of multiple com-
parison expressions and Boolean operators. If the condition is True, Access executes the 
action or actions immediately following the Then keyword. If the condition is False, Access 
evaluates the next Else If condition or executes the statements following the Else keyword, 
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whichever occurs next. If no Else or Else If condition exists after the Then keyword, Access 
executes the next action following the End If keyword.

Figure 4-15 Use an If block when you want to execute actions only if a certain condition is met.

If you need help constructing your conditional expression, you can click the button that 
looks like a magic wand to the right of the expression text box. When you click this button, 
Access opens the Expression Builder, where you can build your conditional expression. (You 
learned about the Expression Builder in Chapter 3.) To the right of the word Then, Access 
displays a green up arrow. You can click this button if you want to move the position of the 
If block. (If there are actions below the If block, Access also displays a green down arrow.) 
If you move a block in error, you can click the Undo button on the Quick Access Toolbar. If 
you want to delete the If block, you can click the Delete button to the right of the up arrow. 
Below the arrow button are two links—Add Else and Add Else If. If you click the Add Else 
link, Access adds an Else branch to the If block, and if you click the Add Else If link, Access 
adds an Else If branch to the If block. (We’ll explore these two conditional elements in just a 
moment.)

For the On Insert data macro that you have been building, we can use the Is Null phrase in 
our conditional expression to test whether the EmployeePicture field in the tblEmployees 
table has a value, an image file in this case, before Access saves the new employee record. 
In the conditional expression text box in the If block, type the letters tblE and notice that 
Access provides IntelliSense options for you, as shown in Figure 4-16.

Figure 4-16 Access provides IntelliSense options whenever you are writing expressions in data 
macros.
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You can continue to type tblEmployees, or use the down arrow to highlight the  
tblEmployees option from the IntelliSense drop-down list and then press Tab or Enter. 
Notice that after you select tblEmployees, Access adds brackets around the table name. 
Now type a period, and IntelliSense provides a list of all the field names in the  
tblEmployees table, as shown in Figure 4-17.

Figure 4-17 Access displays a list of all the fields in the tblEmployees table by using IntelliSense.

You can continue to type EmployeePicture, or use the down arrow to highlight the 
EmployeePicture field name from the IntelliSense drop-down list and then press Tab or 
Enter. Access also adds brackets around the EmployeePicture field name after you select it 
from the drop-down list. (Because our table name and field name contain no spaces, the 
brackets are not required, but its good practice to include them anyway.) Complete the 
entire expression by typing Is Null. Your completed expression should be  
[tblEmployees].[EmployeePicture] Is Null, as shown in Figure 4-18. Note that 
I also like to include the table name so that I know exactly what I’m referencing in my data 
macro logic, and I also get the benefit of being able to use IntelliSense.

Figure 4-18 Your completed conditional expression should now look like this.
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With your completed conditional expression for the If block, Access executes actions after 
the Then keyword and before the End If keywords only, if any employee record contains no 
data in the EmployeePicture image field.

INSIDE OUT Nesting limitations in the Logic Designer

The Logic Designer supports only 10 levels of nesting program flow constructs and data 
blocks . That is, you can nest up to nine additional constructs or data blocks inside a sin-
gle top-level construct or data block (each one nested deeper inside the previous one) .

Using LookupRecord data blocks to find records

The next step in our logic for the On Insert event of tblEmployees is to find a specific record 
in the tblImageFiles table where a default picture graphic is stored. To do this, tab or click 
into the Add New Action combo box that is inside the If block you completed in the previ-
ous section, type LookupRecord, and press Enter to add this data block inside the If block, 
as shown in Figure 4-19.

Figure 4-19 Add the LookupRecord data block inside the If block.

The LookupRecord data block takes four arguments:

●● Look Up A Record In. Required argument. The name of a table or query to look 
up a record in.

●● Where Condition. Optional argument. The expression that Access uses to select 
records from the table or query.
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●● Update Parameters. Optional argument. If you’re looking up records in a query 
that requires parameters, you can provide them here.

●● Alias. Optional argument. A substitute or shorter name for the table or query.

The only required argument for the LookupRecord data block is Look Up A Record In. 
Access provides a drop-down list for this argument that includes the names of all tables 
and saved query objects in your web app. If you want Access to look up a specific record 
in the specified table or query, you must provide a valid Where clause expression to find 
the record. If you leave the Where Condition argument blank, Access finds the first record 
in the specified table or query. You can click the button with the magic wand on it to open 
the Expression Builder to assist you with creating a Where clause if you’d like. The Update 
Parameters and Alias optional arguments are accessible through two links below the Where 
Condition argument on the right side. When you click these links, Access displays additional 
text boxes for you to enter these arguments. If you are looking up a record in a table, click-
ing the Update Parameters link does nothing, because tables do not contain parameters.

Before Access enters the LookupRecord block, the default data context is the incoming 
or changed record. The incoming record is either a new record or changes to an existing 
record. Within the LookupRecord block, Access creates a new data context. Access evalu-
ates the Where condition of a data block with the same default context as when you are 
inside the data block. This means that if you do not use an alias as the table qualifier for 
field names in the Where condition argument, you are referring to a field within the new 
data context that you just created by using the data block.

Understanding alias and context
Using an alias is required when using a LookupRecord, ForEachRecord, EditRecord, or 
CreateRecord data block or DeleteRecord action, if you are trying to refer to a different 
data context other than the default. LookupRecord, ForEachRecord, and CreateRecord 
data blocks always create a new data context . EditRecord and DeleteRecord use only the 
current data context, unless you specify a different context to use . Consider the following 
example data macro logic: 

ForEach Record in TableA Alias A 
  LookupRecord in TableB Alias B WHERE B.TableBField1 = A.TableAField2 
    EditRecord Alias A 
      SetField TableAField3 = "Something"

In this example, the EditRecord’s default context is on TableB’s qualified row, so you have 
to use an alias to specifically indicate that the EditRecord is targeting TableA’s looped row. 
You also need to use an alias to differentiate the data context for the same table . Con-
sider the following example data macro logic:
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On Insert Table1 
  LookupRecord in Table1 Alias Lookup 
    WHERE Lookup.ID <> Table1.ID AND Lookup.UserName = Table1.UserName 
      RaiseError The user has already been added.

In this example, Table1 is the alias for the newly inserted row, while Lookup is the alias 
for the row being looked up in Table1 .

Here are some considerations when working with data blocks:

●● When inside a LookupRecord or ForEachRecord data block, the default context is 
the active row in the looped table .

●● When inside a CreateRecord data block, the default context is the new row Access 
is creating .

●● In On Insert event data macros, the default data context, outside any data block, is 
the row that Access is inserting .

●● In On Update event data macros, the default data context, outside any data block, 
is the new value of the updated row .

●● In On Delete event data macros, the default context, outside any data block, is the 
row that Access is deleting .

The tblImageFiles table is a system table that I use in this web app to hold any image files 
that I want to use in the app. In the On Insert event macro, you want to look up a record 
in this table, so click inside the Look Up A Record In argument and select tblImageFiles 
from the drop-down list. Currently, this table contains only one image file, but more 
images could be added over time. The specific image file you need for this example is the 
first record with ID=1. To make sure you look up the correct record, you should provide a 
Where clause that locates the first record every time. To do that, enter  
[tblImageFiles].[ID]=1 in the Where Condition argument, as shown in Figure 4-20. 
When you start typing, IntelliSense helps you along and you can easily see and select the 
correct field name that holds the ID value. In this example, you already know that the 
default image needed is in the record that has ID=1. You could also use a Where clause that 
looks up the specific image description provided in the ImageDescription field.
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Figure 4-20 Add a Where clause to find a specific record using LookupRecord.

Using local variables

You can use a local variable in data macros to store a value that can be used throughout 
the execution of the data macro. Local variables are very useful when you need Access to 
calculate values during the execution of the data macro or remember something for later 
use in the data macro. You can think of a local variable in a data macro as writing yourself 
a note to remember a number, a name, or an email address so that you can recall it at a 
later time in the data macro. All local variables must have a unique name in the context of 
the data macro. To fetch, set, or examine a local variable, you reference it by its name. Local 
variables stay in memory until the data macro finishes executing, you assign it a new value, 
or until you clear the value.

In the previous section, you added logic for Access to look up a specific record in the  
tblImageFiles table. We now need to copy the contents of the image field, ImageFile in 
this case, to a local variable so that we can use it later in the event. The reason for this is 
because the code in this block is now executing in a different context and when Access fin-
ishes, we cannot make the outer code block refer to this context. Creating a local variable 
here allows us to pass a value back to a different context during the data macro execution. 
To create a local variable, click or tab into the Add New Action combo box that is inside 
the LookupRecord block, enter SetLocalVar, and press Enter to add this action inside the 
LookupRecord block, as shown in Figure 4-21.
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Figure 4-21 Add the SetLocalVar action inside the LookupRecord block.

The SetLocalVar action takes two required arguments:

●● Name. Required argument. The name of the local variable you want to use to refer 
to during data macro execution.

●● Expression. Required argument. The expression that Access uses to define the local 
variable.

For the Name argument, you can enter a name up to 64 characters. For the Expression 
argument, you can click the button that looks like a magic wand to open the Expression 
Builder to assist you with creating an expression. In this example, enter varImage into the 
Name argument and then enter [tblImageFiles].[ImageFile] into the Expression argu-
ment, as shown in Figure 4-22.

Figure 4-22 Enter a name and valid expression into the SetLocalVar arguments.
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Choosing variable names in web apps
Access 2013 gives you lots of flexibility when it comes to naming your local variables, 
parameters, and return variables in web apps . (You’ll learn about parameters and return 
variables later in this chapter .) A variable name can be up to 64 characters long and can 
include any combination of letters, numbers, and special characters except a period ( .), 
exclamation point (!), square brackets ([]), leading equal sign (=), or nonprintable char-
acter such as a carriage return . You cannot use spaces in any part of variable names in 
web apps . The name also cannot contain any of the following characters: / \ : ; * ? "" < > 
| # <TAB> { } % ~ & . In general, you should give your variables meaningful names . You 
should also avoid using variable names that might match any name internal to Access . 
For example, all objects have a Name property, so it’s a good idea to qualify a vari-
able containing a name by calling it varVendorName or varCompanyName . You could 
also preface the variable name with the data type, such as strVendorName for text and 
imgEmployeeImage for image data types . You should also avoid names that are the same 
as built-in functions, such as Date, Time, Now, or Space . See Access Help for a list of all 
the built-in function names .

When Access finds the record in the tblImageFiles table where the ID field equals 1, it cre-
ates a local variable named varImage, reads the current value in the ImageFile field for that 
specific record, and then assigns the value of that field (a picture file, in this case) to the 
local variable. You can now reference and use this value in other areas of this same table 
event by referencing the variable by its name. We’ll do that in just a moment. Let’s save the 
logic we’ve created so far by clicking the Save button on the Quick Access Toolbar.

Note
You cannot save any data macro logic if any If, Else If, Or Else blocks are empty and have 
no actions inside them .

Collapsing and expanding actions

Now that you have the varImage local variable currently storing the contents of an image 
file, it’s time to save that data to the EmployeePicture field in the tblEmployees table. To do 
this, you’ll use the EditRecord data block. The tricky part of this next procedure though is 
to make sure you place the EditRecord data block in the correct place on the macro design 
surface. If you click anywhere on the LookupRecord data block you currently have on the 
macro design surface, you’ll notice there are three Add New Action combo boxes near the 
bottom of the screen, as shown in Figure 4-23.
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Figure 4-23 There are three Add New Action combo boxes at the bottom of the macro design 
surface.

We want to place the EditRecord data block outside and below the LookupRecord data 
block. Because you have the LookupRecord data block selected right now, it’s a little easier 
to tell that the topmost Add New Action combo box is inside the LookupRecord data block, 
but if you did not have it selected, you might find it more difficult trying to decide where 
to place your next action. For example, compare the screen shots in Figure 4-22 and Fig-
ure 4-23 shown previously. In Figure 4-22, I selected the SetLocalVar data action and you’ll 
notice that you can see only two Add New Action combo boxes. In Figure 4-23, I selected 
the LookupRecord and you can see three Add New Action combo boxes.

When you have complex data macros with many program flow constructs, data blocks, 
and data actions, you might find it harder to understand everything happening with the 
structure of your data macros, especially if you have to scroll the macro design surface to 
see everything. Fortunately, the Logic Designer includes features that can make these tasks 
easier. 

To the left of the LookupRecord data block and the If block on the macro design surface, 
you’ll notice that Access displays a box with a dash inside. If you place your mouse over the 
SetLocalVar data action, you can also see a similar box. (For data actions, Access shows this 
box only when you hover over the action.) You can use this box to expand and collapse the 
group or action. By default, the Logic Designer displays all group blocks and data actions in 
expanded mode so that you can see all actions and arguments. To collapse the  
LookupRecord data block, click inside the box. Access changes the dash inside the box to a 
plus symbol and then collapses the data block onto two lines, as shown in Figure 4-24.
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Figure 4-24 Click the box next to an action to collapse it.

Access displays the data block on two lines, and all actions contained inside the data block 
are hidden. It is much easier now to distinguish that the Add New Action combo box, 
directly below the highlighted LookupRecord data block, is outside that block. If you col-
lapse a data action, such as the SetLocalVar action, Access displays the action without the 
argument names—Name and Expression for SetLocalVar—and separates the argument 
values with a comma. By collapsing data blocks and data actions, you can see more of the 
macro design surface. To expand the data block or data action again, click inside the box, 
now displaying a plus symbol, and Access expands the data block or data action. 

You can collapse an entire Group block or If block as well using the same technique. If you 
want to collapse all data actions showing on the macro design surface at the same time, 
you can click the Collapse Actions button in the Collapse/Expand group on the ribbon. 
Click the Expand Actions button in the Collapse/Expand group on the ribbon to expand all 
data actions showing on the macro design surface. 

For the maximum amount of space on the macro design surface, click the Collapse All but-
ton in the Collapse/Expand group on the ribbon. Access collapses all groups onto one line, 
as shown in Figure 4-25. You can’t see very much with this view, of course. However, you 
can then selectively expand Groups, If blocks, and Data Blocks one at a time to work on 
specific parts of the data macro. Click the Expand All button on the ribbon to expand all 
Group blocks, If blocks, Data Blocks and Data Actions.
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Figure 4-25 When you click the Collapse All button, Access collapses everything on the macro 
design surface except Comment blocks.

INSIDE OUT Viewing super tooltips

If you hover your mouse over a collapsed data action, Access displays a super tooltip 
with all the arguments . You can then view all the argument values of the data action eas-
ily, without having to expand the data action .

Note
When you expand or collapse Group blocks, If blocks, Data Blocks, or Data Actions, 
Access marks the macro design surface as dirty, even if you did not make any other 
changes . If you attempt to close the Logic Designer window, Access prompts you to save 
your changes . Access remembers the state of any expanded or collapsed elements when 
you save changes and reopen the data macro . Also, when you click Expand All after pre-
viously clicking Collapse All, Access displays all Comment blocks in a narrower box than 
before you collapsed everything . After you close and reopen the macro design surface, 
the width of the Comment blocks return to their normal size .

Now that you’ve collapsed the LookupRecord data block, let’s continue adding our  
EditRecord data block. Click inside the Add New Action combo box below the  
LookupRecord data block, type EditRecord, and then press Enter. Access adds a new 
EditRecord data block onto the macro design surface, as shown in Figure 4-26.
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Figure 4-26 Add an EditRecord data block beneath the LookupRecord data block.

Whenever you want to change data in a table, you must use the SetField data action inside 
an EditRecord data block. Because our EditRecord data block is not inside any other data 
block such as ForEachRecord or LookupRecord, the context of the EditRecord block acts on 
the new record being created in the current table. For our example, we want to change the 
EmployeePicture field of the new employee record being created in tblEmployees to the 
local variable we defined earlier—varImage. Click inside the Add New Action combo box 
that is inside the EditRecord data block, type SetField, and then press Enter to add this new 
action to the macro design surface, as shown in Figure 4-27.

Figure 4-27 The SetField data action allows you to commit data to fields inside data macros.
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The SetField action takes two required arguments, Name and Value. In the Name argument, 
we use the full table name and field name to clearly indicate which field we want to update. 
Enter [tblEmployees].[EmployeePicture] into the Name argument, and enter [varImage] 
into the Value argument. Notice that when you start typing the table name in the Name 
argument, Access provides IntelliSense to help you pick the correct table and field name 
you want. Also, you’ll notice that Access does not add brackets around the table name and 
field name when using IntelliSense in this context, but it’s a good idea to always include 
them even if you don’t have spaces in your table and field names. If you do not provide 
brackets around the local variable name in the Value argument, Access adds them when 
you save and re-open the macro design window. 

Click Save on the Quick Access Toolbar to save your changes to the On Insert event. Your 
completed changes to the data macro should now match Figure 4-28. Notice that, in Figure 
4-28, I expanded all the actions again by clicking Expand All button in the ribbon.

Figure 4-28 Your On Insert data macro up to this point should now look like this.

The data macro logic you’ve now defined instructs Access to check every new employee 
record entered into this table. If no picture is provided in the EmployeePicture at the time 
you create a new employee record, Access looks up a record in the tblImageFiles table 
where the ID value equals 1, stores the value of the ImageFile default picture into a local 
variable called varImage, and finally saves that default picture into the EmployeePicture 
field for that new record using the local variable. Note that datasheets do not support 
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displaying image fields, so you would have to verify this using your web browser and a List 
Details or Blank view.

Moving actions

As you design data macros or user interface macros in the Logic Designer, you might find 
that you need to move actions around as the needs of your application change. In the On 
Insert event for the tblEmployees table you’ve been working on, it would be good to add 
in some comments for the extra actions you just finished. As with many areas of Access, 
there is usually more than one way to accomplish a task. You could drag a Comment block 
from the Action Catalog onto the macro design surface, or you could add comments any-
where on the macro design surface and then move them into different positions. The Logic 
Designer makes the task of moving data blocks, data actions, and all other elements around 
the macro design surface very easy.

Open the tblEmployees table in Design view if you closed it, click the Design contextual 
ribbon tab under Table Tools, and then click the On Insert button in the Events group. You 
should now see the data macro that you created previously for saving a default picture 
graphic for each new employee record if you don’t provide one. Click into the Add New 
Action combo box at the bottom of the macro design surface, type Comment, and then 
press Enter to add a new Comment block to the macro design surface. Type the following 
text into the Comment block to identify one of the tasks in this data macro:

It is Null so lookup the default image in tblImageFiles and set a local variable to the 
picture.

Add one more new Comment block as well to the bottom of the macro design surface 
using the same technique, and then type the following text into this new block:

Now update the EmployeePicture field with that image data.

Your macro logic should now match Figure 4-29.
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Figure 4-29 Your macro logic should now have two Comment blocks at the bottom of the 
macro design surface.

We want to move the first Comment block above the LookupRecord block and below the 
If condition line. To move the first Comment block you just added, click anywhere on the 
Comment block, hold the mouse key down, drag the Comment block up above the Looku-
pRecord block until Access displays a horizontal bar above the LookupRecord block, as 
shown in Figure 4-30, and then release the mouse.
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Figure 4-30 Drag the Comment block up above the LookupRecord block.

Access places the Comment block inside the If block and above the LookupRecord block. 
Instead of using the drag technique, you could also click the up arrow button on the far 
side of the Comment to move it up into the correct position. When you click the up arrow 
button, Access moves the selected action up one position in the macro design surface. In 
our example, it would take seven clicks of the up arrow to move the first Comment block 
action up above the LookupRecord block.

INSIDE OUT Creating a duplicate copy of logic

To duplicate any logic on the macro design surface, you can hold the Ctrl key down and 
then drag to a different location. Access creates an exact copy of the program flow con-
struct, data block, or data action, including any argument information .

You might find it easier to use the keyboard rather than the mouse to move actions around 
the macro design surface. Table 4-2 lists the keyboard shortcuts for working inside the 
Logic Designer.
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TABLE 4-2 Keyboard shortcuts for logic designer

Keys Action

Ctrl+F2 Opens the Expression Builder dialog box if you are in an 
expression context

Ctrl+Space Calls up IntelliSense in expression contexts
Ctrl+Up arrow Moves selected action up
Ctrl+Down arrow Moves selected action down
Shift+F2 Opens the Zoom Builder dialog box
Shift+F10 Opens a context-sensitive shortcut menu
Left arrow Collapses action
Right arrow Expands action

Now that you’ve moved the first new Comment block to the correct position, let’s move 
the last Comment block as well. Highlight the Comment block at the bottom of the macro 
design surface, hold the mouse key down, drag the Comment block up above the  
EditRecord, and then release the mouse. Your completed data macro should now look like 
Figure 4-31.

Figure 4-31 Your data macro should now look like this after you move the last Comment block.
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You’ve now successfully revised the data macro logic by adding in more Comment blocks 
and moving them around the macro design surface. You’ve completed all the steps neces-
sary to ensure that every new employee record added to this table contains an image in 
the EmployeePicture field. If the user creating a new employee record provides an image 
for the EmployeePicture field, Access evaluates the If block condition as False and then 
takes no action. If the new record does not contain an image for the EmployeePicture 
field, Access reads the contents of the tblImageFiles table and copies an image from that 
table into the new employee record. Save your changes, and then close the Logic Designer 
window.

Studying other On Insert events

The Back Office Software System sample web app includes On Insert events attached to 
other tables besides the two examples you’ve already seen. You can explore the data  
macros attached to these events for additional examples.

●● tblAppointments. Syncs two time display fields with values from the  
tblTimeLookups table. This breaks normalization, but it is needed to work around 
some user interface limitations.

●● tblCompanyInformation. Prevents additional records from being added to this  
system table.

●● tblEmployees. Ensures that each new employee record contains an employee  
picture. Uses LookupRecord to insert a default image if no picture exists.

●● tblInventoryLocations. Finds the next highest sort order number and sets the  
SortOrder field to that value for the new record.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice 
details after each new record is created. Uses a RunDataMacro action to execute a 
named data macro and passes in a parameter with each new record.

●● tblLaborPlanDetails. Syncs two time display fields with values from the  
tblTimeLookups table. This breaks normalization, but it is needed to work around 
some user interface limitations.

●● tblSchedule. Syncs two time display fields with values from the tblTimeLookups 
table. This breaks normalization, but it is needed to work around some user interface 
limitations.

●● tblSettings. Prevents additional records from being added to this system table.

●● tblTerminations. Whenever a new termination record is created for an employee, 
this data macro marks the employee record as inactive. The data macro logic looks 
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up the employee’s record in the tblEmployees table and sets the Boolean Active field 
to False for that specific employee.

●● tblTimeLookups. Prevents additional records from being added to this system 
table.

●● tblTrainedPositions. Ensures that each employee has only one trained position 
marked as their primary position. Uses a RunDataMacro action to execute a named 
data macro and passes in two parameters with each new record.

●● tblWeekDays. Prevents additional records from being added to this system table.

Using On Update events
The On Update event fires whenever Access completes the operation of committing 
changes to an existing record in a table. In the tblTerminations table, I have a data macro 
defined in the On Insert event to mark an employee’s Active field to False whenever I cre-
ate a termination record. In Figure 4-32, you can see the data macro logic for the On Insert 
of the tblTerminations table. When you create a new termination record in the Back Office 
Software System web app, Access looks up the corresponding employee’s record in  
tblEmployees using the LookupRecord data block and then changes the Yes/No Active field 
in that table to No using EditRecord and SetField.

Figure 4-32 The On Insert event of tblTerminations includes logic to mark an employee inactive.

However, what happens if we accidentally select the wrong employee when we save the 
new termination record? We now have a situation where two employee records are inac-
curate. We have one employee marked as inactive, which shouldn’t be the case, and 
another employee still marked as active even though he or she should not be active. To fix 
this discrepancy manually, you would need to change the data in the existing termination 
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record to use the correct employee, change the Active field of the employee’s record to Yes 
for the employee to whom you first assigned the termination record, and also change the 
Active field to No for the employee who now has the termination record assigned to him or 
her. Instead of doing all these steps manually, we can use the On Update event to fix both 
employee records.

Open the tblTerminations table in Design view. Next, click the Design contextual tab under 
Table Tools, and then click the On Update button in the Events group to open the Logic 
Designer, as shown in Figure 4-33.

Figure 4-33 Click the On Update button on the ribbon to examine the On Update event of the 
tblTerminations table.

The data macro logic for the On Update event is as follows:

Comment Block: If we are modifying an existing termination record, one of two 
possibilities exist: 1. The Employee that this termination is for remains unchanged - 
Scenario is just updating some data for the termination record. 2. The Employee that 
this termination is assigned to changed - Scenario here is that when the record was 
first created, it might have been assigned to the wrong employee. In this case the 
user is assigning this to a different employee. 
Comment Block: Check to see if the Employee field was changed. 
If Update([EmployeeIDFK]) Then 
  Comment Block: The Employee field changed so we'll change the existing employee's 
  status back to Yes. 
  Comment Block: For the Where condition in this LookupRecord, use the Old value from 
  the EmployeeIDFK field and find that employee's record. 
  Look Up A Record In tblEmployees 
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    Where Condition = [tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK] 
      EditRecord 
        Comment Block: Now set Active field to Yes for this employee since it was 
        probably initially assigned to the employee in error. 
        SetField 
          Name: [tblEmployees].[Active] 
          Value: Yes

      End EditRecord 
End If 
Comment Block: After modifying this termination record, make sure the employee that 
it's assigned to now is marked as an inactive employee. To do that, we look up the 
matching employee's record in the tblEmployees table and set the Active field to No. 
Look Up A Record In tblEmployees 
    Where Condition = [tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK] 
      EditRecord 
        Comment Block: Now set Active field to No. 
        SetField 
          Name: [tblEmployees].[Active] 
          Value: No

      End EditRecord

The first part of the data macro includes two Comment blocks to indicate the purpose of 
this event. Next, I use an If condition using the Update function to see whether the  
EmployeeIDFK field changed. The Update function takes one argument, a field name, and 
returns True if the field is dirty and returns False if the field is not dirty during the record 
update. For this On Update data macro, I can use the Update function in a conditional 
expression to test whether a user is attempting to change the value of the EmployeeIDFK 
field. If the EmployeeIDFK field changed, I know the user is assigning this existing termina-
tion record to a different employee. I then go into a LookupRecord data block and use 
the tblEmployees as the source. In the Where condition argument for the LookupRecord 
data block, I want to look up the EmployeeID in the table that matches the EmployeeIDFK 
field found in the tblTerminations table that Access is committing. When Access finds the 
matching record, it enters into the EditRecord block. Whenever you want to change data in 
another table in data macro events, you must use the SetField action inside an  
EditRecord block. For this example, I want to change the Active field of the matching 
employee to No to indicate that he or she is no longer an active employee in the app. In 
the Name argument for the SetField action, I use the table and field name, tblEmployees 
and Active, respectively, for the LookupRecord block. My Where condition argument for the 
LookupRecord uses the Old property. The Old property returns the value of the field before 
Access changed its value in the process of saving the record. My Where condition argument 
is therefore the following:

[tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK]
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To help understand this concept, imagine the value of the EmployeeIDFK field is currently 
13, the record for Mario Kresnadi, in the existing termination record. If you change the 
EmployeeIDFK field to Jeff Conrad, EmployeeID of 31, the Old value for that field is 13 and 
the new value after saving the record is 31. By referencing the Old value of the  
EmployeeIDFK field, I can determine which employee this termination record used to be 
assigned to. (There is no New property available when creating data macros because the 
new value is simply the committed value of the field, and you can refer to it by using the 
field name.)

After Access finds the EmployeeIDFK that the termination record used to be assigned to, 
I use a SetField data action to set the Active status of that employee back to Yes. It’s my 
assumption that if the user is assigning the termination record to a different employee, I’ll 
error on the side of caution and assume this employee’s status should be changed back to 
Yes.

The first part of the data macro logic is inside an If block. Based on the logic, if the user 
did not change the EmployeeIDFK field, Access does not change anything in the first part 
of the data macro. The second part of the On Update event is outside the If block, which 
means this part of the data macro logic runs every time a user changes anything about a 
termination record. I use another LookupRecord data block to look up a different employee 
record in the employee table. In this case, the Where condition argument is the following:

[tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK]

This time, Access looks for the EmployeeID in the table that matches the now-committed 
value in the EmployeeIDFK field in the tblTerminations table. In the previous example, this 
means Access looks for the EmployeeID of Jeff’s record, which is 31. Finally, I set the Active 
status of that employee’s record to No because this termination record is now assigned to 
that employee.

To test this On Update event, close the Logic Designer window by clicking the Close but-
ton in the Close ribbon group. Open the tblTerminations table in Datasheet view now by 
right-clicking the tblTerminations object tab in the application window and selecting Open 
from the shortcut menu or clicking the View button in the Views ribbon group and select-
ing Datasheet view from the drop-down menu. Find the existing termination record in this 
table—the one assigned to Mario Kresnadi. Tab over to the EmployeeIDFK for this record 
(the datasheet caption of the field displays Employee), type Conrad into the control where 
it currently says Mario Kresnadi, and then select Jeff Conrad from the drop-down list of 
employee names displayed in the EmployeeIDFK field, as shown in Figure 4-34. Now, click 
or tab off the record, and Access saves the record with Jeff Conrad’s EmployeeIDFK number.
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Figure 4-34 Change the EmployeeIDFK field from Mario Kresnadi to Jeff Conrad, and then save 
the record.

The control in the datasheet shown in Figure 4-34 for the EmployeeIDFK field is an autocom-
plete control, which is new in Access 2013 . You’ll learn more about this control in Chapter 6, 
“Working with views and the web browser experience .”

To see the effects of this On Update event, open the tblEmployees table in Datasheet view 
by right-clicking the tblEmployees object in the Navigation pane and selecting Open from 
the shortcut menu. After you have the tblEmployees table open in datasheet view, scroll 
down to the record for the employee record for Mario Kresnadi. You’ll notice that the 
Active field for Mario Kresnadi is now set to Yes, as shown in Figure 4-35. You’ll also notice 
that Jeff Conrad’s record shows his Active status is now set to No. In Figure 4-35, Mario’s 
record is the record at the top (the highlighted record) and Jeff’s record is at the bottom 
(where the mouse cursor is pointing).
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Figure 4-35 Access changes the Active field for both Jeff’s and Mario’s records from the On 
Update event of the tblTerminations table.

With the data macro logic that we have defined in the On Update event, Access automati-
cally maintains the Active status of the employee records. If the user assigns the termination 
record to a different employee, Access changes the Active status of two different employ-
ees. If the user changed information other than the EmployeeIDFK field, Access marks that 
employee as inactive again just to be safe.

The Back Office Software System sample web app includes On Update events attached to 
ten tables. You can explore the data macros attached to these events for additional exam-
ples of using the On Update event.

●● tblAppointments. Syncs two time display fields with values from the  
tblTimeLookups table. This breaks normalization, but it is needed to work around 
some user interface limitations. It uses the Update function to determine whether  
the time fields changed.

●● tblEmployees. Ensures that each employee record contains an employee picture. 
Uses Update function and LookupRecord to insert a default image if you remove the 
existing employee picture.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice 
details after any record changes. Uses a RunDataMacro action to execute a named 
data macro and passes in a parameter with each record update.
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●● tblInvoiceHeaders. Checks to see whether the invoice is balanced with the invoice 
details but only if the InvoiceTotal field is changed by using the Update function. 
Uses a RunDataMacro action to execute a named data macro and passes in a param-
eter with each record update.

●● tblLaborPlanDetails. Syncs two time display fields with values from the  
tblTimeLookups table. This breaks normalization, but it is needed to work around 
some user interface limitations. It uses the Update function to determine whether the 
time fields changed.

●● tblSchedule. Syncs two time display fields with values from the tblTimeLookups 
table. This breaks normalization, but it is needed to work around some user inter-
face limitations. It uses the Update function to determine whether the time fields 
changed.

●● tblTerminations. Ensures that the correct employee records are marked as active 
or inactive if the existing record is assigned to a different employee.

●● tblTimeLookups. Prevents any changes to existing records in this system table.

●● tblTrainedPositions. Ensures that each employee has only one trained position 
marked as their primary position. Uses a RunDataMacro action to execute a named 
data macro and passes in two parameters with record change.

●● tblWeekDays. Prevents any changes to existing records in this system table.

Using On Delete events
The On Delete event fires whenever Access attempts the operation of deleting a record 
from the table. There are many entry points for deleting a record when you are working 
with Access web apps. For example, you can delete a record in a table or query datasheet 
from within Access, you can run a named data macro that deletes a record, you can delete 
a record when using a view in your web browser, or you can delete records using user inter-
face macros. When you attach a data macro to the On Delete event, Access runs the data 
macro logic no matter where the entry point is for deleting a record.

Earlier in the chapter, you created a data macro attached to the On Insert event of the 
tblWeekDays system table for the Back Office Software System sample web app data copy 
(BOSSDataCopy.app). The data macro you created prevents any additions to this sys-
tem table. There is data macro logic attached to the On Update event that prevents any 
changes to the existing data as well. You can also lock tables down further by preventing 
any records from being deleted by using a data macro attached to the On Delete event.
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For this example, open the tblCompanyInformation table in Datasheet view, click the 
Design contextual tab under Table Tools, and then click the On Delete button in the Events 
group to open the Logic Designer, as shown in Figure 4-36. This table contains only one 
record to hold important company information. We don’t want any new records added to 
this table, and we also don’t want to delete the existing record.

Figure 4-36 Click the On Delete button on the ribbon to open the Logic Designer.

We should first add a Comment block to this data macro so that anyone looking at it can 
understand the purpose of the logic in this On Delete event. You should now be familiar 
with the different methods of adding a new Comment block to the macro design surface. 
Drop a new Comment block onto the macro design surface, and enter the following text:

Don’t allow the default record to be deleted.

Now add a RaiseError data action below the Comment block. For the Error Description 
argument, enter the following text:

You cannot delete the record from this system table; it is used in other areas of the 
application.

Your completed changes to the On Delete event should match Figure 4-37.
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Figure 4-37 Your completed On Delete event logic should match this.

Seems almost too simple doesn’t it? Simple, yes, but completely effective. We don’t need to 
test for any special conditions for our scenario; we just need to throw an error if this event 
ever occurs. To try this, save the changes to this data macro by clicking the Save button 
in the Close group or the Save button on the Quick Access Toolbar. Next, close the Logic 
Designer window by clicking the Close button in the Close group. Finally, click the record 
selector next to the existing record in the tblCompanyInformation table in Datasheet view 
and press Delete. Access first displays a confirmation dialog asking you to confirm that you 
want to delete the record. Click Yes to confirm the deletion, and then Access displays the 
custom message in the RaiseError data action, as shown in Figure 4-38.

Figure 4-38 When you attempt to delete a record in the tblCompanyInformation table, Access 
displays your error message.
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Note
In the On Delete event example we just discussed, the tblCompanyInformation table 
contains no relationships to other tables . If you have a Restrict Delete relationship 
enforced on any related tables, such as the tblWeekDays table has with other tables, 
Access prevents deletes and displays an internal message about not being able to delete 
the record . In this case, Access does not even show your On Delete RaiseError message . 
You might be asking why this is even necessary to put an On Delete data macro to pre-
vent deletes if a Restrict Delete relationship is enforced on any related tables . You are 
correct that Access prevents deletes in this case; however it is possible that for a specific 
record in tblWeekDays, no related records exist in the other tables . In that case, a user 
could still delete a record from a static table that you don’t want modified. Also, you 
might have other tables in your web app that do not have relationships with other tables 
and want to prevent any records from being deleted . Both the tblCompanyInformation 
and tblSettings tables in the Back Office Software System sample web app are two such 
examples where no relationships exist with other tables, but I want to prevent any record 
deletions .

The Back Office Software System sample web app includes On Delete events attached to 
other tables that use this same technique to prevent records from being deleted as well as 
other scenarios involving updating other tables when you delete records. You can explore 
the following data macros attached to these events for additional examples of using the On 
Delete event.

●● tblCompanyInformation. Prevents deletion of existing records.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice 
details after any record changes. Uses a RunDataMacro action to execute a named 
data macro and passes in a parameter with each record update. Uses the Old prop-
erty to determine the ID of the invoice during the delete and passes that into the 
named data macro.

●● tblSettings. Prevents deletion of existing records.

●● tblTerminations. Ensures that the employee record is marked as active when 
deleting the termination record. Uses the Old property to determine the ID of the 
employee during the delete and finds the correct record using a LookupRecord data 
block.

●● tblTimeLookups. Prevents deletion of existing records.

●● tblWeekDays. Prevents deletion of existing records.

218 Chapter 4 Creating data macros in web apps



Ch
ap

te
r 4

Deleting table events
If you want to delete a table event in a web app, you’ll have to manually delete all of the 
data macro logic yourself. In Chapter 22, you’ll learn that desktop databases include a dia-
log where you can quickly view all of the table events attached to tables in your applica-
tion and delete any table event using this dialog. However, Access 2013 web apps do not 
include a similar type of dialog. To delete a table event in a web app, you need to open the 
table in Design view, delete each program construct, data block, and data action, and then 
save and close the Logic Designer. When you remove everything from the macro design 
surface for the specific table event, Access no longer executes that table event. Although it 
might seem tedious to delete each element on the macro design surface one by one, you 
can select everything currently displaying on the macro design surface by pressing Ctrl+A, 
as shown in Figure 4-39. When you have all data macro logic selected, press the Delete key 
to remove all logic from the macro design surface in one quick step. Now that you have 
everything removed, you can then save and close the Logic Designer.

Figure 4-39 You can highlight all data macro logic in a table event and press Delete to quickly 
remove a table event.
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Working with named data macros
So far in this chapter, you’ve been studying data macros attached to specific table events. 
Access also supports creating named data macros in web apps. A named data macro 
appears in the Navigation pane under the Macros group and is not attached directly to 
a specific table event. Named data macros in web apps execute only when called from 
another data macro or a user interface macro. Logic that is in a named data macro can 
interact with data in any table, require parameters before executing, and return data to the 
calling data macro or user interface macro. The Back Office Software System sample web 
app includes more than a dozen named data macros in the Navigation pane. In the next 
sections, you’ll explore a few of these named data macros, as well as create a new named 
data macro.

Creating named data macros
In the Back Office Software System sample data copy web app (BOSSDataCopy.app), a table 
called tblTrainedPositions is used to track all the job positions each specific employee is 
trained to perform. A multiple-field index on this table ensures that each employee can-
not be listed as trained in the same job position more than once. However, we also want to 
ensure that each employee has only one position marked as their primary job position. We 
can create a named data macro for this purpose, which can then be called from other areas 
of the app. To accomplish this goal, we’ll create a new named data macro not attached 
to any table event and then call this named data macro from both the On Insert and On 
Update events of the tblTrainedPositions table. 

Open the BOSSDataCopy.app sample web app within Access by downloading it from the 
Access Services site if you’ve closed the app. Now click the Advanced button in the Create 
group on the Home ribbon, and then click the option called Data Macro in the drop-down 
list, as shown in Figure 4-40.
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Figure 4-40 Click the Data Macro option under the Advanced button to start creating a new 
named data macro not attached to any table.

In Chapter 5, “Working with queries in web apps,” you’ll learn how to use the Query option in 
the drop-down list under the Advanced button in the ribbon . In Chapter 7, “Advanced view 
design,” you’ll learn how to work with the Blank View, List View, and Datasheet View options 
in this drop-down list. Finally, in Chapter 8, “Automating a web app using macros,” you’ll learn 
how to use the Macro and On Start Macro options under the Advanced button .

Access opens the Logic Designer with an empty macro design surface, as shown in Figure 
4-41. You’ll notice several differences on the macro design surface immediately that you 
did not see when creating data macros attached to table events in the preceding sections. 
When you’re creating named data macros, the Logic Designer window is not modal. What 
this means is that you can see the Navigation pane and the App Home View, and you can 
interact with other objects without having to close the Logic Designer. Also, at the top of 
the macro design surface, you can see a section called Parameters. Named data macros 
allow you to create parameters, which you can use to pass information into the data macro. 
Creating parameters for named data macros is optional, but Access always displays the 
Parameters block at the top of the macro design surface whenever you are working with 
named data macros. The list of program flow constructs, data blocks, and data actions that 
you can use in named data macros is the same for table events except with the addition of 
one more data action called SetReturnVar. (We’ll discuss the SetReturnVar action later in this 
chapter.) See Table 4-1 if you want to review the list of elements available in table events.
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Figure 4-41 When you create named data macros, Access displays a Parameters block at the top 
of the macro design surface.

Let’s first add a couple of Comment blocks to this named data macro to document its pur-
pose. Drag a Comment block from the Action Catalog onto the macro design surface. Enter 
the following text into the new Comment block:

In this named data macro we want to make sure that only one job code is marked 
as the primary position for a specific employee. It is OK to not have any assigned 
primary positions for an employee but we do not want multiple primary positions 
defined.

Drag another Comment block onto the macro design surface below the first one, and enter 
the following text into this second Comment block:

This named data macro will run on the On Insert and On Update event for the tbl-
TrainedPositions table. The employee and job code of the new or updated record 
will get passed in as parameters here. In the Where condition we will skip over the 
newly added or updated record and only touch the possible one other record that is 
marked as the primary position for the specific employee.

These two Comment blocks should give you an idea already of the type of logic we need to 
add to this named data macro as well as the reasoning behind the logic we will add.
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Using parameters
In named data macros, you can define parameters to pass in information to the named 
data macro and use them in the data blocks and data actions. With parameters, you can 
pass in information to the named data macro from other data macros, views, and user 
interface macros. In the Back Office Software System sample web app, many of the named 
data macros include parameters. For the named data macro you are currently creating, we 
need to define two parameters—one for the employee we want to check and the second 
for the job code of the current record.

To create a new parameter in a named data macro, click the Create Parameter link on the 
right side of the macro design surface, as shown in Figure 4-42. You need to select the 
Parameters section to see the Create Parameter link. Access expands the Parameters section 
at the top of the macro design surface and inserts one new row for a parameter.

Figure 4-42 Click the Create Parameter link to create new parameters in named data macros.

Each parameter takes three arguments:

●● Name.  Required argument. The name of the parameter you want to use to refer to 
during named data macro execution.

●● Type. Required argument. The data type that Access uses to define the parameter.

●● Description. Optional argument. A description for you to document the purpose of 
the parameter.

For the Name argument, you can enter a name up to 64 characters. The restrictions for 
naming parameters are the same as for local variables, which you learned about earlier in 
this chapter. In this example, enter ParamEmployeeID into the Name argument, which 
we’ll use to denote the ID of the employee to search for in the named data macro. For 
the Type argument, you can choose from one of ten data type options—Short Text, Long 

 Working with named data macros 223



Chapter 4

Text, Number (Floating Decimal), Number (No Decimal), Number (Fixed Decimal), Date 
With Time, Date, Time, Currency, or Yes/No. In this example, select Number (No Decimal) 
from the drop-down list of data type options. The employee ID values that we will be pass-
ing into this named data macro should not have any decimal places, because they are ID 
values, so the Number (No Decimal) data type should suffice for this named data macro 
parameter. For the Description argument, enter Employee ID record to look for into the 
text box to describe the purpose of this parameter value. Your completed changes for the 
first parameter should now match Figure 4-43.

Figure 4-43 Enter the parameter information into the three arguments.

We need to define one additional parameter for this named data macro to track the job 
code ID of the record just created (the On Insert case) or the record just updated (the 
On Update case). To define another parameter, click the Create Parameter link again on 
the right side of the macro design surface in the Parameters section. Access inserts a new 
parameter row beneath the existing one. For this second parameter, enter  
ParamJobCodeID in the Name text box, select Number (No Decimal) from the drop-down 
list in the Type argument, and enter Job Code ID to ignore in the Description text box. 
Your completed two parameters should match Figure 4-44.
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Figure 4-44 You should have two completed parameters defined in the new named data macro.

Note
If you need to delete an existing parameter, click the delete button to the far right side 
of the specific Parameter row. The delete button has a symbol shaped like an X.

Now that you’ve defined the two parameters we need, it’s time to add the actions neces-
sary to perform our task. In this named data macro, we want to loop through records in the 
tblTrainedPositions table looking for specific records. You’ve previously seen how the Look-
upRecord data block searches for a specific record in a table or saved query. In this case, we 
need to use the ForEachRecord data block to search through more than one record poten-
tially. Drag a ForEachRecord data block from the Action Catalog to beneath the two Com-
ment blocks, or select ForEachRecord from the Add New Action box at the bottom of the 
macro design surface. Access creates a new ForEachRecord block, as shown in Figure 4-45.
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Figure 4-45 Drag a ForEachRecord data block onto the macro design surface.

The ForEachRecord data block takes four arguments:

●● For Each Record In. Required argument. The name of a table or query to look up a 
record in.

●● Where Condition. Optional argument. The expression that Access uses to select 
records from the table or query.

●● Update Parameters. Optional argument. If you’re looking up records in a query 
that requires parameters, you can provide them here.

●● Alias. Optional argument. A substitute or shorter name for the table or query.

The only required argument for the ForEachRecord data block is For Each Record In. Access 
provides a drop-down list for this argument that includes the names of all tables and saved 
query objects in your web app. If you want Access to find a subset of specific records in 
the specified table or query, you must provide a valid Where clause expression to find the 
records. If you leave the Where Condition argument blank, Access loops through all records 
in the specified table or query. You can click the button with the magic wand on it to open 
the Expression Builder to assist you with creating a Where clause if you’d like. 

The Update Parameters and Alias optional arguments are accessible through two links 
below the Where Condition argument on the right side. When you click these links, 
Access displays additional text boxes for you to enter these arguments. If you are run-
ning a ForEachRecord data block against a table, clicking the Update Parameters link does 

226 Chapter 4 Creating data macros in web apps



Ch
ap

te
r 4

nothing, because tables do not contain parameters. If you are using a query for your data 
source that includes parameters, you can update the parameters using this link.

The tblTrainedPositions table contains one record for each job code that a specific 
employee is trained to perform. Each employee could have multiple records in this table. 
In an extreme case, one employee could be trained in every position in the restaurant, so 
that person could have one record in the tblTrainedPositions table for each job code in 
the app. The PrimaryPosition field in this table is a Yes/No data type that denotes whether 
the specific job code is the employee’s primary position. In this scenario, we need to use 
the ForEachRecord data block instead of the LookupRecord data block to search over each 
record for a specific employee, so click inside the For Each Record In argument and select 
tblTrainedPositions from the drop-down list.

To make sure we are searching for all correct matches in the tblTrainedPositions table, we 
need to utilize the values passed in from the parameters in the Where condition argument. 
The final expression I used to accomplish this task, which you’ll build in a moment, is as 
follows:

[tblTrainedPositions].[EmployeeIDFK]=[ParamEmployeeID] And [tblTrainedPositions].
[JobCodeIDFK]<>[ParamJobCodeID] And [tblTrainedPositions].[PrimaryPosition]=Yes

This expression contains three distinct clauses all joined together with AND operators. In 
the first part of the expression, we are trying to find all records where the EmployeeIDFK 
field in tblTrainedPositions matches the parameter ParamEmployeeID that we will pass in 
to this named data macro. Enter the first part of this expression into the Where condition 
argument. When you start typing the parameter name, IntelliSense helps you along and 
displays all parameter names so that you can easily see and select the parameter name that 
holds the employee ID value, as shown in Figure 4-46.
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Figure 4-46 IntelliSense provides parameter names when you are building expressions in named 
data macros.

After you type the first part of the expression, add a space, type And, and then enter the 
second part of the expression: 

[tblTrainedPositions].[JobCodeIDFK]<>[ParamJobCodeID]

In the second part of this expression, we are instructing Access to exclude records where 
the JobCodeIDFK field matches the parameter ParamJobCodeID that we will pass in to this 
named data macro. You might be wondering why we want to do this. As you’ll learn in the 
next few sections, whenever we create new records in this table or update existing ones, 
we will pass in the job code of the record just created or the record just updated but only 
if that record is designated to be the primary position. Because this new or revised record 
will now be the primary position, there is no need to inspect this current record during the 
ForEachRecord loop.

After you type the second part of the expression, add a space, type another And, then 
enter the last part of the expression: 

[tblTrainedPositions].[PrimaryPosition]=Yes

In the last part of this expression, we are instructing Access to include only records where 
the PrimaryPosition Yes/No field equals Yes. During the ForEachRecord loop, Access could 
find several records for the employee we are looking for. We really need to identify only 
records where the PrimaryPosition field is already Yes, so we can then mark those records as 
No in the PrimaryPosition field because a user just created a new primary position record 
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or updated an existing record. This will all make sense when we complete all the tasks later 
in this section.

Now that you have the correct expression in place for the Where condition argument, we 
need to add one last step in this named data macro to update the PrimaryPosition field to 
No for any records Access finds during the ForEachRecord loop. To update the field, you 
need to use the SetField data action inside an EditRecord data block. Click inside the Add 
New Action combo box inside the ForEachRecord data block, type EditRecord, and then 
press Enter. Access adds a new EditRecord data block onto the macro design surface inside 
the ForEachRecord block. Next, click inside the Add New Action combo box inside the 
EditRecord data block, type SetField, and then press Enter to add this new action to the 
macro design surface. Finally, in the Name argument for the SetField action, enter  
[tblTrainedPositions].[PrimaryPosition] and No into the Value argument. Your com-
pleted changes to the named data macro should now match Figure 4-47.

Figure 4-47 Your named data macro to maintain only one primary trained position should now 
look like this.
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Note
You might be wondering why I used a ForEachRecord data block in the named data 
macro, given that the expression in the Where condition argument should return only 
one record. You’re correct that Access should find only one record based on the logic I’ve 
put in place . I’m being extra careful to make sure that only one job position is marked as 
the primary position by using a ForEachRecord data block to cover the off chance that 
two records for a specific employee are marked as primary positions.

Saving named data macros
You’ve completed creating your first named data macro, but now you need to save it and 
give it a name. Unlike data macros attached to table events, named data macros require 
you to provide a unique name. To save your new named data macro, click the Save button 
on the Quick Access Toolbar. Access opens the Save As dialog box, as shown in Figure 4-48. 
Save the named data macro with the name dmEnforceOnlyOnePrimaryPosition.

Figure 4-48 Provide a unique name for your new named data macro in the Save As dialog box.

If you attempt to save a named data macro with the same name as an existing named data 
macro in the Navigation pane, Access displays an error message, as shown in Figure 4-49.

Figure 4-49 Access displays an error message if you try to save a named data macro with the 
same name as an existing named data macro.

Calling named data macros
I mentioned earlier that named data macros must be called for Access to execute them. 
If you want to test out a named data macro, you must therefore call a RunDataMacro 
action from a table event or from a user interface macro. In Chapter 8, you’ll learn how to 
call named data macros from user interface macros and in Chapter 25, “Automating your 
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desktop database with Visual Basic,” which can be downloaded from the book’s catalog 
page, you’ll learn how to call named data macros from Visual Basic.

Close the Logic Designer, if you still have it open, and then open the tblTrainedPositions 
table in Design view. We need to call the named data macro in both the On Insert and On 
Update events, so let’s begin with the On Insert event. Click the On Insert button in the 
Events group on the Design contextual tab to open the Logic Designer. Start by adding 
a new Comment block to the macro design surface, and enter the following text into the 
Comment block:

After we commit this new record we need to make sure we do not have more than 
one primary position designated for the same employee. Run the named data macro 
if this new record is marked as primary to clear out any other possibilities.

When you enter a new record in the tblTrainedPositions, we don’t need to run the named 
data macro if you set the PrimaryPosition field to No. Remember, we want to enforce only 
one primary position so that if the new record is not set as a primary position, we don’t 
need to do any extra work. To account for this possibility, add an If block beneath the Com-
ment block onto the macro design surface. In the conditional expression text box, enter 
[tblTrainedPositions].[PrimaryPosition]=Yes. Access does not run the next action we add 
inside the If block if the new record has the PrimaryPosition field set to No.

To call the named data macro to run, you need to use the RunDataMacro action. Click in 
the Add New Action combo box inside the If block, type RunDataMacro, and then press 
Enter. Access displays the RunDataMacro on the macro design surface, as shown in Figure 
4-50.

Figure 4-50 Add a RunDataMacro action inside the If block.

The only required argument for the RunDataMacro data action is Macro Name. Access 
provides a drop-down list for this argument that includes the names of all saved named 
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data macros in your web app. Click in the Macro Name box, and select the named data 
macro you created earlier from the drop-down list—dmEnforceOnlyOnePrimaryPosition. 
After you select the named data macro, Access displays the parameters you defined earlier 
in the named data macro. Access displays the two parameters in the underlying named 
data macro—ParamEmployeeID and ParamJobCodeID—as parameter boxes at the bot-
tom of the action, as shown in Figure 4-51. You can enter a value you want to use for each 
parameter by typing the value into the parameter box or using an expression to derive that 
parameter value.

Figure 4-51 Access displays Parameter boxes on the macro design surface for any named data 
macros that require parameters.

The two parameters we need to pass into the named data macro come directly from  
the record Access just inserted. In the ParamEmployeeID parameter text box, enter  
[tblTrainedPositions].[EmployeeIDFK], and in the ParamJobCodeID parameter text box, 
enter [tblTrainedPositions].[JobCodeIDFK], as shown in Figure 4-52. When you create 
a new record in this table and set the PrimaryPosition field to Yes, Access takes the data 
stored in the EmployeeIDFK and JobCodeIDFK fields and passes those values into the 
named data macro you created earlier. Click Save in the Close group on the Design contex-
tual tab, or click the Save button on the Quick Access Toolbar to save your changes to this 
On Insert table event but leave the Logic Designer window open.
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Figure 4-52 Enter field names into the parameter boxes in the RunDataMacro action.

We also need to add the same data macro logic to the On Update event of the  
tblTrainedPositions as well account for users of the app changing existing records. You 
should be very familiar now with adding data blacks, data actions, and filling in param-
eters in data macros manually, but this time we’ll use a different technique. Because the 
logic currently showing in the On Insert event is the same as what we want to add to the 
On Update event, we can simply copy the data macro logic to the Windows Clipboard 
and then paste the contents into the On Update event. To do this, click inside the Logic 
Designer on the macro design surface, away from any commands, and then press Ctrl+A  
to highlight all of the logic currently showing in the On Insert table event, as shown in  
Figure 4-53.

Figure 4-53 Press Ctrl+A to highlight all the data macro logic on the macro design surface.
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Now that you have all the data macro logic highlighted, press Ctrl+C to copy all the Com-
ment blocks, data blocks, and data actions to the Windows Clipboard. Next, click Close in 
the Close group on the Design contextual tab to close the On Insert table event. You should 
see the tblTrainedPositions table still open in Design view. Click the On Update button in 
the Events group on the Design contextual tab to open the Logic Designer window for 
this table event. Finally, click anywhere on the macro design surface and then press Ctrl+V. 
Access pastes all the data macro from the Windows Clipboard onto the macro design sur-
face, as shown in Figure 4-54. As you can see, copying and pasting the data macro logic 
from the On Insert event to the On Update event using this technique is much faster than 
adding all of the actions manually one by one.

Figure 4-54 Press Ctrl+V to paste all the data macro logic from the Windows Clipboard into the 
On Update event of the tblTrainedPositions.

To test out the named data macro, save the changes to this On Update event and then 
close the Logic Designer. Switch to Datasheet view for the tblTrainedPositions table by click-
ing the View button in the Views group on the Design contextual tab, and then click Data-
sheet view on the drop-down menu. The first three records in this table display the trained 
positions for the employee with the last name of Sousa, as shown in Figure 4-55.
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Figure 4-55 In Datasheet view, you can see each trained position for the employees in the web 
app.

In Figure 4-55, you can see that the employee named Sousa is trained to be a Busser, a 
Line Server, and a Cashier-Hostess, with their primary position being the Line Server posi-
tion. Change this employee’s primary position to Busser by clicking into the first record 
and selecting the Primary Position check box, and then tab or click into a different record 
to commit the record update. Initially, you won’t see any changes in any other records 
because Access caches the data locally. To see the most recent updates to other records, 
click the Refresh button in the Records group on the Datasheet contextual tab. (If you were 
using a view within your web browser, you would see the changes refreshed in the records.)

You’ll now notice Access changed the second record after you updated the first record, as 
shown in Figure 4-56. Access automatically ran the named data macro after you changed 
the PrimaryPosition field to Yes in the first record. Access passed in the employee ID for 
Sousa, passed in the job code ID for the Line Server position, and then updated the second 
record by changing the PrimaryPosition in that record to No to maintain our goal of only 
one primary position for each employee. Access also runs the same named data macro 
whenever you add new records to this table and set the PrimaryPosition to Yes.
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Figure 4-56  Access runs the named data macro after you update any record in the  
tblTrainedPositions table.

Renaming and deleting named data macros
When you need to rename or delete named data macros, you must do so from the Naviga-
tion pane. If you want to rename a named data macro, right-click the named data macro in 
the Navigation pane and select Rename from the shortcut menu, as shown in Figure 4-57.

Figure 4-57 Click Rename on the shortcut menu to rename named data macros.

Access highlights the name of the named data macro in the Navigation pane and allows 
you to enter a new name for the named data macro, as shown in Figure 4-58. You must 
enter a unique name for your named data macro. If you enter the name of an existing 
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named data macro, Access displays a warning message indicating that there is already an 
object in the web app with the same name.

Figure 4-58 Enter a new name in the Navigation pane for the named data macro.

If you want to delete a named data macro, right-click the named data macro in the Naviga-
tion pane and select Delete from the shortcut menu. Access opens a confirmation message 
box, as shown in Figure 4-59. Click Yes if you want to permanently delete the named data 
macro.

Figure 4-59 In the confirmation message, click Yes to delete the named data macro.

Note
You cannot rename table event data macros because they are attached directly to the 
table event .
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CAUTION!
If you rename a named data macro or delete a named data macro, you must adjust 
any other areas of your web app that reference that named data macro; otherwise, you 
might encounter errors using areas of your web app that reference that named data 
macro. For example, if you rename or delete the dmEnforceOnlyOnePrimaryPosition 
named data macro you created earlier, Access displays an error whenever you add or 
edit existing records to the tblTrainedPositions, because Access cannot find the named 
data macro. You won’t be able to add or edit any data in that table until you remove 
the reference to the named data macro in both the On Insert and On Update table 
events for tblTrainedPositions.

Working with return variables
You can use a return variable in data macros to return data to the object that called the 
named data macro. In a sense, you can think of a return variable as the opposite of a 
parameter. You use parameters to push data into a named data macro, and you use return 
variables to pull data out of named data macros. Return variables are very useful when 
you need Access to read values from a table or query during the execution of the named 
data macro and perhaps perform different steps based on that value. Return variables can 
even be returned from the data layer up to the user interface level. All return variables have 
a unique name. To fetch, set, or examine a return variable, you reference it by its name. 
Return variables stay in memory until the data macro finishes executing, you assign it a new 
value, or until you clear the value. You can set return variables only in named data macros; 
however, you can retrieve them from table events, other named data macros, or user inter-
face macros.

Let’s examine a named data macro that uses return variables so that you can understand 
how this works. Open the dmGetSettings named data macro in Design view from the Navi-
gation pane. Access opens the Logic Designer and displays the logic that I created for this 
named data macro, as shown in Figure 4-60.
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Figure 4-60 The dmGetSettings named data macro uses return variables to return data to the 
caller.

The logic for the dmGetSettings named data macro is as follows:

Parameter Name: ParamValue 
Parameter Type: Short Text 
Parameter Description: What field value to return 
Comment Block: This named data macro gets the current value of a field value in this 
table based on a parameter and returns that back to the caller. 
LookupRecord In tblSettings 
  Where Condition 
  Alias: TS 
  If [ParamValue]="Version" Then 
     Comment Block: Set ReturnVar to current value of Version field 
     SetReturnVar 
       Name: RVVersion 
       Expression: [TS].[Version] 
  Else If [ParamValue]="Range" Then 
     Comment Block: Set ReturnVar to the current value of RangeLimit field 
     SetReturnVar 
       Name: RVRange 
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       Expression: [TS].[RangeLimit] 
  Else If [ParamValue]="Available" Then 
     Comment Block: Set ReturnVar to the current value of SiteAvailable field 
     SetReturnVar 
       Name: RVAvailable 
       Expression: [TS].[SiteAvailable] 
  Else If [ParamValue]="SendEmailOnError" Then 
     Comment Block: Set ReturnVar to the current value of the 
                    SendEmailForAppErrors field 
     SetReturnVar 
       Name: RVSendEmailOnError 
       Expression: [TS].[SendEmailForAppErrors] 
  Else If [ParamValue]="AdminEmail" Then 
     Comment Block: Set ReturnVar to the current value of the AdminEmailAddress field 
     SetReturnVar 
       Name: RVAdminEmailAddress 
       Expression: [TS].[AdminEmailAddress] 
  Else If [ParamValue]="AllEmailInfoForErrors" Then 
     Comment Block: For this parameter value, send back the settings for both the 
                    SendEmailOnError and AdminEmailAddress fields so the 
                    caller doesn't need to make two trips. 
     SetReturnVar 
       Name: RVSendEmailForError 
       Expression: [TS].[SendEmailForAppErrors] 
     SetReturnVar 
       Name: RVAdminEmailForErrors 
       Expression: [TS].[AdminEmailAddress] 
  End If

The tblSettings table holds application-specific settings in several fields. By storing these 
settings in the table, we can then use data macros to retrieve these values at any time. The 
dmGetSettings named data macro uses a large If block inside a LookupRecord data block. 
The If/Else If conditions check the value of the parameter ParamValue being passed in from 
the caller. We then use the SetReturnVar data action to define a new return variable. The 
SetReturnVar action takes two arguments:

●● Name. Required argument. The name of the return variable.

●● Expression. Required argument. The expression that Access uses to define the 
return variable.

I set a unique name for each return variable inside the various Else If condition blocks. For 
the Expression argument of each SetReturnVar action, I use an alias of the table name and 
read the data from a specific field. In the last Else If condition block, I return data from 
two fields with two different return variables to save the caller from having to make two 
RunDataMacro calls for related application settings. I could optionally create a named data 
macro that returns all data from the fields with return variables in one call, but I didn’t want 
to be passing around data when it would not be needed. By itself, this named data macro 
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does not do anything more than read values from the tblSettings table. However, the real 
power of the return variables is the ability of the object calling this named data macro to 
use these values.

To see how this data in return variables can be used, close the Logic Designer for this 
named data macro. Now open in Design view the dmAuditInvoiceTotalsOneVendor named 
data macro. Access opens the Logic Designer and displays the logic that I created for this 
named data macro, as shown in Figure 4-61. This named data macro audits all invoice 
records for a specific vendor within a given date range. The named data macro starts by 
running a different named data macro to retrieve a date range number from a system 
table. The named data macro then loops through each invoice detail record for each 
invoice within the desired date range, adds up the total amount of the line item details, 
and compares it to the invoice total. If the line item details match the invoice total, Access 
marks the invoice balanced. If the line item details do not match the invoice total, Access 
marks the invoice as unbalanced. Finally, Access returns the total number of unbalanced 
invoices, if any, to the calling macro.

Figure 4-61 Open the dmAuditInvoiceTotalsOneVendor named data macro.
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This named data macro is quite lengthy, so I’ll break up our discussion of the logic behind 
this named data macro into several parts. The logic for the first part of the named data 
macro is as follows:

Parameter Name: ParamStartDate 
Parameter Type: Date 
Parameter Description: Start date for audit analysis 
Parameter Name: ParamEndDate 
Parameter Type: Date 
Parameter Description: End date for audit analysis 
Parameter Name: ParamVendor 
Parameter Type: Number (No Decimal) 
Parameter Description: Specific Vendor ID to use for audit analysis 
Comment Block: This named data macro will do an audit of all invoices within the date 
range specified for a specific vendor. It checks to see if the invoice amount total 
matches the total from the invoice detail line items. If they match, the invoice is 
marked as balanced. If the totals do not match, the invoice is marked as not  
balanced. 
Comment Block: First, get the value of the date range limit from the Admin Settings 
table. We need to verify the date range is allowed. 
Group: CheckAllowedRange 
  RunDataMacro: 
    Macro Name: dmGetSettings 
    Parameters: 
       ParamValue: "Range" 
       SetLocalVar: LVRangeLimit = RVRange 
  Comment Block: Set a Local Variable to the value from the Settings table 
  SetLocalVar 
    Name: LVRangeLimit 
    Expression: [LVRangeLimit]-1 
  Comment Block: Check to see if the supplied date range from user is greater than 
  the allowed range limit. If it is, raise an error to stop the data macro from 
  executing. Display a custom message that informs the user of the current range. 
  If DateDiff(Day,[ParamStartDate],[ParamEndDate])>Cast([LVRangeLimit],Float)=True 
    Raise Error:  
      Error Description: =Concat("You have attempted to run an invoice audit with a 
      date range larger than the allotted number of days. Please restrict your date 
      range to ",(Cast([LVRangeLimit],Float)+1)," days.") 
  End If 
End Group

The dmAuditInvoiceTotalsOneVendor named data macro includes three parameters. I pass 
in all three of these values from a user interface macro to know what date range I want to 
audit invoice records and the specific vendor records to audit. Inside the Group block, I use 
the RunDataMacro action. For the Macro Name argument of the RunDataMacro action, I 
use the dmGetSettings named data macro, which you saw in the previous section. 

You’ll notice in Figure 4-61 that Access displays a Parameters section beneath the Macro 
Name argument. When you add a named data macro that includes parameters to the 
macro design surface, Access shows those parameters to you by providing a text box to 

242 Chapter 4 Creating data macros in web apps



Ch
ap

te
r 4

enter the parameters. In our example, I pass in the Range parameter to get the value of 
the RangeLimit text field from the tblSettings table. Beneath the parameter value on the 
macro design surface, Access displays a SetLocalVar action for each return variable in the 
dmGetSettings named data macro. When Access returns the variable, or potential variables 
as the case might be, back to the calling macro, you can assign a local variable to each of 
the return variables and use them during the execution of the named data macro. In our 
example, because I’m getting one return variable back, you see only one SetLocalVar action 
displayed on the macro design surface. After you save and close the named data macro, 
Access displays only SetLocalVar actions inside the Parameters block for variables you set 
to handle the return variables. If you click the Update Parameters link, Access displays a 
SetLocalVar action for each return variable. For our example, I set a local variable called 
LVRangeLimit, which holds the RVRange return variable received from the dmGetSettings 
named data macro.

After the RunDataMacro action completes and returns back the needed data through the 
return variable, Access subtracts one number from the local variable previously set by the 
return variable. In the If condition that follows, I define an expression to calculate the dif-
ference in days from the start date and end date parameters. In the second part of the If 
condition, I check to see whether that value exceeds the date range limit previously defined 
using the Cast function. If the date range exceeds the limit, I use a RaiseError data action 
to inform the user that the date range is too large and stop the named data macro from 
executing any further. The message I display to the user in the RaiseError action uses the 
Concat function to display a custom text message that includes the number of days they 
are allowed to use for the date range.

In Figure 4-62, you can see the second section of the dmAuditInvoiceTotalsOneVendor 
named data macro. In Figure 4-62, I collapsed the Parameters block so that you can see 
more of the logic.
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Figure 4-62 This is the second part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the second section of the dmAuditInvoiceTotalsOneVendor named data macro 
is as follows:

Comment Block: We are OK with range so continue on. 
Comment Block: Set a local variable to calculate the running sum of the detail record 
amounts. 
SetLocalVar 
  Name: VarRunningTotal 
  Expression: 0 
Comment Block: Set a local variable to calculate how many invoices are unbalanced. 
This number will be sent back to user. 
SetLocalVar 
  Name: LVUnbalanced 
  Expression: 0 
Comment Block: Set a local variable to the number of invoices audited. 
SetLocalVar 
  Name: LVAuditedInvoices 
  Expression: 0 
Comment Block: Loop through each record in tblInvoiceHeaders in the given date range. 
ForEachRecord In tblInvoiceHeaders 
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  Where Condition = [TH].[InvoiceDate]>=[ParamStartDate] And 
               [TH].[InvoiceDate]<=[ParamEndDate] And [TH].[VendorIDFK]=[ParamVendor] 
  Alias: TH 
  Comment Block: Now loop through all the related detail records for the specific 
    invoice. For each record, add the report group amount to the running total. 
  ForEachRecord In tblInvoiceDetails 
    Where Condition = [tblInvoiceDetails].[InvoiceIDFK]=[TH].[InvoiceID] 
    SetLocalVar 
     Name: VarRunningTotal 
     Expression: [VarRunningTotal]+[tblInvoiceDetails].[ReportGroupAmount]

In this section of the named data macro, I define three local variables—VarRunningTotal, 
LVUnbalanced, and LVAuditedInvoices. The VarRunningTotal local variable tracks the run-
ning sum of the total invoice details line items for each specific invoice. The LVUnbalanced 
local variable tracks how many unbalanced invoices Access finds during the course of 
the named data macro execution. The LVAuditedInvoices local variable tracks how many 
invoices Access audits within the given parameters of data macro execution.

The named data macro then executes a ForEachRecord data block to loop through all 
records in the tblInvoiceHeaders table. For this ForEachRecord data block, I use TH as an 
alias to represent the name of the tblInvoiceHeaders table for brevity in subsequent areas 
of the named data macro. The expression I use in the Where condition argument for the 
ForEachRecord data block is as follows:

[TH].[InvoiceDate]>=[ParamStartDate] And [TH].[InvoiceDate]<=[ParamEndDate] And [TH].
[VendorIDFK]=[ParamVendor]

The Where condition restricts Access to look for invoice records between the start date 
and end dates passed in from the parameters. Access further restricts the records to loop 
through by looking for the specific vendor ID also passed in as a parameter.

Inside the ForEachRecord data block for tblInvoiceHeaders, I use another ForEachRecord 
data block to then loop through the invoice details records in the tblInvoiceDetails table for 
each invoice that Access finds in the first ForEachRecord data block. The expression I use in 
the Where condition argument for this second ForEachRecord data block is as follows:

[tblInvoiceDetails].[InvoiceIDFK]=[TH].[InvoiceID]

Inside the second ForEachRecord data block, I set a local variable called VarRunningTotal, 
previously set to zero, to increment itself by the line item total found in the  
ReportGroupAmount field. On each pass through tblInvoiceDetails table for each  
specific invoice, Access then keeps a running total of the amount spent on each invoice  
in this child table.

In Figure 4-63, you can see the third section of the dmAuditInvoiceTotalsOneVendor named 
data macro.
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Figure 4-63 This is the third part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the third section of the dmAuditInvoiceTotalsOneVendor named data macro is 
as follows:

Comment Block: Now compare the running total amount to the current invoice amount. If 
they match, mark the IsBalanced boolean field as Yes (balanced). If they don't match, 
mark it as No (unbalanced). 
  EditRecord  
    If [VarRunningTotal]=[TH].[InvoiceAmount] Then 
       Comment Block: Invoice is balanced. 
       SetField 
         Name: [TH].[IsBalanced] 
         Value: Yes 
    Else 
       Comment Block: Invoice is not balanced. 
       SetField 
         Name: [TH].[IsBalanced] 
         Value: No 
      Comment Block: Increment the counter of unbalanced invoices by 1 
      SetLocalVar 
        Name: LVUnbalanced 
        Expression: =[LVUnbalanced]+1 
    End If 
  End EditRecord
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After Access finishes calculating the total from all the invoice details for one invoice, I then 
have an EditRecord block inside the first ForEachRecord data block. Inside the EditRecord 
block, I use an If block to test whether the running invoice total, tracked by the  
VarRunningTotal local variable, equals the amount stored in the InvoiceTotal field in the 
tblInvoiceHeaders table. If the two amounts match, I use a SetField data action to instruct 
Access to update the IsBalanced field in tblInvoiceHeaders to Yes. If the two amounts do 
not match, Access goes into the Else block and then uses SetField to change the IsBalanced 
field to No. Inside the Else block, I also increment the LVUnbalanced local variable, which is 
tracking the number of unbalanced invoices, by one.

In Figure 4-64, you can see the last section of the dmAuditInvoiceTotalsOneVendor named 
data macro.

Figure 4-64 This is the last part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the last section of the dmAuditInvoiceTotalsOneVendor named data macro is 
as follows:

  Comment Block: Reset the running total back to zero for next invoice. 
  SetLocalVar 
    Name: VarRunningTotal 
    Expression: 0 
  Comment Block: Increment the number of invoices audited 
  SetLocalVar 
    Name: LVAuditedInvoices 
    Expression: [LVAuditedInvoices]+1

Comment Block: Last step is to return the number of unbalanced invoices and number of 
invoices audited to the user. These numbers will be displayed in a message box for 
the user. 
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SetReturnVar 
  Name: RVUnbalanced 
  Expression: [LVUnbalanced] 
SetReturnVar 
  Name: RVAuditedInvoices 
  Expression: [LVAuditedInvoices]

Now that we’ve completed checking one invoice inside the first ForEachRecord data block, 
we need to update two local variables before moving on to the next invoice. First, I need to 
update the VarRunningTotal local variable back to zero so that it is ready to start calculating 
the next invoice. Second, I need to update the LVAuditedInvoices local variable by one to 
account for the number of invoices Access audited. After this point, Access moves back to 
the beginning of the first ForEachRecord data block and completes the same steps previ-
ously outlined if another invoice exists within the given parameters. Access continues audit-
ing each invoice one by one and updating all of the local variables as appropriate.

After Access completes auditing all invoices, the final piece of this named data macro is to 
set two return variables. As you might recall, this named data macro began with running 
a different named macro that used a return variable to bring data into this named data 
macro. I now end the logic in this named data macro by setting two return variables that 
any calling macro can use to see the results of this auditing macro. I set the first  
SetReturnVar data action—RVUnbalanced—equal to the local variable LVUnbalanced, 
which tracked the total number of unbalanced invoices. I set the second SetReturnVar data 
action—RVAuditedInvoices—equal to the local variable LVAuditedInvoices, which tracked 
the total number of audited invoices. In Chapter 7, you’ll learn how to call this named data 
macro from a user interface macro and use the return variables in a message box.

As you can see, return variables are a very useful feature with data macros. When you use 
them in conjunction with parameters, you can create some very complex business logic at 
the data layer and even pass information back up to the user interface layer.

INSIDE OUT Utilizing the Retrieve ID return variable

When you use the CreateRecord data block, Access displays a Retrieve ID link on the 
right side of the macro design surface . If you want to know the ID AutoNumber of the 
record Access creates inside a CreateRecord data block, you can click this link to retrieve 
the ID as a return variable . Access displays a SetLocalVar action inside a Parameters block 
where you can provide a name for the local variable . You can then use that local variable, 
passed from Access through the Retrieve ID return variable, in further actions of your 
data macro logic .
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Studying other named data macros
The Back Office Software System sample web app includes many named data macros to 
automate various aspects of the app. Table 4-3 lists all the named data macros in the web 
app with a short description of their purpose. You can explore these samples for additional 
examples of how to design and use named data macros. In Chapter 7, you’ll learn how to 
call some of these named data macros from user interface macros.

TABLE 4-3 Named data macros in the BOSS web app

Macro Name Description
dmApplyLaborPlanDetails Loops through all the labor plan details for a 

specific Labor Plan and creates new schedule 
records in tblSchedule.

dmAuditInvoiceTotalsAllVendors Audits all invoices within a given date range.
dmAuditInvoiceTotalsOneVendor Audits all invoices within a given date range for 

a specific vendor.
dmClearOutTraceTableRecords Deletes all records from the Trace table.
dmCopyDateRangeRecords Loops through all the schedule records within a 

date range and creates new schedule records in 
tblSchedule with the same information. The new 
schedule date to use comes from a parameter.

dmCopySingleDateRecords Loops through all the schedule records for a spe-
cific date and creates new schedule records in 
tblSchedule with the same information. The new 
schedule date to use comes from a parameter.

dmDeleteDateRangeScheduleRecords Deletes all records in tblSchedule within a given 
date range.

dmDeleteSingleDateScheduleRecords Deletes all records in tblSchedule for a given 
date.

dmEnforceOnlyOnePrimaryPosition Ensures that only one job code is marked as the 
primary position for a specific employee. This 
named data macro is called from both the On 
Insert and On Update tblTrainedPositions table 
events.

dmGetSettings Gets application settings data from the tblSet-
tings table.

dmSetJobCodeColor Sets color choices in the tblJobCodes table 
from parameters passed in from user interface 
macros.

dmSwapSortOrders Swaps sort order positions in the tblInventoryLo-
cations table for two records. Uses saved query 
objects to find the highest and lowest values in 
the SortOrder field.
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Macro Name Description
dmUpdateSampleData Adjusts date values of all sample data to work 

easily with data around the current time frame.
dmVerifyInvoiceBalanced Checks to see whether a specific invoice is 

balanced.

Debugging data macros with the Trace table
You’re likely to encounter unexpected errors or unintended results when you’re designing 
data macros attached to table events and complex named data macros for the first time. 
You might even be wondering whether Access is even executing your data macros at all if 
you see no visible results. In Chapter 24, “Understanding Visual Basic fundamentals,” which 
can be downloaded from the book’s catalog page, you’ll learn that you have several tools 
available in the Visual Basic Editor for debugging Visual Basic code in desktop databases. 
Data macros, unfortunately, do not have as rich a set of tools available for debugging pur-
poses. For example, you cannot set breakpoints on data macro logic to halt execution. You 
also cannot single-step through the macro logic as you can with user interface macros in 
desktop databases.

Access can run into errors while you are in the development phase of creating, testing, and 
debugging your data macros. The best tool you have for debugging data macro logic is a 
special system table called the Trace table. Access manages any errors it encounters execut-
ing data macros through this system table. This Trace table serves two purposes:

●● Access uses it to log any data macro failures that it encounters while executing data 
macros attached to table events and named data macros.

●● You can use the table for debugging purposes when designing and testing data 
macros by viewing a history of everything Access executes while running your data 
macros in this table.

Earlier in this chapter, you studied the data macro logic attached to the On Update event of 
the tblTerminations table. When you update a termination record and assign the termina-
tion record to a different employee, the On Update logic looks up the previous employee’s 
record in the tblEmployees table and sets the Active field back to Yes. In the first  
LookupRecord data block, I used the Old property to refer to the EmployeeID that Access 
just finished updating. In the second LookupRecord data block, Access sets the Active field 
to No for the employee you just selected. Our data macro logic, again, is as follows:

Comment Block: If we are modifying an existing termination record, one of two 
possibilities exist: 1. The Employee that this termination is for remains unchanged - 
Scenario is just updating some data for the termination record. 2. The Employee that 
this termination is assigned to changed - Scenario here is that when the record was 
first created, it might have been assigned to the wrong employee. In this case the 
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user is assigning this to a different employee. 
Comment Block: Check to see if the Employee field was changed. 
If Update([EmployeeIDFK]) Then 
  Comment Block: The Employee field changed so we'll change the existing employee's 
  status back to Yes. 
  Comment Block: For the Where condition in this LookupRecord, use the Old value from 
  the EmployeeIDFK field and find that employee's record. 
  Look Up A Record In tblEmployees 
    Where Condition = [tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK] 
      EditRecord 
        Comment Block: Now set Active field to Yes for this employee since it was 
        probably initially assigned to the employee in error. 
        SetField 
          Name: [tblEmployees].[Active] 
          Value: Yes

      End EditRecord 
End If 
Comment Block: After modifying this termination record, make sure the employee that 
it's assigned to now is marked as an inactive employee. To do that, we look up the 
matching employee's record in the tblEmployees table and set the Active field to No. 
Look Up A Record In tblEmployees 
    Where Condition = [tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK] 
      EditRecord 
        Comment Block: Now set Active field to No. 
        SetField 
          Name: [tblEmployees].[Active] 
          Value: No

      End EditRecord

When you set up complex table events and named data macros like this example, you’ll 
find it helpful to debug your logic to make sure everything is working just the way you 
want. For example, if you have only a few sample records in your tables, you might find 
it relatively easy to spot and fix any issues in your data macros with such a small data set. 
However, if your tables have many records, you might find it more difficult to spot any 
issues, or you might have a more difficult time tracking down what data Access updates. To 
help debug your data macro logic, you can take advantage of the built in Trace table. 

For this specific On Update event example, it would be helpful to know which employee 
records, if any, Access updates during this table event. To start using the Trace table, the 
first thing that you need to do is to turn on data macro tracing for your web app. To do 
this, open any table event for any table in your web app or open any named data macro in 
Design view. After Access opens the Logic Designer, click the Data Macro Tracing button in 
the Tracing group on the Design contextual tab, as shown in Figure 4-65.
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Figure 4-65 Click the Data Macro Tracing button to activate data macro tracing in your web 
app.

When you activate data macro tracing, Access records information to the Trace table. To  
see how useful the Trace table can be, let’s change the existing termination record in the  
tblTerminations table. Switch to Datasheet view for the tblTerminations table. Next, find 
the existing termination record in this table—the one assigned to Mario Kresnadi. Next, 
tab over to the EmployeeIDFK for this record (the datasheet caption of the field displays 
Employee), type Conrad into the control where it currently says Mario Kresnadi, and then 
select Jeff Conrad from the drop-down list of employee names displayed in the Employee-
IDFK field, as shown in Figure 4-66. Finally, click or tab off the record, and Access saves the 
record with Jeff Conrad’s EmployeeIDFK number. (If you changed this record to Jeff Conrad 
previously in this chapter, change the value back to Mario Kresnadi. You’ll be able to see 
results in the Trace table in either case.)

Figure 4-66 Change the EmployeeIDFK field from Mario Kresnadi to Jeff Conrad, and then save 
the record.
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Note
Each web app you create includes the Trace system table, which is a hidden table . There-
fore, you cannot create any table in your web app and name it Trace . If you do, Access 
informs you that an existing object with that name already exists in the web app .

To see the effects of this On Update event in the Trace table, switch to Design view for the 
tblTerminations table and then open any of three table events in Design view. After Access 
opens the Logic Designer, click the View Trace Table button in the Tracing group on the 
Design contextual tab, as shown in Figure 4-67.

Figure 4-67 Click the View Trace Table button to open the data macro Trace table in your web 
browser.

Access opens the Trace table datasheet in your default web browser, as shown in Figure 
4-68. The Trace table contains the following fields: ID, MacroName, ActionName, Operand, 
Output, TargetRow, Timestamp, and RuntimeErrorMessage. When you have data macro 
tracing turned on, Access creates a record in the Trace table for every action it runs during 
any table event or named data macro. Depending on the complexity of your data macro 
logic for a given table event or named data macro, you could see just a few new records in 
the Trace table or perhaps hundreds of new records. The Trace table holds a maximum of 
1000 records. If the number of records in the Trace table exceeds 1000, Access begins delet-
ing the oldest records as it creates new entries.

Note
In Figure 4-68, I resized several of the Trace table columns so that you could see more of 
the data in the various records . To resize a column in the Trace table, hover over the right 
edge of a column header until you see a double-sided arrow, click and hold your mouse, 
and drag the column to the right until you have the size you want .
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Figure 4-68 Access opens the Trace table in your web browser so that you can examine how 
your data macro logic executes.

The ID field in the Trace table is the AutoNumber field Access uses for this table. The  
MacroName field lists the name of the table and the specific event Access executed or the 
name of the named data macro Access executed. The ActionName field lists the name of 
the program construct, data block, or data action Access executed. In the Operand field, 
Access lists any conditional expressions or table and field references in the case of SetField 
data actions. In the Output field, Access lists data values it commits into a field. In the  
TargetRow field, Access lists identifying information about what record it is writing data to, 
such as the ID values. In the TimeStamp field, Access enters the current date and time of 
the specific action. In the RuntimeErrorMessage field, Access displays a SQL exception mes-
sage if it encounters an error while performing the specific action. Access also logs any  
RaiseError messages that you define into the RuntimeErrorMessage field. Table 4-4 summa-
rizes the important information Access logs to the Trace table.

TABLE 4-4 Trace table logging information

Action Name Operand Output Target Row

If Conditional expression
Else If Conditional expression
CreateRecord Table name
EditRecord
ForEachRecord Table name, Where 

condition
Record identifiers

LookupRecord Table name, Where 
condition

Record identifiers

CancelRecordChange
DeleteRecord
ExitForEachRecord
RaiseError
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Action Name Operand Output Target Row

RunDataMacro Macro name Computed 
expression value

SetField Table and field name Computed 
expression value

SetLocalVar Variable name Computed 
expression value

SetReturnVar Variable name Computed 
expression value

StopMacro

In our example On Update event, you can see that Access logged nine records carrying out 
all the actions in the On Update table event. In the first record, Access displays the If block 
and the conditional expression. In the second record, you can see that Access displays the 
LookupRecord in the ActionName column along with the table name and Where condition 
in the Operand field. In the third record, Access repeats the LookupRecord data block but 
this time displays the ID values of the record it found that match the Where condition. In 
the fourth record, Access lists EditRecord, which indicates it is now entering this data block 
because it found a matching record in the Where condition of the LookupRecord data 
block. In the fifth record, Access displays the SetField action along with the table name and 
field in the Operand field. In the Output field for this record, Access displays 1, which, in this 
case, indicates a Yes value for the Active Boolean field. In the remaining four records in the 
Trace table, Access lists similar information detailing the second LookupRecord actions out-
lined in the On Update event of the tblTerminations table. In the SetField record, you can 
see that Access set the Active field to 0, which indicates No for the Boolean field.
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INSIDE OUT Clearing the Trace table records

When you view the Trace table records in your web browser, you can delete the records 
if you no longer want to see them by highlighting the records and pressing the Delete 
key . Depending on how many records you have in your Trace table, this could be a 
tedious task . You can alternatively write a named data macro to perform the task very 
quickly . The Trace table is a hidden table in your web app, and therefore you cannot 
use the Trace table directly in a ForEachRecord or LookupRecord data block. However, 
you can create a saved query object that uses the Trace table as its source . You can then 
create a named data macro that includes a DeleteRecord action inside a ForEachRecord 
data block with the saved query as the source, which causes Access to delete all records 
in the Trace table when you call the named data macro . 

In the Back Office Software System web app, I’ve included a saved query called  
qryTraceTable and a named data macro called dmClearOutTraceTableRecords that per-
form this task . If you have data macro tracing turned on while running that named data 
macro, Access records all the delete operations into the Trace table, which effectively 
cancels out what you’re trying to do! To work around that issue, you must turn off data 
macro tracing first and then execute the named data macro to clear out all records in 
the Trace table using this technique .

Let’s examine a different example of a table event that triggers a named data macro so that 
you can see how Access logs this type of scenario to the Trace table. Earlier in this chapter, 
you studied the On Update event of the tblTrainedPositions table. Open this table in Data-
sheet view within Access, and then change either the first or second record such that you’ve 
changed the primary position of the first employee listed in the table. After you update 
the record, refresh the Trace table in your web browser. In Figure 4-69, you can see the 
six records Access adds to the Trace table while executing the data macro logic in the On 
Update event.

Figure 4-69 Refresh the Trace table in your browser to see new logging records Access adds to 
the table.

If you follow the information that Access displays in the Trace table after you updated 
the record, you can see that Access first indicates it fired the On Update event in 
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tblTrainedPositions and then executes the named data macro called  
dmEnforceOnlyOnePrimaryPosition, which you created earlier. You can see that Access  
executed the ForEachRecord data block in the named data macro, found a specific record 
that matched the Where condition, and then used a EditRecord with SetField action to 
update the PrimaryPosition field.

After Access finishes executing your data macro logic, you can examine the values of your 
local variables and return variables in the Trace table at different points in time to help 
determine what Access is doing during the data macro execution. You can use this infor-
mation to assist with debugging your logic. For example, you can examine which record 
Access might be editing or attempting to find by looking at the values in the TargetRow 
column.

INSIDE OUT Turn off data macro tracing in production apps

The Trace table can be very useful when you are designing and testing the logic in your 
table events and named data macros . When you have everything working just the way 
you want, you should turn off data macro tracing before putting your app in production 
for people to use . If you leave data macro tracing turned on in a production environ-
ment, Access continually logs information for all data macro logic . You’ll see a slight 
improvement in app performance by turning this feature off in production, because 
Access does not need to spend extra time writing data to the Trace table for all of your 
actions . 

To turn off data macro tracing, open any table event or named data macro in Design 
view and click the Data Macro Tracing button in the Tracing group on the Design con-
textual ribbon tab . This button is essentially a toggle button . When you have data macro 
tracing turned on in your web app, you’ll see this button highlighted in the ribbon . Just 
click the button in the ribbon again to deselect it and turn off data macro tracing . If you 
are encountering errors in your production apps, you can turn the data macro tracing 
back on temporarily, diagnose the issues, fix the issues, and then turn it back off when 
your data macro logic is working again as you expect .

Note
If you save your web app as an app package, Access includes the Trace table, and any 
records included in it, into the app package .
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Understanding recursion in data macros
When you’re designing data macros, you have the potential to run into a recursion issue. 
Access runs into a recursion issue when it tries to execute the same data macro logic over 
and over in a repeated loop. For example, suppose that you created data macro logic 
attached to the On Update event of a table that changed data in the current record of the 
same table. Access makes the field changes and then commits the data. Access then fires 
the On Update again because data in the table changed. The On Update event fires again, 
changes the data, and the cycle begins again. Access is now in a perpetual loop executing 
the data macro in the On Update event. Access could also get into a loop, for example, 
when working with two tables that have On Update events that update each other, or even 
with complex named data macros that end up repeating themselves.

Data macros are limited to 32 levels of recursion, which means Access stops the data macro 
execution after 32 iterations through a recursive loop. If Access falls into a recursive loop, 
you’ll see a runtime error message indicating that an endless loop was detected, as shown 
in Figure 4-70. Access logs a SQL Exception error into the RuntimeErrorMessage field of the 
Trace table if you have data macro tracing turned on. In the Trace table, you’ll see essen-
tially the same records getting updated over and over again by Access.

Figure 4-70 Access displays an error message if it gets into a data macro recursion loop.

In most cases, you can correct recursive calls by using the Update function to determine 
which field or fields Access changed in the last record update. You can add conditional 
logic with If blocks to determine whether a field was changed and perform different 
actions, or no actions, based on the evaluation of the condition. As you are designing and 
testing your data macro logic, it’s a good idea to check the Trace table continually to help 
spot potential problems with recursion.
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Sharing data macro logic
The Logic Designer in Access includes a very useful feature for sharing and reusing data 
macro logic. To illustrate this feature, open the tblTerminations table in the Back Office Soft-
ware System data copy sample web app (BOSSDataCopy.app) in Design view. Next, click the 
On Insert button in the Events group to open the Logic Designer. You’ve already explored 
the data macro logic attached to this table event earlier in this chapter. Press Ctrl+A to 
highlight all the logic on the macro design surface, and then press Ctrl+C to copy the logic 
to the Windows Clipboard. Now open Notepad (or a different text editor), and then press 
Ctrl+V to paste all the logic into Notepad.

As you can see in Figure 4-71, Access copies the data macro logic from the Logic Designer 
as Extensible Markup Language (XML). You can send this XML to someone else, and that 
person can copy and paste the XML directly into a Logic Designer window for a data macro 
in his or her Access 2013 web app. This feature can be especially useful if you are trying to 
help someone else write or debug data macro logic, such as in an Access forum or news-
group. You can create the logic for the person you’re helping and explain how you struc-
tured the program flow constructs, data blocks, and data actions.

Figure 4-71 You can copy and paste data macro logic directly out of the Logic Designer.
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You now have all the information that you need to modify and maintain your web app 
table definitions. You know how to build tables, modify them, import data and link them, 
and create data macros to automate them. In the next chapter, you’ll learn how to extract 
data from tables by building queries.
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dmDeleteSingleDateScheduleRecords macro, 249, 606
dmEnforceOnlyOnePrimaryPosition macro, 249, 257
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overview, 731
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Save command, 621
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E
Edit Action Bar button, 368, 421, 443
editActionBarButton action, 594
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overview, 50
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View preview window, 54
View Selector, 53
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Error Description argument, 187
errors, raising in data macros, 185–188
Esc keyboard shortcut, 297, 422
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Expand All button, 177
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dialog box for, 108, 287
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overview, 278–279
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Expression Values pane, 287
ExprN, 280
extending web apps, 521–533
Extensible Markup Language (XML), 259
external connections for web apps, 533–536
External Data tab, Office Fluent Ribbon, 654–655

F
F2 keyboard shortcut, 297
Fax Number controls, 378
FaxNumber field, 105, 751
Fax Number label, 378
field data types, 98–101
Field list

in Design contextual tab, 363–364
pane for, 364, 408

Field Properties section, 98
Field property, 397, 399
fields

Companies table example, 709–710
copying, 760–763
data types, 699–702
deleting, 763–764
input masks for, 713–717
inserting, 758–760
moving, 754–758
and name fixup feature

adding fields, 497–498
renaming fields, 499

overview, 697–699
properties for, 703–709, 771–772
renaming, 749–754
specifying for queries, 267–268
validation rules for, 711–713
in web app tables

defining, 94–100
setting properties for, 101–103

Fields Available In Other Tables section, 363
Fields Available In Related Tables section, 363
Field Size property, 701, 703
field validation rule, 720
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greater than or equal to (>=) operator, 114, 711
Group By property, 462–463, 463, 517
Group element, Action Catalog, 183
grouping

in data macros, 183–185
forming groups for totals queries, 320–321

H
Help information, 188, 547
Help Protect Me From Unknown Content (Recommended) 

option, 645
Hidden option, ActionBar Visible property, 372
Hide Column option, AutoFilter menu, 304, 450
Hide option, 342
Hide/Show Navigation Pane command, 44
HomeAddress field, 752, 761
HomeCity field, 752, 761
HomeCountry field, 752, 761
Home keyboard shortcut, 296, 413
HomePhone field, 751, 752
HomePostalCode field, 752, 761
HomeStateOrProvince field, 752, 761
Home tab, 45, 652–653
Horizontal Alignment property, 391
Hour setting, DateDiff function, 285
Housing Reservations desktop database, 14
HTML (Hypertext Markup Language), 702
hyperlink controls

button for, 362
in views, 424–425

Hyperlink data type, 99, 100, 143, 700, 702
Hypertext Markup Language (HTML), 702

I
icons for Table Selector, 345–346
ID AutoNumber field, 149
if blocks in data macros, 189–192, 581
IIF (Immediate If) function, 281, 323, 720
Image button, Controls group, 362
image controls in views, 427–432
Image data type, 99, 100
ImageDescription field, 195
IME Mode, IME Sentence Mode property, 707
<IMG> tag, 100
Immediate If (IIF) function, 281, 323, 720
importing data into web app tables

Access desktop database tables, 142–149
considerations for, 140–142
overview, 139–140
SharePoint lists, 163–167
SharePoint lists, linking, 167–171
spreadsheets, 150–155
SQL tables, 155–158
text files, 158–163

Import & Link group, External Data tab, 655

FileAs field, 751
file conversion

overview, 793
troubleshooting, 793–794

File Download dialog box, 80
File Location tab, 787
File New Database dialog box, 682, 685, 739
File Open dialog box, 146, 159
File tab, Backstage view, 522
Filter box feature, 414–419
filtering data

groups of totals, 330
in query Datasheet view, 305–307

Filter property, 721
Find group, Home tab, 653
FirstActionBarButton control, 570
First Caption property, 398
First Field property, 398
FirstName field, 751
First Row Contains Column Headings check box, 152
First Row Contains Field Names check box, 161
Fixed format, 394
Font Color button, 360
Font group, 359
Font Size button, 360
ForEachRecord action, 194, 254
ForEachRecord data block, 180, 226
For Each Record In argument, 226
ForEachRecord loop, 228
ForeColor property, 593
Format function, 323
Format property, 387, 704
Formatting callout menu, 372, 381, 487
Formatting charm button, 381, 397
forms, 6
Forms group, Create tab, 654
forward slash (/), 416
Fourth Caption property, 398
Fourth Field property, 398
frmMainMenuClient object, 529
From Any Location option, 523, 534
From My Location option, 534
FullName index, 123, 734
Full Text Search, 414

G
General category, Access Options dialog box, 628
General Date format, 394
General format, 393
Get External Data dialog box, 146, 164, 526
Get Help Finding Your Web Location link, 30, 85
Give Feedback Online link, 51
GoToControl macro action, 545, 593
GoToRecord macro action, 545, 570
greater than (>) operator, 114, 711
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Import Link Samples folder, 150, 526
Import Objects dialog box, 147, 157, 527
Import Spreadsheet Wizard, 16, 151
Inactive Employees view, 514
Inactive field, 752
Include Data In Package check box, 56
Indexed property, 102, 121, 706
indexes

multiple-field indexes, 123–124, 733–735
overview, 121, 731
single-field indexes, 121–122, 732–733

Information Technology (IT) department, 67
Info tab, Backstage view, 33, 522, 618
inner join queries, 308–312
IN operator, 114, 276–278, 277, 712
Input Hint property, 382, 387, 436
input masks

for fields, 713–717
property for, 705

Input Mask Wizard, 715
Insert Rows command, 758, 759
Installation Options tab, 786, 792
installing

app packages
directly into SharePoint site, 72–77
from SharePoint corporate catalog, 62–67
from SharePoint Store, 66–74

Microsoft Office
64-bit version, 794–796
new install options, 785–790
overview, 784
upgrade options, 790–793

sample files, 796–797
IntelliSense, 108
interval argument, 285
InvoiceAmount field, 132
Invoice Blank view, 486, 570
InvoiceDate field, 132
Invoice Details Datasheet view, 483
InvoiceDetailsID field, 132
Invoice Details table, 344
Invoice Headers table, 341
InvoiceID field, 132
InvoiceIDTextBox view, 583
Invoice Number control, 442
InvoiceNumber field, 132
Invoices List Details view, 444
IsBalanced field, 132, 478
IS NOT NULL operator, 114, 712
Is Null phrase, 191
Issues option, Application Part, 690
Italic button, 360
Item Not Saved dialog, 300
IT (Information Technology) department, 67

J
JobCode field, 311
JobCodeIDFK field, 310
Job Codes table, 520
JobTitle field, 751
Join Properties dialog box, 309, 313
Join Type button, Edit Relationships dialog box, 728
Jump List view, 517

K
keyboard shortcuts for query Datasheet view, 295–297

L
Label button, Controls group, 361
Label For property, 388
Label Text property, 101, 137, 374, 467
LaborHoursID field, 319
Language category, 41, 632–633
LastActionBarButton control, 570
LastName field, 751
Launch App button, 44, 46, 54

in Home tab, 346, 409, 567
in Quick Access Toolbar, 352, 458

leading space, 96
Left Arrow keyboard shortcut, 207, 297
less than (<) operator, 114, 118, 711
less than or equal to (<=) operator, 114, 711
LIKE operator, 114, 276–278, 277, 712
limitations on desktop databases, 739–740
Limit Length property, 101
Limit To List property, 777
Link check box, 168
Link Child Field property, 392, 484, 722
Link Master Field property, 392, 484, 518, 723
Link To A Data Source By Creating A Linked Table 

option, 527
List Control, 412–414, 461
List Details view, 356
List Item Edit Form property, 777
List Rows property, 777
List Width property, 777
local variables in data macros, 196–199
Location For Duplicate drop-down list, 351
Logic Designer

creating web app macros, 543–548
overview, 175–178

Log Name AutoCorrect Changes check box, 737
Long Date format, 394
Long Text data type, 98, 700, 701
Long Time format, 394
Look Up A Record In argument, 193
Lookup data type, 99, 144
lookup fields

cascade delete relationship, 137–139
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defined, 7
in RDBMS, 10–12

Max function, 316
MDI (multiple-document interface), 674–678
Memo data type, 142
Message Bar category, Trust Center dialog box, 648
MessageBox action, 546, 576
Microsoft Access 2013

as application development system, 13–14
architecture of, 5–7
downloading app packages into, 79–81
initial startup configuration, 22–26
Navigation pane, 46–49
Quick Access Toolbar, 43–45
as RDBMS, 7–8
ribbon in, 45–46
web integration in, 17–19

Microsoft Office Backstage view
Account tab, 37–40, 624–627
Close command, 36, 624
Info tab, 33, 618
New tab, 33–34, 618–619
Open tab, 34–35, 620–621
Options command, 40–43
overview, 32, 617–618
Print tab, 623–624
Save As tab, 36, 621–623
Save command, 36, 621

Microsoft Office, installing
64-bit version, 794–796
new install options, 785–790
overview, 784
upgrade options, 790–793

Microsoft Office Security Options dialog box, 645
Microsoft Office Trusted Location dialog box, 650
Microsoft SkyDrive service, 25
MiddleInit field, 752
Millisecond setting, DateDiff function, 285
Min function, 316
Minute setting, DateDiff function, 285
MobilePhone field, 751, 752
Modified Date category, 664
Modify Expression property, 103
Modify Lookups button, 127, 136, 141, 385
Mod operator, 284
modules, 6
Month setting, DateDiff function, 285
More Fields button, 692
Move Data group, Database Tools tab, 656
Move mode, 756
moving

Action Bar buttons, 368–369
actions in data macros, 204–207
controls, 372–380

multiline text box controls

overview, 130–132
restrict delete relationship, 132–137
in web app tables, 124–127

Lookup properties, 773–777
LookupRecord action, 194, 254
LookupRecord data blocks

in data macros, 193–197
defined, 180

Lookup tab, 775
Lookup Wizard, 126, 133, 700
LVAuditedInvoices variable, 245
LVRangeLimit variable, 243
LVUnbalanced variable, 245, 247

M
Machine Data Source tab, 156
Macro Details link, 572
Macro group, Database Tools tab, 655
macro logic, 205
Macro Name argument, 242, 554, 599
macros

calling named data macros, 597–602
ChangeView action, 602–606
control events, 557–568
controlling record navigation with, 568–572
defined, 6
examples of, 605–609
using Logic Designer, 543–548
named data macros

calling, 230–236, 597–602
creating, 220–222
deleting, 236
examples of, 249
overview, 220
parameters for, 223–230
renaming, 236–238
return variables for, 238–248
saving, 230

navigating to different views, 602–605
On Start macro, 573–576
OpenPopup actions

overview, 576–579
passing parameters with, 588–591
referencing view control values, 584–588
Where clause for, 580–584

overview, 541–542
return variables for, 597–602
saving, 548–550
SetProperty action, 592–596
view events, 552–557

Macros & Code group, Create tab, 654
Macro Settings category, Trust Center dialog box, 648
Macros heading, Navigation pane, 548
Manage button, Info tab, 523
manipulating data
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button for, 363
and Datasheet views, 404
in views, 426

multiple-document interface (MDI), 674–678
multiple-field indexes, 123–124, 733–735
Multi-Value Lookup Fields, 777–780

N
Name argument, 197, 223, 240
Name AutoCorrect option, 736
named data macros

calling, 230–236, 597–602
creating, 220–222
deleting, 236–238
examples of, 249
overview, 220
parameters for, 223–230
renaming, 236–238
return variables for, 238–248
saving, 230

name fixup feature
adding fields, 497–498
deleting objects, 501
overview, 497
renaming fields, 499
renaming objects, 499–500

Name Of Duplicate text box, 350, 351
Name option, Data Type Part, 694
Name property, 699
navigating in web app macros

to different views, 602–605
records, 568–572

Navigation Options dialog box, 666–670
Navigation pane

custom categories for, 664–666
Navigation Options dialog box, 666–670
overview, 656–658
Search Bar feature, 671–674
sorting in, 670–671
views in, 658–664

Navigation Pane, 46–49, 91, 175, 262, 456, 617
New App link, 59
New button, Action Bar, 368
NewRecord macro action, 545
New tab, Microsoft Office Backstage view, 33–34, 618–619, 

685
New Values property, 703
NextActionBarButton control, 570
N keyboard shortcut, 422
[No data Source] option, 371
No, Not Quite There link, 506
nonprintable characters, 96
not equal to (<>) operator, 114, 711
Notes field, 105, 118, 751, 752
NOT operator, 114, 711

Now() function, 106
Null phrase, 283
Number data type, 98, 143, 224, 700, 701
number formats for controls, 393–394
NumberOfInvoices variable, 601
NumberOfUnbalanced variable, 601
Number Subtype property, 99, 102

O
Object Designers category, 630–631, 738, 769
objects in web apps, search, 49–50
Object Type category, 667
ODBC (Open Database Connectivity), 10, 139, 533
Office Apps Marketplace, 36
Office Background combo box, 39
Office Fluent Ribbon, 31

Create tab, 653–654
Database Tools tab, 655–656
defined, 616
External Data tab, 654–655
Home tab, 652–653
overview, 651–652

Office Start screen, 28, 681
Office welcome dialog, 24
Old property, 211
OLE Object data type, 9, 700, 702
On Click event, 370
On Current event, 372, 458, 550
On Delete event, 176, 215–218, 216
On Delete RaiseError message, 218
On Insert event, 176, 179–181, 189, 208–209, 231
On Load event, 372, 458, 550, 555
On Start macro, 573–576
On Update event, 176, 209–215, 210, 211
Open Database Connectivity (ODBC), 10, 139, 533
Open dialog box, 615
OpenDialog macro action, 330
Open File Location option, 410
Open In Browser option, 347
Open In property, 392
OpenPopup actions

defined, 546
overview, 576–579
passing parameters with, 588–591
referencing view control values, 584–588
vs. ChangeView action, 605
Where clause for, 580–584

Open Report command button, 590
Open tab, Microsoft Office Backstage view, 34–35, 620–621
Open This App In Access option, 79
operator precedence, 284
Options command, Microsoft Office Backstage view, 40–43
Options dialog box, 43
Order By argument, 563, 579
Order By On Load property, 721
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pound sign (#), 114, 272, 711
Precision property, 705
PreviousActionBarButton control, 570
Primary Display Field property, 391, 437
primary key

creating, 120–121, 718
defined, 5

Primary Key button, Tools group, 718
Primary property, 365, 511
Print dialog box, 623
Print tab, Microsoft Office Backstage view, 623–624
Priority option, Data Type Part, 694
Privacy Options category, Trust Center dialog box, 648–649
Privacy Options dialog box, 22, 23
Privacy Statement link, 38
ProductID field, 719
ProductName field, 516, 719
Program Flow node, 181, 547
progressive disclosure, 108
Project Management template, 31, 54
Project Management web app, 55
Proofing category, Access Options dialog box, 631–632
properties

for controls, 380–393
for fields, 703–709, 771–772
for tables, 721–724
for views, 371–372

property callout menus in views, 364–368
Property Sheet button, Show/Hide group, 719

Q
QBE (query by example), 6
qryEmployeesSorted query, 305
qryHighestSortOrder query, 334
qryInvoiceHeadersWithVendor query, 583
qryLowestSortOrder query, 335
qryUnassignedJobCodes query, 314
qryWeekLaborHoursFinalDisplay query, 329
qryWeekLaborHours query, 326, 329
qryWeekTotalsLaborHoursFinalDisplay query, 589
Quarter setting, DateDiff function, 285
queries (for web apps)

AND operator, 273–276
Between operator, 276–278
building query on query, 321–326
dates and times in, 272–273
expressions in

arithmetic expressions, 283–286
overview, 278–279
text expressions, 279–283
using Expression Builder for, 286–293

filtering groups of totals, 330
In operator, 276–278
Like operator, 276–278
multiple tables

Organizational Account button, 38
Orientation property, 723
OR operator vs . AND operator, 273–276
Or Upload An Access App Package link, 74
outer join queries, 313–314, 729
Owners [Full Control] group, 539

P
Package And Sign option, 622
packages, app

downloading into Access, 79–81
saving web app as, 55–57
in SharePoint corporate catalog

installing from, 62–67
uploading to, 59–63

in SharePoint site
creating blank web app in, 77–79
installing into, 72–77

in SharePoint Store
installing from, 66–74

Page Down keyboard shortcut, 296, 413
Page Up keyboard shortcut, 296, 413
ParamEmployeeID parameter text box, 232
parameters

dialog box for, 325
for named data macros, 221, 223–230
passing with OpenPopup actions, 588–591
for queries, 325–330

ParamJobCodeID parameter text box, 232
parent view, 444
Paste command, Clipboard group, 745, 762
Paste Table As dialog box, 745, 746
Payment Type option, Data Type Part, 694
PDF (Portable Document Format), 622
Percent format, 394
percent sign (%), 334
Perform Name AutoCorrect check box, 737, 743
period ( .) character, , 96
Personal Apps option, 30
Personal Message box, 538
PhoneNumberExtension field, 105
PhoneNumber field, 105, 493
Phone option, Data Type Part, 694
Photo field, 752
Picture Tiling property, 390
Picture URL property, 390
Pin To List option, 620
plus sign (+), 113, 279
Popular Commands category, Access Options dialog 

box, 635
Popup View property, 390, 398, 433, 435, 439, 447, 467, 

491
Portable Document Format (PDF), 622
PositionColor field, 311
PostalCode field, 105, 125
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defined, 4
Read-Only property, 405, 448
Read Only When Disconnected property, 723
Record argument, GoToRecord action, 571
records

adding in query Datasheet view, 298–301
controlling navigation with web app macros, 568–572

recordset, 261
Records group, Home tab, 652
record source, 350, 359
Record Source property, 359, 371, 457, 472
recursion in data macros, 258
Redo command, 44
referencing view control values, 584–588
Refresh button, Records group, 171, 235
RegHrs calculated expression, 323
rehydrates, 80
Related Field property, 398, 446
related items controls, 363, 395–402, 443–447
relational database management system 

(RDBMS) . See RDBMS
Relationships group, Database Tools tab, 655
relationships, table

desktop databases
defining, 726–729
on multiple fields, 729–732
overview, 724–726

web apps
cascade delete relationship, 137–139
overview, 130–132
restrict delete relationship, 132–137

Relationships window, 726, 730–731
Remove Filter button, Filter box, 415
Remove From List option, 35
Remove From Quick Access Toolbar option, 642
Remove Image link, 432
Remove Only The Following Applications section, 792
Rename Group button, 668
Rename Item button, 668
Rename option, 342, 347
renaming

fields, 749–754
named data macros, 236–238
tables, 747–748

ReportGroupAmount field, 132, 136
Report Group control, 446
ReportGroupID field, 131, 136
ReportGroupName field, 131
Report Groups table, 341
reports, 6
Reports group, Create tab, 654
RequeryRecords action, 545, 563
Required property, 102, 706
Reset Only Selected Ribbon Tab option, 636
Reset Read-Only Connection Password option, 535

inner joins, 308–312
outer joins, 313–314
overview, 308

OR operator, 273–276
overview, 261–264
parameters for, 325–330
query Datasheet view

adding records, 298–301
changing data, 301–302
copying and pasting data, 302
deleting rows, 302–303
filtering data, 305–307
keyboard shortcuts for, 295–297
overview, 295
sorting data, 303–305

single table
overview, 264–267
selection criteria for, 268–270
specifying fields, 267–268
viewing results, 268–270

sorting data, 293–295
Top Values property, 334–335
totals queries

forming groups for, 320–321
overview, 315
totals within groups, 315–319

Unique Values property, 331–334
Queries group, Create tab, 654
Queries tab, Show Table dialog box, 321
query by example (QBE), 6
query Datasheet view . See also Datasheet view

adding records, 298–301
changing data, 301–302
copying and pasting data, 302
deleting rows, 302–303
filtering data, 305–307
keyboard shortcuts for, 295–297
overview, 295
sorting data, 303–305

Quick Access Toolbar, 31, 43–45, 616, 640–642
Quick Access Toolbar category, Access Options dialog 

box, 636–638
quick-created views, 356
Quick Start command, 691

R
RaiseError action, 181, 254
raising errors in data macros, 185–188
RangeLimit field, 599
RDBMS (relational database management system)

Access as, 7–8
capabilities of, 7
data control when sharing, 12–13
data definition in, 8–10
data manipulation with, 10–12
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Second Caption property, 398
Second Field property, 398
Second setting, DateDiff function, 285
security

and Trust Center, 646–649
defining trusted locations, 649–651
for desktop databases, 642
enabling database not trusted, 643–645

Select A Group Or Permission Level combo box, 538
Select Data Source dialog box, 156
selection criteria for queries, 268–270
select query, 261
Set Colors button, 520
SetField action, 181, 202, 255
SetLocalVar action, 181, 197, 255
SetProperty action, 545, 592–596
SetReturnVar action, 221, 240, 255
settings, Access Options dialog box

Add-Ins category, 638–639
Client Settings category, 633–634
Current Database category, 628–629
Customize Ribbon category, 634–636
Datasheet category, 629–630
Language category, 632–633
Object Designers category, 630–631
overview, 627–628
Proofing category, 631–632
Quick Access Toolbar category, 636–638
Trust Center category, 639–640

Setup Error dialog box, 795
SetVariable action, 546, 559, 564
SharePoint

corporate catalog
installing app packages from, 62–67
uploading app packages to, 59–63

importing data from lists
linking data into web app, 167–171
overview, 163–167

site permissions for web apps, 536–540
sites

creating blank web app in, 77–79
installing app packages into, 72–77

Store, installing app packages from, 66–74
Share site dialog, 537
sharing, controlling data while, 12–13
Shift+Down Arrow keyboard shortcut, 297
Shift+End keyboard shortcut, 297
Shift+F2 keyboard shortcut, 207
Shift+F10 keyboard shortcut, 207
Shift+Home keyboard shortcut, 297
Shift+Page Down keyboard shortcut, 297
Shift+Page Up keyboard shortcut, 297
Shift+Tab keyboard shortcut, 296
Shift+Up Arrow keyboard shortcut, 297
Short Date format, 394

Reset Read-Write Connection Password option, 535
RestaurantData.accdb file, 146
restrict delete relationship, 132–137, 218
Result Type property, 103, 708
Retrieve ID return variable, 248
Return To Site button, 70
return variables

for named data macros, 238–248
for web app macros, 597–602

reversing changes, 772–773
Reviews link, 69
ribbon, 45–46
Right Arrow keyboard shortcut, 207, 297
rows, 5
Row Source property, 389, 423, 437, 500, 776
Row Source Type property, 388
Run All From My Computer option, 786, 787
Run Audit button, 592, 597
RunDataMacro action, 181, 231, 255, 545, 599
RunMacro action, 546, 554, 557
RunMenuCommand method, 793
runtime mode, 339
RVAuditedInvoices data action, 248
RVRange variable, 243
RVUnbalanced data action, 248
RVUnbalanced variable, 601

S
Sample Files folder, 797
Save Action Bar button, 368, 431, 441
saveActionBarButton action, 594
Save A Local Copy dialog box, 524, 525
Save As dialog box, , 96
Save As Package option, 56
Save As tab, Microsoft Office Backstage view, 36, 621–623
Save button, 96
Save Changes dialog, 427
Save command

in Microsoft Office Backstage view, 36, 621
in Quick Access Toolbar, 43

Save Database As option, 56
Save Object As command, 36
Save Package dialog box, 56
SaveRecord macro action, 545
Scale property, 705
Schedule Reports tab, 530
schema, 22
ScreenTip, 109
SDI (single-document interface), 674–678
Search Bar feature, 49, 671–674
Search boxes, 88, 536
searching objects in web apps, 49–50
Search Online Templates text box, 33, 619
Secondary Display Field property, 391, 439
Secondary property, List Control, 366, 511
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Status option, Data Type Part, 695
StDev function, 317
StopMacro action, 181, 255, 546
Structured Query Language (SQL) . See SQL
Subdatasheet Expanded property, 723
Subdatasheet Height property, 723
Subdatasheet Name property, 722
Subtype property, 118
Subview Control button, 362
subviews, 480–486
Suffix field, 752
Sum function, 316
Summary views

creating, 454–469
and web apps, 356

Switch Account link, 38

T
Tabbed Documents option, 677, 678
Tab keyboard shortcut, 296
Table Analyzer Wizard, 16
Table button, Create group, 150
Table Design command, 696
Table Design window, 340
table events

On Delete events, 215–218
On Insert events, 179–181, 208–209
On Update events, 209–215
overview, 178

tables, 5 . See also tables, web app
backing up, 742–746
compacting, 781–782
creating

in Design view, 696–697
using Application Parts, 688–691
using Data Type Parts, 692–695

data types
changing, 765–768
changing lengths for, 769–770
conversion errors, 770–771

deleting, 746–747
design options, 735–739
entering data in, 686–688
fields

Companies table example, 709–710
copying, 760–763
data types, 699–702
deleting, 763–764
input masks for, 713–717
inserting, 758–760
moving, 754–758
overview, 697–699
properties for, 703–709, 771–772
renaming, 749–754
validation rules for, 711–713

Short Text data type, 98, 700, 701, 759
Short Time format, 394
Show Below The Ribbon option, 641
Show check box, 267
Show Date Picker property, 708
Show group, Home tab, 46
Show/Hide group, 177, 315
Show Only Fields In The Current Record Source link, 363, 

493
Show Options link, 538
Show Property Update Options Buttons check box, 738, 

771
Show Scrollbars property, 388, 488
Show Table button, Query Setup group, 311, 475
Show Table dialog box, 265, 309, 475, 725
Shutter Bar Open/Close button, 47, 658
Sign In To Office dialog, 38, 625
Single-Click option, 668
single-document interface (SDI), 674–678
single-field indexes, 121–122, 732–733
Site Contents Your Apps page, 63
64-bit version, 794–796
Size Mode property, 391
sizing controls, 372–380
SkyDrive cloud storage service, 24
Sort Ascending option, AutoFilter menu, 304, 450
Sort By submenu, 670
Sort Descending option, AutoFilter menu, 304, 450
Sort Field property, 366, 399
Sort & Filter group, Home tab, 652
sorting

in Navigation pane, 670–671
in queries, 293–295
in query Datasheet view, 303–305

Sort Order property, 367, 399, 465, 468
Source Object property, 392, 482, 491, 500
Spacebar keyboard shortcut, 297
Specify A SharePoint Site section, 165
SpouseBirthDate field, 752
SpouseName field, 752
spreadsheets, importing data, 150–155
SQL Server/ODBC Data button, 155
SQL (Structured Query Language)

databases, 699
and field names, 280
importing data from tables, 155–158
and query designer, 310

square brackets [ ], 96
stand-alone macros, 544
stand-alone views, 490–497
Standard format, 393
Start and End Dates option, Data Type Part, 695
Start screen, 28
StartTime field, 118
StateProvince field, 751
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table validation rules, 117–120
validation rules, 113–117

table templates, 87–92
table validation rules, 117–120
Tag option, Data Type Part, 695
Take A Look button, 26
Task List form, 617, 683
Tasks Navigation option, 665
Tasks option, Application Part, 690
TasksSample.accdb file, 615
Tasks Sample desktop database, 656
Tasks table template, 89
tblAppointments table, 208, 214
tblCompanyInformation table, 208, 218
tblContacts table, 742
tblEmployees table, 208, 214
tblInventoryLocations table, 334
tblInvoiceDetails table, 208, 214, 218, 591
tblInvoiceHeaders table, 215, 591, 603
tblJobCodes table, 308
tblLaborHours table, 317
tblLaborPlanDetails table, 208, 215, 519
tblLaborPlans table, 519
tblSchedule table, 208, 215
tblSettings table, 208, 218, 599
tblTerminations table, 208, 215, 218, 252
tblTimeLookups table, 209, 215, 218
tblTrainedPositions table, 209, 215, 227, 308
tblWeekDays table, 209, 215, 218
templates, 681–684
Templates group, Create tab, 654
TestGreeting macro, 554, 556
testing data macros, 188–190
Text Align property, 707
Text Box control, 361, 404
Text / CSV button, 158
Text data type, 142
text expressions in queries, 279–283
text files, importing data, 158–163
Text Format property, 707
Text Formatting group, Home tab, 653
Text Qualifier field, 161
TH alias, 245
themes for views, 501–507
Then keyword, 190, 561
Third Caption property, 398
Third Field property, 398
thousands separator, 714
Thumbnail property, List Control, 366
time of day

formatting controls for, 394–395
in queries, 272–273

TimeStamp field, 254
Title field, 752
Today function, 289

impact of changing, 742–746
indexes

multiple-field indexes, 733–735
overview, 731
single-field indexes, 732–733

Lookup properties, 773–777
Multi-Value Lookup Fields, 777–780
primary key, 718
properties for, 721–724
relationships

defining, 726–729
on multiple fields, 729–732
overview, 724–726

renaming, 747–748
reversing changes, 772–773
validation rules for, 718–721

Tables And Related Views category, 661, 667
Table Selector

changing display order, 340–341
choosing icons, 345–346
customizing captions, 341–343
hiding captions, 343–345
overview, 52, 340
viewing changes to, 346–347

Tables group, Create tab, 654
tables, web app . See also tables

calculated fields in, 106–113
creating

defining fields in web apps, 94–100
setting field properties, 101–103
using table templates, 87–92

Datasheet view for, 127–130
importing data

Access desktop database tables, 142–149
considerations for, 140–142
overview, 139–140
SharePoint lists, 163–166
SharePoint lists, linking, 167–171
spreadsheets, 150–155
SQL tables, 155–158
text files, 158–163

indexes
multiple-field indexes, 123–124
overview, 121
single-field indexes, 121–122

lookup fields
cascade delete relationship, 137–139
data list using, 124–127
restrict delete relationship, 132–137

overview, 83
primary key, 120–121
relationships

cascade delete relationship, 137–139
overview, 130–132
restrict delete relationship, 132–137
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Update Status Bar Text Everywhere ContactID Is Used 
command, 772

Upgrade tab, 792
upgrading Microsoft Office, 790–793
uploading app packages to SharePoint corporate 

catalog, 59–63
URL (Uniform Resource Locator), 100, 362, 488, 702
User Account Control dialog box, 784, 795
UserDisplayName expression, 574
Use Recommended Settings radio button, 22
UserEmailAddress expression, 574
User Information category, 38
User Information tab, 788
user interface macros, 174
Users option, Application Part, 690

V
VacationDays field, 285
Validation Rule property, 102, 116, 299
validation rules

button for, 118
defining, 113–117
errors not specifying validation text, 708
for fields, 711–713
property for, 706
for tables, 718–721

validation text, 102, 442, 706, 708
Value argument, SetVariable action, 559
Value property, 593
Var function, 317
Variable argument, 559, 574
variables, local, 196–199
VarRunningTotal variable, 245, 247
VBA (Visual Basic for Applications) code, 642
VendorID field, 104, 408
VendorIDFK field, 395, 459
Vendor List Details view, 575
Vendor List view, 507, 552
VendorName field, 104
VendorSortOrder variable, 559, 564
Vendors Standalone view, 495
Vendors table, 134
VerifyDateParameters block, 588
Version Comments text box, 60
Vertical Alignment property, 391
View And Edit Database Properties link, 618
viewAppointmentDetails view, 508, 586
viewAuditInvoices view, 592, 597, 603
View button, 128, 212, 269
viewColorPicker view, 521
viewCompanyInformation view, 606
viewCopySchedules view, 606
View Data option, 90, 342
viewDeleteScheduleRecords view, 606
Viewers [View Only] group, 539

Tools group, Database Tools tab, 655
Tooltip property, 109, 370, 383, 386, 566
Top Values property, 334–335
Totals button, Show/Hide group, 315
totals queries

forming groups for, 320–321
overview, 315
totals within groups, 315–319

TotHrs field, 330
TotWages expression, 324
Touch Mode command, 44
Trace table, debugging data macros with, 250–257
Tracing group, 251
Track Back icon, 570
Track Forward icon, 570
Track Name AutoCorrect Info check box, 736
transactions, 13
TrialExpire field, 719, 720
TrialVersion field, 719, 720
Triangle Left icon, 570
Triangle Right icon, 570
troubleshooting file conversion, 793–794
Trust Center, 42

Access Options dialog box category, 639–640
defining trusted locations, 649–651
enabling database not trusted, 643–645
overview, 646–649

Trusted Documents category, Trust Center dialog box, 647
Trusted Locations category, Trust Center dialog box, 647
Trusted Publishers category, Trust Center dialog box, 646
Trust It button, 64, 71
Try It Out link, 505
txtBeginningDate box, 589
txtEndingDate box, 589
Type argument, 223

U
unbound view, 359
UNC (Universal Naming Convention), 702
Underline button, 360
underscore ( _ ) character, 115, 277, 481, 714
Undo command, 44, 191, 345
undoing changes, 772–773
UndoRecord action, 545
Unhide option, 344
Unicode Compression property, 707
Uniform Resource Locator (URL), 100, 362, 488, 702
Unique Values property, 331–334
UnitPrice field, 719
Universal Naming Convention (UNC), 702
Up Arrow keyboard shortcut, 297, 414
Update function, 211
Update Parameters argument, 194, 226
Update Parameters link, 243
Update Properties dialog box, 772
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themes for, 501–507
viewing in web browser

autocomplete controls, 432–440
check box controls, 426
combo box controls, 423–424
data entry controls, 422–423
Datasheet view in, 447–452
Date Picker controls, 440–443
Filter box feature, 414–419
hyperlink controls, 424–425
image controls, 427–432
multiline text box controls, 426
navigating using List Control, 412–414
overview, 409–412
related items controls, 443–447
view mode vs. edit mode, 419–422

web browser control, 486–490
View Trace Table button, 253
Visible property, 372, 386, 482, 593
Visitors [Read] group, 539
Visual Basic for Applications (VBA) code, 642

W
web apps . See also data macros; tables, web app; views, 

web app
app packages

creating blank web app directly into SharePoint, 77–79
downloading into Access, 79–81
installing directly into SharePoint site, 72–77
installing from SharePoint corporate catalog, 62–67
installing from SharePoint Store, 66–74
saving as, 55–57
uploading to SharePoint corporate catalog, 59–63

creating blank, 84–87
design environment for

Add Tables screen, 50–51
App Home View, 52–53
overview, 50
Table Selector, 52
View preview window, 54
View Selector, 53

extending, 521–533
external connections for, 533–536
field data types in, 98–101
icon for, 64
objects in, 49–50
opening template for, 28–31
searching for objects in, 49–50
SharePoint site permissions for, 536–540
viewing in web browser, 54–55

web browser
viewing web apps in, 54–55
and web app views

autocomplete controls, 432–440
check box controls, 426

view events for web app macros, 552–557
View group, Home tab, 46
viewInvoicesUnbalanced view, 603
view mode vs . edit mode, 419–422
viewPayrollTotalsPopup view, 590
View preview window, 54
View Read-Only Connection Information option, 534
View Read-Write Connection Information option, 535
View Selector

customizing captions, 347–349
deleting views, 354–355
duplicating views, 350–352
overview, 53, 347
switching caption positions, 349–350
viewing changes to, 352–354

Views group, Home tab, 652
views in Navigation pane, 658–664
views, web app

Action Bar buttons
defining custom, 369–371
deleting, 368–369
moving, 368–369
overview, 368

App Home View
overview, 338–340
Table Selector, 340–347
View Selector, 347–355

Blank views, 470–480
controls in

date/time formats, 394–395
moving, 372–380
number formats, 393–394
properties for, 380–393
sizing, 372–380

Datasheet view, 402–408
Design contextual tab

Field list in, 363–364
overview, 359–363

name fixup feature
adding fields, 497–498
deleting objects, 501
overview, 497
renaming fields, 499
renaming objects, 499–500

opening in Design view, 356–359
overview, 337–338
properties for, 371–372
property callouts in, 364–368
quick-created views, 356
referencing for OpenPopup action, 579, 584–588
related items controls, 395–402
sample views in BOSS web app, 508–521
stand-alone views, 490–497
subviews, 480–486
Summary views, 454–469
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combo box controls, 423–424
data entry controls, 422–423
Datasheet view in, 447–452
Date Picker controls, 440–443
Filter box feature, 414–419
hyperlink controls, 424–425
image controls, 427–432
multiline text box controls, 426
navigating using List Control, 412–414
overview, 409–412
related items controls, 443–447
view mode vs. edit mode, 419–422

web browser control, 361, 486–490
web integration in Microsoft Access 2013, 17–19
Web Linked Lists group, External Data tab, 655
Web Location text box, 30
WebPage field, 751
Website field, 105, 379, 478, 752
Wedding List sample desktop database, 14
Week setting, DateDiff function, 285
welcome dialog, 24
What’s Your Style button, 503
Where clause

for ForEachRecord data block, 226
for LookupRecord action, 193, 196
for OpenPopup action, 580–584
for RequeryRecords action, 563

wildcard characters, 115, 712
Window group, Home tab, 653
With Color option, 531
WorkAddress field, 752, 761
WorkCity field, 752
WorkCountry field, 752
WorkExtension field, 752
WorkFaxNumber field, 752
WorkPhone field, 752
WorkPostalCode field, 752
WorkStateOrProvince field, 752

X
X (Close) button, 345
XML (Extensible Markup Language), 259
XPS (XML Paper Specification), 622

Y
Year setting, DateDiff function, 285
Yes (Duplicates OK) option, 122
Yes, Keep It link, 506
Yes/No data type, 99, 143, 700, 701
Yes (No Duplicates) option, 122
Your Apps page, 67

Z
ZipPostal field, 751
Zoom window, 279



About the author
Jeff Conrad started working with Access when he saw a need at his full-time position for a 
database solution. He bought a book on Access and began teaching himself how to use the 
program to solve his business’s needs. He immediately became hooked on the power and 
ease of working with Access. 

Jeff found a home in the Microsoft Access newsgroups asking questions as he was learn-
ing the ins and outs of Access and database development. He now enjoys giving back to a 
community that helped him when he was first learning how to use Access. He has been an 
active participant for many years in the Access newsgroups and online forums where he is 
best known as the Access Junkie. 

Jeff also was awarded Microsoft’s Most Valuable Professional award from 2005 to 2007 for 
his continual involvement with the online Access community. He maintains a website with 
a wealth of information and resource links for those needing guidance with Access (http://
www.AccessJunkie.com). He co-authored Microsoft Office Access 2007 Inside Out with John 
Viescas and authored Microsoft Access 2010 Inside Out. Jeff is currently employed by Micro-
soft as a Software Design Engineer in Test working with the Access development team.


	Cover
	Table of Contents
	Chapter 4
	Index



