

Microsoft Access 2013
Inside Out

Jeff Conrad

Copyright © 2013 by Jeff Conrad

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

ISBN: 978-0-7356-7123-2

2 3 4 5 6 7 8 9 10 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you
need support related to this book, email Microsoft Press Book Support at mspinput@micro-
soft.com. Please tell us what you think of this book at http://www.microsoft.com/learning/
booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/Intellec-
tualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real com-
pany, organization, product, domain name, email address, logo, person, place, or event is
intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this
book is provided without any express, statutory, or implied warranties. Neither the authors,
Microsoft Corporation, nor its resellers, or distributors will be held liable
for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Christopher Hearse

Technical Reviewer: Andrew Couch

Copyeditor: Richard Carey

Indexer: BIM Publishing Services

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

[2013-08-14]

For my wonderful wife, Cheryl, and for Amy, Aaron, and Arica.
Thank you for your love, support, and encouragement.

—Jeff Conrad

 v

Contents at a glance

Part 2: Creating tables in a desktop
database
Chapter 9
Exploring the Access 2013 desktop
database interface . 613

Chapter 10
Designing tables in a desktop database 679

Chapter 11
Modifying your table design 741

Appendix
Installing your software 783

Part 1: Working with Access Services
web apps
Chapter 1
What is Access? . 3

Chapter 2
Exploring the Access 2013 web app interface 21

Chapter 3
Designing tables in a web app 83

Chapter 4
Creating data macros in web apps 173

Chapter 5
Working with queries in web apps 261

Chapter 6
Working with views and the web
browser experience . 337

Chapter 7
Advanced view design 453

Chapter 8
Automating a web app using macros 541

 vii

Table of contents

Introduction .xiii

Part 1: Working with Access Services web apps
Chapter 1: What is Access? . 3

What is a database?. .3
Relational databases. .4
The architecture of Access. .5
Database capabilities .7

Access as an RDBMS .7
Data definition and storage .8
Data manipulation . 10
Data control . 12

Access as an application development system. 13
Deciding to move to database software . 15
Extending the power of Access to the web. 17

Chapter 2: Exploring the Access 2013 web app interface . 21
Working with web apps . 21
Opening Access for the first time . 22
Getting started with Access 2013 . 27

Opening a web app template . 28
Exploring the Microsoft Office Backstage view. 32
Taking Advantage of the Quick Access Toolbar. 43

Understanding the Office Fluent ribbon . 45
Working with the Navigation pane . 46
Searching for web app objects . 49
Working in the web app design environment . 50

Add Tables screen . 50
Table Selector . 52
App Home View . 52
View Selector . 53
View preview window. 54

Viewing your web app in a web browser. 54
Saving a web app as an app package . 55
Installing app packages . 58

Uploading an app package to a SharePoint corporate catalog 59

viii Table of Contents

Installing app packages from a SharePoint corporate catalog. 62
Installing apps from the SharePoint Store . 66
Installing apps directly into a SharePoint site . 72
Creating a blank Access web app. 77
Downloading a web app into Access. 79

Chapter 3: Designing tables in a web app . 83
Creating a new blank web app . 84
Creating tables using table templates . 87
Starting with a blank table . 92

Defining fields in web apps . 94
Understanding field data types in web apps . 98
Setting field properties . 101
Completing the fields in the Vendors table . 104
Creating calculated fields . 106
Defining field validation rules for web apps. 113

Defining a table validation rule for web apps. 117
Defining a primary key for web apps . 120
Adding indexes. 121

Single-field indexes. 121
Multiple-field indexes. 123

Creating value list lookup fields in web apps . 124
Working with data in preview datasheets . 127
Creating relationships using lookup fields . 130

Defining a restrict delete relationship . 132
Defining a cascade delete relationship . 137

Importing and linking data into web apps . 139
Considerations for importing lookups . 140
Importing Access desktop database tables . 142
Importing a spreadsheet . 150
Importing SQL tables . 155
Importing a text file . 158
Importing a list from a SharePoint site . 163
Linking a SharePoint list into a web app. 167

Chapter 4: Creating data macros in web apps . 173
Uses of data macros . 174
Touring the Logic Designer . 175
Working with table events . 178

Using On Insert events . 179
Using On Update events . 209
Using On Delete events . 215
Deleting table events . 219

Working with named data macros . 220
Creating named data macros . 220
Using parameters . 223
Saving named data macros . 230

 Table of Contents ix

Calling named data macros. 230
Renaming and deleting named data macros. 236
Working with return variables . 238

Studying other named data macros . 249
Debugging data macros with the Trace table. 250
Understanding recursion in data macros . 258
Sharing data macro logic . 259

Chapter 5: Working with queries in web apps . 261
Selecting data from a single table . 264

Specifying fields . 267
Viewing query results. 268
Entering selection criteria . 271
Using expressions . 278
Using the Expression Builder. 286
Sorting data . 293

Working in query preview Datasheet view . 295
Moving around and using keyboard shortcuts . 295
Changing data . 297
Sorting data . 303
Filtering Data . 305

Selecting data from multiple tables . 308
Creating inner joins. 308
Creating outer joins . 313

Summarizing information with totals queries. 315
Totals within groups . 315
Selecting records to form groups . 320

Building a query on a query . 321
Using query parameters . 325
Selecting specific groups . 330
Working with unique values . 331
Using the Top Values query property . 334

Chapter 6: Working with views and the web browser experience 337
Uses of views. 338
Understanding the App Home View . 338

Working with the Table Selector . 340
Working with the View Selector . 347

Starting with quick-created views. 356
Working within the web design surface . 356
Exploring Action Bar buttons . 368
Defining view properties . 371
Sizing and moving controls. 372
Defining control properties. 380
Understanding related items controls. 395
Customizing Datasheet views . 402

x Table of Contents

Working with views in a web browser . 409
Navigating to records using the List Control . 412
Filtering in views . 414
Understanding view and edit mode . 419
Using special controls for data entry. 422
Using Datasheet views . 447

Chapter 7: Advanced view design . 453
Creating Summary views . 454
Creating Blank views . 470
Defining subviews . 480
Using web browser controls. 486
Creating stand-alone views . 490
Understanding name fixup . 497

Adding fields . 497
Renaming fields . 499
Renaming objects . 499
Deleting objects . 501

Applying themes to web app views . 501
Exploring sample views in the BOSS app. 508
Extending your web app with desktop database reports. 521
Managing external connections . 533
Setting SharePoint site permissions . 536

Chapter 8: Automating a web app using macros . 541
The macro design surface—an overview . 543

Working with the Logic Designer. 543
Saving your macro . 548

Working with view and control events. 550
Defining macros for view events . 552
Defining macros for control events . 557

Controlling record navigation with macros. 568
Creating an On Start macro . 573
Opening views with OpenPopup actions . 576

Using Where clause syntax . 580
Referencing other view control values . 584
Passing parameters to views . 588

Exploring the audit invoices macros. 591
Using the SetProperty action with view controls . 592
Calling named data macros and using return variables. 597
Navigating to different views using ChangeView actions . 602

Exploring other named data macro parameter examples . 605

Part 2: Creating tables in a desktop database
Chapter 9: Exploring the Access 2013 desktop database interface 613

Getting started with desktop databases . 613

 Table of Contents xi

Opening an existing desktop database. 614
Exploring the Microsoft Office Backstage view. 617
Modifying global settings via the Access Options dialog box 627
Taking advantage of the Quick Access Toolbar . 640

Understanding content security . 642
Enabling a database that is not trusted . 643
Understanding the Trust Center. 646
Enabling content by defining trusted locations. 649

Understanding the Office Fluent Ribbon . 651
Home tab . 652
Create tab. 653
External Data tab . 654
Database Tools tab . 655

Understanding the Navigation pane . 656
Exploring Navigation pane object views . 658
Working with custom categories and groups . 664
Exploring the Navigation Options dialog box . 666
Sorting and selecting views in the Navigation pane . 670
Searching for database objects . 671

Using the single-document vs. the multiple-document interface . 674

Chapter 10: Designing tables in a desktop database . 679
Creating a new desktop database. 680

Using a database template to create a desktop database. 681
Creating a new empty database. 684

Creating your first simple table by entering data . 686
Creating a table using Application Parts . 688
Creating a table using Data Type Parts . 692
Creating a table in Design view. 696
Defining fields. 697

Understanding field data types . 699
Setting field properties . 703
Completing the fields in the Companies table . 709
Defining simple field validation rules . 711
Defining input masks . 713

Defining a primary key . 718
Defining a table validation rule . 718
Understanding other table properties . 721
Defining relationships . 724

Defining your first relationship . 726
Creating a relationship on multiple fields. 729

Adding indexes. 731
Single-field indexes. 732
Multiple-field indexes. 733

Setting table design options . 735
Database limitations . 739

xii Table of Contents

Chapter 11: Modifying your table design . 741
Before You Get Started . 742
Deleting tables . 746
Renaming tables. 747
Changing field names . 749
Moving fields . 754
Inserting fields . 758
Copying fields . 760
Deleting fields. 763
Changing data attributes . 764

Changing data types . 765
Changing data lengths. 769
Dealing with conversion errors. 770
Changing other field properties . 771

Reversing changes . 772
Taking a look at Lookup properties . 773
Working with Multi-Value Lookup Fields . 777
Compacting your database . 781

Appendix A: Installing your software . 783
Installing the Office system . 784

Choosing options when you have no previous version of the Office system 785
Choosing options to upgrade a previous version of the Office system 790

Converting from a previous version of Access . 793
Conversion issues . 793

Installing the Office 64-bit version . 794
Installing the sample files . 796

Index . 799

 xiii

Introduction
Microsoft Access 2013 is just one part of Microsoft’s overall data management product
strategy. Like all good relational databases, it allows you to link related information easily—
for example, customer and order data that you enter. But Access 2013 also complements
other database products because it has several powerful connectivity features. As its name
implies, Access can work directly with data from other sources, including many popular PC
database programs, with many SQL (Structured Query Language) databases on the desk-
top, on servers, on minicomputers, or on mainframes, and with data stored on Internet or
intranet web servers.

Access provides a very sophisticated application development system for the Microsoft
Windows operating system. This helps you build applications quickly, whatever the data
source. In fact, you can build simple applications by defining forms and reports based on
your data and linking them with a few macros or Microsoft Visual Basic statements; there’s
no need to write complex code in the classic programming sense. Because Access uses
Visual Basic, you can use the same set of skills with other applications in the Microsoft
Office system or with Visual Basic.

For small businesses (and for consultants creating applications for small businesses), the
Access desktop development features are all that’s required to store and manage the data
used to run the business. Access coupled with Microsoft SQL Server—on the desktop or
on a server—is an ideal way for many medium-size companies to build new applications
for Windows quickly and inexpensively. To enhance workgroup productivity, you can use
Access 2013 to create an Access Services web app using Microsoft’s Office 365 service or on
a server with SharePoint 2013, Access Services, and SQL Server 2012. Users of your web app
can view, edit, and delete data from your app directly in their web browser. For large corpo-
rations with a large investment in mainframe relational database applications and a prolif-
eration of desktop applications that rely on personal computer databases, Access provides
the tools to easily link mainframe and personal computer data in a single Windows-based
application. Access 2013 includes features to allow you to export or import data in XML
format (the lingua franca of data stored on the web).

Who this book is for
If you have never used a database program—including Access—you’ll find Access 2013
very approachable. The Backstage view and ribbon technology makes it easy for novice
users to get acquainted with Access and easily discover its most useful features. To get
a new user jump-started, Microsoft provides web app and desktop database templates

xiv

available for download that you can use to begin creating an application that helps solve
your personal or business needs.

If you’re developing a web app or desktop database application with the tools in Access
2013, Microsoft Access 2013 Inside Out gives you a thorough understanding of “program-
ming without pain.” It provides a solid foundation for designing web apps, desktop data-
bases, forms, and reports and getting them all to work together. You’ll learn that you can
quickly create complex applications by linking design elements with macros or Visual Basic.
This book will also show you how to take advantage of some of the more advanced fea-
tures of Access 2013. You’ll learn how to build an Access web app that you can use with
Microsoft’s Office 365 service offering. You’ll learn all about the new design surfaces for cre-
ating objects in Access web apps and how to use apps in your web browser.

If you’re new to developing applications, particularly web apps and database applications,
this probably should not be the first book you read about Access. I recommend that you
first take a look at Microsoft Access 2013 Plain & Simple or Microsoft Access 2013 Step By
Step.

How this book is organized
Microsoft Access 2013 Inside Out is divided into eight major parts:

Part 1 shows you how to create and work with the all new Access Services web apps:

●● Chapter 1, “What is Access,” explains the major features that a database should pro-
vide, explores those features in Access, and discusses some of the main reasons why
you should consider using database software.

●● Chapter 2, “Exploring the Access 2013 web app interface,” thoroughly explores the
web app user interface introduced in the Access 2013 release. The chapter also
explains working in the web app environment and installing web app packages.

●● Chapter 3, “Designing tables in a web app,” teaches you how to design web app
tables and how to import and link data into web apps.

●● Chapter 4, “Creating data macros in web apps,” focuses on how to create data macros
and work with table events to attach business logic to your tables.

●● Chapter 5, “Working with queries in web apps,” shows you how to build queries in
web apps and work with data in query Datasheet view.

●● Chapter 6, “Working with views and the web browser experience,” and Chapter 7,
“Advanced view design,” exploree the new App Home View, show how to create all
the view different view types, work with controls, and understand the properties you

 xv

can use with controls in web apps. You’ll also learn how to create and work with views
in a web browser, and how to manage external connections.

●● Chapter 8, “Automating a web app using macros,” shows how to work with view and
control events to automate your web app.

Part 2 shows you how to create and work with tables in a desktop database:

●● Chapter 9, “Exploring the Access 2013 desktop database interface,” thoroughly
explores the desktop database interface. The chapter also explains content secu-
rity, working with the Backstage view, ribbon, and the Navigation pane, and setting
options that customize how you work with Access 2013.

●● Chapter 10, “Designing tables in a desktop database,” and Chapter 11, “Modifying
your table design,” teach you how to design desktop databases and tables and show
you the ins and outs of modifying tables, even after you’ve already begun to load
data and build other parts of your application.

The Appendix explains how to install the Office 2013 release, including which options you
should choose for Access 2013 to be able to open all the samples in this book.

Part 3 through Part 8, which includes Chapter 12 through Chapter 27, can be found in the
Companion Content section on the book’s catalog page. The Companion Content also
includes seven additional articles with important reference information.

Note
This book is current as of the general availability release date of Microsoft Access 2013
and Office 365 in February 2013. Microsoft is continually updating the Office 365 service
offerings, and new features could be implemented after this release date . As a result,
some of the features in the product might not exactly match what you see if you are
working through the book’s examples at a later date .

This book does not discuss the following deprecated features in Access 2013: Access
Data Projects (ADP), PivotCharts, PivotTables, Access data collection through email,
support for Jet 3 .x IISAM, support for dBASE, Access 2003 toolbars and menus, Access
Replication Options, Access Source Code Control, Access Three-State Workflow, and the
Access Upsizing Wizard . Also, Microsoft removed the ability to create new Access 2010-
style web databases with Access 2013 in favor of the new Access 2013 web apps . You
can edit existing 2010-style web databases with Access 2013, but you cannot create new
ones . Therefore, this book does not discuss how to create and edit 2010-style web data-
bases . If you want to learn about Access 2010-style web databases, see Microsoft Access
2010 Inside Out .

xvi

Features and conventions used in this book
The following conventions are used in the syntax descriptions for Visual Basic statements
in Chapter 24, “Understanding Visual Basic fundamentals,” Chapter 25, “Automating your
application with Visual Basic,” SQL statements in Article 2, “Understanding SQL,” and any
other chapter where you find syntax defined. These conventions do not apply to code
examples listed within the text; all code examples appear exactly as you’ll find them in the
sample databases.

You must enter all other symbols, such as parentheses and colons, exactly as they appear in
the syntax line. Much of the syntax shown in the Visual Basic chapter has been broken into
multiple lines. You can format your code all on one line, or you can write a single line of
code on multiple lines using the Visual Basic line continuation character (_).

Text conventions

Convention Meaning

Bold Bold type indicates keywords and reserved words that you must
enter exactly as shown. Microsoft Visual Basic understands key-
words entered in uppercase, lowercase, and mixed case type. Access
stores SQL keywords in queries in all uppercase, but you can enter
the keywords in any case.

Italic Italicized words represent variables that you supply.
Angle brackets < > Angle brackets enclose syntactic elements that you must supply.

The words inside the angle brackets describe the element but do
not show the actual syntax of the element. Do not enter the angle
brackets.

Brackets [] Brackets enclose optional items. If more than one item is listed, the
items are separated by a pipe character (|). Choose one or none
of the elements. Do not enter the brackets or the pipe; they’re not
part of the element. Note that Visual Basic and SQL in many cases
require that you enclose names in brackets. When brackets are
required as part of the syntax of variables that you must supply in
these examples, the brackets are italicized, as in [MyTable].[MyField].

Braces { } Braces enclose one or more options. If more than one option is
listed, the items are separated by a pipe character (|). Choose one
item from the list. Do not enter the braces or the pipe.

Ellipsis … Ellipses indicate that you can repeat an item one or more times.
When a comma is shown with an ellipsis (,…), enter a comma
between items.

 xvii

Convention Meaning

Underscore _ You can use a blank space followed by an underscore to continue
a line of Visual Basic code to the next line for readability. You can-
not place an underscore in the middle of a string literal. You do
not need an underscore for continued lines in SQL, but you cannot
break a literal across lines.

Design conventions

INSIDE OUT This statement illustrates an example of an “Inside Out”
heading

These are the book’s signature tips . In these tips, you get the straight scoop on what’s
going on with the software—inside information about why a feature works the way it
does. You’ll also find handy workarounds to deal with software problems.

Sidebar
Sidebars provide helpful hints, timesaving tricks, or alternative procedures related to the
task being discussed .

Troubleshooting

This statement illustrates an example of a “Troubleshooting” problem
statement.
Look for these sidebars to find solutions to common problems you might encounter.
Troubleshooting sidebars appear next to related information in the chapters. You can
also use “Index to Troubleshooting Topics” at the back of the book to look up problems
by topic.

Cross-references point you to locations in the book that offer additional information about
the topic being discussed .

CAUTION!
Cautions identify potential problems that you should look out for when you’re com-
pleting a task or that you must address before you can complete a task.

xviii

Reader Aid
Notes offer additional information related to the task being discussed .

Your companion ebook
With the ebook edition of this book, you can do the following:

●● Search the full text

●● Print

●● Copy and paste

To download your ebook, please see the instruction page at the back of the book.

About the companion content
I have included companion content to enrich your learning experience. The companion
content for this book can be downloaded from the following page:

 http://aka.ms/Access2013IO/files

The companion content is organized as follows:

Part 3 focuses on how to build desktop database queries to analyze and update data in
your tables.

●● Chapter 12, “Creating and working with simple queries,” shows you how to build
simple desktop database queries and how to work with data in Datasheet view.

●● Chapter 13, “Building complex queries,” discusses how to design desktop database
queries to work with data from multiple tables, summarize information, and build
queries that require you to work in SQL view.

●● Chapter 14, “Modifying data with action queries,” focuses on modifying sets of data
with desktop database queries—updating data, inserting new data, deleting sets of
data, or creating a new table from a selection of data from existing tables.

Part 4 discusses how to build and work with forms in desktop databases.

●● Chapter 15, “Using forms in a desktop database,” introduces you to forms—what they
look like and how they work.

 xix

●● Chapter 16, “Building a form,” Chapter 17, “Customizing a form,” and Chapter 18,
“Advanced form design,” teach you all about form design in desktop databases, from
simple forms you build with a wizard to complex, advanced forms that use embed-
ded forms and navigation and web browser controls.

Part 5 explains how to work with reports in desktop databases.

●● Chapter 19, “Using reports,” leads you on a guided tour of reports and explains their
major features.

●● Chapter 20, “Constructing a report,” and Chapter 21, “Advanced report design,” teach
you how to design, build, and implement both simple and complex reports in your
application.

Part 6 shows you how to make your desktop database “come alive” using macros.

●● Chapter 22, “Creating data macros in desktop databases,” explores the macro Logic
Designer and shows how to work with events and named data macros within desktop
databases.

●● Chapter 23, “Using macros in desktop databases,” discusses the concept of event pro-
cessing in Access, provides a comprehensive list of events, and explains the sequence
in which critical events occur. It also covers user interface macro design in depth and
explains how to use error trapping and embedded macro features.

Part 7 shows you how to use the programming facilities in Microsoft Visual Basic to inte-
grate your database objects and automate your desktop database.

●● Chapter 24, “Understanding Visual Basic fundamentals,” is a comprehensive reference
to the Visual Basic language and object models implemented in Access. It presents
two complex coding examples with a line-by-line discussion of the code. The final
section shows you how to work with 64-bit Access Visual Basic.

●● Chapter 25, “Automating your desktop database with Visual Basic,” thoroughly dis-
cusses some of the most common tasks that you might want to automate with Visual
Basic. Each section describes a problem, shows you specific form or report design
techniques you must use to solve the problem, walks you through the code from one
or more of the sample databases that implements the solution, and discusses calling
named data macros.

Part 8 covers tasks you might want to perform after completing your application.

●● Chapter 26, “The finishing touches,” teaches you how to automate custom ribbons,
create a custom Backstage view, and how to set Startup properties.

xx

●● Chapter 27, “Distributing your desktop database,” teaches you tasks for setting up
your application so that you can distribute it to others. It also shows you how to cre-
ate your own custom Data Type Parts, Application Parts, and application templates.

The companion content includes an additional seven articles that contain important refer-
ence information:

●● Article 1 explains a simple technique that you can use to design a good relational
database application with little effort. Even if you’re already familiar with Access or
creating database applications in general, getting the table design right is so impor-
tant that this article is a “must read” for everyone.

●● Article 2 is a complete reference to SQL as implemented in desktop databases. It also
contains notes about differences between SQL supported natively by Access and SQL
implemented in SQL Server.

●● Article 3 explains how to link to or import data from other sources.

●● Article 4 discusses how to export data and Access objects to various types of other
data formats from your Access application.

●● Article 5 lists the functions most commonly used in an Access application, catego-
rized by function type. You’ll also find a list of functions that you can use with Access
web apps.

●● Article 6 lists common color names and codes you can use in Access.

●● Article 7 lists the macro actions for both desktop databases and web apps you can
use in Access.

Using the sample files

Throughout Microsoft Access 2013 Inside Out, you’ll see references to sample Access web
apps and desktop databases. To access and download the sample applications, visit:

http://aka.ms/Access2013IO/files

For detailed instructions on where to place the sample files on your local computer, see the
Appendix. For information on how to install the web app samples (discussed in Part 1 of
this book) in your SharePoint site, see the section “Installing app packages,” in Chapter 2.

The examples in this book assume you have installed the 32-bit version of Microsoft Office
2013, not just the 32-bit version of Access 2013. You can also download versions of the
sample databases that have been modified to work with the 64-bit version of Access 2013.
Several examples in this book assume that you have installed all optional features of Access

 xxi

through the Office 2013 setup program. If you have not installed these additional features,
your screen might not match the illustrations in this book or you might not be able to run
the sample files. A list of the additional features you will need to run all the samples in this
book is included in the Appendix.

A list of the key database files and their descriptions follows. (I have not listed all the
smaller support files for the chapters or articles.)

●● Back Office Software System Restaurant Management Web App (BOSS.app). This
comprehensive web app demonstrates how a restaurant might manage food orders,
maintain employee records, and create weekly work schedules. Examples of nearly all
features with Access web apps are contained in this large sample web app.

●● Auctions App (Auctions.app). This sample web app demonstrates using Access to track
donated items for auctions and the users bidding on the auction items. This sample
contains examples of using data macros to control the data entry by applying logic at
the table level.

●● Training Tracker App (TrainingTracker.app). This web app tracks different training
courses completed by employees. You can also use the app to record employee feed-
back and the number of hours spent on each training.

●● Conrad Systems Contacts (Contacts.accdb and ContactsData.accdb). This desktop
database application is both a contacts management and order entry database. This
sample database demonstrates how to build a client/server application using only
desktop tools. You’ll also find a ContactsDataCopy.accdb file that contains additional
query, form, and report examples.

●● Housing Reservations (Housing.accdb). This desktop database application demon-
strates how a company housing department might track and manage reservations in
company-owned housing facilities for out-of-town employees and guests. You’ll also
find HousingDataCopy.accdb and HousingDataCopy2.accdb files that contain many
of the query, form, and report examples.

●● Back Office Software System Restaurant Management Application (BOSSDesktopDa-
tabase.accdb). This desktop application contains similar functionality to the BOSS.app
sample web app, but this sample utilizes desktop database objects and features.

●● Wedding List (WeddingMC.accdb and WeddingList.accdb). This application is an exam-
ple of a simple desktop database that you might build for your personal use. It has a
single main table where you can track the names and addresses of invitees, whether
they’ve said that they will attend, the description of any gift they sent, and whether a
thank-you note has been sent. Although you might be tempted to store such a sim-
ple list in an Excel spreadsheet or a Word document, this application demonstrates

xxii

how storing the information in Access makes it easy to search and sort the data and
produce reports. The WeddingMC database is automated entirely using macros, and
the WeddingList database is the same application automated with Visual Basic.

Here is a list of databases that are discussed in the chapters:

Chapter Content

Chapter 1 ContactsMap.accdb and Contacts.accdb
Chapter 2 BOSS.app
Chapter 3 RestaurantData.accdb, Contacts.app, BOSS.

app, and RestaurantSample.app
Chapters 4 and 5 BOSSDataCopy.app
Chapter 6 RestaurantSampleWithData.app, BOSS.app,

and ControlDefinitions.accdb
Chapter 7 RestaurantSampleChapter7.app, BOSS.app,

and BOSSReportsMaster.accdb
Chapter 8 RestaurantSampleChapter8.app, BOSS.app

sample app, and Auctions.app
Chapter 9 TasksSample.accdb
Chapter 10 WeddingList.accdb, Housing.accdb, and

Contacts.accdb
Chapter 11 Housing.accdb, Contacts.accdb, and

ContactTracking.accdb
Chapters 12, 13, and 14 ContactsDataCopy.accdb and

HousingDataCopy.accdb
Chapter 15 Contacts.accdb and ContactsNavigation.

accdb
Chapter 16 ContactsDataCopy.accdb
Chapter 17 HousingDataCopy.accdb and

ContactsNavigation.accdb
Chapter 18 HousingDataCopy.accdb, ContactsDataCopy.

accdb, and ContactsNavigation.accdb
Chapter 19 ContactsDataCopy.accdb and Housing.accdb
Chapter 20 ContactsDataCopy.accdb
Chapter 21 HousingDataCopy2.accdb
Chapter 22 BOSSDesktopDatabase.accdb
Chapter 23 WeddingMC.accdb and

BOSSDesktopDatabase.accdb
Chapter 24 Contacts.accdb and Housing.accdb

 xxiii

Chapter Content

Chapter 25 Housing.accdb, Contacts.accdb, and
WeddingList.accdb

Chapter 26 Contacts.accdb, Housing.accdb, HousingSP.
accdb, and BOSSDesktopDatabase.accdb

Chapter 27 Contacts.accdb, Housing.accdb, and
ContactsNavigation.accdb

Please note that the person names, company names, email addresses, and web addresses
in all the databases are fictitious. Although I pre-loaded all databases with sample data, the
Housing Reservations and Conrad Systems Contacts databases also include a special form
(zfrmLoadData) that has code to load random data into the sample tables based on param-
eters that you supply.

Note
All the screen images in this book were taken on a Windows 8 system with the Office
theme set to White and using the Internet Explorer web browser . Your results might look
different if you are using a different operating system, a different theme, or a different
web browser . Also, the results you see from the samples might not exactly match what
you see in this book if you have changed the sample data in the files.

System requirements

The following are the system requirements you need to install Office 2013, Access 2013,
and the sample files on a Microsoft Windows–compatible computer or device.

●● A gigahertz (Ghz) or faster x86-bit or x64-bit processor with SSE2 instruction set.

●● Microsoft Windows 7 (32-bit or 64-bit), Microsoft Windows 8 (32-bit or 64-bit), Win-
dows Server 2008 R2, or Windows Server 2012 operating systems.

●● At least 1 gigabyte (GB) of random access memory (RAM) for 32-bit operating system
environments or 2 gigabytes (GB) of RAM for 64-bit operating systems.

●● A hard drive with at least 3.0 gigabytes (GB) available.

●● A DirectX10 graphics card and 1024 x 576 resolution for graphics hardware
acceleration.

●● Microsoft Internet Explorer 8, 9, 10, or a later version; Mozilla FireFox 10.x or a later
version; Apple Safari 5; or Google Chrome 17.x or a later version.

xxiv

●● Microsoft .NET version 3.5, 4.0, or 4.5.

●● A touch-enabled device for using any multi-touch functionality in Windows 8. (How-
ever, all features and functionality are always available by using a keyboard, mouse,
or other standard or accessible input device.)

●● Silverlight installed together with Office 2013 is recommended to improve the online
experience.

Acknowledgments
Nearly every member of the Microsoft Access development team provided invaluable tech-
nical support as I worked through the finer details in Microsoft Access 2013. The program
managers, developers, and test engineers on the team helped with suggestions, tips and
tricks, and reviewing my material. You folks make an author’s job so much easier. But any
errors or omissions in this book are ultimately mine.

A book this large and complex requires a top-notch team to get what I put into Microsoft
Word documents onto the printed pages you are now holding. I had some of the best in
the business at Microsoft Press, Inc. Media to get the job done. Many thanks go to Kenyon Brown for
serving as Acquisitions and Development Editor. Special thanks to Chris Hearse and Richard
Carey for handling production and copy editing and to Andrew Couch for technical review-
ing. Andrew Couch was especially gifted at not only pointing out any technical mistakes I
made, but he was also helpful in offering suggestions for improvement in layout, material,
and presentation. Also, thanks to John Viescas for his continued mentoring and friendship. I
couldn’t have done it without all of you!

And last, but certainly not least, I thank my wife and soul mate, Cheryl. She not only
patiently stood by me as I cranked through over 1,900 pages of manuscript, but also
helped behind the scenes reviewing and editing what I did. I could not have completed this
book without her support.

Support and feedback
The following sections provide information on errata, book support, feedback, and contact
information.

Errata

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Micro-
soft Press site:

 xxv

http://aka.ms/Access2013IO/errata

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at:

mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valu-
able asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter at: http://twitter.com/MicrosoftPress.

http://twitter.com/MicrosoftPress

CHAPTER 4

Creating data macros in web apps

Uses of data macros . 174

Touring the Logic Designer . 175

Working with table events . 178

Working with named data macros 220

Studying other named data macros 249

Debugging data macros with the Trace table 250

Understanding recursion in data macros 258

Sharing data macro logic . 259

In Microsoft Access 2013, you can define a data macro to respond to different types
of table events that would otherwise require the use of writing macros attached to
view and control events. The unique power of data macros in Access 2013 is their abil-

ity to automate responses to several types of table events without forcing you to learn a
programming language. The event might be a change in the data, the creation of a new
record, or even the deletion of an existing record. Within a data macro, you can include
multiple actions and define condition checking so that different actions are performed
depending on the values in your table fields or criteria you specify.

Note
The examples in this chapter are based on the backup copy of the Back Office Software
System sample web app (BOSSDataCopy .app), which can be downloaded from the book’s
catalog page at http://aka.ms/Access2013IO/details . To use the sample, you’ll need to
upload the app into your corporate catalog or Office 365 team site and install the app.
Review the instructions at the end of Chapter 2, “Exploring the Access 2013 web app
interface,” if you need help with those tasks .

In this chapter, you will:

●● Learn about the various types of actions that you can define in data macros and the
table events that you can use.

●● Tour the logic designer facility and learn how to build both a simple data macro and
a data macro with multiple defined actions.

●● Learn how to create local variables in data macros to store values temporarily or cal-
culate a result.

●● See how to define parameters and use them inside data macro actions.

 173

Chapter 4

●● Learn how to create return variables in data macros to return data to the calling
macro.

●● See how to add conditional statements to a data macro to control the actions that
Access performs.

●● Learn how to create named data macros and execute them from other data macros
or table events.

●● Understand some of the actions automated with data macros in the Back Office Soft-
ware System sample web app.

Uses of data macros
Access 2013 provides various types of data macro actions that you can attach to table
events as well as inside named data macro objects to automate your web app. With data
macros, you can do the following:

●● Verify that an invoice is balanced with the invoice detail line items before saving the
record.

●● Mark an employee as inactive after you create a termination record.

●● Prevent any data from being edited, added, or deleted from a table.

●● Create new schedule records based on the previous week’s schedule or a labor plan
template.

●● Delete all schedule records within a specific time frame.

As you’ll learn in Chapter 8, “Automating a web app using macros,” Access 2013 sup-
ports user interface macros to control application flow in your views and to respond to
user actions. You can also utilize user interface macros to enforce complex business logic
that might not be covered by table relationships, unique properties, validation rules, and
required properties. However, the potential problem with using user interface macros to
enforce complex business logic is that you don’t always have complete control over how
users interact with the data in your tables. For example, users can add, update, and delete
data through table and query datasheets. (You’ll learn about queries in Chapter 5, “Work-
ing with queries in web apps.”) Users can also link to the tables in one Access app from an
Access desktop database and add, update, and delete data from that database. In both of
these examples, users can bypass your complex business logic rules normally stored in user
interface macros.

174 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Access 2013 web apps include data macros to provide a place for Access developers to cen-
tralize all their business logic and rules. Data macros get translated to triggers and stored
procedures in Microsoft SQL Server, and they allow you to attach business logic directly to
table events. Because data macros are translated into SQL Server triggers and stored proce-
dures, they are performed within a transactional context—each operation is separate. Data
macros attached to table events respond to data modifications, so no matter how users edit
data in the web app, SQL Server enforces those rules. This means that you can write busi-
ness logic in one place, and all the data entry views that update those tables inherit that
logic from the data layer. After you create a data macro for a table event, Access runs the
data macro no matter how you change the data.

Data macros in Access 2013 can be used in both web apps and desktops databases. How-
ever, the events, actions, and expressions that you can use in data macros are not identical
between web apps and desktop databases. The Access database engine enforces data mac-
ros when you work with a desktop database. When you are using a web app, SQL Server
enforces data macros on the server through the use of triggers and stored procedures. (In
Chapter 22, “Creating data macros in desktop databases,” which can be downloaded from
the book’s catalog page, you’ll learn how to create data macros in desktop databases.)

Touring the Logic Designer
Install the Back Office Software System backup copy sample web app (BOSSDataCopy.app)
on your team SharePoint site, and then download the app into Access so that you can fol-
low along with all of the examples in this chapter.

To create data macros, you first need to open a table in Design view. To display all the
tables in your BOSSDataCopy web app, click the Navigation Pane button in the Show group
on the Home ribbon tab. Double-click the table called tblCompanyInformation to open
it in Design view, and then click the Design contextual ribbon tab to see the data macro
events, as shown in Figure 4-1.

	 Touring	the	Logic	Designer 175

Chapter 4

Figure 4-1 Data macro events are listed on the Design contextual ribbon tab under Table Tools
in web apps.

You can attach data macros to the On Insert, On Update, and On Delete events of tables.
In Figure 4-1, in the Back Office Software System sample web app, you can see that Access
highlighted the On Insert and On Delete buttons on the Design contextual ribbon tab.
When you create and save a data macro for a table event, Access highlights that event but-
ton in the ribbon as a visual cue for you to show that a data macro already exists for that
event. To create a new data macro for a table event or edit an existing one, you click the
corresponding event button in the ribbon.

Let’s explore the existing data macro that I defined for the On Insert event in the
tblCompanyInformation table to show you the Logic Designer for creating macros. Click
the On Insert button on the Design contextual ribbon tab, and Access opens the Logic
Designer, as shown in Figure 4-2.

176 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-2 This is the Logic Designer, where you can create data and user interface macros.

Whenever you need to create or edit data macros or user interface macros in Access 2013,
this is the design surface that you use. You’ll notice that Access automatically collapsed
the Navigation pane to show you more of the macro design surface. Access also opens the
Logic Designer window modally, which means that you cannot open any other database
objects until you close the designer window.

As you can see in Figure 4-2, the Logic Designer layout looks more like a Visual Basic code
window in desktop databases. The Expand Actions, Collapse Actions, Expand All, and Col-
lapse All buttons in the Collapse/Expand group selectively expand or collapse the actions
listed in the macro design surface. In the Show/Hide group on the Design tab, you can
choose to hide the Action Catalog shown on the right side of the Logic Designer window
by clicking the Action Catalog toggle button. In the Tracing group, Access displays options

	 Touring	the	Logic	Designer 177

Chapter 4

to turn on data macro tracing and to display the tracing table to analyze any issues you
might have executing your data macro logic. In the Close group, you can click Save to save
any changes to your data macro. Click Close to close the Logic Designer window. If you
attempt to close the Logic Designer window with unsaved changes, Access asks whether
you want to save your changes before closing the window.

On the right side of the Logic Designer window is the Action Catalog. The Action Catalog
shows a contextual list of the program flow constructs, data blocks, and data actions that
are applicable to the data macro event you are currently viewing. (When you create user
interface macros, the Action Catalog similarly displays actions that you can use for user
interface macros.) We’ll discuss the Action Catalog in more detail in the next section.

In the middle of the Logic Designer window is the main macro design surface where you
define your data macro. You add program flow constructs, macro actions, and arguments
to the design surface to instruct Access what actions to take for the data macro. If you have
more actions than can fit on the screen, Access provides a scroll bar on the right side of
the macro design surface so that you can scroll down to see the rest of your actions. You’ll
notice in Figure 4-2 that Access displays any arguments directly beneath the action. Access
displays a combo box called Add New Action at the bottom of the macro design surface.
This combo box displays a list of all the actions you can use for the type of data macro you
are creating and the specific context of where you are in the data macro logic.

In the lower-right corner of the Logic Designer window is the Help window. Access displays
a brief help message in this window, depending on where the focus is located in the Action
Catalog.

Click the Close button in the Close group on the Design contextual tab to return to the
Design view of the tblCompanyInformation table, and then close the table.

Working with table events
As I mentioned in the previous section, you can attach data macros to the On Insert, On
Update, and On Delete table events. In the following sections, you’ll learn about each of
these events, create new data macros attached to events, and examine other data macros
attached to these events in the Back Office Software System sample web app.

In On Insert and On Update events, you can look at the incoming values in the current
record and compare them with a record in other tables using the LookupRecord data block.
You can use the SetField data action to alter data before Access commits the changes but
only on the incoming row of data, not on a record returned from the LookupRecord data
block. In all table events, you can prevent a record from being saved or deleted and display
custom error messages to the user using the RaiseError data action.

178 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Using On Insert events
The On Insert event fires whenever you add new records to a table. Let’s create a new data
macro attached to the On Insert event of the tblWeekDays table to illustrate the process
of creating, saving, and testing a new data macro. Open the tblWeekDays table in Design
view, click the Design contextual tab under Table Tools, and then click the On Insert button
in the Events group to open the Logic Designer, as shown in Figure 4-3.

Figure 4-3 Click the On Insert button on the ribbon to begin creating your data macro.

Note
You might have noticed in Figure 4-3 when you started your new On Insert data macro
that the caption on the top of the object window displays After Insert . The Logic
Designer for data macros is shared between web apps and desktop databases . Although
you’re seeing a different caption, you are, in fact, creating an On Insert table event data
macro .

 Working with table events 179

Chapter 4

Troubleshooting

Why can’t I add data macros to linked SharePoint lists?
In Chapter 3, “Designing tables in a web app,” you learned how to link SharePoint lists
into your web app. In web apps, tables linked to SharePoint lists are read-only and can-
not be opened in Design view. Therefore, you cannot attach data macros to any table
events for linked SharePoint lists. You also cannot reference linked SharePoint lists in
any LookupRecord, CreateRecord, or ForEachRecord data blocks attached to other web
app table events or in any named data macros.

In the Action Catalog on the right side of the Logic Designer, you can see three options
under Program Flow, four options under Data Blocks, and eight options under Data Actions.
In web apps, program flow options (Comment, Group, and If), data blocks, and data actions
are available in all data macro table events. (In Chapter 22, you’ll learn that the options
under Data Blocks and Data Actions change based on whether you are using a before event
or an after event in desktop databases.) Table 4-1 summarizes the data blocks and data
actions that you can use in the table events in web apps.

TABLE 4-1 Data blocks and data actions available in table events

Element Name Description

Data blocks CreateRecord Creates a new record in a table.
EditRecord Allows Access to edit a record. This data block must

be used in conjunction with a ForEachRecord or
LookupRecord data block.

ForEachRecord Iterate over a recordset from a table or query.
LookupRecord Instructs Access to look up a record in the same

table, a different table, or a query.
Data actions CancelRecordChange Cancels any record changes currently in progress.

You can use this action to break out of CreateRecord
or EditRecord changes.

DeleteRecord Deletes the current record from the table. Access
determines the current record based on the scope
of where the action is called. For example, if you are
inside a LookupRecord data block, Access deletes
the record found in the Where condition argument.

ExitForEachRecord Exits the innermost ForEachRecord loop. You can
use this action when you want to break out of a
long-running loop if a condition is met.

180 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Element Name Description

RaiseError Displays a custom message to the user interface
level and cancels the event changes. You can use
this action to manually throw an error and cancel an
insert, update, or delete.

RunDataMacro Runs a saved named data macro. You can option-
ally pass parameters to the named data macro and
return values.

SetField Changes the value of a field. For example, you
can use the SetField action to change the value of
another field in the same record before committing
the changes.

SetLocalVar Creates a temporary local variable and lets you set
it to a value that you can reference throughout the
data macro execution. The value of the variable
stays in memory as long as the data macro runs
or until you change the value of the local variable
by assigning it a new value. When the data macro
completes, Access clears the local variable.

StopMacro Stops the current data macro.

The tblWeekDays table contains seven records, each record listing the name of a day of the
week. This table helps build a linking table between the tblVendors table and the
tblVendorOrderDays table. Each vendor in the app can have more than one day that
they accept orders, and each weekday can be used by more than one vendor. Similarly,
the tblWeekDays table also serves as a linking table between tblVendors and
tblVendorDeliveryDays. For the purposes of this app, I consider tblWeekDays to be a
system table: a table used by other parts of the app, but one in which I don’t ever need to
add, change, or delete data. (I can’t foresee the names of the weekdays changing any time
soon.) To prevent new records from being added to this table, we’ll create a data macro in
the On Insert event and include a RaiseError data action to stop the insert.

Including comments

To start creating your data macro in the On Insert event of the tblWeekDays table, let’s first
add a comment to the macro design surface. Comments are useful for documenting the
purpose of your data macro and the various data actions within it. Access ignores any com-
ments as it executes the actions within your data macro. Click the Comment element under
the Program Flow node in the Action Catalog, hold the mouse key down, drag the Com-
ment element onto the macro design surface, and then release the mouse button, as shown
in Figure 4-4.

 Working with table events 181

Chapter 4

Figure 4-4 Drag the Comment program flow element from the Action Catalog onto the macro
design surface.

Access creates a new Comment block on the macro design surface, as shown in Figure 4-5.
If your cursor is not in the Comment block and you do not have any comments typed into
the Comment block, Access displays the text Click Here To Type A Comment. You’ll notice
in Figure 4-5 that Access moved the Add New Action box below the Comment block. You’ll
also notice that Access places a delete button to the far right of the Comment block. (The
delete button is a symbol shaped like an X.) If you want to remove the Comment block,
click the delete button and Access removes the Comment block from the macro design sur-
face. If you delete the Comment block in error, click the Undo button on the Quick Access
Toolbar to restore the Comment block.

Figure 4-5 Access creates a new Comment block when you drag a Comment program flow onto
the macro design surface.

Click inside the Comment block, and type the following text:

We don’t want to allow additional records into this system table. If a new record is
being added, raise an error and inform the user.

182 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Click outside the Comment block onto the macro design surface. Access collapses the size
of the Comment block to just fit the text you typed and displays the text in green, as shown
in Figure 4-6. The /* and */ symbols mark the beginning and end of a block of comments.
Access designates anything written between those symbols as a comment, which is there
only to provide information about the purpose of the data macro or particular action to
follow.

Figure 4-6 Access displays any comments inside comment block characters.

INSIDE OUT Take the time to include comments

You might be asking yourself whether it’s really worth your time including comments
in your data macros . While it’s true that it takes additional time to include comments
as you’re creating your data macros, the investment of your time now pays off in the
future. If you need to modify your app at a later date, you’ll find it much easier to
understand the purpose of your data macros if you include comments . This is especially
true if someone else needs to make changes to your app . Trust me; it’s worth your time
to include comments when you design data macros .

Grouping macros

When you’re creating data macros, you can use a program flow construct called Group. You
use a Group construct to group a set of actions together logically to make your data macro
actions easier to read. When you group macro actions inside a Group construct, you can
also expand or collapse the entire group easily to see more of the macro design surface.
It’s not required to use the Group construct when you’re creating data macros; however,
grouping macro actions can be especially helpful if you have many disparate actions inside
the same event or named data macro.

To add a Group construct to your data macro, click the Group element in the Action Cata-
log, hold down the mouse key, and drag the Group element to just beneath the comment
block that you inserted previously. As you get close to the comment block, you’ll notice

 Working with table events 183

Chapter 4

that Access displays a horizontal bar across the macro design surface, as shown in Figure
4-7. This horizontal bar is your insertion point for the new program flow, data block, or
data action. If you want to drop your new Group above the comment block, position your
mouse pointer above the comment block and Access displays the horizontal bar above the
comments to indicate where it will drop your new Group. We want to have this Group posi-
tioned below the comment block, so place your mouse pointer below the comment block
and then release the mouse.

Figure 4-7 Access displays a horizontal bar on the macro design surface when you drag items
from the Action Catalog.

Access displays a new Group block on the macro design surface, as shown in Figure 4-8.
You need to provide a name for your new Group block, so type PreventNewRecords in
the text box provided. You are limited to 256 characters, including any spaces, for the name
of any Group block.

In Figure 4-8, you’ll notice that Access denotes the end of the Group block by placing the
words End Group at the bottom of the Group block. When you click on the Group block,
Access highlights the entire block as a visual cue to indicate where the starting and end-
ing points of the block are. You’ll also notice that Access placed another Add New Action
combo box inside the Group block when you dropped the Group construct onto the design
surface. You can use this combo box to add new actions inside the Group block. (We’ll do
that in just a moment.) Next to the delete button on the right side of the Group block is a
green up arrow button. Click this button if you want to move the entire Group block above
the Comment block that you created earlier. For now, leave the Group block where it is.

184 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-8 You can use a Group block to group a set of actions together logically.

Raising errors in data macros to cancel events

In Chapter 8, you’ll learn that user interface macros can interact heavily with the user’s
experience working with views. With user interface macros, you can display message boxes,
open pop-up views, and dynamically change properties on a view. Data macros, on the
contrary, are limited to the data layer and cannot interact with the user interface level. For
example, in a data macro you cannot display a custom message box to the user and per-
form different steps based on how the user responds to your message. The only tool you
can use in data macros to display information to the user is the RaiseError data action.

You can use the RaiseError data action whenever you need to force an error to occur and
display a non-actionable message to the user manually. When you use the RaiseError action
in a data macro, Access cancels the pending insert, update, or delete if it reaches this action
during the macro execution.

In the On Insert event that you’ve been building for the tblWeekDays table, we don’t
want to allow new records to be created in this table. To add a RaiseError action inside the
Group block that you previously created, you could drag the RaiseError data action from
the Action Catalog onto the macro design surface and place the insertion point inside the
Group block. You’ve already done this type of procedure twice before when creating the
Comment and Group blocks, so let’s show you an alternative way of adding new elements
to the macro design surface. Click the Add New Action combo box inside the Group block,
and Access displays a context-sensitive drop-down list of all the program flow constructs,
data blocks, and data actions that you can use, based on where your insertion point is
located. Click the RaiseError option from the drop-down list, as shown in Figure 4-9, to add
a RaiseError data action to the macro design surface.

 Working with table events 185

Chapter 4

Figure 4-9 Select the RaiseError option from the Add New Action combo box inside the Group
block.

Instead of using your mouse to select program flow constructs, data blocks, and data
actions from the Add New Action combo box, you can also tab into the control and start
typing the first letter or two of the element you want. Access highlights the first construct,
data block, or data action that matches the letters you type. You can press Enter at any
time, and Access adds the selected element to the macro design surface. (The macro design
surface is flexible to allow you to use the mouse for selecting actions or just the keyboard
if you prefer.) After you select RaiseError from the Add New Action combo box, Access dis-
plays the RaiseError data action inside the Group block, as shown in Figure 4-10.

Figure 4-10 Use the RaiseError data action when you need to cancel an insert, update, or delete.

186 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

The RaiseError data action has one required argument—Error Description. The Error
Description argument is the message displayed to the user if the RaiseError action is hit
during execution of the data macro. You can type any custom message you want, up to
256 characters in length. You can also use an expression for the Error Description by typ-
ing the equal sign (=) as the first character. In the example earlier in this chapter, the text
string started with an equal sign (=) and was enclosed within quotation marks. You’re not
required to use this technique with simple text strings. However, if you use an expression,
you must start the expression with the equal sign (=) and enclose any text string within
quotation marks. If you type an equal sign (=) at the beginning of the Error Description
argument, Access displays the Expression Builder button on the far right of the text box if
you need assistance creating your expression. (You’ll see an example of using an expression
in a RaiseError action later in this chapter.) For this example, you’d like to display a simple
message to the user informing them that they cannot enter new records into this table.
Type the following message, previously shown in Figure 4-10, into the Error Description
argument:

No additional records can be added to this system table. Please contact the system
administrator.

If you do not provide an error description in your RaiseError data action, Access displays an
error message when you try to save your data macro logic, as shown in Figure 4-11. You
must provide a message in the Error Description to save your data macro.

Figure 4-11 Access displays an error message if you leave the Error Description argument empty.

 Working with table events 187

Chapter 4

INSIDE OUT Pause over elements to see Help information

A very useful feature of the Logic Designer window is the ability to view Help informa-
tion quickly no matter where you are . When you place your mouse over any element on
the macro design surface, Access displays a tooltip with specific Help information cover-
ing the program flow, data block, data action, or argument that you are currently on.
Similarly, Access displays tooltips with Help information when you pause over the ele-
ments displayed in the Action Catalog . This feature is especially useful as you are learn-
ing your way around the Logic Designer .

Testing your data macro

You’ve now completed all the steps necessary to prevent any new records from being
added to the tblWeekDays table. To test the data macro that you’ve created so far, you first
need to save your changes to the On Insert event. Click the Save button in the Close group
on the Design contextual tab under Macro Tools, or click the Save button on the Quick
Access Toolbar. Now click the Close button in the Close group to close the Logic Designer
window, and return to the Design view of the tblWeekDays table. To test this On Insert
event, you need to create a new record in this table. Switch to Datasheet view by right-
clicking the tblWeekDays table in the Navigation pane and selecting Open from the short-
cut menu or right-clicking the object tab at the top of the application window and selecting
Datasheet view from the shortcut menu. Click in the WeekDayText field on the new record
line of the table datasheet, enter any text other than one of the existing weekday names,
and then tab or click outside of the new record line. Access displays the custom error that
you created in the RaiseError data action, as shown in Figure 4-12.

Figure 4-12 Access prevents you from adding new records with the data macro that you created
for the On Insert event.

188 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

The On Insert event fires because you are inserting a new record into this table. In this
event, Access checks to see what data macro logic, if any, to execute when you are creat-
ing new records. In this case, the RaiseError data action fires, Access displays the custom
message that you created, and then Access cancels the insert. When you click OK in the
message box, Access displays a pencil icon in the row selector on the left to indicate the
new record is not saved yet. You now need to right-click the row selector and select Delete
to remove that uncommitted record from the datasheet. You can also choose to close the
table datasheet with this uncommitted record or click the Refresh command on the ribbon.
Access prompts you that you have pending changes, as shown in Figure 4-13.

Figure 4-13 Access prompts you when you have unsaved records.

Access attempts to save any record changes when you move off a record or close the table
datasheet, but in this case, Access cannot save your record changes because of the
RaiseError action in the On Insert event. If you click OK on the pending changes dialog,
Access cancels any pending records updates or inserts and then closes the table datasheet.
If you click Cancel, Access stops the table datasheet from closing and returns focus to the
datasheet; however, your record inserts or updates are still not saved. There is no way that
you can add records to this table unless you remove the data macro that you defined in
the On Insert event of the table. Access enforces this restriction no matter what the entry
point is for creating a new record. As you can see, data macros are a very powerful feature
in Access 2013 web apps.

Using If blocks to create conditional expressions

You can define more than one action within a data macro, and you can specify which
actions get executed or not by adding conditional expressions into your data macro logic.
For example, you might want to update a field in the same record, but only if a specific field
was changed. Or, you might want to prevent an update to a record if a value in another
field is a higher or lower value than you expect. In the preceding section, you designed a
simple data macro in the On Insert event of the tblWeekDays table to prevent new records
from being added to the table using a single action. In this section, we’ll create data macro
logic in the On Insert event of the tblEmployees table to update an image field each time
you add a new employee record, using a conditional expression and multiple actions.

Open the tblEmployees table in Design view, click the Design contextual tab under Table
Tools, and then click the On Insert button in the Events group to open the Logic Designer.

 Working with table events 189

Chapter 4

The employees table includes an image field—EmployeePicture—that I use to store the
picture of each employee in our restaurant management app. If the data entry person
entering a new employee record into the app does not currently have a picture for the new
employee, we want to save a default generic picture for the new employee record to indi-
cate that we don’t have a current picture.

Let’s begin creating our data macro logic by first adding a new Comment block to the
macro design surface. Click inside the Add New Action combo box on the macro design
surface, type Comment, and then press Enter to create a new Comment block. Type the
following text into the Comment block to identify easily the logic that we are going to add
to this data macro:

If no picture was assigned for this new employee, use the generic default image
instead from tblImageFiles. First check to see if the EmployeePicture field is Null.

Your changes to the On Insert event should now look like Figure 4-14.

Figure 4-14 Add a Comment block to the macro design surface to document the purpose of
this set of actions.

INSIDE OUT Shortcut keys to adding Comment blocks

To add a new Comment block onto the macro design surface quickly, you can simply
type two forward slashes (//) when you are in any Add New Action combo box and press
Enter . Alternatively, you can type a single apostrophe (‘) when you are in an Add New
Action combo box and press Enter . In both cases, Access creates a new Comment block
on the macro design surface .

In the Add New Action combo box, type If and press Enter to create a new If block. Access
creates a new If block under the Comment block, as shown in Figure 4-15. The text box
next to If is where you type your conditional expression. Each condition is an expression
that Access can evaluate to True or False. A condition can also consist of multiple com-
parison expressions and Boolean operators. If the condition is True, Access executes the
action or actions immediately following the Then keyword. If the condition is False, Access
evaluates the next Else If condition or executes the statements following the Else keyword,

190 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

whichever occurs next. If no Else or Else If condition exists after the Then keyword, Access
executes the next action following the End If keyword.

Figure 4-15 Use an If block when you want to execute actions only if a certain condition is met.

If you need help constructing your conditional expression, you can click the button that
looks like a magic wand to the right of the expression text box. When you click this button,
Access opens the Expression Builder, where you can build your conditional expression. (You
learned about the Expression Builder in Chapter 3.) To the right of the word Then, Access
displays a green up arrow. You can click this button if you want to move the position of the
If block. (If there are actions below the If block, Access also displays a green down arrow.)
If you move a block in error, you can click the Undo button on the Quick Access Toolbar. If
you want to delete the If block, you can click the Delete button to the right of the up arrow.
Below the arrow button are two links—Add Else and Add Else If. If you click the Add Else
link, Access adds an Else branch to the If block, and if you click the Add Else If link, Access
adds an Else If branch to the If block. (We’ll explore these two conditional elements in just a
moment.)

For the On Insert data macro that you have been building, we can use the Is Null phrase in
our conditional expression to test whether the EmployeePicture field in the tblEmployees
table has a value, an image file in this case, before Access saves the new employee record.
In the conditional expression text box in the If block, type the letters tblE and notice that
Access provides IntelliSense options for you, as shown in Figure 4-16.

Figure 4-16 Access provides IntelliSense options whenever you are writing expressions in data
macros.

 Working with table events 191

Chapter 4

You can continue to type tblEmployees, or use the down arrow to highlight the
tblEmployees option from the IntelliSense drop-down list and then press Tab or Enter.
Notice that after you select tblEmployees, Access adds brackets around the table name.
Now type a period, and IntelliSense provides a list of all the field names in the
tblEmployees table, as shown in Figure 4-17.

Figure 4-17 Access displays a list of all the fields in the tblEmployees table by using IntelliSense.

You can continue to type EmployeePicture, or use the down arrow to highlight the
EmployeePicture field name from the IntelliSense drop-down list and then press Tab or
Enter. Access also adds brackets around the EmployeePicture field name after you select it
from the drop-down list. (Because our table name and field name contain no spaces, the
brackets are not required, but its good practice to include them anyway.) Complete the
entire expression by typing Is Null. Your completed expression should be
[tblEmployees].[EmployeePicture] Is Null, as shown in Figure 4-18. Note that
I also like to include the table name so that I know exactly what I’m referencing in my data
macro logic, and I also get the benefit of being able to use IntelliSense.

Figure 4-18 Your completed conditional expression should now look like this.

192 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

With your completed conditional expression for the If block, Access executes actions after
the Then keyword and before the End If keywords only, if any employee record contains no
data in the EmployeePicture image field.

INSIDE OUT Nesting limitations in the Logic Designer

The Logic Designer supports only 10 levels of nesting program flow constructs and data
blocks . That is, you can nest up to nine additional constructs or data blocks inside a sin-
gle top-level construct or data block (each one nested deeper inside the previous one) .

Using LookupRecord data blocks to find records

The next step in our logic for the On Insert event of tblEmployees is to find a specific record
in the tblImageFiles table where a default picture graphic is stored. To do this, tab or click
into the Add New Action combo box that is inside the If block you completed in the previ-
ous section, type LookupRecord, and press Enter to add this data block inside the If block,
as shown in Figure 4-19.

Figure 4-19 Add the LookupRecord data block inside the If block.

The LookupRecord data block takes four arguments:

●● Look Up A Record In. Required argument. The name of a table or query to look
up a record in.

●● Where Condition. Optional argument. The expression that Access uses to select
records from the table or query.

 Working with table events 193

Chapter 4

●● Update Parameters. Optional argument. If you’re looking up records in a query
that requires parameters, you can provide them here.

●● Alias. Optional argument. A substitute or shorter name for the table or query.

The only required argument for the LookupRecord data block is Look Up A Record In.
Access provides a drop-down list for this argument that includes the names of all tables
and saved query objects in your web app. If you want Access to look up a specific record
in the specified table or query, you must provide a valid Where clause expression to find
the record. If you leave the Where Condition argument blank, Access finds the first record
in the specified table or query. You can click the button with the magic wand on it to open
the Expression Builder to assist you with creating a Where clause if you’d like. The Update
Parameters and Alias optional arguments are accessible through two links below the Where
Condition argument on the right side. When you click these links, Access displays additional
text boxes for you to enter these arguments. If you are looking up a record in a table, click-
ing the Update Parameters link does nothing, because tables do not contain parameters.

Before Access enters the LookupRecord block, the default data context is the incoming
or changed record. The incoming record is either a new record or changes to an existing
record. Within the LookupRecord block, Access creates a new data context. Access evalu-
ates the Where condition of a data block with the same default context as when you are
inside the data block. This means that if you do not use an alias as the table qualifier for
field names in the Where condition argument, you are referring to a field within the new
data context that you just created by using the data block.

Understanding alias and context
Using an alias is required when using a LookupRecord, ForEachRecord, EditRecord, or
CreateRecord data block or DeleteRecord action, if you are trying to refer to a different
data context other than the default. LookupRecord, ForEachRecord, and CreateRecord
data blocks always create a new data context . EditRecord and DeleteRecord use only the
current data context, unless you specify a different context to use . Consider the following
example data macro logic:

ForEach Record in TableA Alias A
 LookupRecord in TableB Alias B WHERE B.TableBField1 = A.TableAField2
 EditRecord Alias A
 SetField TableAField3 = "Something"

In this example, the EditRecord’s default context is on TableB’s qualified row, so you have
to use an alias to specifically indicate that the EditRecord is targeting TableA’s looped row.
You also need to use an alias to differentiate the data context for the same table . Con-
sider the following example data macro logic:

194 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

On Insert Table1
 LookupRecord in Table1 Alias Lookup
 WHERE Lookup.ID <> Table1.ID AND Lookup.UserName = Table1.UserName
 RaiseError The user has already been added.

In this example, Table1 is the alias for the newly inserted row, while Lookup is the alias
for the row being looked up in Table1 .

Here are some considerations when working with data blocks:

●● When inside a LookupRecord or ForEachRecord data block, the default context is
the active row in the looped table .

●● When inside a CreateRecord data block, the default context is the new row Access
is creating .

●● In On Insert event data macros, the default data context, outside any data block, is
the row that Access is inserting .

●● In On Update event data macros, the default data context, outside any data block,
is the new value of the updated row .

●● In On Delete event data macros, the default context, outside any data block, is the
row that Access is deleting .

The tblImageFiles table is a system table that I use in this web app to hold any image files
that I want to use in the app. In the On Insert event macro, you want to look up a record
in this table, so click inside the Look Up A Record In argument and select tblImageFiles
from the drop-down list. Currently, this table contains only one image file, but more
images could be added over time. The specific image file you need for this example is the
first record with ID=1. To make sure you look up the correct record, you should provide a
Where clause that locates the first record every time. To do that, enter
[tblImageFiles].[ID]=1 in the Where Condition argument, as shown in Figure 4-20.
When you start typing, IntelliSense helps you along and you can easily see and select the
correct field name that holds the ID value. In this example, you already know that the
default image needed is in the record that has ID=1. You could also use a Where clause that
looks up the specific image description provided in the ImageDescription field.

 Working with table events 195

Chapter 4

Figure 4-20 Add a Where clause to find a specific record using LookupRecord.

Using local variables

You can use a local variable in data macros to store a value that can be used throughout
the execution of the data macro. Local variables are very useful when you need Access to
calculate values during the execution of the data macro or remember something for later
use in the data macro. You can think of a local variable in a data macro as writing yourself
a note to remember a number, a name, or an email address so that you can recall it at a
later time in the data macro. All local variables must have a unique name in the context of
the data macro. To fetch, set, or examine a local variable, you reference it by its name. Local
variables stay in memory until the data macro finishes executing, you assign it a new value,
or until you clear the value.

In the previous section, you added logic for Access to look up a specific record in the
tblImageFiles table. We now need to copy the contents of the image field, ImageFile in
this case, to a local variable so that we can use it later in the event. The reason for this is
because the code in this block is now executing in a different context and when Access fin-
ishes, we cannot make the outer code block refer to this context. Creating a local variable
here allows us to pass a value back to a different context during the data macro execution.
To create a local variable, click or tab into the Add New Action combo box that is inside
the LookupRecord block, enter SetLocalVar, and press Enter to add this action inside the
LookupRecord block, as shown in Figure 4-21.

196 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-21 Add the SetLocalVar action inside the LookupRecord block.

The SetLocalVar action takes two required arguments:

●● Name. Required argument. The name of the local variable you want to use to refer
to during data macro execution.

●● Expression. Required argument. The expression that Access uses to define the local
variable.

For the Name argument, you can enter a name up to 64 characters. For the Expression
argument, you can click the button that looks like a magic wand to open the Expression
Builder to assist you with creating an expression. In this example, enter varImage into the
Name argument and then enter [tblImageFiles].[ImageFile] into the Expression argu-
ment, as shown in Figure 4-22.

Figure 4-22 Enter a name and valid expression into the SetLocalVar arguments.

 Working with table events 197

Chapter 4

Choosing variable names in web apps
Access 2013 gives you lots of flexibility when it comes to naming your local variables,
parameters, and return variables in web apps . (You’ll learn about parameters and return
variables later in this chapter .) A variable name can be up to 64 characters long and can
include any combination of letters, numbers, and special characters except a period (.),
exclamation point (!), square brackets ([]), leading equal sign (=), or nonprintable char-
acter such as a carriage return . You cannot use spaces in any part of variable names in
web apps . The name also cannot contain any of the following characters: / \ : ; * ? "" < >
| # <TAB> { } % ~ & . In general, you should give your variables meaningful names . You
should also avoid using variable names that might match any name internal to Access .
For example, all objects have a Name property, so it’s a good idea to qualify a vari-
able containing a name by calling it varVendorName or varCompanyName . You could
also preface the variable name with the data type, such as strVendorName for text and
imgEmployeeImage for image data types . You should also avoid names that are the same
as built-in functions, such as Date, Time, Now, or Space . See Access Help for a list of all
the built-in function names .

When Access finds the record in the tblImageFiles table where the ID field equals 1, it cre-
ates a local variable named varImage, reads the current value in the ImageFile field for that
specific record, and then assigns the value of that field (a picture file, in this case) to the
local variable. You can now reference and use this value in other areas of this same table
event by referencing the variable by its name. We’ll do that in just a moment. Let’s save the
logic we’ve created so far by clicking the Save button on the Quick Access Toolbar.

Note
You cannot save any data macro logic if any If, Else If, Or Else blocks are empty and have
no actions inside them .

Collapsing and expanding actions

Now that you have the varImage local variable currently storing the contents of an image
file, it’s time to save that data to the EmployeePicture field in the tblEmployees table. To do
this, you’ll use the EditRecord data block. The tricky part of this next procedure though is
to make sure you place the EditRecord data block in the correct place on the macro design
surface. If you click anywhere on the LookupRecord data block you currently have on the
macro design surface, you’ll notice there are three Add New Action combo boxes near the
bottom of the screen, as shown in Figure 4-23.

198 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-23 There are three Add New Action combo boxes at the bottom of the macro design
surface.

We want to place the EditRecord data block outside and below the LookupRecord data
block. Because you have the LookupRecord data block selected right now, it’s a little easier
to tell that the topmost Add New Action combo box is inside the LookupRecord data block,
but if you did not have it selected, you might find it more difficult trying to decide where
to place your next action. For example, compare the screen shots in Figure 4-22 and Fig-
ure 4-23 shown previously. In Figure 4-22, I selected the SetLocalVar data action and you’ll
notice that you can see only two Add New Action combo boxes. In Figure 4-23, I selected
the LookupRecord and you can see three Add New Action combo boxes.

When you have complex data macros with many program flow constructs, data blocks,
and data actions, you might find it harder to understand everything happening with the
structure of your data macros, especially if you have to scroll the macro design surface to
see everything. Fortunately, the Logic Designer includes features that can make these tasks
easier.

To the left of the LookupRecord data block and the If block on the macro design surface,
you’ll notice that Access displays a box with a dash inside. If you place your mouse over the
SetLocalVar data action, you can also see a similar box. (For data actions, Access shows this
box only when you hover over the action.) You can use this box to expand and collapse the
group or action. By default, the Logic Designer displays all group blocks and data actions in
expanded mode so that you can see all actions and arguments. To collapse the
LookupRecord data block, click inside the box. Access changes the dash inside the box to a
plus symbol and then collapses the data block onto two lines, as shown in Figure 4-24.

 Working with table events 199

Chapter 4

Figure 4-24 Click the box next to an action to collapse it.

Access displays the data block on two lines, and all actions contained inside the data block
are hidden. It is much easier now to distinguish that the Add New Action combo box,
directly below the highlighted LookupRecord data block, is outside that block. If you col-
lapse a data action, such as the SetLocalVar action, Access displays the action without the
argument names—Name and Expression for SetLocalVar—and separates the argument
values with a comma. By collapsing data blocks and data actions, you can see more of the
macro design surface. To expand the data block or data action again, click inside the box,
now displaying a plus symbol, and Access expands the data block or data action.

You can collapse an entire Group block or If block as well using the same technique. If you
want to collapse all data actions showing on the macro design surface at the same time,
you can click the Collapse Actions button in the Collapse/Expand group on the ribbon.
Click the Expand Actions button in the Collapse/Expand group on the ribbon to expand all
data actions showing on the macro design surface.

For the maximum amount of space on the macro design surface, click the Collapse All but-
ton in the Collapse/Expand group on the ribbon. Access collapses all groups onto one line,
as shown in Figure 4-25. You can’t see very much with this view, of course. However, you
can then selectively expand Groups, If blocks, and Data Blocks one at a time to work on
specific parts of the data macro. Click the Expand All button on the ribbon to expand all
Group blocks, If blocks, Data Blocks and Data Actions.

200 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-25 When you click the Collapse All button, Access collapses everything on the macro
design surface except Comment blocks.

INSIDE OUT Viewing super tooltips

If you hover your mouse over a collapsed data action, Access displays a super tooltip
with all the arguments . You can then view all the argument values of the data action eas-
ily, without having to expand the data action .

Note
When you expand or collapse Group blocks, If blocks, Data Blocks, or Data Actions,
Access marks the macro design surface as dirty, even if you did not make any other
changes . If you attempt to close the Logic Designer window, Access prompts you to save
your changes . Access remembers the state of any expanded or collapsed elements when
you save changes and reopen the data macro . Also, when you click Expand All after pre-
viously clicking Collapse All, Access displays all Comment blocks in a narrower box than
before you collapsed everything . After you close and reopen the macro design surface,
the width of the Comment blocks return to their normal size .

Now that you’ve collapsed the LookupRecord data block, let’s continue adding our
EditRecord data block. Click inside the Add New Action combo box below the
LookupRecord data block, type EditRecord, and then press Enter. Access adds a new
EditRecord data block onto the macro design surface, as shown in Figure 4-26.

 Working with table events 201

Chapter 4

Figure 4-26 Add an EditRecord data block beneath the LookupRecord data block.

Whenever you want to change data in a table, you must use the SetField data action inside
an EditRecord data block. Because our EditRecord data block is not inside any other data
block such as ForEachRecord or LookupRecord, the context of the EditRecord block acts on
the new record being created in the current table. For our example, we want to change the
EmployeePicture field of the new employee record being created in tblEmployees to the
local variable we defined earlier—varImage. Click inside the Add New Action combo box
that is inside the EditRecord data block, type SetField, and then press Enter to add this new
action to the macro design surface, as shown in Figure 4-27.

Figure 4-27 The SetField data action allows you to commit data to fields inside data macros.

202 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

The SetField action takes two required arguments, Name and Value. In the Name argument,
we use the full table name and field name to clearly indicate which field we want to update.
Enter [tblEmployees].[EmployeePicture] into the Name argument, and enter [varImage]
into the Value argument. Notice that when you start typing the table name in the Name
argument, Access provides IntelliSense to help you pick the correct table and field name
you want. Also, you’ll notice that Access does not add brackets around the table name and
field name when using IntelliSense in this context, but it’s a good idea to always include
them even if you don’t have spaces in your table and field names. If you do not provide
brackets around the local variable name in the Value argument, Access adds them when
you save and re-open the macro design window.

Click Save on the Quick Access Toolbar to save your changes to the On Insert event. Your
completed changes to the data macro should now match Figure 4-28. Notice that, in Figure
4-28, I expanded all the actions again by clicking Expand All button in the ribbon.

Figure 4-28 Your On Insert data macro up to this point should now look like this.

The data macro logic you’ve now defined instructs Access to check every new employee
record entered into this table. If no picture is provided in the EmployeePicture at the time
you create a new employee record, Access looks up a record in the tblImageFiles table
where the ID value equals 1, stores the value of the ImageFile default picture into a local
variable called varImage, and finally saves that default picture into the EmployeePicture
field for that new record using the local variable. Note that datasheets do not support

 Working with table events 203

Chapter 4

displaying image fields, so you would have to verify this using your web browser and a List
Details or Blank view.

Moving actions

As you design data macros or user interface macros in the Logic Designer, you might find
that you need to move actions around as the needs of your application change. In the On
Insert event for the tblEmployees table you’ve been working on, it would be good to add
in some comments for the extra actions you just finished. As with many areas of Access,
there is usually more than one way to accomplish a task. You could drag a Comment block
from the Action Catalog onto the macro design surface, or you could add comments any-
where on the macro design surface and then move them into different positions. The Logic
Designer makes the task of moving data blocks, data actions, and all other elements around
the macro design surface very easy.

Open the tblEmployees table in Design view if you closed it, click the Design contextual
ribbon tab under Table Tools, and then click the On Insert button in the Events group. You
should now see the data macro that you created previously for saving a default picture
graphic for each new employee record if you don’t provide one. Click into the Add New
Action combo box at the bottom of the macro design surface, type Comment, and then
press Enter to add a new Comment block to the macro design surface. Type the following
text into the Comment block to identify one of the tasks in this data macro:

It is Null so lookup the default image in tblImageFiles and set a local variable to the
picture.

Add one more new Comment block as well to the bottom of the macro design surface
using the same technique, and then type the following text into this new block:

Now update the EmployeePicture field with that image data.

Your macro logic should now match Figure 4-29.

204 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-29 Your macro logic should now have two Comment blocks at the bottom of the
macro design surface.

We want to move the first Comment block above the LookupRecord block and below the
If condition line. To move the first Comment block you just added, click anywhere on the
Comment block, hold the mouse key down, drag the Comment block up above the Looku-
pRecord block until Access displays a horizontal bar above the LookupRecord block, as
shown in Figure 4-30, and then release the mouse.

 Working with table events 205

Chapter 4

Figure 4-30 Drag the Comment block up above the LookupRecord block.

Access places the Comment block inside the If block and above the LookupRecord block.
Instead of using the drag technique, you could also click the up arrow button on the far
side of the Comment to move it up into the correct position. When you click the up arrow
button, Access moves the selected action up one position in the macro design surface. In
our example, it would take seven clicks of the up arrow to move the first Comment block
action up above the LookupRecord block.

INSIDE OUT Creating a duplicate copy of logic

To duplicate any logic on the macro design surface, you can hold the Ctrl key down and
then drag to a different location. Access creates an exact copy of the program flow con-
struct, data block, or data action, including any argument information .

You might find it easier to use the keyboard rather than the mouse to move actions around
the macro design surface. Table 4-2 lists the keyboard shortcuts for working inside the
Logic Designer.

206 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

TABLE 4-2 Keyboard shortcuts for logic designer

Keys Action

Ctrl+F2 Opens the Expression Builder dialog box if you are in an
expression context

Ctrl+Space Calls up IntelliSense in expression contexts
Ctrl+Up arrow Moves selected action up
Ctrl+Down arrow Moves selected action down
Shift+F2 Opens the Zoom Builder dialog box
Shift+F10 Opens a context-sensitive shortcut menu
Left arrow Collapses action
Right arrow Expands action

Now that you’ve moved the first new Comment block to the correct position, let’s move
the last Comment block as well. Highlight the Comment block at the bottom of the macro
design surface, hold the mouse key down, drag the Comment block up above the
EditRecord, and then release the mouse. Your completed data macro should now look like
Figure 4-31.

Figure 4-31 Your data macro should now look like this after you move the last Comment block.

 Working with table events 207

Chapter 4

You’ve now successfully revised the data macro logic by adding in more Comment blocks
and moving them around the macro design surface. You’ve completed all the steps neces-
sary to ensure that every new employee record added to this table contains an image in
the EmployeePicture field. If the user creating a new employee record provides an image
for the EmployeePicture field, Access evaluates the If block condition as False and then
takes no action. If the new record does not contain an image for the EmployeePicture
field, Access reads the contents of the tblImageFiles table and copies an image from that
table into the new employee record. Save your changes, and then close the Logic Designer
window.

Studying other On Insert events

The Back Office Software System sample web app includes On Insert events attached to
other tables besides the two examples you’ve already seen. You can explore the data
macros attached to these events for additional examples.

●● tblAppointments. Syncs two time display fields with values from the
tblTimeLookups table. This breaks normalization, but it is needed to work around
some user interface limitations.

●● tblCompanyInformation. Prevents additional records from being added to this
system table.

●● tblEmployees. Ensures that each new employee record contains an employee
picture. Uses LookupRecord to insert a default image if no picture exists.

●● tblInventoryLocations. Finds the next highest sort order number and sets the
SortOrder field to that value for the new record.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice
details after each new record is created. Uses a RunDataMacro action to execute a
named data macro and passes in a parameter with each new record.

●● tblLaborPlanDetails. Syncs two time display fields with values from the
tblTimeLookups table. This breaks normalization, but it is needed to work around
some user interface limitations.

●● tblSchedule. Syncs two time display fields with values from the tblTimeLookups
table. This breaks normalization, but it is needed to work around some user interface
limitations.

●● tblSettings. Prevents additional records from being added to this system table.

●● tblTerminations. Whenever a new termination record is created for an employee,
this data macro marks the employee record as inactive. The data macro logic looks

208 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

up the employee’s record in the tblEmployees table and sets the Boolean Active field
to False for that specific employee.

●● tblTimeLookups. Prevents additional records from being added to this system
table.

●● tblTrainedPositions. Ensures that each employee has only one trained position
marked as their primary position. Uses a RunDataMacro action to execute a named
data macro and passes in two parameters with each new record.

●● tblWeekDays. Prevents additional records from being added to this system table.

Using On Update events
The On Update event fires whenever Access completes the operation of committing
changes to an existing record in a table. In the tblTerminations table, I have a data macro
defined in the On Insert event to mark an employee’s Active field to False whenever I cre-
ate a termination record. In Figure 4-32, you can see the data macro logic for the On Insert
of the tblTerminations table. When you create a new termination record in the Back Office
Software System web app, Access looks up the corresponding employee’s record in
tblEmployees using the LookupRecord data block and then changes the Yes/No Active field
in that table to No using EditRecord and SetField.

Figure 4-32 The On Insert event of tblTerminations includes logic to mark an employee inactive.

However, what happens if we accidentally select the wrong employee when we save the
new termination record? We now have a situation where two employee records are inac-
curate. We have one employee marked as inactive, which shouldn’t be the case, and
another employee still marked as active even though he or she should not be active. To fix
this discrepancy manually, you would need to change the data in the existing termination

 Working with table events 209

Chapter 4

record to use the correct employee, change the Active field of the employee’s record to Yes
for the employee to whom you first assigned the termination record, and also change the
Active field to No for the employee who now has the termination record assigned to him or
her. Instead of doing all these steps manually, we can use the On Update event to fix both
employee records.

Open the tblTerminations table in Design view. Next, click the Design contextual tab under
Table Tools, and then click the On Update button in the Events group to open the Logic
Designer, as shown in Figure 4-33.

Figure 4-33 Click the On Update button on the ribbon to examine the On Update event of the
tblTerminations table.

The data macro logic for the On Update event is as follows:

Comment Block: If we are modifying an existing termination record, one of two
possibilities exist: 1. The Employee that this termination is for remains unchanged -
Scenario is just updating some data for the termination record. 2. The Employee that
this termination is assigned to changed - Scenario here is that when the record was
first created, it might have been assigned to the wrong employee. In this case the
user is assigning this to a different employee.
Comment Block: Check to see if the Employee field was changed.
If Update([EmployeeIDFK]) Then
 Comment Block: The Employee field changed so we'll change the existing employee's
 status back to Yes.
 Comment Block: For the Where condition in this LookupRecord, use the Old value from
 the EmployeeIDFK field and find that employee's record.
 Look Up A Record In tblEmployees

210 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

 Where Condition = [tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK]
 EditRecord
 Comment Block: Now set Active field to Yes for this employee since it was
 probably initially assigned to the employee in error.
 SetField
 Name: [tblEmployees].[Active]
 Value: Yes

 End EditRecord
End If
Comment Block: After modifying this termination record, make sure the employee that
it's assigned to now is marked as an inactive employee. To do that, we look up the
matching employee's record in the tblEmployees table and set the Active field to No.
Look Up A Record In tblEmployees
 Where Condition = [tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK]
 EditRecord
 Comment Block: Now set Active field to No.
 SetField
 Name: [tblEmployees].[Active]
 Value: No

 End EditRecord

The first part of the data macro includes two Comment blocks to indicate the purpose of
this event. Next, I use an If condition using the Update function to see whether the
EmployeeIDFK field changed. The Update function takes one argument, a field name, and
returns True if the field is dirty and returns False if the field is not dirty during the record
update. For this On Update data macro, I can use the Update function in a conditional
expression to test whether a user is attempting to change the value of the EmployeeIDFK
field. If the EmployeeIDFK field changed, I know the user is assigning this existing termina-
tion record to a different employee. I then go into a LookupRecord data block and use
the tblEmployees as the source. In the Where condition argument for the LookupRecord
data block, I want to look up the EmployeeID in the table that matches the EmployeeIDFK
field found in the tblTerminations table that Access is committing. When Access finds the
matching record, it enters into the EditRecord block. Whenever you want to change data in
another table in data macro events, you must use the SetField action inside an
EditRecord block. For this example, I want to change the Active field of the matching
employee to No to indicate that he or she is no longer an active employee in the app. In
the Name argument for the SetField action, I use the table and field name, tblEmployees
and Active, respectively, for the LookupRecord block. My Where condition argument for the
LookupRecord uses the Old property. The Old property returns the value of the field before
Access changed its value in the process of saving the record. My Where condition argument
is therefore the following:

[tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK]

 Working with table events 211

Chapter 4

To help understand this concept, imagine the value of the EmployeeIDFK field is currently
13, the record for Mario Kresnadi, in the existing termination record. If you change the
EmployeeIDFK field to Jeff Conrad, EmployeeID of 31, the Old value for that field is 13 and
the new value after saving the record is 31. By referencing the Old value of the
EmployeeIDFK field, I can determine which employee this termination record used to be
assigned to. (There is no New property available when creating data macros because the
new value is simply the committed value of the field, and you can refer to it by using the
field name.)

After Access finds the EmployeeIDFK that the termination record used to be assigned to,
I use a SetField data action to set the Active status of that employee back to Yes. It’s my
assumption that if the user is assigning the termination record to a different employee, I’ll
error on the side of caution and assume this employee’s status should be changed back to
Yes.

The first part of the data macro logic is inside an If block. Based on the logic, if the user
did not change the EmployeeIDFK field, Access does not change anything in the first part
of the data macro. The second part of the On Update event is outside the If block, which
means this part of the data macro logic runs every time a user changes anything about a
termination record. I use another LookupRecord data block to look up a different employee
record in the employee table. In this case, the Where condition argument is the following:

[tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK]

This time, Access looks for the EmployeeID in the table that matches the now-committed
value in the EmployeeIDFK field in the tblTerminations table. In the previous example, this
means Access looks for the EmployeeID of Jeff’s record, which is 31. Finally, I set the Active
status of that employee’s record to No because this termination record is now assigned to
that employee.

To test this On Update event, close the Logic Designer window by clicking the Close but-
ton in the Close ribbon group. Open the tblTerminations table in Datasheet view now by
right-clicking the tblTerminations object tab in the application window and selecting Open
from the shortcut menu or clicking the View button in the Views ribbon group and select-
ing Datasheet view from the drop-down menu. Find the existing termination record in this
table—the one assigned to Mario Kresnadi. Tab over to the EmployeeIDFK for this record
(the datasheet caption of the field displays Employee), type Conrad into the control where
it currently says Mario Kresnadi, and then select Jeff Conrad from the drop-down list of
employee names displayed in the EmployeeIDFK field, as shown in Figure 4-34. Now, click
or tab off the record, and Access saves the record with Jeff Conrad’s EmployeeIDFK number.

212 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-34 Change the EmployeeIDFK field from Mario Kresnadi to Jeff Conrad, and then save
the record.

The control in the datasheet shown in Figure 4-34 for the EmployeeIDFK field is an autocom-
plete control, which is new in Access 2013 . You’ll learn more about this control in Chapter 6,
“Working with views and the web browser experience .”

To see the effects of this On Update event, open the tblEmployees table in Datasheet view
by right-clicking the tblEmployees object in the Navigation pane and selecting Open from
the shortcut menu. After you have the tblEmployees table open in datasheet view, scroll
down to the record for the employee record for Mario Kresnadi. You’ll notice that the
Active field for Mario Kresnadi is now set to Yes, as shown in Figure 4-35. You’ll also notice
that Jeff Conrad’s record shows his Active status is now set to No. In Figure 4-35, Mario’s
record is the record at the top (the highlighted record) and Jeff’s record is at the bottom
(where the mouse cursor is pointing).

 Working with table events 213

Chapter 4

Figure 4-35 Access changes the Active field for both Jeff’s and Mario’s records from the On
Update event of the tblTerminations table.

With the data macro logic that we have defined in the On Update event, Access automati-
cally maintains the Active status of the employee records. If the user assigns the termination
record to a different employee, Access changes the Active status of two different employ-
ees. If the user changed information other than the EmployeeIDFK field, Access marks that
employee as inactive again just to be safe.

The Back Office Software System sample web app includes On Update events attached to
ten tables. You can explore the data macros attached to these events for additional exam-
ples of using the On Update event.

●● tblAppointments. Syncs two time display fields with values from the
tblTimeLookups table. This breaks normalization, but it is needed to work around
some user interface limitations. It uses the Update function to determine whether
the time fields changed.

●● tblEmployees. Ensures that each employee record contains an employee picture.
Uses Update function and LookupRecord to insert a default image if you remove the
existing employee picture.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice
details after any record changes. Uses a RunDataMacro action to execute a named
data macro and passes in a parameter with each record update.

214 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

●● tblInvoiceHeaders. Checks to see whether the invoice is balanced with the invoice
details but only if the InvoiceTotal field is changed by using the Update function.
Uses a RunDataMacro action to execute a named data macro and passes in a param-
eter with each record update.

●● tblLaborPlanDetails. Syncs two time display fields with values from the
tblTimeLookups table. This breaks normalization, but it is needed to work around
some user interface limitations. It uses the Update function to determine whether the
time fields changed.

●● tblSchedule. Syncs two time display fields with values from the tblTimeLookups
table. This breaks normalization, but it is needed to work around some user inter-
face limitations. It uses the Update function to determine whether the time fields
changed.

●● tblTerminations. Ensures that the correct employee records are marked as active
or inactive if the existing record is assigned to a different employee.

●● tblTimeLookups. Prevents any changes to existing records in this system table.

●● tblTrainedPositions. Ensures that each employee has only one trained position
marked as their primary position. Uses a RunDataMacro action to execute a named
data macro and passes in two parameters with record change.

●● tblWeekDays. Prevents any changes to existing records in this system table.

Using On Delete events
The On Delete event fires whenever Access attempts the operation of deleting a record
from the table. There are many entry points for deleting a record when you are working
with Access web apps. For example, you can delete a record in a table or query datasheet
from within Access, you can run a named data macro that deletes a record, you can delete
a record when using a view in your web browser, or you can delete records using user inter-
face macros. When you attach a data macro to the On Delete event, Access runs the data
macro logic no matter where the entry point is for deleting a record.

Earlier in the chapter, you created a data macro attached to the On Insert event of the
tblWeekDays system table for the Back Office Software System sample web app data copy
(BOSSDataCopy.app). The data macro you created prevents any additions to this sys-
tem table. There is data macro logic attached to the On Update event that prevents any
changes to the existing data as well. You can also lock tables down further by preventing
any records from being deleted by using a data macro attached to the On Delete event.

 Working with table events 215

Chapter 4

For this example, open the tblCompanyInformation table in Datasheet view, click the
Design contextual tab under Table Tools, and then click the On Delete button in the Events
group to open the Logic Designer, as shown in Figure 4-36. This table contains only one
record to hold important company information. We don’t want any new records added to
this table, and we also don’t want to delete the existing record.

Figure 4-36 Click the On Delete button on the ribbon to open the Logic Designer.

We should first add a Comment block to this data macro so that anyone looking at it can
understand the purpose of the logic in this On Delete event. You should now be familiar
with the different methods of adding a new Comment block to the macro design surface.
Drop a new Comment block onto the macro design surface, and enter the following text:

Don’t allow the default record to be deleted.

Now add a RaiseError data action below the Comment block. For the Error Description
argument, enter the following text:

You cannot delete the record from this system table; it is used in other areas of the
application.

Your completed changes to the On Delete event should match Figure 4-37.

216 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-37 Your completed On Delete event logic should match this.

Seems almost too simple doesn’t it? Simple, yes, but completely effective. We don’t need to
test for any special conditions for our scenario; we just need to throw an error if this event
ever occurs. To try this, save the changes to this data macro by clicking the Save button
in the Close group or the Save button on the Quick Access Toolbar. Next, close the Logic
Designer window by clicking the Close button in the Close group. Finally, click the record
selector next to the existing record in the tblCompanyInformation table in Datasheet view
and press Delete. Access first displays a confirmation dialog asking you to confirm that you
want to delete the record. Click Yes to confirm the deletion, and then Access displays the
custom message in the RaiseError data action, as shown in Figure 4-38.

Figure 4-38 When you attempt to delete a record in the tblCompanyInformation table, Access
displays your error message.

 Working with table events 217

Chapter 4

Note
In the On Delete event example we just discussed, the tblCompanyInformation table
contains no relationships to other tables . If you have a Restrict Delete relationship
enforced on any related tables, such as the tblWeekDays table has with other tables,
Access prevents deletes and displays an internal message about not being able to delete
the record . In this case, Access does not even show your On Delete RaiseError message .
You might be asking why this is even necessary to put an On Delete data macro to pre-
vent deletes if a Restrict Delete relationship is enforced on any related tables . You are
correct that Access prevents deletes in this case; however it is possible that for a specific
record in tblWeekDays, no related records exist in the other tables . In that case, a user
could still delete a record from a static table that you don’t want modified. Also, you
might have other tables in your web app that do not have relationships with other tables
and want to prevent any records from being deleted . Both the tblCompanyInformation
and tblSettings tables in the Back Office Software System sample web app are two such
examples where no relationships exist with other tables, but I want to prevent any record
deletions .

The Back Office Software System sample web app includes On Delete events attached to
other tables that use this same technique to prevent records from being deleted as well as
other scenarios involving updating other tables when you delete records. You can explore
the following data macros attached to these events for additional examples of using the On
Delete event.

●● tblCompanyInformation. Prevents deletion of existing records.

●● tblInvoiceDetails. Checks to see whether the invoice is balanced with the invoice
details after any record changes. Uses a RunDataMacro action to execute a named
data macro and passes in a parameter with each record update. Uses the Old prop-
erty to determine the ID of the invoice during the delete and passes that into the
named data macro.

●● tblSettings. Prevents deletion of existing records.

●● tblTerminations. Ensures that the employee record is marked as active when
deleting the termination record. Uses the Old property to determine the ID of the
employee during the delete and finds the correct record using a LookupRecord data
block.

●● tblTimeLookups. Prevents deletion of existing records.

●● tblWeekDays. Prevents deletion of existing records.

218 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Deleting table events
If you want to delete a table event in a web app, you’ll have to manually delete all of the
data macro logic yourself. In Chapter 22, you’ll learn that desktop databases include a dia-
log where you can quickly view all of the table events attached to tables in your applica-
tion and delete any table event using this dialog. However, Access 2013 web apps do not
include a similar type of dialog. To delete a table event in a web app, you need to open the
table in Design view, delete each program construct, data block, and data action, and then
save and close the Logic Designer. When you remove everything from the macro design
surface for the specific table event, Access no longer executes that table event. Although it
might seem tedious to delete each element on the macro design surface one by one, you
can select everything currently displaying on the macro design surface by pressing Ctrl+A,
as shown in Figure 4-39. When you have all data macro logic selected, press the Delete key
to remove all logic from the macro design surface in one quick step. Now that you have
everything removed, you can then save and close the Logic Designer.

Figure 4-39 You can highlight all data macro logic in a table event and press Delete to quickly
remove a table event.

 Working with table events 219

Chapter 4

Working with named data macros
So far in this chapter, you’ve been studying data macros attached to specific table events.
Access also supports creating named data macros in web apps. A named data macro
appears in the Navigation pane under the Macros group and is not attached directly to
a specific table event. Named data macros in web apps execute only when called from
another data macro or a user interface macro. Logic that is in a named data macro can
interact with data in any table, require parameters before executing, and return data to the
calling data macro or user interface macro. The Back Office Software System sample web
app includes more than a dozen named data macros in the Navigation pane. In the next
sections, you’ll explore a few of these named data macros, as well as create a new named
data macro.

Creating named data macros
In the Back Office Software System sample data copy web app (BOSSDataCopy.app), a table
called tblTrainedPositions is used to track all the job positions each specific employee is
trained to perform. A multiple-field index on this table ensures that each employee can-
not be listed as trained in the same job position more than once. However, we also want to
ensure that each employee has only one position marked as their primary job position. We
can create a named data macro for this purpose, which can then be called from other areas
of the app. To accomplish this goal, we’ll create a new named data macro not attached
to any table event and then call this named data macro from both the On Insert and On
Update events of the tblTrainedPositions table.

Open the BOSSDataCopy.app sample web app within Access by downloading it from the
Access Services site if you’ve closed the app. Now click the Advanced button in the Create
group on the Home ribbon, and then click the option called Data Macro in the drop-down
list, as shown in Figure 4-40.

220 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-40 Click the Data Macro option under the Advanced button to start creating a new
named data macro not attached to any table.

In Chapter 5, “Working with queries in web apps,” you’ll learn how to use the Query option in
the drop-down list under the Advanced button in the ribbon . In Chapter 7, “Advanced view
design,” you’ll learn how to work with the Blank View, List View, and Datasheet View options
in this drop-down list. Finally, in Chapter 8, “Automating a web app using macros,” you’ll learn
how to use the Macro and On Start Macro options under the Advanced button .

Access opens the Logic Designer with an empty macro design surface, as shown in Figure
4-41. You’ll notice several differences on the macro design surface immediately that you
did not see when creating data macros attached to table events in the preceding sections.
When you’re creating named data macros, the Logic Designer window is not modal. What
this means is that you can see the Navigation pane and the App Home View, and you can
interact with other objects without having to close the Logic Designer. Also, at the top of
the macro design surface, you can see a section called Parameters. Named data macros
allow you to create parameters, which you can use to pass information into the data macro.
Creating parameters for named data macros is optional, but Access always displays the
Parameters block at the top of the macro design surface whenever you are working with
named data macros. The list of program flow constructs, data blocks, and data actions that
you can use in named data macros is the same for table events except with the addition of
one more data action called SetReturnVar. (We’ll discuss the SetReturnVar action later in this
chapter.) See Table 4-1 if you want to review the list of elements available in table events.

 Working with named data macros 221

Chapter 4

Figure 4-41 When you create named data macros, Access displays a Parameters block at the top
of the macro design surface.

Let’s first add a couple of Comment blocks to this named data macro to document its pur-
pose. Drag a Comment block from the Action Catalog onto the macro design surface. Enter
the following text into the new Comment block:

In this named data macro we want to make sure that only one job code is marked
as the primary position for a specific employee. It is OK to not have any assigned
primary positions for an employee but we do not want multiple primary positions
defined.

Drag another Comment block onto the macro design surface below the first one, and enter
the following text into this second Comment block:

This named data macro will run on the On Insert and On Update event for the tbl-
TrainedPositions table. The employee and job code of the new or updated record
will get passed in as parameters here. In the Where condition we will skip over the
newly added or updated record and only touch the possible one other record that is
marked as the primary position for the specific employee.

These two Comment blocks should give you an idea already of the type of logic we need to
add to this named data macro as well as the reasoning behind the logic we will add.

222 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Using parameters
In named data macros, you can define parameters to pass in information to the named
data macro and use them in the data blocks and data actions. With parameters, you can
pass in information to the named data macro from other data macros, views, and user
interface macros. In the Back Office Software System sample web app, many of the named
data macros include parameters. For the named data macro you are currently creating, we
need to define two parameters—one for the employee we want to check and the second
for the job code of the current record.

To create a new parameter in a named data macro, click the Create Parameter link on the
right side of the macro design surface, as shown in Figure 4-42. You need to select the
Parameters section to see the Create Parameter link. Access expands the Parameters section
at the top of the macro design surface and inserts one new row for a parameter.

Figure 4-42 Click the Create Parameter link to create new parameters in named data macros.

Each parameter takes three arguments:

●● Name. Required argument. The name of the parameter you want to use to refer to
during named data macro execution.

●● Type. Required argument. The data type that Access uses to define the parameter.

●● Description. Optional argument. A description for you to document the purpose of
the parameter.

For the Name argument, you can enter a name up to 64 characters. The restrictions for
naming parameters are the same as for local variables, which you learned about earlier in
this chapter. In this example, enter ParamEmployeeID into the Name argument, which
we’ll use to denote the ID of the employee to search for in the named data macro. For
the Type argument, you can choose from one of ten data type options—Short Text, Long

 Working with named data macros 223

Chapter 4

Text, Number (Floating Decimal), Number (No Decimal), Number (Fixed Decimal), Date
With Time, Date, Time, Currency, or Yes/No. In this example, select Number (No Decimal)
from the drop-down list of data type options. The employee ID values that we will be pass-
ing into this named data macro should not have any decimal places, because they are ID
values, so the Number (No Decimal) data type should suffice for this named data macro
parameter. For the Description argument, enter Employee ID record to look for into the
text box to describe the purpose of this parameter value. Your completed changes for the
first parameter should now match Figure 4-43.

Figure 4-43 Enter the parameter information into the three arguments.

We need to define one additional parameter for this named data macro to track the job
code ID of the record just created (the On Insert case) or the record just updated (the
On Update case). To define another parameter, click the Create Parameter link again on
the right side of the macro design surface in the Parameters section. Access inserts a new
parameter row beneath the existing one. For this second parameter, enter
ParamJobCodeID in the Name text box, select Number (No Decimal) from the drop-down
list in the Type argument, and enter Job Code ID to ignore in the Description text box.
Your completed two parameters should match Figure 4-44.

224 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-44 You should have two completed parameters defined in the new named data macro.

Note
If you need to delete an existing parameter, click the delete button to the far right side
of the specific Parameter row. The delete button has a symbol shaped like an X.

Now that you’ve defined the two parameters we need, it’s time to add the actions neces-
sary to perform our task. In this named data macro, we want to loop through records in the
tblTrainedPositions table looking for specific records. You’ve previously seen how the Look-
upRecord data block searches for a specific record in a table or saved query. In this case, we
need to use the ForEachRecord data block to search through more than one record poten-
tially. Drag a ForEachRecord data block from the Action Catalog to beneath the two Com-
ment blocks, or select ForEachRecord from the Add New Action box at the bottom of the
macro design surface. Access creates a new ForEachRecord block, as shown in Figure 4-45.

 Working with named data macros 225

Chapter 4

Figure 4-45 Drag a ForEachRecord data block onto the macro design surface.

The ForEachRecord data block takes four arguments:

●● For Each Record In. Required argument. The name of a table or query to look up a
record in.

●● Where Condition. Optional argument. The expression that Access uses to select
records from the table or query.

●● Update Parameters. Optional argument. If you’re looking up records in a query
that requires parameters, you can provide them here.

●● Alias. Optional argument. A substitute or shorter name for the table or query.

The only required argument for the ForEachRecord data block is For Each Record In. Access
provides a drop-down list for this argument that includes the names of all tables and saved
query objects in your web app. If you want Access to find a subset of specific records in
the specified table or query, you must provide a valid Where clause expression to find the
records. If you leave the Where Condition argument blank, Access loops through all records
in the specified table or query. You can click the button with the magic wand on it to open
the Expression Builder to assist you with creating a Where clause if you’d like.

The Update Parameters and Alias optional arguments are accessible through two links
below the Where Condition argument on the right side. When you click these links,
Access displays additional text boxes for you to enter these arguments. If you are run-
ning a ForEachRecord data block against a table, clicking the Update Parameters link does

226 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

nothing, because tables do not contain parameters. If you are using a query for your data
source that includes parameters, you can update the parameters using this link.

The tblTrainedPositions table contains one record for each job code that a specific
employee is trained to perform. Each employee could have multiple records in this table.
In an extreme case, one employee could be trained in every position in the restaurant, so
that person could have one record in the tblTrainedPositions table for each job code in
the app. The PrimaryPosition field in this table is a Yes/No data type that denotes whether
the specific job code is the employee’s primary position. In this scenario, we need to use
the ForEachRecord data block instead of the LookupRecord data block to search over each
record for a specific employee, so click inside the For Each Record In argument and select
tblTrainedPositions from the drop-down list.

To make sure we are searching for all correct matches in the tblTrainedPositions table, we
need to utilize the values passed in from the parameters in the Where condition argument.
The final expression I used to accomplish this task, which you’ll build in a moment, is as
follows:

[tblTrainedPositions].[EmployeeIDFK]=[ParamEmployeeID] And [tblTrainedPositions].
[JobCodeIDFK]<>[ParamJobCodeID] And [tblTrainedPositions].[PrimaryPosition]=Yes

This expression contains three distinct clauses all joined together with AND operators. In
the first part of the expression, we are trying to find all records where the EmployeeIDFK
field in tblTrainedPositions matches the parameter ParamEmployeeID that we will pass in
to this named data macro. Enter the first part of this expression into the Where condition
argument. When you start typing the parameter name, IntelliSense helps you along and
displays all parameter names so that you can easily see and select the parameter name that
holds the employee ID value, as shown in Figure 4-46.

 Working with named data macros 227

Chapter 4

Figure 4-46 IntelliSense provides parameter names when you are building expressions in named
data macros.

After you type the first part of the expression, add a space, type And, and then enter the
second part of the expression:

[tblTrainedPositions].[JobCodeIDFK]<>[ParamJobCodeID]

In the second part of this expression, we are instructing Access to exclude records where
the JobCodeIDFK field matches the parameter ParamJobCodeID that we will pass in to this
named data macro. You might be wondering why we want to do this. As you’ll learn in the
next few sections, whenever we create new records in this table or update existing ones,
we will pass in the job code of the record just created or the record just updated but only
if that record is designated to be the primary position. Because this new or revised record
will now be the primary position, there is no need to inspect this current record during the
ForEachRecord loop.

After you type the second part of the expression, add a space, type another And, then
enter the last part of the expression:

[tblTrainedPositions].[PrimaryPosition]=Yes

In the last part of this expression, we are instructing Access to include only records where
the PrimaryPosition Yes/No field equals Yes. During the ForEachRecord loop, Access could
find several records for the employee we are looking for. We really need to identify only
records where the PrimaryPosition field is already Yes, so we can then mark those records as
No in the PrimaryPosition field because a user just created a new primary position record

228 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

or updated an existing record. This will all make sense when we complete all the tasks later
in this section.

Now that you have the correct expression in place for the Where condition argument, we
need to add one last step in this named data macro to update the PrimaryPosition field to
No for any records Access finds during the ForEachRecord loop. To update the field, you
need to use the SetField data action inside an EditRecord data block. Click inside the Add
New Action combo box inside the ForEachRecord data block, type EditRecord, and then
press Enter. Access adds a new EditRecord data block onto the macro design surface inside
the ForEachRecord block. Next, click inside the Add New Action combo box inside the
EditRecord data block, type SetField, and then press Enter to add this new action to the
macro design surface. Finally, in the Name argument for the SetField action, enter
[tblTrainedPositions].[PrimaryPosition] and No into the Value argument. Your com-
pleted changes to the named data macro should now match Figure 4-47.

Figure 4-47 Your named data macro to maintain only one primary trained position should now
look like this.

 Working with named data macros 229

Chapter 4

Note
You might be wondering why I used a ForEachRecord data block in the named data
macro, given that the expression in the Where condition argument should return only
one record. You’re correct that Access should find only one record based on the logic I’ve
put in place . I’m being extra careful to make sure that only one job position is marked as
the primary position by using a ForEachRecord data block to cover the off chance that
two records for a specific employee are marked as primary positions.

Saving named data macros
You’ve completed creating your first named data macro, but now you need to save it and
give it a name. Unlike data macros attached to table events, named data macros require
you to provide a unique name. To save your new named data macro, click the Save button
on the Quick Access Toolbar. Access opens the Save As dialog box, as shown in Figure 4-48.
Save the named data macro with the name dmEnforceOnlyOnePrimaryPosition.

Figure 4-48 Provide a unique name for your new named data macro in the Save As dialog box.

If you attempt to save a named data macro with the same name as an existing named data
macro in the Navigation pane, Access displays an error message, as shown in Figure 4-49.

Figure 4-49 Access displays an error message if you try to save a named data macro with the
same name as an existing named data macro.

Calling named data macros
I mentioned earlier that named data macros must be called for Access to execute them.
If you want to test out a named data macro, you must therefore call a RunDataMacro
action from a table event or from a user interface macro. In Chapter 8, you’ll learn how to
call named data macros from user interface macros and in Chapter 25, “Automating your

230 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

desktop database with Visual Basic,” which can be downloaded from the book’s catalog
page, you’ll learn how to call named data macros from Visual Basic.

Close the Logic Designer, if you still have it open, and then open the tblTrainedPositions
table in Design view. We need to call the named data macro in both the On Insert and On
Update events, so let’s begin with the On Insert event. Click the On Insert button in the
Events group on the Design contextual tab to open the Logic Designer. Start by adding
a new Comment block to the macro design surface, and enter the following text into the
Comment block:

After we commit this new record we need to make sure we do not have more than
one primary position designated for the same employee. Run the named data macro
if this new record is marked as primary to clear out any other possibilities.

When you enter a new record in the tblTrainedPositions, we don’t need to run the named
data macro if you set the PrimaryPosition field to No. Remember, we want to enforce only
one primary position so that if the new record is not set as a primary position, we don’t
need to do any extra work. To account for this possibility, add an If block beneath the Com-
ment block onto the macro design surface. In the conditional expression text box, enter
[tblTrainedPositions].[PrimaryPosition]=Yes. Access does not run the next action we add
inside the If block if the new record has the PrimaryPosition field set to No.

To call the named data macro to run, you need to use the RunDataMacro action. Click in
the Add New Action combo box inside the If block, type RunDataMacro, and then press
Enter. Access displays the RunDataMacro on the macro design surface, as shown in Figure
4-50.

Figure 4-50 Add a RunDataMacro action inside the If block.

The only required argument for the RunDataMacro data action is Macro Name. Access
provides a drop-down list for this argument that includes the names of all saved named

 Working with named data macros 231

Chapter 4

data macros in your web app. Click in the Macro Name box, and select the named data
macro you created earlier from the drop-down list—dmEnforceOnlyOnePrimaryPosition.
After you select the named data macro, Access displays the parameters you defined earlier
in the named data macro. Access displays the two parameters in the underlying named
data macro—ParamEmployeeID and ParamJobCodeID—as parameter boxes at the bot-
tom of the action, as shown in Figure 4-51. You can enter a value you want to use for each
parameter by typing the value into the parameter box or using an expression to derive that
parameter value.

Figure 4-51 Access displays Parameter boxes on the macro design surface for any named data
macros that require parameters.

The two parameters we need to pass into the named data macro come directly from
the record Access just inserted. In the ParamEmployeeID parameter text box, enter
[tblTrainedPositions].[EmployeeIDFK], and in the ParamJobCodeID parameter text box,
enter [tblTrainedPositions].[JobCodeIDFK], as shown in Figure 4-52. When you create
a new record in this table and set the PrimaryPosition field to Yes, Access takes the data
stored in the EmployeeIDFK and JobCodeIDFK fields and passes those values into the
named data macro you created earlier. Click Save in the Close group on the Design contex-
tual tab, or click the Save button on the Quick Access Toolbar to save your changes to this
On Insert table event but leave the Logic Designer window open.

232 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-52 Enter field names into the parameter boxes in the RunDataMacro action.

We also need to add the same data macro logic to the On Update event of the
tblTrainedPositions as well account for users of the app changing existing records. You
should be very familiar now with adding data blacks, data actions, and filling in param-
eters in data macros manually, but this time we’ll use a different technique. Because the
logic currently showing in the On Insert event is the same as what we want to add to the
On Update event, we can simply copy the data macro logic to the Windows Clipboard
and then paste the contents into the On Update event. To do this, click inside the Logic
Designer on the macro design surface, away from any commands, and then press Ctrl+A
to highlight all of the logic currently showing in the On Insert table event, as shown in
Figure 4-53.

Figure 4-53 Press Ctrl+A to highlight all the data macro logic on the macro design surface.

 Working with named data macros 233

Chapter 4

Now that you have all the data macro logic highlighted, press Ctrl+C to copy all the Com-
ment blocks, data blocks, and data actions to the Windows Clipboard. Next, click Close in
the Close group on the Design contextual tab to close the On Insert table event. You should
see the tblTrainedPositions table still open in Design view. Click the On Update button in
the Events group on the Design contextual tab to open the Logic Designer window for
this table event. Finally, click anywhere on the macro design surface and then press Ctrl+V.
Access pastes all the data macro from the Windows Clipboard onto the macro design sur-
face, as shown in Figure 4-54. As you can see, copying and pasting the data macro logic
from the On Insert event to the On Update event using this technique is much faster than
adding all of the actions manually one by one.

Figure 4-54 Press Ctrl+V to paste all the data macro logic from the Windows Clipboard into the
On Update event of the tblTrainedPositions.

To test out the named data macro, save the changes to this On Update event and then
close the Logic Designer. Switch to Datasheet view for the tblTrainedPositions table by click-
ing the View button in the Views group on the Design contextual tab, and then click Data-
sheet view on the drop-down menu. The first three records in this table display the trained
positions for the employee with the last name of Sousa, as shown in Figure 4-55.

234 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-55 In Datasheet view, you can see each trained position for the employees in the web
app.

In Figure 4-55, you can see that the employee named Sousa is trained to be a Busser, a
Line Server, and a Cashier-Hostess, with their primary position being the Line Server posi-
tion. Change this employee’s primary position to Busser by clicking into the first record
and selecting the Primary Position check box, and then tab or click into a different record
to commit the record update. Initially, you won’t see any changes in any other records
because Access caches the data locally. To see the most recent updates to other records,
click the Refresh button in the Records group on the Datasheet contextual tab. (If you were
using a view within your web browser, you would see the changes refreshed in the records.)

You’ll now notice Access changed the second record after you updated the first record, as
shown in Figure 4-56. Access automatically ran the named data macro after you changed
the PrimaryPosition field to Yes in the first record. Access passed in the employee ID for
Sousa, passed in the job code ID for the Line Server position, and then updated the second
record by changing the PrimaryPosition in that record to No to maintain our goal of only
one primary position for each employee. Access also runs the same named data macro
whenever you add new records to this table and set the PrimaryPosition to Yes.

 Working with named data macros 235

Chapter 4

Figure 4-56 Access runs the named data macro after you update any record in the
tblTrainedPositions table.

Renaming and deleting named data macros
When you need to rename or delete named data macros, you must do so from the Naviga-
tion pane. If you want to rename a named data macro, right-click the named data macro in
the Navigation pane and select Rename from the shortcut menu, as shown in Figure 4-57.

Figure 4-57 Click Rename on the shortcut menu to rename named data macros.

Access highlights the name of the named data macro in the Navigation pane and allows
you to enter a new name for the named data macro, as shown in Figure 4-58. You must
enter a unique name for your named data macro. If you enter the name of an existing

236 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

named data macro, Access displays a warning message indicating that there is already an
object in the web app with the same name.

Figure 4-58 Enter a new name in the Navigation pane for the named data macro.

If you want to delete a named data macro, right-click the named data macro in the Naviga-
tion pane and select Delete from the shortcut menu. Access opens a confirmation message
box, as shown in Figure 4-59. Click Yes if you want to permanently delete the named data
macro.

Figure 4-59 In the confirmation message, click Yes to delete the named data macro.

Note
You cannot rename table event data macros because they are attached directly to the
table event .

 Working with named data macros 237

Chapter 4

CAUTION!
If you rename a named data macro or delete a named data macro, you must adjust
any other areas of your web app that reference that named data macro; otherwise, you
might encounter errors using areas of your web app that reference that named data
macro. For example, if you rename or delete the dmEnforceOnlyOnePrimaryPosition
named data macro you created earlier, Access displays an error whenever you add or
edit existing records to the tblTrainedPositions, because Access cannot find the named
data macro. You won’t be able to add or edit any data in that table until you remove
the reference to the named data macro in both the On Insert and On Update table
events for tblTrainedPositions.

Working with return variables
You can use a return variable in data macros to return data to the object that called the
named data macro. In a sense, you can think of a return variable as the opposite of a
parameter. You use parameters to push data into a named data macro, and you use return
variables to pull data out of named data macros. Return variables are very useful when
you need Access to read values from a table or query during the execution of the named
data macro and perhaps perform different steps based on that value. Return variables can
even be returned from the data layer up to the user interface level. All return variables have
a unique name. To fetch, set, or examine a return variable, you reference it by its name.
Return variables stay in memory until the data macro finishes executing, you assign it a new
value, or until you clear the value. You can set return variables only in named data macros;
however, you can retrieve them from table events, other named data macros, or user inter-
face macros.

Let’s examine a named data macro that uses return variables so that you can understand
how this works. Open the dmGetSettings named data macro in Design view from the Navi-
gation pane. Access opens the Logic Designer and displays the logic that I created for this
named data macro, as shown in Figure 4-60.

238 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Figure 4-60 The dmGetSettings named data macro uses return variables to return data to the
caller.

The logic for the dmGetSettings named data macro is as follows:

Parameter Name: ParamValue
Parameter Type: Short Text
Parameter Description: What field value to return
Comment Block: This named data macro gets the current value of a field value in this
table based on a parameter and returns that back to the caller.
LookupRecord In tblSettings
 Where Condition
 Alias: TS
 If [ParamValue]="Version" Then
 Comment Block: Set ReturnVar to current value of Version field
 SetReturnVar
 Name: RVVersion
 Expression: [TS].[Version]
 Else If [ParamValue]="Range" Then
 Comment Block: Set ReturnVar to the current value of RangeLimit field
 SetReturnVar
 Name: RVRange

 Working with named data macros 239

Chapter 4

 Expression: [TS].[RangeLimit]
 Else If [ParamValue]="Available" Then
 Comment Block: Set ReturnVar to the current value of SiteAvailable field
 SetReturnVar
 Name: RVAvailable
 Expression: [TS].[SiteAvailable]
 Else If [ParamValue]="SendEmailOnError" Then
 Comment Block: Set ReturnVar to the current value of the
 SendEmailForAppErrors field
 SetReturnVar
 Name: RVSendEmailOnError
 Expression: [TS].[SendEmailForAppErrors]
 Else If [ParamValue]="AdminEmail" Then
 Comment Block: Set ReturnVar to the current value of the AdminEmailAddress field
 SetReturnVar
 Name: RVAdminEmailAddress
 Expression: [TS].[AdminEmailAddress]
 Else If [ParamValue]="AllEmailInfoForErrors" Then
 Comment Block: For this parameter value, send back the settings for both the
 SendEmailOnError and AdminEmailAddress fields so the
 caller doesn't need to make two trips.
 SetReturnVar
 Name: RVSendEmailForError
 Expression: [TS].[SendEmailForAppErrors]
 SetReturnVar
 Name: RVAdminEmailForErrors
 Expression: [TS].[AdminEmailAddress]
 End If

The tblSettings table holds application-specific settings in several fields. By storing these
settings in the table, we can then use data macros to retrieve these values at any time. The
dmGetSettings named data macro uses a large If block inside a LookupRecord data block.
The If/Else If conditions check the value of the parameter ParamValue being passed in from
the caller. We then use the SetReturnVar data action to define a new return variable. The
SetReturnVar action takes two arguments:

●● Name. Required argument. The name of the return variable.

●● Expression. Required argument. The expression that Access uses to define the
return variable.

I set a unique name for each return variable inside the various Else If condition blocks. For
the Expression argument of each SetReturnVar action, I use an alias of the table name and
read the data from a specific field. In the last Else If condition block, I return data from
two fields with two different return variables to save the caller from having to make two
RunDataMacro calls for related application settings. I could optionally create a named data
macro that returns all data from the fields with return variables in one call, but I didn’t want
to be passing around data when it would not be needed. By itself, this named data macro

240 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

does not do anything more than read values from the tblSettings table. However, the real
power of the return variables is the ability of the object calling this named data macro to
use these values.

To see how this data in return variables can be used, close the Logic Designer for this
named data macro. Now open in Design view the dmAuditInvoiceTotalsOneVendor named
data macro. Access opens the Logic Designer and displays the logic that I created for this
named data macro, as shown in Figure 4-61. This named data macro audits all invoice
records for a specific vendor within a given date range. The named data macro starts by
running a different named data macro to retrieve a date range number from a system
table. The named data macro then loops through each invoice detail record for each
invoice within the desired date range, adds up the total amount of the line item details,
and compares it to the invoice total. If the line item details match the invoice total, Access
marks the invoice balanced. If the line item details do not match the invoice total, Access
marks the invoice as unbalanced. Finally, Access returns the total number of unbalanced
invoices, if any, to the calling macro.

Figure 4-61 Open the dmAuditInvoiceTotalsOneVendor named data macro.

 Working with named data macros 241

Chapter 4

This named data macro is quite lengthy, so I’ll break up our discussion of the logic behind
this named data macro into several parts. The logic for the first part of the named data
macro is as follows:

Parameter Name: ParamStartDate
Parameter Type: Date
Parameter Description: Start date for audit analysis
Parameter Name: ParamEndDate
Parameter Type: Date
Parameter Description: End date for audit analysis
Parameter Name: ParamVendor
Parameter Type: Number (No Decimal)
Parameter Description: Specific Vendor ID to use for audit analysis
Comment Block: This named data macro will do an audit of all invoices within the date
range specified for a specific vendor. It checks to see if the invoice amount total
matches the total from the invoice detail line items. If they match, the invoice is
marked as balanced. If the totals do not match, the invoice is marked as not
balanced.
Comment Block: First, get the value of the date range limit from the Admin Settings
table. We need to verify the date range is allowed.
Group: CheckAllowedRange
 RunDataMacro:
 Macro Name: dmGetSettings
 Parameters:
 ParamValue: "Range"
 SetLocalVar: LVRangeLimit = RVRange
 Comment Block: Set a Local Variable to the value from the Settings table
 SetLocalVar
 Name: LVRangeLimit
 Expression: [LVRangeLimit]-1
 Comment Block: Check to see if the supplied date range from user is greater than
 the allowed range limit. If it is, raise an error to stop the data macro from
 executing. Display a custom message that informs the user of the current range.
 If DateDiff(Day,[ParamStartDate],[ParamEndDate])>Cast([LVRangeLimit],Float)=True
 Raise Error:
 Error Description: =Concat("You have attempted to run an invoice audit with a
 date range larger than the allotted number of days. Please restrict your date
 range to ",(Cast([LVRangeLimit],Float)+1)," days.")
 End If
End Group

The dmAuditInvoiceTotalsOneVendor named data macro includes three parameters. I pass
in all three of these values from a user interface macro to know what date range I want to
audit invoice records and the specific vendor records to audit. Inside the Group block, I use
the RunDataMacro action. For the Macro Name argument of the RunDataMacro action, I
use the dmGetSettings named data macro, which you saw in the previous section.

You’ll notice in Figure 4-61 that Access displays a Parameters section beneath the Macro
Name argument. When you add a named data macro that includes parameters to the
macro design surface, Access shows those parameters to you by providing a text box to

242 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

enter the parameters. In our example, I pass in the Range parameter to get the value of
the RangeLimit text field from the tblSettings table. Beneath the parameter value on the
macro design surface, Access displays a SetLocalVar action for each return variable in the
dmGetSettings named data macro. When Access returns the variable, or potential variables
as the case might be, back to the calling macro, you can assign a local variable to each of
the return variables and use them during the execution of the named data macro. In our
example, because I’m getting one return variable back, you see only one SetLocalVar action
displayed on the macro design surface. After you save and close the named data macro,
Access displays only SetLocalVar actions inside the Parameters block for variables you set
to handle the return variables. If you click the Update Parameters link, Access displays a
SetLocalVar action for each return variable. For our example, I set a local variable called
LVRangeLimit, which holds the RVRange return variable received from the dmGetSettings
named data macro.

After the RunDataMacro action completes and returns back the needed data through the
return variable, Access subtracts one number from the local variable previously set by the
return variable. In the If condition that follows, I define an expression to calculate the dif-
ference in days from the start date and end date parameters. In the second part of the If
condition, I check to see whether that value exceeds the date range limit previously defined
using the Cast function. If the date range exceeds the limit, I use a RaiseError data action
to inform the user that the date range is too large and stop the named data macro from
executing any further. The message I display to the user in the RaiseError action uses the
Concat function to display a custom text message that includes the number of days they
are allowed to use for the date range.

In Figure 4-62, you can see the second section of the dmAuditInvoiceTotalsOneVendor
named data macro. In Figure 4-62, I collapsed the Parameters block so that you can see
more of the logic.

 Working with named data macros 243

Chapter 4

Figure 4-62 This is the second part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the second section of the dmAuditInvoiceTotalsOneVendor named data macro
is as follows:

Comment Block: We are OK with range so continue on.
Comment Block: Set a local variable to calculate the running sum of the detail record
amounts.
SetLocalVar
 Name: VarRunningTotal
 Expression: 0
Comment Block: Set a local variable to calculate how many invoices are unbalanced.
This number will be sent back to user.
SetLocalVar
 Name: LVUnbalanced
 Expression: 0
Comment Block: Set a local variable to the number of invoices audited.
SetLocalVar
 Name: LVAuditedInvoices
 Expression: 0
Comment Block: Loop through each record in tblInvoiceHeaders in the given date range.
ForEachRecord In tblInvoiceHeaders

244 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

 Where Condition = [TH].[InvoiceDate]>=[ParamStartDate] And
 [TH].[InvoiceDate]<=[ParamEndDate] And [TH].[VendorIDFK]=[ParamVendor]
 Alias: TH
 Comment Block: Now loop through all the related detail records for the specific
 invoice. For each record, add the report group amount to the running total.
 ForEachRecord In tblInvoiceDetails
 Where Condition = [tblInvoiceDetails].[InvoiceIDFK]=[TH].[InvoiceID]
 SetLocalVar
 Name: VarRunningTotal
 Expression: [VarRunningTotal]+[tblInvoiceDetails].[ReportGroupAmount]

In this section of the named data macro, I define three local variables—VarRunningTotal,
LVUnbalanced, and LVAuditedInvoices. The VarRunningTotal local variable tracks the run-
ning sum of the total invoice details line items for each specific invoice. The LVUnbalanced
local variable tracks how many unbalanced invoices Access finds during the course of
the named data macro execution. The LVAuditedInvoices local variable tracks how many
invoices Access audits within the given parameters of data macro execution.

The named data macro then executes a ForEachRecord data block to loop through all
records in the tblInvoiceHeaders table. For this ForEachRecord data block, I use TH as an
alias to represent the name of the tblInvoiceHeaders table for brevity in subsequent areas
of the named data macro. The expression I use in the Where condition argument for the
ForEachRecord data block is as follows:

[TH].[InvoiceDate]>=[ParamStartDate] And [TH].[InvoiceDate]<=[ParamEndDate] And [TH].
[VendorIDFK]=[ParamVendor]

The Where condition restricts Access to look for invoice records between the start date
and end dates passed in from the parameters. Access further restricts the records to loop
through by looking for the specific vendor ID also passed in as a parameter.

Inside the ForEachRecord data block for tblInvoiceHeaders, I use another ForEachRecord
data block to then loop through the invoice details records in the tblInvoiceDetails table for
each invoice that Access finds in the first ForEachRecord data block. The expression I use in
the Where condition argument for this second ForEachRecord data block is as follows:

[tblInvoiceDetails].[InvoiceIDFK]=[TH].[InvoiceID]

Inside the second ForEachRecord data block, I set a local variable called VarRunningTotal,
previously set to zero, to increment itself by the line item total found in the
ReportGroupAmount field. On each pass through tblInvoiceDetails table for each
specific invoice, Access then keeps a running total of the amount spent on each invoice
in this child table.

In Figure 4-63, you can see the third section of the dmAuditInvoiceTotalsOneVendor named
data macro.

 Working with named data macros 245

Chapter 4

Figure 4-63 This is the third part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the third section of the dmAuditInvoiceTotalsOneVendor named data macro is
as follows:

Comment Block: Now compare the running total amount to the current invoice amount. If
they match, mark the IsBalanced boolean field as Yes (balanced). If they don't match,
mark it as No (unbalanced).
 EditRecord
 If [VarRunningTotal]=[TH].[InvoiceAmount] Then
 Comment Block: Invoice is balanced.
 SetField
 Name: [TH].[IsBalanced]
 Value: Yes
 Else
 Comment Block: Invoice is not balanced.
 SetField
 Name: [TH].[IsBalanced]
 Value: No
 Comment Block: Increment the counter of unbalanced invoices by 1
 SetLocalVar
 Name: LVUnbalanced
 Expression: =[LVUnbalanced]+1
 End If
 End EditRecord

246 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

After Access finishes calculating the total from all the invoice details for one invoice, I then
have an EditRecord block inside the first ForEachRecord data block. Inside the EditRecord
block, I use an If block to test whether the running invoice total, tracked by the
VarRunningTotal local variable, equals the amount stored in the InvoiceTotal field in the
tblInvoiceHeaders table. If the two amounts match, I use a SetField data action to instruct
Access to update the IsBalanced field in tblInvoiceHeaders to Yes. If the two amounts do
not match, Access goes into the Else block and then uses SetField to change the IsBalanced
field to No. Inside the Else block, I also increment the LVUnbalanced local variable, which is
tracking the number of unbalanced invoices, by one.

In Figure 4-64, you can see the last section of the dmAuditInvoiceTotalsOneVendor named
data macro.

Figure 4-64 This is the last part of the dmAuditInvoiceTotalsOneVendor named data macro.

The logic for the last section of the dmAuditInvoiceTotalsOneVendor named data macro is
as follows:

 Comment Block: Reset the running total back to zero for next invoice.
 SetLocalVar
 Name: VarRunningTotal
 Expression: 0
 Comment Block: Increment the number of invoices audited
 SetLocalVar
 Name: LVAuditedInvoices
 Expression: [LVAuditedInvoices]+1

Comment Block: Last step is to return the number of unbalanced invoices and number of
invoices audited to the user. These numbers will be displayed in a message box for
the user.

 Working with named data macros 247

Chapter 4

SetReturnVar
 Name: RVUnbalanced
 Expression: [LVUnbalanced]
SetReturnVar
 Name: RVAuditedInvoices
 Expression: [LVAuditedInvoices]

Now that we’ve completed checking one invoice inside the first ForEachRecord data block,
we need to update two local variables before moving on to the next invoice. First, I need to
update the VarRunningTotal local variable back to zero so that it is ready to start calculating
the next invoice. Second, I need to update the LVAuditedInvoices local variable by one to
account for the number of invoices Access audited. After this point, Access moves back to
the beginning of the first ForEachRecord data block and completes the same steps previ-
ously outlined if another invoice exists within the given parameters. Access continues audit-
ing each invoice one by one and updating all of the local variables as appropriate.

After Access completes auditing all invoices, the final piece of this named data macro is to
set two return variables. As you might recall, this named data macro began with running
a different named macro that used a return variable to bring data into this named data
macro. I now end the logic in this named data macro by setting two return variables that
any calling macro can use to see the results of this auditing macro. I set the first
SetReturnVar data action—RVUnbalanced—equal to the local variable LVUnbalanced,
which tracked the total number of unbalanced invoices. I set the second SetReturnVar data
action—RVAuditedInvoices—equal to the local variable LVAuditedInvoices, which tracked
the total number of audited invoices. In Chapter 7, you’ll learn how to call this named data
macro from a user interface macro and use the return variables in a message box.

As you can see, return variables are a very useful feature with data macros. When you use
them in conjunction with parameters, you can create some very complex business logic at
the data layer and even pass information back up to the user interface layer.

INSIDE OUT Utilizing the Retrieve ID return variable

When you use the CreateRecord data block, Access displays a Retrieve ID link on the
right side of the macro design surface . If you want to know the ID AutoNumber of the
record Access creates inside a CreateRecord data block, you can click this link to retrieve
the ID as a return variable . Access displays a SetLocalVar action inside a Parameters block
where you can provide a name for the local variable . You can then use that local variable,
passed from Access through the Retrieve ID return variable, in further actions of your
data macro logic .

248 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Studying other named data macros
The Back Office Software System sample web app includes many named data macros to
automate various aspects of the app. Table 4-3 lists all the named data macros in the web
app with a short description of their purpose. You can explore these samples for additional
examples of how to design and use named data macros. In Chapter 7, you’ll learn how to
call some of these named data macros from user interface macros.

TABLE 4-3 Named data macros in the BOSS web app

Macro Name Description
dmApplyLaborPlanDetails Loops through all the labor plan details for a

specific Labor Plan and creates new schedule
records in tblSchedule.

dmAuditInvoiceTotalsAllVendors Audits all invoices within a given date range.
dmAuditInvoiceTotalsOneVendor Audits all invoices within a given date range for

a specific vendor.
dmClearOutTraceTableRecords Deletes all records from the Trace table.
dmCopyDateRangeRecords Loops through all the schedule records within a

date range and creates new schedule records in
tblSchedule with the same information. The new
schedule date to use comes from a parameter.

dmCopySingleDateRecords Loops through all the schedule records for a spe-
cific date and creates new schedule records in
tblSchedule with the same information. The new
schedule date to use comes from a parameter.

dmDeleteDateRangeScheduleRecords Deletes all records in tblSchedule within a given
date range.

dmDeleteSingleDateScheduleRecords Deletes all records in tblSchedule for a given
date.

dmEnforceOnlyOnePrimaryPosition Ensures that only one job code is marked as the
primary position for a specific employee. This
named data macro is called from both the On
Insert and On Update tblTrainedPositions table
events.

dmGetSettings Gets application settings data from the tblSet-
tings table.

dmSetJobCodeColor Sets color choices in the tblJobCodes table
from parameters passed in from user interface
macros.

dmSwapSortOrders Swaps sort order positions in the tblInventoryLo-
cations table for two records. Uses saved query
objects to find the highest and lowest values in
the SortOrder field.

	 Studying	other	named	data	macros 249

Chapter 4

Macro Name Description
dmUpdateSampleData Adjusts date values of all sample data to work

easily with data around the current time frame.
dmVerifyInvoiceBalanced Checks to see whether a specific invoice is

balanced.

Debugging data macros with the Trace table
You’re likely to encounter unexpected errors or unintended results when you’re designing
data macros attached to table events and complex named data macros for the first time.
You might even be wondering whether Access is even executing your data macros at all if
you see no visible results. In Chapter 24, “Understanding Visual Basic fundamentals,” which
can be downloaded from the book’s catalog page, you’ll learn that you have several tools
available in the Visual Basic Editor for debugging Visual Basic code in desktop databases.
Data macros, unfortunately, do not have as rich a set of tools available for debugging pur-
poses. For example, you cannot set breakpoints on data macro logic to halt execution. You
also cannot single-step through the macro logic as you can with user interface macros in
desktop databases.

Access can run into errors while you are in the development phase of creating, testing, and
debugging your data macros. The best tool you have for debugging data macro logic is a
special system table called the Trace table. Access manages any errors it encounters execut-
ing data macros through this system table. This Trace table serves two purposes:

●● Access uses it to log any data macro failures that it encounters while executing data
macros attached to table events and named data macros.

●● You can use the table for debugging purposes when designing and testing data
macros by viewing a history of everything Access executes while running your data
macros in this table.

Earlier in this chapter, you studied the data macro logic attached to the On Update event of
the tblTerminations table. When you update a termination record and assign the termina-
tion record to a different employee, the On Update logic looks up the previous employee’s
record in the tblEmployees table and sets the Active field back to Yes. In the first
LookupRecord data block, I used the Old property to refer to the EmployeeID that Access
just finished updating. In the second LookupRecord data block, Access sets the Active field
to No for the employee you just selected. Our data macro logic, again, is as follows:

Comment Block: If we are modifying an existing termination record, one of two
possibilities exist: 1. The Employee that this termination is for remains unchanged -
Scenario is just updating some data for the termination record. 2. The Employee that
this termination is assigned to changed - Scenario here is that when the record was
first created, it might have been assigned to the wrong employee. In this case the

250 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

user is assigning this to a different employee.
Comment Block: Check to see if the Employee field was changed.
If Update([EmployeeIDFK]) Then
 Comment Block: The Employee field changed so we'll change the existing employee's
 status back to Yes.
 Comment Block: For the Where condition in this LookupRecord, use the Old value from
 the EmployeeIDFK field and find that employee's record.
 Look Up A Record In tblEmployees
 Where Condition = [tblEmployees].[EmployeeID]=[Old].[EmployeeIDFK]
 EditRecord
 Comment Block: Now set Active field to Yes for this employee since it was
 probably initially assigned to the employee in error.
 SetField
 Name: [tblEmployees].[Active]
 Value: Yes

 End EditRecord
End If
Comment Block: After modifying this termination record, make sure the employee that
it's assigned to now is marked as an inactive employee. To do that, we look up the
matching employee's record in the tblEmployees table and set the Active field to No.
Look Up A Record In tblEmployees
 Where Condition = [tblEmployees].[EmployeeID]=[tblTerminations].[EmployeeIDFK]
 EditRecord
 Comment Block: Now set Active field to No.
 SetField
 Name: [tblEmployees].[Active]
 Value: No

 End EditRecord

When you set up complex table events and named data macros like this example, you’ll
find it helpful to debug your logic to make sure everything is working just the way you
want. For example, if you have only a few sample records in your tables, you might find
it relatively easy to spot and fix any issues in your data macros with such a small data set.
However, if your tables have many records, you might find it more difficult to spot any
issues, or you might have a more difficult time tracking down what data Access updates. To
help debug your data macro logic, you can take advantage of the built in Trace table.

For this specific On Update event example, it would be helpful to know which employee
records, if any, Access updates during this table event. To start using the Trace table, the
first thing that you need to do is to turn on data macro tracing for your web app. To do
this, open any table event for any table in your web app or open any named data macro in
Design view. After Access opens the Logic Designer, click the Data Macro Tracing button in
the Tracing group on the Design contextual tab, as shown in Figure 4-65.

	 Debugging	data	macros	with	the	Trace	table 251

Chapter 4

Figure 4-65 Click the Data Macro Tracing button to activate data macro tracing in your web
app.

When you activate data macro tracing, Access records information to the Trace table. To
see how useful the Trace table can be, let’s change the existing termination record in the
tblTerminations table. Switch to Datasheet view for the tblTerminations table. Next, find
the existing termination record in this table—the one assigned to Mario Kresnadi. Next,
tab over to the EmployeeIDFK for this record (the datasheet caption of the field displays
Employee), type Conrad into the control where it currently says Mario Kresnadi, and then
select Jeff Conrad from the drop-down list of employee names displayed in the Employee-
IDFK field, as shown in Figure 4-66. Finally, click or tab off the record, and Access saves the
record with Jeff Conrad’s EmployeeIDFK number. (If you changed this record to Jeff Conrad
previously in this chapter, change the value back to Mario Kresnadi. You’ll be able to see
results in the Trace table in either case.)

Figure 4-66 Change the EmployeeIDFK field from Mario Kresnadi to Jeff Conrad, and then save
the record.

252 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Note
Each web app you create includes the Trace system table, which is a hidden table . There-
fore, you cannot create any table in your web app and name it Trace . If you do, Access
informs you that an existing object with that name already exists in the web app .

To see the effects of this On Update event in the Trace table, switch to Design view for the
tblTerminations table and then open any of three table events in Design view. After Access
opens the Logic Designer, click the View Trace Table button in the Tracing group on the
Design contextual tab, as shown in Figure 4-67.

Figure 4-67 Click the View Trace Table button to open the data macro Trace table in your web
browser.

Access opens the Trace table datasheet in your default web browser, as shown in Figure
4-68. The Trace table contains the following fields: ID, MacroName, ActionName, Operand,
Output, TargetRow, Timestamp, and RuntimeErrorMessage. When you have data macro
tracing turned on, Access creates a record in the Trace table for every action it runs during
any table event or named data macro. Depending on the complexity of your data macro
logic for a given table event or named data macro, you could see just a few new records in
the Trace table or perhaps hundreds of new records. The Trace table holds a maximum of
1000 records. If the number of records in the Trace table exceeds 1000, Access begins delet-
ing the oldest records as it creates new entries.

Note
In Figure 4-68, I resized several of the Trace table columns so that you could see more of
the data in the various records . To resize a column in the Trace table, hover over the right
edge of a column header until you see a double-sided arrow, click and hold your mouse,
and drag the column to the right until you have the size you want .

	 Debugging	data	macros	with	the	Trace	table 253

Chapter 4

Figure 4-68 Access opens the Trace table in your web browser so that you can examine how
your data macro logic executes.

The ID field in the Trace table is the AutoNumber field Access uses for this table. The
MacroName field lists the name of the table and the specific event Access executed or the
name of the named data macro Access executed. The ActionName field lists the name of
the program construct, data block, or data action Access executed. In the Operand field,
Access lists any conditional expressions or table and field references in the case of SetField
data actions. In the Output field, Access lists data values it commits into a field. In the
TargetRow field, Access lists identifying information about what record it is writing data to,
such as the ID values. In the TimeStamp field, Access enters the current date and time of
the specific action. In the RuntimeErrorMessage field, Access displays a SQL exception mes-
sage if it encounters an error while performing the specific action. Access also logs any
RaiseError messages that you define into the RuntimeErrorMessage field. Table 4-4 summa-
rizes the important information Access logs to the Trace table.

TABLE 4-4 Trace table logging information

Action Name Operand Output Target Row

If Conditional expression
Else If Conditional expression
CreateRecord Table name
EditRecord
ForEachRecord Table name, Where

condition
Record identifiers

LookupRecord Table name, Where
condition

Record identifiers

CancelRecordChange
DeleteRecord
ExitForEachRecord
RaiseError

254 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Action Name Operand Output Target Row

RunDataMacro Macro name Computed
expression value

SetField Table and field name Computed
expression value

SetLocalVar Variable name Computed
expression value

SetReturnVar Variable name Computed
expression value

StopMacro

In our example On Update event, you can see that Access logged nine records carrying out
all the actions in the On Update table event. In the first record, Access displays the If block
and the conditional expression. In the second record, you can see that Access displays the
LookupRecord in the ActionName column along with the table name and Where condition
in the Operand field. In the third record, Access repeats the LookupRecord data block but
this time displays the ID values of the record it found that match the Where condition. In
the fourth record, Access lists EditRecord, which indicates it is now entering this data block
because it found a matching record in the Where condition of the LookupRecord data
block. In the fifth record, Access displays the SetField action along with the table name and
field in the Operand field. In the Output field for this record, Access displays 1, which, in this
case, indicates a Yes value for the Active Boolean field. In the remaining four records in the
Trace table, Access lists similar information detailing the second LookupRecord actions out-
lined in the On Update event of the tblTerminations table. In the SetField record, you can
see that Access set the Active field to 0, which indicates No for the Boolean field.

	 Debugging	data	macros	with	the	Trace	table 255

Chapter 4

INSIDE OUT Clearing the Trace table records

When you view the Trace table records in your web browser, you can delete the records
if you no longer want to see them by highlighting the records and pressing the Delete
key . Depending on how many records you have in your Trace table, this could be a
tedious task . You can alternatively write a named data macro to perform the task very
quickly . The Trace table is a hidden table in your web app, and therefore you cannot
use the Trace table directly in a ForEachRecord or LookupRecord data block. However,
you can create a saved query object that uses the Trace table as its source . You can then
create a named data macro that includes a DeleteRecord action inside a ForEachRecord
data block with the saved query as the source, which causes Access to delete all records
in the Trace table when you call the named data macro .

In the Back Office Software System web app, I’ve included a saved query called
qryTraceTable and a named data macro called dmClearOutTraceTableRecords that per-
form this task . If you have data macro tracing turned on while running that named data
macro, Access records all the delete operations into the Trace table, which effectively
cancels out what you’re trying to do! To work around that issue, you must turn off data
macro tracing first and then execute the named data macro to clear out all records in
the Trace table using this technique .

Let’s examine a different example of a table event that triggers a named data macro so that
you can see how Access logs this type of scenario to the Trace table. Earlier in this chapter,
you studied the On Update event of the tblTrainedPositions table. Open this table in Data-
sheet view within Access, and then change either the first or second record such that you’ve
changed the primary position of the first employee listed in the table. After you update
the record, refresh the Trace table in your web browser. In Figure 4-69, you can see the
six records Access adds to the Trace table while executing the data macro logic in the On
Update event.

Figure 4-69 Refresh the Trace table in your browser to see new logging records Access adds to
the table.

If you follow the information that Access displays in the Trace table after you updated
the record, you can see that Access first indicates it fired the On Update event in

256 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

tblTrainedPositions and then executes the named data macro called
dmEnforceOnlyOnePrimaryPosition, which you created earlier. You can see that Access
executed the ForEachRecord data block in the named data macro, found a specific record
that matched the Where condition, and then used a EditRecord with SetField action to
update the PrimaryPosition field.

After Access finishes executing your data macro logic, you can examine the values of your
local variables and return variables in the Trace table at different points in time to help
determine what Access is doing during the data macro execution. You can use this infor-
mation to assist with debugging your logic. For example, you can examine which record
Access might be editing or attempting to find by looking at the values in the TargetRow
column.

INSIDE OUT Turn off data macro tracing in production apps

The Trace table can be very useful when you are designing and testing the logic in your
table events and named data macros . When you have everything working just the way
you want, you should turn off data macro tracing before putting your app in production
for people to use . If you leave data macro tracing turned on in a production environ-
ment, Access continually logs information for all data macro logic . You’ll see a slight
improvement in app performance by turning this feature off in production, because
Access does not need to spend extra time writing data to the Trace table for all of your
actions .

To turn off data macro tracing, open any table event or named data macro in Design
view and click the Data Macro Tracing button in the Tracing group on the Design con-
textual ribbon tab . This button is essentially a toggle button . When you have data macro
tracing turned on in your web app, you’ll see this button highlighted in the ribbon . Just
click the button in the ribbon again to deselect it and turn off data macro tracing . If you
are encountering errors in your production apps, you can turn the data macro tracing
back on temporarily, diagnose the issues, fix the issues, and then turn it back off when
your data macro logic is working again as you expect .

Note
If you save your web app as an app package, Access includes the Trace table, and any
records included in it, into the app package .

	 Debugging	data	macros	with	the	Trace	table 257

Chapter 4

Understanding recursion in data macros
When you’re designing data macros, you have the potential to run into a recursion issue.
Access runs into a recursion issue when it tries to execute the same data macro logic over
and over in a repeated loop. For example, suppose that you created data macro logic
attached to the On Update event of a table that changed data in the current record of the
same table. Access makes the field changes and then commits the data. Access then fires
the On Update again because data in the table changed. The On Update event fires again,
changes the data, and the cycle begins again. Access is now in a perpetual loop executing
the data macro in the On Update event. Access could also get into a loop, for example,
when working with two tables that have On Update events that update each other, or even
with complex named data macros that end up repeating themselves.

Data macros are limited to 32 levels of recursion, which means Access stops the data macro
execution after 32 iterations through a recursive loop. If Access falls into a recursive loop,
you’ll see a runtime error message indicating that an endless loop was detected, as shown
in Figure 4-70. Access logs a SQL Exception error into the RuntimeErrorMessage field of the
Trace table if you have data macro tracing turned on. In the Trace table, you’ll see essen-
tially the same records getting updated over and over again by Access.

Figure 4-70 Access displays an error message if it gets into a data macro recursion loop.

In most cases, you can correct recursive calls by using the Update function to determine
which field or fields Access changed in the last record update. You can add conditional
logic with If blocks to determine whether a field was changed and perform different
actions, or no actions, based on the evaluation of the condition. As you are designing and
testing your data macro logic, it’s a good idea to check the Trace table continually to help
spot potential problems with recursion.

258 Chapter 4 Creating data macros in web apps

Ch
ap

te
r 4

Sharing data macro logic
The Logic Designer in Access includes a very useful feature for sharing and reusing data
macro logic. To illustrate this feature, open the tblTerminations table in the Back Office Soft-
ware System data copy sample web app (BOSSDataCopy.app) in Design view. Next, click the
On Insert button in the Events group to open the Logic Designer. You’ve already explored
the data macro logic attached to this table event earlier in this chapter. Press Ctrl+A to
highlight all the logic on the macro design surface, and then press Ctrl+C to copy the logic
to the Windows Clipboard. Now open Notepad (or a different text editor), and then press
Ctrl+V to paste all the logic into Notepad.

As you can see in Figure 4-71, Access copies the data macro logic from the Logic Designer
as Extensible Markup Language (XML). You can send this XML to someone else, and that
person can copy and paste the XML directly into a Logic Designer window for a data macro
in his or her Access 2013 web app. This feature can be especially useful if you are trying to
help someone else write or debug data macro logic, such as in an Access forum or news-
group. You can create the logic for the person you’re helping and explain how you struc-
tured the program flow constructs, data blocks, and data actions.

Figure 4-71 You can copy and paste data macro logic directly out of the Logic Designer.

 Sharing data macro logic 259

Chapter 4

You now have all the information that you need to modify and maintain your web app
table definitions. You know how to build tables, modify them, import data and link them,
and create data macros to automate them. In the next chapter, you’ll learn how to extract
data from tables by building queries.

260 Chapter 4 Creating data macros in web apps

 799

Index

Quick Access Toolbar category, 636–638
Trust Center category, 639–640

Access Services option, AutoFilter menu, 450
Access web app icon, 64
AccountDescription field, 131
AccountNumber field, 131
Account tab, Microsoft Office Backstage view, 37–40,

624–627
Action Bar buttons

customizing, 560
defining custom, 369–371
deleting, 368–369
moving, 368–369
overview, 368
and Summary views, 457

Action Catalog button, 177, 544
Actions callout menu, 372, 383, 552
Actions charm button, 383, 552
actions in data macros

collapsing and expanding, 198–203
moving, 204–207

Active Employees view, 512, 513
Active field, 105
ActiveX Calendar Control, 794
ActiveX Settings category, Trust Center dialog box, 647
Add Action Bar button, 129, 298, 421, 436, 584
addActionBarButton action, 594
Add A Document dialog box, 59
Add A New Blank Table link, 51, 88, 93, 117, 131
Add A Place option, 35, 620
Add A Service button, 39, 627
Add Custom Action button, 368, 569
Add & Delete group, Fields tab, 687
Add Else If link, 191, 562
Add Else link, 191, 562
Add Existing Fields button, 363, 403
Add Field button, 107
Add Group button, 668
Add Image button, 429
Add Image dialog box, 430, 432
Adding An Access App dialog, 74, 77
Add-Ins

Access Options dialog box, 638–639
Database Tools tab, 656
Trust Center dialog box, 647

Add Invoice Details link, 444

Symbols
64-bit version, 794–796
‘ (accent grave) character, 699
& (ampersand sign), 113
‘ (apostrophe) shortcut, 190
* (asterisk), 183, 268, 284, 548
@ (at sign), 116
[] (brackets) characters, 699
^ (caret), 115
? character, 712
* character, 712
character, 712
- (dash) operator, 284
// (double forward slashes) shortcut, 190
= (equals sign), 114, 711, 96
! (exclamation point), , 96, 712
/ (forward slash), 183, 190, 416, 548
> (greater than) operator, 114, 711
>= (greater than or equal to) operator, 114, 711
< (less than) operator, 114, 118, 711
<= (less than or equal to) operator, 114, 711
<> (not equal to) operator, 114, 711
% (percent sign), 115, 334
 . (period) character, , 96
+ (plus sign), 113, 279, 284
(pound sign), 114, 272, 711
[] (square brackets), 96
_ (underscore), 115, 277, 481, 714

A
About command button, Home view, 577
About dialog box, 40
About Me link, 38
accent grave (`) character, 699
Access App icon, 73
Access Options dialog box, 43

accessing from Ribbon, 654
Add-Ins category, 638–639
Client Settings category, 633–634
Current Database category, 628–629
Customize Ribbon category, 634–636
Datasheet category, 629–630
Language category, 632–633
Object Designers category, 630–631
overview, 627–628
Proofing category, 631–632

800 Add New Action combo box

Add New Action combo box, 186, 548, 561
Add New Tab button, 401
Add New Table button, 52, 340
Add New View button, 347, 455
Add New View dialog, 498
Add New View menu, 455, 470
Address2 field, 105
Address field, 105, 751
Address option, Data Type Part, 694
Add Tables screen, 30, 50–51, 86, 88
Add To Quick Access Toolbar option, 642
Administer group, Database Tools tab, 656
Advanced button, Home tab, 264
After Update event, 551
Alarm Clock icon, 346
Alias argument, 194, 226
alignment buttons, 360
All Access Objects command, 660
Allow Multiple Values property, 776, 779, 780
Allow Value List Edits property, 777
Allow Zero Length property, 706
All Relationships button, 731
Alt+Down Arrow keyboard shortcut, 297
ampersand sign (&), 113
Analyze group, Database Tools tab, 656
AND operator, 227, 291

vs. OR operator, 273–276
using in WHERE clause, 417

apostrophe (‘) shortcut, 190
App Details link, 63
Append Only property, 707
App Home View, 52–53

overview, 338–340
Table Selector

changing display order, 340–341
choosing icons, 345–346
customizing captions, 341–343
hiding captions, 343–345
overview, 340
viewing changes to, 346–347

View Selector
customizing captions, 347–349
deleting views, 354–355
duplicating views, 350–352
overview, 347
switching caption positions, 349–350
viewing changes to, 352–354

application development system, 13–14
Application Parts, 688–691
Apply Filter button, 414
App Name text box, 29, 77
AppointmentDescription field, 118
AppointmentID field, 118
AppointmentIDTextBox, 586
Appointments table, 341

app packages
downloading into Access, 79–81
saving web app as, 55–57
in SharePoint corporate catalog

installing from, 62–67
uploading to, 59–63

in SharePoint site
creating blank web app in, 77–79
installing into, 72–77

in SharePoint Store
installing from, 66–74

Apps For SharePoint dialog box, 60, 61
Apps For SharePoint link, 59
Apps For SharePoint page, 59
Apps You Can Add link, 63
Apps You Can Add section, 73, 77
architecture of Microsoft Access 2013, 5–7
arithmetic expressions in queries, 283–286
Ascending option, Sort Order property, 367, 465
Ask Me Later button, 23
Asset Tracking template, 34
asterisk (*), 268
Attachment data type, 10, 700, 702
Attachments field, 751
Auctions app, 607
autocomplete

button for, 362
in Datasheet views, 404
defined, 50
in views, 432–440

AutoCorrect button, 772
AutoCorrect Log table, 737
AutoFilter menu, 303, 449, 516
AutoNumber data type, 94, 98, 100, 140, 142, 303, 310,

700, 701
AutoNumber ID field, 149, 373
Available Locations text box, 29
Avg function, 316

B
BackColor property, 593
backing up tables, 742–746
Backstage view . See Microsoft Office Backstage view
Back To Site link, 502, 536
Back Up Database command, 743, 744
Balanced check box, 442
BETWEEN operator, 114, 276–278, 712
BirthDate field, 752
Blank Desktop Database, 619, 684, 689
Blank views

creating, 470–480
in web apps, 356

blank web app, 84–87
Bold button, Font group, 360
BOSSDataCopy .app, 173, 215, 220

 compacting databases 801

BOSSReportsMaster.accdb file, 526
BOSS web app

overview, 87
sample views in, 508–521

Bound Column property, 776
Bound Field property, 389
bound view, 359
brackets ([]) characters, 699
Bread And Rolls report group, 445
Breeze site theme, 504
browser, web apps in, 54–55
Build button, 714
Builder button, Query Setup group, 286
BusinessPhone field, 751
Button button, Controls group, 361
By Date view, 516
By Vendor view, 516

C
Calculated data type, 700, 702

overview, 99, 100, 143
vs. calculated expressions, 279

calculated fields, 106–113
Calculation Caption property, 397, 400
Calculation charm button, 397
Calculation Field property, Summary views, 465
Calculation Header property, Summary views, 465
Calculation property, 397, 399, 512
Calculation Visible property, 397, 400
Calculator icon, 346
Cancel Action Bar button, 368, 422, 431
cancelActionBarButton action, 594
canceling events

in data macros, 188–190
CancelRecordChange action, 180, 254
Caption property, 372, 383, 388, 399, 458, 593, 596, 705,

749
captions

for Table Selector, App Home View
customizing, 341–343
hiding, 343–345

for View Selector, App Home View
customizing, 347–349
switching position of, 349–350

caret symbol (^), 115
carriage return character, 96
Cartesian product, 308
Cascade Delete Related Records check box, 728
cascade delete relationship, 135, 137–139
Cascade Update Related Fields check box, 728
Cast function, 243
categories for Navigation pane, 664–666
CategoryDescription field, 719
Category option, Data Type Part, 694
Center button, Font group, 360

Change Photo link, 38, 625
Change Product Key link, 40
Change Sort Order view, 605
Change The Look page, 504
ChangeView action

defined, 546
for web app macros, 602–605

Character Limit property, 101, 106, 299
charms, 52, 341, 369
CheckAllowedRange block, 597, 598
Check Box button, 362
check box controls

in Datasheet views, 404
in views, 426

Check Out Access Online Help link, 79
child records, 444
chkAllVendors check box, 594
Choice field, 170
Choose A File text box, 60
Choose An Image text box, 430
Choose File To Upload dialog, 75, 430
City field, 105, 751
Clear Dates button, 592
Clear Filter option, AutoFilter menu, 307, 450
Clear Search String button, 50, 673
Clear Unpinned Items option, 35, 621
Client Settings category, 633–634, 735
Clipboard group, Home tab, 652
Close command, Microsoft Office Backstage view, 36, 624
Close in the Show Table dialog box, 266
ClosePopup action, 546
Close (X) button, 345
cloud, 17
cmdClearDates command button, 593
cmdRunAudit command button, 598
Coalesce function, 281, 282, 283, 319
Collapse Actions button, 177, 200
Collapse All button, 177
Collapse/Expand group, 177, 200
collapsing actions in data macros, 198–203
Color Option label, 531
Column Count property, 776
Column Heads property, 776
Column Widths property, 776
Combo Box button, 361
combo box controls

in Datasheet views, 404
in views, 423–424

ComCtl control, 795
Command Button control, 404
Comments field, 132, 478
comments in data macros, 181–183, 558
Comments option, Application Part, 690
CommissionPercent field, 752
compacting databases, 781–782

802 Compact & Repair Database command

CreateRecord action, 194, 254
CreateRecord data block, 180, 248
Create Reports button, 33, 522, 523
Create Schedule command button, 520
Create tab, Office Fluent Ribbon, 653–654
Ctrl+Delete keyboard shortcut, 297
Ctrl+Down Arrow keyboard shortcut, 207, 297
Ctrl+End keyboard shortcut, 297
Ctrl+F2 keyboard shortcut, 207
Ctrl+Home keyboard shortcut, 297
Ctrl+S keyboard shortcut, 422
Ctrl+Space keyboard shortcut, 207
Ctrl+Up Arrow keyboard shortcut, 207, 297
Currency data type, 99, 100, 143, 700, 701
Currency format, 394
Currency Symbol property, 103
Current Database category, Access Options dialog

box, 628–629, 676
Customer Billing And Time Tracking icon, 69
Customer Experience Improvement Program, Microsoft, 22
CustomerNumber field, 104, 366
Customize In Access gear button, 502
Customize install option, 785, 791
Customize Ribbon category, Access Options dialog

box, 634–636
Custom Web App button, 84, 92, 619
Custom Web App pop-up dialog, 85
Cut command, Clipboard group, 747

D
Daily Labor Plan report, 532
DAO (Data Access Objects), 794
Database Properties dialog box, 618
databases

capabilities of, 7
compacting, 781–782
defined, 3–4
opening in desktop interface, 614–617
relational databases, 4–5
switching to from other solutions, 15–17

Database Tools tab, Office Fluent Ribbon, 655–656
Data button, List Control, 365
Data callout menu, 381
Data charm button, 381, 396
Data Connectivity section, 33
data control, 7
data definition

defined, 7
in RDBMS, 8–10

data entry controls in views, 422–423
data macros (for web apps)

actions in
collapsing and expanding, 198–203
moving, 204–207

canceling events in, 188–189

Compact & Repair Database command, 618, 781
Companies.xlsx file, 150
Company Contacts table, 724
Company field, 751
Company Information view, 510
Company Logo field, 429
Concat function, 243
conditional expressions in data macros, 189–192
Conrad Systems Contacts database, 11, 691
ContactCellNumber field, 105
Contact Events table, 725
ContactFirstName field, 104
Contact First Name label control, 374
ContactFirstName text box, 374
ContactID field, 751
ContactLastName field, 104, 375
ContactName field, 751
Contact Products table, 724
Contacts .accdb database, 742
Contacts .app, 87
Contacts Application Part, 749
Contacts Map .accdb desktop database, 9
Contacts option, Application Part, 690
ContactTitle field, 104
ContactTracking .accdb database, 742
ContactType field, 752
control events for web app macros, 557–568
Control Name property, 386, 397, 400, 482, 566
Control Name text box, 370
control of data, 7
controls

date/time formats, 394–395
moving, 372–380
number formats, 393–394
properties for, 380–393
sizing, 372–380

Control Source property, 381, 386, 488
conversion errors for data types, 770–771
converting files from previous versions

overview, 793
troubleshooting, 793–794

Copy command, Clipboard group, 745
copying and pasting in query Datasheet view, 302
Copy Link To Clipboard option, 410
Copy Path To Clipboard option, 620
Copy Schedules view, 519, 520
Count function, 317
Count property, Summary views, 465
CountryRegion field, 751
Create A Table From An Existing Data Source section, 150
Created Date category, 664
Create group, Home tab, 46
Create New Package From This App dialog box, 56
Create on the Custom Web App dialog box, 92
Create Parameter link, 223

 desktop databases 803

formatting controls for, 394–395
in queries, 272–273

Date/Time data type, 99, 100, 143, 700, 701
Date To Apply text box, 520
Day setting, DateDiff function, 285
debugging with Trace table, 250–257
decimal placeholder, 714
Decimal Places property, 387, 705
DefaultAddress field, 752
Default Display Text property, 392
Default Number Field Size box, 738
Default Text Field Size box, 738
Default URL property, 388, 488
Default Value property, 101, 381, 386, 705
Definition and Data option, 149
definition, data

defined, 7
in RDBMS, 8–10

Delete Action Bar button, 129, 368, 448
deleteActionBarButton action, 594
Delete command, Records group, 746
Delete Group button, 668
Delete keyboard shortcut, 297, 422
Delete option, 342, 347
DeleteRecord action, 180, 254, 194
Delete Rows button, Tools group, 764
deleting

Action Bar buttons, 368–369
data macros, 219
fields, 763–764
named data macros, 236–238
rows in query Datasheet view, 302–303
tables, 746–747
views, 355

DepartmentID field, 773
DESC command, 563
Descending option, Sort Order property, 367, 465
Description argument, 223
Description property, 96, 698
Deselect All button, 158
Design contextual tab

Field list in, 363–364
overview, 359–363

design environment for web apps
Add Tables screen, 50–51
App Home View, 52–53
overview, 50
Table Selector, 52
View preview window, 54
View Selector, 53

Design view
creating tables in, 696–697
editing tables in, 90

desktop databases
creating

comments in, 181–183
conditional expressions in, 189–192
debugging with Trace table, 250–257
defined, 175
deleting, 219
grouping, 183–185
if blocks in, 189–192
local variables in, 196–199
Logic Designer, 175–178
LookupRecord data blocks in, 193–197
named data macros, 236–238

calling, 230–236
creating, 220–222
examples of, 249
overview, 220
parameters for, 223–230
renaming, 236–238
return variables for, 238–248
saving, 230

overview, 21–23, 173–174
raising errors in, 185–188
recursion in, 258
table events

On Delete events, 215–218
On Insert events, 179–181, 208–209
On Update events, 209–215
overview, 178

testing, 188–189
uses for, 174–175

Data Macro Tracing button, Tracing group, 251, 257
data manipulation, 7
Data property callout menu, 365
Datasheet Caption property, 392, 406
Datasheet category, Access Options dialog box, 629–630
Datasheet view, 686 . See also query Datasheet view

customizing web app views, 402–408
overview, 356
for web app tables, 127–130
in web browser, 447–452

Data Source property, 398
Data Type box, 153
Data Type Parts, 692–695
data types

changing, 765–768
changing lengths for, 769–770
conversion errors, 770–771
for fields, 699–702

DateAdd function, 291
DateDiff function, 284, 588
DateFromParts function, 288
Date() function, 106
Date Picker controls

displaying, 590
in views, 440–443

dates and times

804 desktop interface

overview, 656–658
Search Bar feature, 671–674
sorting in, 670–671
views in, 658–664

Office Fluent Ribbon
Create tab, 653–654
Database Tools tab, 655–656
External Data tab, 654–655
Home tab, 652–653
overview, 651–652

opening databases, 614–617
Quick Access Toolbar, 640–642
security

and Trust Center, 646–649
defining trusted locations, 649–651
enabling database not trusted, 643–645
overview, 642

single-document vs. multiple-document interface, 674–678
Desktop Task Management template, 681–682
Disable All Connections option, Manage command, 535
Display Control property, 774, 776
Display Decimal Places property, 103
Display Document Tabs check box, 677
Display Field property, 390
Display Format property, 102, 118
dmApplyLaborPlanDetails macro, 249
dmAuditInvoiceTotalsAllVendors macro, 249
dmAuditInvoiceTotalsOneVendor macro, 244, 247, 249, 600
dmClearOutTraceTableRecords macro, 249, 256, 606
dmCopyDateRangeRecords macro, 249, 606
dmCopySingleDateRecords macro, 249, 606
dmDeleteDateRangeScheduleRecords macro, 249, 606
dmDeleteSingleDateScheduleRecords macro, 249, 606
dmEnforceOnlyOnePrimaryPosition macro, 249, 257
dmGetSettings data macro, 599
dmGetSettings macro, 238, 242, 249
dmNextSuggestedBidAmount macro, 608
dmSetJobCodeColor macro, 249
dmSwapSortOrders macro, 249
dmUpdateSampleData macro, 250
dmVerifyInvoiceBalanced macro, 250
Document Stack icon, 346
Document Window Options section, Current Database

category, 676
DoMenuItem method, 793
Do Not Import Field (Skip) check box, 153
Don’t Show This Message Again check box, 81
dot symbol, 116
double forward slash (//) shortcut, 190
Down Arrow keyboard shortcut, 297, 414
Download The Free Trial link, 79
Duplicate command, 353
Duplicate option, 347, 350
Duplicate View dialog, 350, 351, 492

empty database, 684–686
using template, 681–684

extending web apps with reports from, 521–533
fields

Companies table example, 709–710
data types, 699–702
input masks for, 713–717
overview, 697–699
properties for, 703–709
validation rules for, 711–713

importing data from, 142–149
indexes

multiple-field indexes, 733–735
overview, 731
single-field indexes, 732–733

limitations on, 739–740
primary key, 718
relationships

defining, 726–729
on multiple fields, 729–732
overview, 724–726

tables
creating in Design view, 696–697
creating using Application Parts, 688–691
creating using Data Type Parts, 692–695
design options, 735–739
entering data in, 686–688
properties for, 721–724
validation rules for, 718–721

desktop interface
Access Options dialog box

Add-Ins category, 638–639
Client Settings category, 633–634
Current Database category, 628–629
Customize Ribbon category, 634–636
Datasheet category, 629–630
Language category, 632–633
Object Designers category, 630–631
overview, 627–628
Proofing category, 631–632
Quick Access Toolbar category, 636–638
Trust Center category, 639–640

Microsoft Office Backstage view
Account tab, 624–627
Close command, 624
Info tab, 618
New tab, 618–619
Open tab, 620–621
overview, 617–618
Print tab, 623–624
Save As tab, 621–623
Save command, 621

Navigation pane
custom categories for, 664–665
Navigation Options dialog box, 666–670

	 field	validation	rule 805

E
Edit Action Bar button, 368, 421, 443
editActionBarButton action, 594
Edit button, 54
Edit Hyperlink button, 424
Edit Image dialog, 432
edit mode vs . view mode, 419–422
Edit option, 347
EditRecord action, 254, 194
EditRecord data block, 180, 198, 211
Edit Relationships dialog box, 727, 728, 730
Edit Schedules view, 518, 519
Edit Table option, 90, 342
E keyboard shortcut, 422
Else condition, 561
Else If condition, 191, 561
EmailAddress field, 105, 751
EmailName field, 752, 757
embedded macros, 553
embedded query, 359, 371–372
EmployeeIDFK field, 211, 309
EmployeePicture field, 190, 511
Employees List view, 500
Enable All Content option, 644
Enable Content button, 526, 618, 643
Enabled property, 382, 387, 593
Enable Read-Only Connection option, 534
Enable Read-Write Connection option, 535
Encrypt With Password button, 618
End If keyword, 191
End keyboard shortcut, 296, 414
EndTime field, 118
Enforce Referential Integrity check box, 728, 730
Enter A Date For Review text box, 531
Enter keyboard shortcut, 296
Enter Parameter Value dialog box, 328
Enter Validation Message dialog box, 119
environment, for web apps

Add Tables screen, 50–51
App Home View, 52–53
overview, 50
Table Selector, 52
View preview window, 54
View Selector, 53

equals sign (=), 114, 187, 711
equi-join query, 308
Error Description argument, 187
errors, raising in data macros, 185–188
Esc keyboard shortcut, 297, 422
Excel button, Add Tables screen, 150
exclamation point (!) character, , 96, 712
ExitForEachRecord action, 180, 254
Expand Actions button, 177, 200
Expand All button, 177
expanding actions in data macros, 198–203

Export group, External Data tab, 655
Expression argument, 197, 240
Expression Builder

creating queries using, 286–293
dialog box for, 108, 287
font size in, 111

Expression Categories pane, 287
Expression Elements pane, 287
Expression property, 708
expressions

arithmetic expressions, 283–286
using Expression Builder for, 286–293
overview, 278–279
text expressions, 279–283

Expression Values pane, 287
ExprN, 280
extending web apps, 521–533
Extensible Markup Language (XML), 259
external connections for web apps, 533–536
External Data tab, Office Fluent Ribbon, 654–655

F
F2 keyboard shortcut, 297
Fax Number controls, 378
FaxNumber field, 105, 751
Fax Number label, 378
field data types, 98–101
Field list

in Design contextual tab, 363–364
pane for, 364, 408

Field Properties section, 98
Field property, 397, 399
fields

Companies table example, 709–710
copying, 760–763
data types, 699–702
deleting, 763–764
input masks for, 713–717
inserting, 758–760
moving, 754–758
and name fixup feature

adding fields, 497–498
renaming fields, 499

overview, 697–699
properties for, 703–709, 771–772
renaming, 749–754
specifying for queries, 267–268
validation rules for, 711–713
in web app tables

defining, 94–100
setting properties for, 101–103

Fields Available In Other Tables section, 363
Fields Available In Related Tables section, 363
Field Size property, 701, 703
field validation rule, 720

806	 FileAs	field

greater than or equal to (>=) operator, 114, 711
Group By property, 462–463, 463, 517
Group element, Action Catalog, 183
grouping

in data macros, 183–185
forming groups for totals queries, 320–321

H
Help information, 188, 547
Help Protect Me From Unknown Content (Recommended)

option, 645
Hidden option, ActionBar Visible property, 372
Hide Column option, AutoFilter menu, 304, 450
Hide option, 342
Hide/Show Navigation Pane command, 44
HomeAddress field, 752, 761
HomeCity field, 752, 761
HomeCountry field, 752, 761
Home keyboard shortcut, 296, 413
HomePhone field, 751, 752
HomePostalCode field, 752, 761
HomeStateOrProvince field, 752, 761
Home tab, 45, 652–653
Horizontal Alignment property, 391
Hour setting, DateDiff function, 285
Housing Reservations desktop database, 14
HTML (Hypertext Markup Language), 702
hyperlink controls

button for, 362
in views, 424–425

Hyperlink data type, 99, 100, 143, 700, 702
Hypertext Markup Language (HTML), 702

I
icons for Table Selector, 345–346
ID AutoNumber field, 149
if blocks in data macros, 189–192, 581
IIF (Immediate If) function, 281, 323, 720
Image button, Controls group, 362
image controls in views, 427–432
Image data type, 99, 100
ImageDescription field, 195
IME Mode, IME Sentence Mode property, 707
 tag, 100
Immediate If (IIF) function, 281, 323, 720
importing data into web app tables

Access desktop database tables, 142–149
considerations for, 140–142
overview, 139–140
SharePoint lists, 163–167
SharePoint lists, linking, 167–171
spreadsheets, 150–155
SQL tables, 155–158
text files, 158–163

Import & Link group, External Data tab, 655

FileAs field, 751
file conversion

overview, 793
troubleshooting, 793–794

File Download dialog box, 80
File Location tab, 787
File New Database dialog box, 682, 685, 739
File Open dialog box, 146, 159
File tab, Backstage view, 522
Filter box feature, 414–419
filtering data

groups of totals, 330
in query Datasheet view, 305–307

Filter property, 721
Find group, Home tab, 653
FirstActionBarButton control, 570
First Caption property, 398
First Field property, 398
FirstName field, 751
First Row Contains Column Headings check box, 152
First Row Contains Field Names check box, 161
Fixed format, 394
Font Color button, 360
Font group, 359
Font Size button, 360
ForEachRecord action, 194, 254
ForEachRecord data block, 180, 226
For Each Record In argument, 226
ForEachRecord loop, 228
ForeColor property, 593
Format function, 323
Format property, 387, 704
Formatting callout menu, 372, 381, 487
Formatting charm button, 381, 397
forms, 6
Forms group, Create tab, 654
forward slash (/), 416
Fourth Caption property, 398
Fourth Field property, 398
frmMainMenuClient object, 529
From Any Location option, 523, 534
From My Location option, 534
FullName index, 123, 734
Full Text Search, 414

G
General category, Access Options dialog box, 628
General Date format, 394
General format, 393
Get External Data dialog box, 146, 164, 526
Get Help Finding Your Web Location link, 30, 85
Give Feedback Online link, 51
GoToControl macro action, 545, 593
GoToRecord macro action, 545, 570
greater than (>) operator, 114, 711

	 lookup	fields 807

Import Link Samples folder, 150, 526
Import Objects dialog box, 147, 157, 527
Import Spreadsheet Wizard, 16, 151
Inactive Employees view, 514
Inactive field, 752
Include Data In Package check box, 56
Indexed property, 102, 121, 706
indexes

multiple-field indexes, 123–124, 733–735
overview, 121, 731
single-field indexes, 121–122, 732–733

Information Technology (IT) department, 67
Info tab, Backstage view, 33, 522, 618
inner join queries, 308–312
IN operator, 114, 276–278, 277, 712
Input Hint property, 382, 387, 436
input masks

for fields, 713–717
property for, 705

Input Mask Wizard, 715
Insert Rows command, 758, 759
Installation Options tab, 786, 792
installing

app packages
directly into SharePoint site, 72–77
from SharePoint corporate catalog, 62–67
from SharePoint Store, 66–74

Microsoft Office
64-bit version, 794–796
new install options, 785–790
overview, 784
upgrade options, 790–793

sample files, 796–797
IntelliSense, 108
interval argument, 285
InvoiceAmount field, 132
Invoice Blank view, 486, 570
InvoiceDate field, 132
Invoice Details Datasheet view, 483
InvoiceDetailsID field, 132
Invoice Details table, 344
Invoice Headers table, 341
InvoiceID field, 132
InvoiceIDTextBox view, 583
Invoice Number control, 442
InvoiceNumber field, 132
Invoices List Details view, 444
IsBalanced field, 132, 478
IS NOT NULL operator, 114, 712
Is Null phrase, 191
Issues option, Application Part, 690
Italic button, 360
Item Not Saved dialog, 300
IT (Information Technology) department, 67

J
JobCode field, 311
JobCodeIDFK field, 310
Job Codes table, 520
JobTitle field, 751
Join Properties dialog box, 309, 313
Join Type button, Edit Relationships dialog box, 728
Jump List view, 517

K
keyboard shortcuts for query Datasheet view, 295–297

L
Label button, Controls group, 361
Label For property, 388
Label Text property, 101, 137, 374, 467
LaborHoursID field, 319
Language category, 41, 632–633
LastActionBarButton control, 570
LastName field, 751
Launch App button, 44, 46, 54

in Home tab, 346, 409, 567
in Quick Access Toolbar, 352, 458

leading space, 96
Left Arrow keyboard shortcut, 207, 297
less than (<) operator, 114, 118, 711
less than or equal to (<=) operator, 114, 711
LIKE operator, 114, 276–278, 277, 712
limitations on desktop databases, 739–740
Limit Length property, 101
Limit To List property, 777
Link check box, 168
Link Child Field property, 392, 484, 722
Link Master Field property, 392, 484, 518, 723
Link To A Data Source By Creating A Linked Table

option, 527
List Control, 412–414, 461
List Details view, 356
List Item Edit Form property, 777
List Rows property, 777
List Width property, 777
local variables in data macros, 196–199
Location For Duplicate drop-down list, 351
Logic Designer

creating web app macros, 543–548
overview, 175–178

Log Name AutoCorrect Changes check box, 737
Long Date format, 394
Long Text data type, 98, 700, 701
Long Time format, 394
Look Up A Record In argument, 193
Lookup data type, 99, 144
lookup fields

cascade delete relationship, 137–139

808	 Lookup	properties

defined, 7
in RDBMS, 10–12

Max function, 316
MDI (multiple-document interface), 674–678
Memo data type, 142
Message Bar category, Trust Center dialog box, 648
MessageBox action, 546, 576
Microsoft Access 2013

as application development system, 13–14
architecture of, 5–7
downloading app packages into, 79–81
initial startup configuration, 22–26
Navigation pane, 46–49
Quick Access Toolbar, 43–45
as RDBMS, 7–8
ribbon in, 45–46
web integration in, 17–19

Microsoft Office Backstage view
Account tab, 37–40, 624–627
Close command, 36, 624
Info tab, 33, 618
New tab, 33–34, 618–619
Open tab, 34–35, 620–621
Options command, 40–43
overview, 32, 617–618
Print tab, 623–624
Save As tab, 36, 621–623
Save command, 36, 621

Microsoft Office, installing
64-bit version, 794–796
new install options, 785–790
overview, 784
upgrade options, 790–793

Microsoft Office Security Options dialog box, 645
Microsoft Office Trusted Location dialog box, 650
Microsoft SkyDrive service, 25
MiddleInit field, 752
Millisecond setting, DateDiff function, 285
Min function, 316
Minute setting, DateDiff function, 285
MobilePhone field, 751, 752
Modified Date category, 664
Modify Expression property, 103
Modify Lookups button, 127, 136, 141, 385
Mod operator, 284
modules, 6
Month setting, DateDiff function, 285
More Fields button, 692
Move Data group, Database Tools tab, 656
Move mode, 756
moving

Action Bar buttons, 368–369
actions in data macros, 204–207
controls, 372–380

multiline text box controls

overview, 130–132
restrict delete relationship, 132–137
in web app tables, 124–127

Lookup properties, 773–777
LookupRecord action, 194, 254
LookupRecord data blocks

in data macros, 193–197
defined, 180

Lookup tab, 775
Lookup Wizard, 126, 133, 700
LVAuditedInvoices variable, 245
LVRangeLimit variable, 243
LVUnbalanced variable, 245, 247

M
Machine Data Source tab, 156
Macro Details link, 572
Macro group, Database Tools tab, 655
macro logic, 205
Macro Name argument, 242, 554, 599
macros

calling named data macros, 597–602
ChangeView action, 602–606
control events, 557–568
controlling record navigation with, 568–572
defined, 6
examples of, 605–609
using Logic Designer, 543–548
named data macros

calling, 230–236, 597–602
creating, 220–222
deleting, 236
examples of, 249
overview, 220
parameters for, 223–230
renaming, 236–238
return variables for, 238–248
saving, 230

navigating to different views, 602–605
On Start macro, 573–576
OpenPopup actions

overview, 576–579
passing parameters with, 588–591
referencing view control values, 584–588
Where clause for, 580–584

overview, 541–542
return variables for, 597–602
saving, 548–550
SetProperty action, 592–596
view events, 552–557

Macros & Code group, Create tab, 654
Macro Settings category, Trust Center dialog box, 648
Macros heading, Navigation pane, 548
Manage button, Info tab, 523
manipulating data

	 Order	By	On	Load	property 809

button for, 363
and Datasheet views, 404
in views, 426

multiple-document interface (MDI), 674–678
multiple-field indexes, 123–124, 733–735
Multi-Value Lookup Fields, 777–780

N
Name argument, 197, 223, 240
Name AutoCorrect option, 736
named data macros

calling, 230–236, 597–602
creating, 220–222
deleting, 236–238
examples of, 249
overview, 220
parameters for, 223–230
renaming, 236–238
return variables for, 238–248
saving, 230

name fixup feature
adding fields, 497–498
deleting objects, 501
overview, 497
renaming fields, 499
renaming objects, 499–500

Name Of Duplicate text box, 350, 351
Name option, Data Type Part, 694
Name property, 699
navigating in web app macros

to different views, 602–605
records, 568–572

Navigation Options dialog box, 666–670
Navigation pane

custom categories for, 664–666
Navigation Options dialog box, 666–670
overview, 656–658
Search Bar feature, 671–674
sorting in, 670–671
views in, 658–664

Navigation Pane, 46–49, 91, 175, 262, 456, 617
New App link, 59
New button, Action Bar, 368
NewRecord macro action, 545
New tab, Microsoft Office Backstage view, 33–34, 618–619,

685
New Values property, 703
NextActionBarButton control, 570
N keyboard shortcut, 422
[No data Source] option, 371
No, Not Quite There link, 506
nonprintable characters, 96
not equal to (<>) operator, 114, 711
Notes field, 105, 118, 751, 752
NOT operator, 114, 711

Now() function, 106
Null phrase, 283
Number data type, 98, 143, 224, 700, 701
number formats for controls, 393–394
NumberOfInvoices variable, 601
NumberOfUnbalanced variable, 601
Number Subtype property, 99, 102

O
Object Designers category, 630–631, 738, 769
objects in web apps, search, 49–50
Object Type category, 667
ODBC (Open Database Connectivity), 10, 139, 533
Office Apps Marketplace, 36
Office Background combo box, 39
Office Fluent Ribbon, 31

Create tab, 653–654
Database Tools tab, 655–656
defined, 616
External Data tab, 654–655
Home tab, 652–653
overview, 651–652

Office Start screen, 28, 681
Office welcome dialog, 24
Old property, 211
OLE Object data type, 9, 700, 702
On Click event, 370
On Current event, 372, 458, 550
On Delete event, 176, 215–218, 216
On Delete RaiseError message, 218
On Insert event, 176, 179–181, 189, 208–209, 231
On Load event, 372, 458, 550, 555
On Start macro, 573–576
On Update event, 176, 209–215, 210, 211
Open Database Connectivity (ODBC), 10, 139, 533
Open dialog box, 615
OpenDialog macro action, 330
Open File Location option, 410
Open In Browser option, 347
Open In property, 392
OpenPopup actions

defined, 546
overview, 576–579
passing parameters with, 588–591
referencing view control values, 584–588
vs. ChangeView action, 605
Where clause for, 580–584

Open Report command button, 590
Open tab, Microsoft Office Backstage view, 34–35, 620–621
Open This App In Access option, 79
operator precedence, 284
Options command, Microsoft Office Backstage view, 40–43
Options dialog box, 43
Order By argument, 563, 579
Order By On Load property, 721

810	 Organizational	Account	button

pound sign (#), 114, 272, 711
Precision property, 705
PreviousActionBarButton control, 570
Primary Display Field property, 391, 437
primary key

creating, 120–121, 718
defined, 5

Primary Key button, Tools group, 718
Primary property, 365, 511
Print dialog box, 623
Print tab, Microsoft Office Backstage view, 623–624
Priority option, Data Type Part, 694
Privacy Options category, Trust Center dialog box, 648–649
Privacy Options dialog box, 22, 23
Privacy Statement link, 38
ProductID field, 719
ProductName field, 516, 719
Program Flow node, 181, 547
progressive disclosure, 108
Project Management template, 31, 54
Project Management web app, 55
Proofing category, Access Options dialog box, 631–632
properties

for controls, 380–393
for fields, 703–709, 771–772
for tables, 721–724
for views, 371–372

property callout menus in views, 364–368
Property Sheet button, Show/Hide group, 719

Q
QBE (query by example), 6
qryEmployeesSorted query, 305
qryHighestSortOrder query, 334
qryInvoiceHeadersWithVendor query, 583
qryLowestSortOrder query, 335
qryUnassignedJobCodes query, 314
qryWeekLaborHoursFinalDisplay query, 329
qryWeekLaborHours query, 326, 329
qryWeekTotalsLaborHoursFinalDisplay query, 589
Quarter setting, DateDiff function, 285
queries (for web apps)

AND operator, 273–276
Between operator, 276–278
building query on query, 321–326
dates and times in, 272–273
expressions in

arithmetic expressions, 283–286
overview, 278–279
text expressions, 279–283
using Expression Builder for, 286–293

filtering groups of totals, 330
In operator, 276–278
Like operator, 276–278
multiple tables

Organizational Account button, 38
Orientation property, 723
OR operator vs . AND operator, 273–276
Or Upload An Access App Package link, 74
outer join queries, 313–314, 729
Owners [Full Control] group, 539

P
Package And Sign option, 622
packages, app

downloading into Access, 79–81
saving web app as, 55–57
in SharePoint corporate catalog

installing from, 62–67
uploading to, 59–63

in SharePoint site
creating blank web app in, 77–79
installing into, 72–77

in SharePoint Store
installing from, 66–74

Page Down keyboard shortcut, 296, 413
Page Up keyboard shortcut, 296, 413
ParamEmployeeID parameter text box, 232
parameters

dialog box for, 325
for named data macros, 221, 223–230
passing with OpenPopup actions, 588–591
for queries, 325–330

ParamJobCodeID parameter text box, 232
parent view, 444
Paste command, Clipboard group, 745, 762
Paste Table As dialog box, 745, 746
Payment Type option, Data Type Part, 694
PDF (Portable Document Format), 622
Percent format, 394
percent sign (%), 334
Perform Name AutoCorrect check box, 737, 743
period (.) character, , 96
Personal Apps option, 30
Personal Message box, 538
PhoneNumberExtension field, 105
PhoneNumber field, 105, 493
Phone option, Data Type Part, 694
Photo field, 752
Picture Tiling property, 390
Picture URL property, 390
Pin To List option, 620
plus sign (+), 113, 279
Popular Commands category, Access Options dialog

box, 635
Popup View property, 390, 398, 433, 435, 439, 447, 467,

491
Portable Document Format (PDF), 622
PositionColor field, 311
PostalCode field, 105, 125

 Reset Read-Only Connection Password option 811

defined, 4
Read-Only property, 405, 448
Read Only When Disconnected property, 723
Record argument, GoToRecord action, 571
records

adding in query Datasheet view, 298–301
controlling navigation with web app macros, 568–572

recordset, 261
Records group, Home tab, 652
record source, 350, 359
Record Source property, 359, 371, 457, 472
recursion in data macros, 258
Redo command, 44
referencing view control values, 584–588
Refresh button, Records group, 171, 235
RegHrs calculated expression, 323
rehydrates, 80
Related Field property, 398, 446
related items controls, 363, 395–402, 443–447
relational database management system

(RDBMS) . See RDBMS
Relationships group, Database Tools tab, 655
relationships, table

desktop databases
defining, 726–729
on multiple fields, 729–732
overview, 724–726

web apps
cascade delete relationship, 137–139
overview, 130–132
restrict delete relationship, 132–137

Relationships window, 726, 730–731
Remove Filter button, Filter box, 415
Remove From List option, 35
Remove From Quick Access Toolbar option, 642
Remove Image link, 432
Remove Only The Following Applications section, 792
Rename Group button, 668
Rename Item button, 668
Rename option, 342, 347
renaming

fields, 749–754
named data macros, 236–238
tables, 747–748

ReportGroupAmount field, 132, 136
Report Group control, 446
ReportGroupID field, 131, 136
ReportGroupName field, 131
Report Groups table, 341
reports, 6
Reports group, Create tab, 654
RequeryRecords action, 545, 563
Required property, 102, 706
Reset Only Selected Ribbon Tab option, 636
Reset Read-Only Connection Password option, 535

inner joins, 308–312
outer joins, 313–314
overview, 308

OR operator, 273–276
overview, 261–264
parameters for, 325–330
query Datasheet view

adding records, 298–301
changing data, 301–302
copying and pasting data, 302
deleting rows, 302–303
filtering data, 305–307
keyboard shortcuts for, 295–297
overview, 295
sorting data, 303–305

single table
overview, 264–267
selection criteria for, 268–270
specifying fields, 267–268
viewing results, 268–270

sorting data, 293–295
Top Values property, 334–335
totals queries

forming groups for, 320–321
overview, 315
totals within groups, 315–319

Unique Values property, 331–334
Queries group, Create tab, 654
Queries tab, Show Table dialog box, 321
query by example (QBE), 6
query Datasheet view . See also Datasheet view

adding records, 298–301
changing data, 301–302
copying and pasting data, 302
deleting rows, 302–303
filtering data, 305–307
keyboard shortcuts for, 295–297
overview, 295
sorting data, 303–305

Quick Access Toolbar, 31, 43–45, 616, 640–642
Quick Access Toolbar category, Access Options dialog

box, 636–638
quick-created views, 356
Quick Start command, 691

R
RaiseError action, 181, 254
raising errors in data macros, 185–188
RangeLimit field, 599
RDBMS (relational database management system)

Access as, 7–8
capabilities of, 7
data control when sharing, 12–13
data definition in, 8–10
data manipulation with, 10–12

812 Reset Read-Write Connection Password option

Second Caption property, 398
Second Field property, 398
Second setting, DateDiff function, 285
security

and Trust Center, 646–649
defining trusted locations, 649–651
for desktop databases, 642
enabling database not trusted, 643–645

Select A Group Or Permission Level combo box, 538
Select Data Source dialog box, 156
selection criteria for queries, 268–270
select query, 261
Set Colors button, 520
SetField action, 181, 202, 255
SetLocalVar action, 181, 197, 255
SetProperty action, 545, 592–596
SetReturnVar action, 221, 240, 255
settings, Access Options dialog box

Add-Ins category, 638–639
Client Settings category, 633–634
Current Database category, 628–629
Customize Ribbon category, 634–636
Datasheet category, 629–630
Language category, 632–633
Object Designers category, 630–631
overview, 627–628
Proofing category, 631–632
Quick Access Toolbar category, 636–638
Trust Center category, 639–640

Setup Error dialog box, 795
SetVariable action, 546, 559, 564
SharePoint

corporate catalog
installing app packages from, 62–67
uploading app packages to, 59–63

importing data from lists
linking data into web app, 167–171
overview, 163–167

site permissions for web apps, 536–540
sites

creating blank web app in, 77–79
installing app packages into, 72–77

Store, installing app packages from, 66–74
Share site dialog, 537
sharing, controlling data while, 12–13
Shift+Down Arrow keyboard shortcut, 297
Shift+End keyboard shortcut, 297
Shift+F2 keyboard shortcut, 207
Shift+F10 keyboard shortcut, 207
Shift+Home keyboard shortcut, 297
Shift+Page Down keyboard shortcut, 297
Shift+Page Up keyboard shortcut, 297
Shift+Tab keyboard shortcut, 296
Shift+Up Arrow keyboard shortcut, 297
Short Date format, 394

Reset Read-Write Connection Password option, 535
RestaurantData.accdb file, 146
restrict delete relationship, 132–137, 218
Result Type property, 103, 708
Retrieve ID return variable, 248
Return To Site button, 70
return variables

for named data macros, 238–248
for web app macros, 597–602

reversing changes, 772–773
Reviews link, 69
ribbon, 45–46
Right Arrow keyboard shortcut, 207, 297
rows, 5
Row Source property, 389, 423, 437, 500, 776
Row Source Type property, 388
Run All From My Computer option, 786, 787
Run Audit button, 592, 597
RunDataMacro action, 181, 231, 255, 545, 599
RunMacro action, 546, 554, 557
RunMenuCommand method, 793
runtime mode, 339
RVAuditedInvoices data action, 248
RVRange variable, 243
RVUnbalanced data action, 248
RVUnbalanced variable, 601

S
Sample Files folder, 797
Save Action Bar button, 368, 431, 441
saveActionBarButton action, 594
Save A Local Copy dialog box, 524, 525
Save As dialog box, , 96
Save As Package option, 56
Save As tab, Microsoft Office Backstage view, 36, 621–623
Save button, 96
Save Changes dialog, 427
Save command

in Microsoft Office Backstage view, 36, 621
in Quick Access Toolbar, 43

Save Database As option, 56
Save Object As command, 36
Save Package dialog box, 56
SaveRecord macro action, 545
Scale property, 705
Schedule Reports tab, 530
schema, 22
ScreenTip, 109
SDI (single-document interface), 674–678
Search Bar feature, 49, 671–674
Search boxes, 88, 536
searching objects in web apps, 49–50
Search Online Templates text box, 33, 619
Secondary Display Field property, 391, 439
Secondary property, List Control, 366, 511

 tables 813

Status option, Data Type Part, 695
StDev function, 317
StopMacro action, 181, 255, 546
Structured Query Language (SQL) . See SQL
Subdatasheet Expanded property, 723
Subdatasheet Height property, 723
Subdatasheet Name property, 722
Subtype property, 118
Subview Control button, 362
subviews, 480–486
Suffix field, 752
Sum function, 316
Summary views

creating, 454–469
and web apps, 356

Switch Account link, 38

T
Tabbed Documents option, 677, 678
Tab keyboard shortcut, 296
Table Analyzer Wizard, 16
Table button, Create group, 150
Table Design command, 696
Table Design window, 340
table events

On Delete events, 215–218
On Insert events, 179–181, 208–209
On Update events, 209–215
overview, 178

tables, 5 . See also tables, web app
backing up, 742–746
compacting, 781–782
creating

in Design view, 696–697
using Application Parts, 688–691
using Data Type Parts, 692–695

data types
changing, 765–768
changing lengths for, 769–770
conversion errors, 770–771

deleting, 746–747
design options, 735–739
entering data in, 686–688
fields

Companies table example, 709–710
copying, 760–763
data types, 699–702
deleting, 763–764
input masks for, 713–717
inserting, 758–760
moving, 754–758
overview, 697–699
properties for, 703–709, 771–772
renaming, 749–754
validation rules for, 711–713

Short Text data type, 98, 700, 701, 759
Short Time format, 394
Show Below The Ribbon option, 641
Show check box, 267
Show Date Picker property, 708
Show group, Home tab, 46
Show/Hide group, 177, 315
Show Only Fields In The Current Record Source link, 363,

493
Show Options link, 538
Show Property Update Options Buttons check box, 738,

771
Show Scrollbars property, 388, 488
Show Table button, Query Setup group, 311, 475
Show Table dialog box, 265, 309, 475, 725
Shutter Bar Open/Close button, 47, 658
Sign In To Office dialog, 38, 625
Single-Click option, 668
single-document interface (SDI), 674–678
single-field indexes, 121–122, 732–733
Site Contents Your Apps page, 63
64-bit version, 794–796
Size Mode property, 391
sizing controls, 372–380
SkyDrive cloud storage service, 24
Sort Ascending option, AutoFilter menu, 304, 450
Sort By submenu, 670
Sort Descending option, AutoFilter menu, 304, 450
Sort Field property, 366, 399
Sort & Filter group, Home tab, 652
sorting

in Navigation pane, 670–671
in queries, 293–295
in query Datasheet view, 303–305

Sort Order property, 367, 399, 465, 468
Source Object property, 392, 482, 491, 500
Spacebar keyboard shortcut, 297
Specify A SharePoint Site section, 165
SpouseBirthDate field, 752
SpouseName field, 752
spreadsheets, importing data, 150–155
SQL Server/ODBC Data button, 155
SQL (Structured Query Language)

databases, 699
and field names, 280
importing data from tables, 155–158
and query designer, 310

square brackets [], 96
stand-alone macros, 544
stand-alone views, 490–497
Standard format, 393
Start and End Dates option, Data Type Part, 695
Start screen, 28
StartTime field, 118
StateProvince field, 751

814 Tables And Related Views category

table validation rules, 117–120
validation rules, 113–117

table templates, 87–92
table validation rules, 117–120
Tag option, Data Type Part, 695
Take A Look button, 26
Task List form, 617, 683
Tasks Navigation option, 665
Tasks option, Application Part, 690
TasksSample.accdb file, 615
Tasks Sample desktop database, 656
Tasks table template, 89
tblAppointments table, 208, 214
tblCompanyInformation table, 208, 218
tblContacts table, 742
tblEmployees table, 208, 214
tblInventoryLocations table, 334
tblInvoiceDetails table, 208, 214, 218, 591
tblInvoiceHeaders table, 215, 591, 603
tblJobCodes table, 308
tblLaborHours table, 317
tblLaborPlanDetails table, 208, 215, 519
tblLaborPlans table, 519
tblSchedule table, 208, 215
tblSettings table, 208, 218, 599
tblTerminations table, 208, 215, 218, 252
tblTimeLookups table, 209, 215, 218
tblTrainedPositions table, 209, 215, 227, 308
tblWeekDays table, 209, 215, 218
templates, 681–684
Templates group, Create tab, 654
TestGreeting macro, 554, 556
testing data macros, 188–190
Text Align property, 707
Text Box control, 361, 404
Text / CSV button, 158
Text data type, 142
text expressions in queries, 279–283
text files, importing data, 158–163
Text Format property, 707
Text Formatting group, Home tab, 653
Text Qualifier field, 161
TH alias, 245
themes for views, 501–507
Then keyword, 190, 561
Third Caption property, 398
Third Field property, 398
thousands separator, 714
Thumbnail property, List Control, 366
time of day

formatting controls for, 394–395
in queries, 272–273

TimeStamp field, 254
Title field, 752
Today function, 289

impact of changing, 742–746
indexes

multiple-field indexes, 733–735
overview, 731
single-field indexes, 732–733

Lookup properties, 773–777
Multi-Value Lookup Fields, 777–780
primary key, 718
properties for, 721–724
relationships

defining, 726–729
on multiple fields, 729–732
overview, 724–726

renaming, 747–748
reversing changes, 772–773
validation rules for, 718–721

Tables And Related Views category, 661, 667
Table Selector

changing display order, 340–341
choosing icons, 345–346
customizing captions, 341–343
hiding captions, 343–345
overview, 52, 340
viewing changes to, 346–347

Tables group, Create tab, 654
tables, web app . See also tables

calculated fields in, 106–113
creating

defining fields in web apps, 94–100
setting field properties, 101–103
using table templates, 87–92

Datasheet view for, 127–130
importing data

Access desktop database tables, 142–149
considerations for, 140–142
overview, 139–140
SharePoint lists, 163–166
SharePoint lists, linking, 167–171
spreadsheets, 150–155
SQL tables, 155–158
text files, 158–163

indexes
multiple-field indexes, 123–124
overview, 121
single-field indexes, 121–122

lookup fields
cascade delete relationship, 137–139
data list using, 124–127
restrict delete relationship, 132–137

overview, 83
primary key, 120–121
relationships

cascade delete relationship, 137–139
overview, 130–132
restrict delete relationship, 132–137

	 Viewers	[View	Only]	group 815

Update Status Bar Text Everywhere ContactID Is Used
command, 772

Upgrade tab, 792
upgrading Microsoft Office, 790–793
uploading app packages to SharePoint corporate

catalog, 59–63
URL (Uniform Resource Locator), 100, 362, 488, 702
User Account Control dialog box, 784, 795
UserDisplayName expression, 574
Use Recommended Settings radio button, 22
UserEmailAddress expression, 574
User Information category, 38
User Information tab, 788
user interface macros, 174
Users option, Application Part, 690

V
VacationDays field, 285
Validation Rule property, 102, 116, 299
validation rules

button for, 118
defining, 113–117
errors not specifying validation text, 708
for fields, 711–713
property for, 706
for tables, 718–721

validation text, 102, 442, 706, 708
Value argument, SetVariable action, 559
Value property, 593
Var function, 317
Variable argument, 559, 574
variables, local, 196–199
VarRunningTotal variable, 245, 247
VBA (Visual Basic for Applications) code, 642
VendorID field, 104, 408
VendorIDFK field, 395, 459
Vendor List Details view, 575
Vendor List view, 507, 552
VendorName field, 104
VendorSortOrder variable, 559, 564
Vendors Standalone view, 495
Vendors table, 134
VerifyDateParameters block, 588
Version Comments text box, 60
Vertical Alignment property, 391
View And Edit Database Properties link, 618
viewAppointmentDetails view, 508, 586
viewAuditInvoices view, 592, 597, 603
View button, 128, 212, 269
viewColorPicker view, 521
viewCompanyInformation view, 606
viewCopySchedules view, 606
View Data option, 90, 342
viewDeleteScheduleRecords view, 606
Viewers [View Only] group, 539

Tools group, Database Tools tab, 655
Tooltip property, 109, 370, 383, 386, 566
Top Values property, 334–335
Totals button, Show/Hide group, 315
totals queries

forming groups for, 320–321
overview, 315
totals within groups, 315–319

TotHrs field, 330
TotWages expression, 324
Touch Mode command, 44
Trace table, debugging data macros with, 250–257
Tracing group, 251
Track Back icon, 570
Track Forward icon, 570
Track Name AutoCorrect Info check box, 736
transactions, 13
TrialExpire field, 719, 720
TrialVersion field, 719, 720
Triangle Left icon, 570
Triangle Right icon, 570
troubleshooting file conversion, 793–794
Trust Center, 42

Access Options dialog box category, 639–640
defining trusted locations, 649–651
enabling database not trusted, 643–645
overview, 646–649

Trusted Documents category, Trust Center dialog box, 647
Trusted Locations category, Trust Center dialog box, 647
Trusted Publishers category, Trust Center dialog box, 646
Trust It button, 64, 71
Try It Out link, 505
txtBeginningDate box, 589
txtEndingDate box, 589
Type argument, 223

U
unbound view, 359
UNC (Universal Naming Convention), 702
Underline button, 360
underscore (_) character, 115, 277, 481, 714
Undo command, 44, 191, 345
undoing changes, 772–773
UndoRecord action, 545
Unhide option, 344
Unicode Compression property, 707
Uniform Resource Locator (URL), 100, 362, 488, 702
Unique Values property, 331–334
UnitPrice field, 719
Universal Naming Convention (UNC), 702
Up Arrow keyboard shortcut, 297, 414
Update function, 211
Update Parameters argument, 194, 226
Update Parameters link, 243
Update Properties dialog box, 772

816 view events for web app macros

themes for, 501–507
viewing in web browser

autocomplete controls, 432–440
check box controls, 426
combo box controls, 423–424
data entry controls, 422–423
Datasheet view in, 447–452
Date Picker controls, 440–443
Filter box feature, 414–419
hyperlink controls, 424–425
image controls, 427–432
multiline text box controls, 426
navigating using List Control, 412–414
overview, 409–412
related items controls, 443–447
view mode vs. edit mode, 419–422

web browser control, 486–490
View Trace Table button, 253
Visible property, 372, 386, 482, 593
Visitors [Read] group, 539
Visual Basic for Applications (VBA) code, 642

W
web apps . See also data macros; tables, web app; views,

web app
app packages

creating blank web app directly into SharePoint, 77–79
downloading into Access, 79–81
installing directly into SharePoint site, 72–77
installing from SharePoint corporate catalog, 62–67
installing from SharePoint Store, 66–74
saving as, 55–57
uploading to SharePoint corporate catalog, 59–63

creating blank, 84–87
design environment for

Add Tables screen, 50–51
App Home View, 52–53
overview, 50
Table Selector, 52
View preview window, 54
View Selector, 53

extending, 521–533
external connections for, 533–536
field data types in, 98–101
icon for, 64
objects in, 49–50
opening template for, 28–31
searching for objects in, 49–50
SharePoint site permissions for, 536–540
viewing in web browser, 54–55

web browser
viewing web apps in, 54–55
and web app views

autocomplete controls, 432–440
check box controls, 426

view events for web app macros, 552–557
View group, Home tab, 46
viewInvoicesUnbalanced view, 603
view mode vs . edit mode, 419–422
viewPayrollTotalsPopup view, 590
View preview window, 54
View Read-Only Connection Information option, 534
View Read-Write Connection Information option, 535
View Selector

customizing captions, 347–349
deleting views, 354–355
duplicating views, 350–352
overview, 53, 347
switching caption positions, 349–350
viewing changes to, 352–354

Views group, Home tab, 652
views in Navigation pane, 658–664
views, web app

Action Bar buttons
defining custom, 369–371
deleting, 368–369
moving, 368–369
overview, 368

App Home View
overview, 338–340
Table Selector, 340–347
View Selector, 347–355

Blank views, 470–480
controls in

date/time formats, 394–395
moving, 372–380
number formats, 393–394
properties for, 380–393
sizing, 372–380

Datasheet view, 402–408
Design contextual tab

Field list in, 363–364
overview, 359–363

name fixup feature
adding fields, 497–498
deleting objects, 501
overview, 497
renaming fields, 499
renaming objects, 499–500

opening in Design view, 356–359
overview, 337–338
properties for, 371–372
property callouts in, 364–368
quick-created views, 356
referencing for OpenPopup action, 579, 584–588
related items controls, 395–402
sample views in BOSS web app, 508–521
stand-alone views, 490–497
subviews, 480–486
Summary views, 454–469

 Zoom window 817

combo box controls, 423–424
data entry controls, 422–423
Datasheet view in, 447–452
Date Picker controls, 440–443
Filter box feature, 414–419
hyperlink controls, 424–425
image controls, 427–432
multiline text box controls, 426
navigating using List Control, 412–414
overview, 409–412
related items controls, 443–447
view mode vs. edit mode, 419–422

web browser control, 361, 486–490
web integration in Microsoft Access 2013, 17–19
Web Linked Lists group, External Data tab, 655
Web Location text box, 30
WebPage field, 751
Website field, 105, 379, 478, 752
Wedding List sample desktop database, 14
Week setting, DateDiff function, 285
welcome dialog, 24
What’s Your Style button, 503
Where clause

for ForEachRecord data block, 226
for LookupRecord action, 193, 196
for OpenPopup action, 580–584
for RequeryRecords action, 563

wildcard characters, 115, 712
Window group, Home tab, 653
With Color option, 531
WorkAddress field, 752, 761
WorkCity field, 752
WorkCountry field, 752
WorkExtension field, 752
WorkFaxNumber field, 752
WorkPhone field, 752
WorkPostalCode field, 752
WorkStateOrProvince field, 752

X
X (Close) button, 345
XML (Extensible Markup Language), 259
XPS (XML Paper Specification), 622

Y
Year setting, DateDiff function, 285
Yes (Duplicates OK) option, 122
Yes, Keep It link, 506
Yes/No data type, 99, 143, 700, 701
Yes (No Duplicates) option, 122
Your Apps page, 67

Z
ZipPostal field, 751
Zoom window, 279

About the author
Jeff Conrad started working with Access when he saw a need at his full-time position for a
database solution. He bought a book on Access and began teaching himself how to use the
program to solve his business’s needs. He immediately became hooked on the power and
ease of working with Access.

Jeff found a home in the Microsoft Access newsgroups asking questions as he was learn-
ing the ins and outs of Access and database development. He now enjoys giving back to a
community that helped him when he was first learning how to use Access. He has been an
active participant for many years in the Access newsgroups and online forums where he is
best known as the Access Junkie.

Jeff also was awarded Microsoft’s Most Valuable Professional award from 2005 to 2007 for
his continual involvement with the online Access community. He maintains a website with
a wealth of information and resource links for those needing guidance with Access (http://
www.AccessJunkie.com). He co-authored Microsoft Office Access 2007 Inside Out with John
Viescas and authored Microsoft Access 2010 Inside Out. Jeff is currently employed by Micro-
soft as a Software Design Engineer in Test working with the Access development team.

	Cover
	Table of Contents
	Chapter 4
	Index

