
	 	 1

Glossary

abstract  Something that is abstract does not have
a “proper” existence as such. When writing
programs, we use the word to mean “an ideal-
ized description of something.” In the case of
component design, an abstract class contains
descriptions of things that need to be present,
but it does not say how they are to be realized.
In C# terms, a class is abstract if it is marked as
such, or if it contains one or more methods that
are marked as abstract.
You can’t make an instance of an abstract class,
but you can use it as the basis of, or the template
for, a concrete one. For example, you might de-
cide that you need many different kinds of sprite
in the BreadAndCheese game: bat sprite, ball
sprite, target sprite, and so on. We don’t know
how each particular sprite will work inside, but
we do know those behaviors that it must have to
make it into a sprite.
We can therefore create an abstract Sprite
class that serves as the basis of all the concrete
ones. Each “real” sprite class is created by ex-
tending the parent, abstract one. This means
that it is a member of the sprite family (that is,
it can be treated as a sprite) but it works in its
own way.

Algorithm  An algorithm is a description of steps to
solve a problem. You can think of it as a recipe
if you like. It gives a sequence of steps to be fol-
lowed and decisions to be taken. A good “get-
ting wet avoidance” algorithm would be “If it is
raining, take an umbrella.”

Analog  An analog value is one which can never be
held exactly. Some data items, for example the
number of attacking spaceships in a space shoot-
er, or whether or not a button has been pressed,
can be represented precisely in a program. Other
values, for example the physical position of a
thumbstick on the gamepad, cannot be held ex-
actly since there are in theory an infinite number
of positions available. Programs often need to
manipulate analog values, and they do this by
storing them within a particular range and to
a particular precision. The analog thumbsticks
on a gamepad are represented by a floating

point number in an XNA program which has a
particular number of decimal places. The float
and decimal types in C# are used to represent
analog values.

App Hub  If you want to run your Microsoft XNA
programs on an Xbox 360, you must be a mem-
ber of the App Hub. Members of the club pay
a membership fee, and their Xbox Live account
is extended to include XNA game develop-
ment. App Hub members can also distribute
applications to Windows Phone owners via the
Windows Phone Marketplace.

Arithmetic  The adjective arithmetic is applied to op-
erators that perform some form of calculation on
their operands and generate a numeric result. The
* (multiply) operator can be used as an arithmetic
operator to multiply values together.

Array  An array holds a large number of items in a
single variable. A one-dimensional array holds a
number of values in a single row. You use a sub-
script to indicate which box in the row you want
to use. Consider the following, which creates an
array to hold 10 integer high scores and sets all
the elements to 0:

int[] scores = new int[10];
for (int i = 0; i < 10; i = i + 1)
{
 scores[i] = 0;
}

The int[] scores part of the code tells the
compiler that you want to create an array vari-
able. You can think of this as a reference that
can be made to refer to an array of integers. The
array itself is created by new int[10]. When
the program runs, a 10-element array is created;
if the value 10 is replaced by a different number,
an array of that size is made. Each item in the
array is called an element. In the program, you
identify which element you mean by putting
its number in square brackets [] after the array
name. This part is called the subscript. The size
of an array can be set using an expression as well
as a constant, allowing the program to create
exactly the right-sized array for a given task.

2	 Glossary

Arrays can have more than one dimension; a
two-dimensional array equates to a grid, with two
subscripts used to specify the row and column of
the desired element. A three-dimensional array
equates to a pile of grids and requires three sub-
scripts. The C# language can handle arrays with a
very large number of dimensions, but it is unlikely
that you’ll ever need to go beyond three.

Aspect ratio  This is the ratio of height to width of
a display screen. The first TV sets had an aspect
ratio of 3:2 (that is, their screens were was 3 units
wide and 2 units high). Wide-screen displays
have a ratio of 16:9 (that is, the screen is 16 units
wide and 9 units high). Games must be written
to accommodate the possibility that they will be
used with different display formats.

Assembly  An assembly is used by .NET framework
to bring together program code and resources
that the program might need. It is created when
a project is built. There are two forms of assem-
bly: programs that can be executed (which have
the file extension .exe) and libraries (which have
the file extension .dll). Only program assemblies
have a Main method, which starts the program
running.

Asset  An asset is any item of content that is used as
part of a game. This includes sounds and images
that the game requires, as well as 3-D models
and any other game information. The XNA
Framework provides a Content Manager, which
manages the assets in a game project.

Assignment  There are two parts to an assignment:
the thing you want to assign and the place
you want to put it. For example, consider the
following:

int first, second, third ;
first = 1 ;
second = 2 ;
third = second + first ;

The program declares three variables: first,
second, and third, each of which is of inte-
ger type. The last three statements are the ones
that actually do some work. These are assign-
ment statements. An assignment gives a value to
a specified variable that must be of a compatible
type. The value that is assigned is an expression.
The equals sign in the middle is there mainly to
confuse you; it does not mean “equals” in the
numeric sense. I like to think of it as a “gozzinta.”
A gozzinta takes the result on the right-hand

side of the assignment and drops it into the box
on the left.

Bit  A bit is a single “binary digit.” It is the small-
est unit of data that a computer can hold and
has two possible states: on (1) or off (0). Bits are
combined so that values larger than 1 can be
represented. Each bit that you append doubles
the number of possible values.

Block  A block is a number of code statements
that are enclosed in curly brackets. These are
the characters { and } and are also known as
braces. Any block can contain any number of
local variables; that is, variables that are local to
that block. Here’s an example:

{
 int localToThisBlock;
 // create a variable local to
 the block
 localToThisBlock = 99;
 // OK because the variable
 exists here
}
localToThisBlock = 100;
// will cause compilation error

Blocks are used as the bodies of methods and
in any situation where you want to lump a num-
ber of statements together so that they can be
treated as a single entity, such as in an if condi-
tion or loop.

Boolean  Boolean arithmetic deals only with values
that can be true or false. A variable of type bool
can hold a value that is true or false. Sometimes
that is all you need. An example of a bool vari-
able could be one that holds the state of a net-
work connection, like this:

bool networkOK;

This variable can be set to indicate the state
of the network. The results of conditions are
Boolean values, and variables of type bool can
be used directly in conditions:

if (networkOK) sendPlayerMove();

The preceding statement would call
sendPlayerMove if networkOK was set
to true.

Bounds (of an array)  The bounds of an array is the
range of possible subscripts that can be used to
access elements in the array. This ranges from
0 (the element at the base of the array) to (size-
1), which is the element at the end of the array.

	 Glossary	 3

If your program “goes outside the bounds of the
array”—that is, tries to access an element with
a subscript that is not in the permitted range—
then it fails with an exception.

Brace  The curly bracket characters ({ and })
are sometimes called braces. This is perhaps a ref-
erence to the fact that they come in pairs; that is,
every open bracket must be matched by a closed
bracket. Braces are used to enclose statements and
create blocks.

break  The break keyword is used in looping con-
structions and switch statements to allow pro-
gram execution to exit from the construct:

for (int i = 0; i < 10; i++)
{
 if (i == 5) break;
}
// get here when i reaches 5

The loop would terminate when the value of i
reaches 5. The break causes execution to trans-
fer to the statement immediately following the
loop block. The break keyword is used in the
switch construct to end the execution of the
switch statement.

Breakpoint  Breakpoints are used when debugging
programs. They are a way of finding out what a
program is doing. Within XNA Game Studio, you
can mark program statements with breakpoints.
In debugging mode, a program runs until it
reaches (or hits) the breakpoint, at which point
it pauses and returns control to you so that you
can investigate the state of the program. You
can then resume execution or step through
statements. Note that you can set breakpoints
while your program is running, even if it is run-
ning inside an Xbox, as long as you started it
using debugging mode in XNA Game Studio.

Byte  A byte is the smallest unit of addressable stor-
age in a computer. It is made up of 8 bits, mean-
ing that it can represent any one of 256 possible
values, from 0 to 255.

C#  “The Programming Language of Champions,” I
reckon.

Call When you want to use a method, you call it.
When a method is called, the sequence of ex-
ecution switches to that method, starting at the
first statement in its body. When the end of the
method, or a return statement, is reached, the
sequence of execution returns to the caller.

Cast  A cast gives an additional instruction to the
compiler to force it to convert a value in a
particular way. You cast a value by putting the
required type in brackets before the value. For
example:

double d = 1.7;
int i = (int) d ;

Because the double type has greater range and
precision than an integer, the programmer must
tell the compiler explicitly that the assignment
is sensible. In the previous code, the message to
the compiler is “I don’t care that this assignment
could cause information to be lost. I, as the
writer of the program, take the responsibility of
making sure that the program works correctly.”
Casting can cause data to be lost. In the code
above the fractional part of d would be truncated
when it is transferred leaving the value 1 in i.

char  The char type is used to hold a single char-
acter in a program. The character can be a letter,
a digit, a punctuation character, or a nonprint-
able character, such as the newline character.
Here’s an example:

char ch = 'A';

Some characters have special “control” behaviors
and do not map to printable characters on the
screen. They are expressed using a sequence
of characters that starts with a special escape
character. Escape in this context means “Escape
from the normal humdrum conventions of just
meaning what you are, and let’s do something
special.” The escape character in C# is the backs-
lash (\). Control characters and their possible es-
cape sequences are shown in the following table.

Character Escape Sequence
\’ Single quote
\” Double quote
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab

4	 Glossary

The effect of these control characters depends
on the device you send them to. Some systems
beep when you send the alert character to them.
Some clear the screen when you send the form
feed character. You can use them as follows:

char beep = '\a' ;

Note that the a must be lowercase. Within
Microsoft XNA, you can use the New Line escape
sequence ‘\n’ in a string to produce a control
character that will cause the DrawString
method to take a new line.

Class  A class is a collection of behaviors (methods)
and data (fields). Class instances are managed by
reference. Declaring a variable of the type of the
class creates a reference to an instance of that
class. To make an instance of a class, you have
to use the new keyword.

Cohesion  Cohesion is a software engineering term
that refers to how “together” an object is.
Objects with high cohesion are self-contained
and self-reliant. They contain all the data and
behaviors they need to do their job and do not
require the involvement of other objects. High
cohesion is generally a good thing because it
means that the objects can be interchanged with
others more easily and alterations to the way
they work internally do not affect other objects.

Comment  A comment is an item that you put into
your program for the humans to read and the
compiler to ignore. Comments can be given in
two forms, depending on how much you want
to say:

// This is a simple comment that
 just runs to the end of
 this line

/* This is a comment in which I'm
 going to try to express the
 creative forces that drove
 me to write this program,
 which was forged in the
 smithy of my soul and for
 which all should be
 grateful.
*/

The first comment begins with the characters //
and finishes at the end of the line. The second
kind of comment begins with the /* characters
and continues until the */ characters appear.
Comments are a good thing; you can use them
to provide useful information to someone trying

to make sense of your program (or, indeed, even
to yourself).

Compiler  The compiler is the part of XNA Game
Studio that converts the C# program that you
write into instructions to be executed on the
target device. It ensures that the statements
that you write have the correct C# syntax and
that your code is broadly sensible. The compiler
produces compilation errors if it finds problems
with your source code that prevent it from being
able to produce an output, such as a missing
semicolon or mismatched brackets or braces.
The compiler also produces warnings if it detects
something in the program that indicates you
might have made a mistake—for example, if a
variable is created but never used, or that some
part of the code would never be reached when
the program runs.

Component  A component is a piece of software
that has a particular set of behaviors that are
exposed in a particular way. It can be exchanged
with another component that is configured
the same way. A Microsoft XNA Game class
can be regarded as a component in that it has
Initialize, Draw, and Update behaviors
that can be used by other classes. The XNA
Framework uses these behaviors when it runs
your game. In this way, the XNA Framework can
treat a game as a component that it is using.
Components often expose their behaviors by
means of an interface.

Conditional compilation  This allows
a programmer to “switch off” statements in the
program so that the statements are compiled
only if a given symbol is defined:

#if debug
// debug code goes here
#endif

The debug symbol is defined at the top of the
program:

#define debug

If the debug symbol is not defined, the compiled
program does not contain any of the statements
controlled by it.

Constructor  A constructor is a method in a class
or structure that gets control when a new in-
stance of the class or structure is being created.
Constructor methods often accept parameters
so that an instance can be given values to set it
up. The Color structure has a number of con-
structor methods that accept different numbers

	 Glossary	 5

of parameters, depending on how the color is to
be created. You used one constructor when you
created the colors for the mood light, like so:

Color background = new Color
(redIntensity, greenIntensity,
blueIntensity);

When you create your own classes or structures,
you can give them constructors so that they can
be initialized when they are created:

class Player
{
 public string Name;
 public int Score;
 public Player (string inName,
 int inScore)
 {
 Name = inName;
 Score = inScore;
 }
}

Player p = new Player("Rob", 100);

Once you declare a constructor for the Player
class, the only way that an instance of the
Player class can be created is by calling this
constructor, which must initialize the Name and
Score fields, typically based on values passed
to the constructor.

A constructor method has the same name as the
class or structure of which it is part. Once you
have added one or more constructor methods,
programmers must call one of the constructors to
create an instance.

Content Manager  The Content Manager is the
component of Microsoft XNA that manages all
the assets used by a particular game. It includes
the tools that prepare the content when a game
project is being built and is also the component
that makes the content available when the game
is running. The Content Manager is component-
based so that it can be extended to handle new
types of assets as required.

continue  The continue keyword is used to cause
the execution of a loop to return to the “top” of
the loop and perform the update behavior:

for (int i = 0; i < 10; i++)
{
 if (i == 5) continue;
 // will never get here with
 i holding 5
}

In this example, the code after the conditional
statement is not executed when i has the value
5 because the continue will have been per-
formed, causing the execution to return to the
top of the loop. Note that this behavior is not
the same as the break keyword in that it does
not cause the loop to be abandoned completely.

Control characters  Character variables normally
represent letters, digits, or symbols that can be
read from a keyboard or displayed on a screen.
A control character is not visible, but it has some
form of control effect; for example, it takes a
new line or returns the cursor to the start of a
new line. A control character is expressed in a
program as an escape sequence. A list of the
control characters and escape sequences that
can be represented in a C# program is given in
the entry for char in this glossary.

Control expression  A control expression is used in
a switch to select the case to be performed.

Coupling  Two objects are said to be coupled if one
of them relies on the other to perform its work.
This reliance means that there is a dependency
between the two objects such that if one of them
(the one being relied on) changes the way it
works, it is necessary to make sure that the other
class is not affected. As an example, you could
consider a menu screen that displays settings for
the player of a game. The menu screen object
must read data from the game and display it.
In this respect it is “coupled” to the game. If the
way the game stores its data changes, the menu
screen might have to change as well. However,
this dependency is only one-way. Changes to the
menu screen do not affect the behavior of the
game. Large amounts of coupling in a system
make it hard to maintain and update because
time must be spent checking dependencies and
making sure that a change in one object does
not break others.

Creators Club  See App Hub.

Debug  Faults in programs are called bugs, which
perhaps is a reference to an insect that was
found trapped in a piece of computer hard-
ware by Grace Hopper, one of the world’s first
programmers. The body of the insect was
physically stopping the program from working,
and she “debugged” the program by removing
it. A bug is caused by a misunderstanding
of the problem, a limitation in the algorithm
that is intended to solve the problem, or a
mistranslation when the algorithm is converted
into program code. Programs are debugged by
a mixture of skill, determination, and luck. You

6	 Glossary

often have to add extra statements to find out
what is going on in the program when it fails.
You can also use breakpoints to stop a running
program and investigate the state of the vari-
ables in it.

Declaration  A declaration is a program statement
that tells the compiler about a new variable or
method in your program. The new item must
be given an identifier and a type. If a method is
being declared, the source code must also give
the method signature (the type of the method
and the identifiers and types of any parameters),
as well as the method body:

int i; // declare an integer
 with the identifier i

int doAdd(int first, int second)
 // declare a method
{
 return first + second;
}

Variables can be local to a block or members
of a class or structure. Local variables must be
declared in a block before they can be used.
Methods are members of a particular class or
structure and are declared within it.

delegate  A delegate is a type-safe reference to a
method. A delegate is created for a particular
method signature (for example, “this method
accepts two integers and returns a float”). It
can then refer to a method that matches that
signature. Note that the delegate instance holds
two items: a reference to the instance of the
class which contains the method and a reference
to the method itself. The fact that a delegate is
an object means that it can be passed around
like any other.

Delegates are used to inform event generators
(things like network sessions or timers) of the
method that is to be called when the event they
generate takes place.

Directive  A directive is a command in the source
of a program that tells the compiler to do some-
thing. The #define directive tells the compiler
that a symbol is being defined. The using di-
rective tells the compiler to look in a particular
namespace for objects.

Directory  A directory is a place in a file store
where you can store a file. It is sometimes called
a folder. Directories can contain directories so
that file storage can be arranged in a hierarchy.

The path to a file identifies all the directories
that must be traversed to get to that file. Each
directory name is separated from the next by the
backslash character, as in c:\code\program\
progfile.cs.

do – while  The do – while construction allows
a program to repeat a block of code until a con-
trolling condition at the end becomes false.
Note that the test is performed after the state-
ment or block; that is, even if the test is bound to
fail, the statement is performed at least once, as
follows:

do
 statement or block
while (condition) ;

This form of loop can be used as an alternative
to the for loop constructions. It is very useful in
programs where you want to request something,
check that it is okay, and then repeat the process
if it is not. There is an alternative form where the
condition is tested before the statement:

while (condition)
 statement or block

In this looping construction, the statement is not
performed at all if the condition is false at the
beginning of the while loop.

You don’t have to use these constructions if you
have no need to; it’s simply provided for situ-
ations where a loop is required but there is no
need for a counter as would be used in a for
loop.

Element (of an array)  An element is an individual
item in an array. Each element is identified by its
subscript value.

Encapsulation  This is the creation of objects that
encapsulate a set of behaviors and data for a
particular purpose. The object performs all the
functions required for that purpose and can
be regarded as a “black box,” with no need for
outsiders to actually know how it works. An
example would be an AlienSprite object
that would perform all its drawing, updating,
and initialization behavior without needing the
involvement of any other classes.

Enumerated type  An enumerated type is one for
which you specify the set of values that it can
have. Here is an example:

enum SeaState {
 EmptySea,

	 Glossary	 7

 Attacked,
 Battleship,
 Cruiser,
 Submarine
 } ;

SeaState openSea ;
openSea = SeaState.EmptySea;

The type SeaState could be used to hold the
state of the sea in a battleship game. It has five
possible values, which are created as shown. The
variable openSea is of type SeaState
and is set to EmptySea in the previous code.

Exception  An exception is a way that a C# pro-
gram can signal that something has gone wrong
when it runs. The exception itself is an object
that is created when the exception is “thrown”
and can be “caught” by an exception handler.
The C# language provides the try – catch
construction, which can be used to deal with
exceptions that might be thrown. Your program
gets exceptions if it calls things that create a bad
result. For example, if a running program tries to
get the Content Manager to load a nonexistent
resource, the Content Manager signals its dis-
pleasure by throwing an exception. If your pro-
gram doesn’t catch the exception, it fails at that
point.

Expression  An expression is a collection of op-
erands and operators that can be evaluated to
produce a result. You have seen numeric expres-
sions, logical expressions, and text expressions,
as shown in this code example:

int i = 0;
i = i + 1;
// arithmetic expression adding
 1 to i
bool iIsPositive;
iIsPositive = i > 0;
// logical expression
string IValue;
IValue = "Value of i is : " +
i.ToString(); // text expression

Field  A field is a member of a class or structure that
stores data within an instance:

class Player
{
 public string Name;
 public int Score;
}

The Player class contains two fields: the Name
of the player, which is a string, and the Score
the player has reached, which is an integer. A
program uses a field by giving the identifier of
the instance, followed by a period (.), followed
by the name of the field:

Player p = new Player();
p.Name = "rob";
p.Score = 100;

The Name and Score fields can be accessed in
this way because they have been made public.
Fields can also be made private, in which case
they are not visible to code outside the class or
structure.

File extension  Files on a computer system have
filenames that are used to locate them. The file
extension is information on the end of the file-
name made up of a number of characters after
a period (.) character. The Microsoft Windows
operating system uses the file extension to select
the application to be used to open a particular
file. “Program.cs” identifies a C# program file, for
example, while “Background.png” would identify
a Portable Network Graphics (PNG) file.

Folder  See Directory.

Framework  A framework is a set of software re-
sources that programmers can fit together and
extend to create solutions to problems. The
Microsoft .NET Framework provides a way that
programs can run on a computer platform. It
also provides a comprehensive set of resources
that can be used to create general-purpose
applications. The XNA Framework provides re-
sources for the creation of games.

Fully qualified name  A fully qualified name is
one that provides a complete path to the re-
source that is being identified. It identifies all the
namespaces in the path to the resource with that
name:

Microsoft.Xna.Framework.Graphics.
Color background;

You can avoid having to use the fully qualified
name of a resource by adding a using directive
at the top of your program source. A set of us-
ing directives is inserted automatically into the
Game1.cs file when XNA Game Studio creates a
new game project.

8	 Glossary

Garbage collector  The garbage collector is a pro-
cess that runs as part of a .NET application and
searches for and removes resources that are no
longer used.

Generic method  A C# method is supplied with pa-
rameters for the method to act on. In a generic
method, the parameters are not restricted to
one particular type. Generic methods are used
when the programmer wants to create a method
to perform a particular action but wants the
action to be performed on variables of different
types. In Microsoft XNA, the Content Manager
provides a generic method called Load, which is
supplied with the type of the item to be loaded.

Texture2D cheeseTexture =
 Content.Load<Texture2D>
 ("Images/Cheese");
SoundEffect cymbolTing =
 Content.Load<SoundEffect>
 ("cymbolTing");

The Load method can then perform the ap-
propriate load action and deliver a result of the
required type.

The List collection class also uses this mecha-
nism so that it can manage a list of whatever
type you give it.

public List<BaseSprite>
 GameSprites =
 new List<BaseSprite>();

This creates a List that can hold references to
BaseSprite instances.

Header (of a method)  A C# method can be bro-
ken into two parts: the block of code, which is
the body of the method and contains the state-
ments that the method performs, and the head-
er, which indicates the type returned by the
method, the identifier (which is the name of the
method), and the parameters that the method
accepts. Look at this code example:

int doAdd(int first, int second)
// declare a method
{
 return first + second;
}

The header of the method doAdd is int
doAdd(int first, int second).

IDE  See Integrated Development
Environment (IDE).

Identifier  An identifier is a name chosen by the
programmer to identify something in a pro-
gram. This includes the names of variables
and the names of classes, structures, and
methods. The C# compiler has rules concern-
ing the construction of identifiers; they can
contain letters (a–z or A–Z), digits (0–9), and
the underscore (_) character. An identifier must
not start with a digit. The case of the letters in
an identifier is significant in that the identifiers
count and Count could both be used in the
same program to refer to different variables:

int count;
double Count;
// legal C# - but the Great
 Programmer wouldn't approve

C# has a convention that local variables, param-
eters, and private members of a class or structure
should have identifiers that start with a lowercase
letter. Identifiers for classes and structures and
public members of classes and structures should
have identifiers that start with an uppercase
letter.

Instance  Instances of objects are created as a
program runs. If the object is manipulated by
value, there is no need to use new to create an
instance of it, although you can use new if you
wish to call the constructor for that type.

Integer  An integer is a numerical value that has
no fractional part. The C# language provides
a number of integer types; the programmer
should choose the type that provides the most
appropriate range of values for the program
being written.

Integrated Development 	
Environment (IDE)  An Integrated Development
Environment (IDE) combines an editor for
creating the source code, a compiler, and a
debugger in a single tool that can be used for
development. XNA Game Studio is based on the
Microsoft Visual Studio IDE.

Intellisense  Intellisense is the name given to the
feature of XNA Game Studio that provides con-
text-sensitive help and suggestions to you as you
write your program source. The system constantly
monitors what you are typing and suggests ap-
propriate items on the basis of what it sees.

Interface  An interface defines a set of actions.
The actions are defined in terms of a number
of method definitions. A class that implements
an interface must contain code for each of the

	 Glossary	 9

methods defined in the interface. Look at this
code:

interface ISinger
{
 void SingSong(int loudNess);
}

class OperaSinger : ISinger
{
 public void SingSong(int
loudNess)
 {
 }

 public void SingAria
 (int loudness, int vibrato)
 {
 }
}

class PoliceMan : ISinger
{
 public void SingSong
 (int loudNess)
 {
 }

 public void MakeArrest ()
 {
 }
}

ISinger singer = new PoliceMan();

The interface ISinger contains a single meth-
od called SingSong, which is supplied with a
parameter to indicate how loudly the song is to
be sung. Both OperaSinger and PoliceMan
implement the interface, meaning that either
of them can be asked to sing (although you
might get a better tune out of OperaSinger).
This means that you can regard PoliceMan
and OperaSinger in terms of their singing
ability, even though they are completely differ-
ent classes. A reference to ISinger could be
made to refer to either an OperaSinger or
a PoliceMan interface and ask it to sing by
calling the SingSong method. Viewing classes
in terms of what they can do is a large part of
component-based development.

Keyword  A keyword is a word that is part of the C#
language. Keywords that you have seen include
for, if, new, class, struct, switch, and

case. Keywords have a particular meaning, and
you cannot create an identifier that is the same
as a keyword. The XNA Game Studio editor dis-
plays keywords in bright blue.

Literal  A literal is something in a program that is
literally just there. Examples of literals include
values in expressions and strings:

width = width + 2;
playerName = "rob";

In the preceding statements, the literals are the
value “rob” and the value 2.

Local  A variable that is local to a block is declared
in the block and is discarded when the execution
of the program leaves that block. Local vari-
ables are used in the situation where you want a
variable for a very short part of the program.

Localization  Localization is the name for the pro-
cess of making a program work in a manner
appropriate to a particular part of the world. It
includes aspects such as the language used for
the user interface, the character set, and how
dates, times, and currency values are displayed.

Logical  Logical values can be either true or false. C#
provides the bool type to hold logical values,
it provides comparison operators (for example,
LESS THAN) that compare values and produce
logical results, and it provides logical operators
(for example, OR) that allow logical values to be
combined.

Machine code  This is a generic term for low-level
instructions that can be processed by a com-
puter. This is in contrast with source code, which
contains the program instructions that are
written by the programmer and that contain
a high-level description of a solution to a prob-
lem in a form that can be read by humans. The
compiler takes the high-level source code and
converts this into a form that is eventually made
into machine code for execution on a target
device.

Member  A member of a class is declared within
that class. It can either do something (if it is a
method) or hold some data (if it is a variable).
Methods are sometimes called behaviors. Data
members are sometimes called fields.

Method  A method is a block of code preceded by
a method header. The method has a particular
identifier and may return a value. It may also
accept one or more parameters to work on.
Methods are used to break a large program up

10	 Glossary

into a number of smaller units, each of which
performs one part of the task. They are also
used to allow the same piece of program to be
used in lots of places in a large development. If
a method is public, it can be called by code in
other classes. An object exposes its behaviors by
using a public method.

Microsoft XNA  The best game development envi-
ronment in the world, bar none.

Modifier  A modifier is used to modify a
declaration. It gives the compiler additional in-
formation about the thing that is being declared.
Examples of modifiers are public, private,
and static.

Namespace  A namespace is a way of categorizing
related resources. Each resource provided by a
framework must have a unique name. Putting
all the names at the same level would result
in confusion; for example, the name Device
could have many possible meanings—you
might want to have audio devices, graphics de-
vices, and so on. A namespace is a space where
particular names have meaning. You could cre-
ate a Graphics namespace and an Audio
namespace, each of which could hold a Device
resource:

namespace Graphics
{
 class Device
 {
 }
}

namespace Audio
{
 class Device
 {
 }
}

You would refer to the devices created by this
code as Graphics.Device and Audio.
Device. It is possible for a namespace to
contain a namespace, allowing a hierarchy of
names to be created. A particular source file can
contain a number of different namespaces, and
a namespace can be spread over several source
files.

The XNA Framework is organized into a series of
namespaces, each of which holds a set of related
resources. You can access them by using a par-

ticular namespace or by giving a fully qualified
name.

Narrowing  Narrowing can occur when a variable
of one type is assigned to another. C# provides
a number of different data types that are used
to hold values in programs. Each type has a
particular range and precision. For example,
the byte type can hold values in the range 0
to 255, whereas an integer can hold values in
the range –2, 147, 483, 648 to 2, 147, 483, 647.
Narrowing would occur if a program assigned
a value from an integer variable into a byte. If
the integer had a value greater than 255, the
narrowing would result in the corruption of the
value. The C# compiler insists the programmer
use a cast to confirm that a narrowing operation
is valid.

null  The C# keyword null allows a program to
express the fact that a reference points nowhere.
Newly created reference variables are set au-
tomatically to refer to null, and it is possible
to test for this condition in your programs as
follows:

Player p;
if (p == null)
{
 // will get here because p is
 initially null
}

You can actually assign the value null to a ref-
erence to indicate that the reference is not set to
refer anywhere.

Object  An object is an instance of a given data
type. Many types are provided by C# and
Microsoft XNA, and you can create your own
types by declaring classes (class) and struc-
tures (struct).

Operand  An operand is something that is worked
on in an expression by an operator. Operands
are either literals, variables, or expressions.

Operator  An operator is used in an expression and
identifies an operation to be performed on one
or more operands. Arithmetic operators that you
have seen include plus (+), minus (–) , multiply (*)
and divide (/). Relational operators include less
than (<), greater than (>), equals (==) and not
equals (!=). Logical operators that you have seen
include logical AND (&&) and logical OR (   ||   ).

	 Glossary	 11

Overflow Overflow occurs if the capacity of a vari-
able is exceeded when a program is running.
Variables are declared as being of a particular
type, and the programmer must be careful to
use the type appropriately. For example, the
byte type is able to hold values that range
from 0 to 255. If a program put 255 into a byte
variable and then added 1 to this variable, the
result would cause the variable to overflow be-
cause the byte type is not able to represent that
value. While some forms of program error, such
as exceeding the array bounds, cause an excep-
tion to be thrown, this is not always the case
with overflow.

Overload  A method is overloaded when a method
with the same name but a different set of pa-
rameters is declared in the same class. Methods
are overloaded when there is more than one way
of providing information for a particular action;
for example, a date can be set by providing day,
month, and year information, or by a text string
or by a single integer that is the number of days
since January 1. Three different overloaded
methods could be provided to set the date,
each with the name SetDate. In that case, the
SetDate method could be said to have been
overloaded.

Override  Sometimes you may want to make a
more specialized version of an existing class. This
may entail providing updated versions of meth-
ods in the class. You do this by creating a child
class that extends the parent and then overrid-
ing the methods that need to be changed. When
the method is called on instances of the child
class, the new method is called, not the over-
ridden one in the parent. You can use the base
keyword to get access to the overridden method
if necessary.

Parameter  A parameter is supplied by a call to a
method to give the method something to work
on. A parameter that is a value type is passed
into the method by value. A parameter that is a
reference type is passed into the method by the
value of the reference. If you want to pass a val-
ue type by reference, you must mark the param-
eter as a reference type using the ref qualifier.
A special kind of reference that can only be used
to deliver a result (that is, you can’t follow the
reference to read the thing it refers to) can be
specified by using the out qualifier.

Pixel  A pixel, or “picture element,” gives the color
of a single small area of the display screen. The
more pixels that a screen contains, the higher
the quality of the picture, but more memory
will be used, and it will take longer to create an
image.

Precision  C# provides several types that can hold
numbers with fractional parts, and these types
have different precisions. The precision of a
type determines how accurately that type can
represent a particular value. Because computer
storage is finite, the precision to which numbers
are stored is limited. The float type can repre-
sent values to a precision of 7 digits, whereas the
double type provides 15 to 16 digits of precision.

Private  A private member of a class is visible
to code only in methods inside that class. It is
conventional to make data members of a class
private so that they cannot be changed by code
outside the class. The programmer then can
provide methods or C# properties to manage
the values that can be assigned to the private
members. The only reason for not making
a data member private is to remove the
performance hit of using a method to access the
data.

Program  A program is a description of a solution
to a problem. The program sets out the steps
to be taken and decisions to be made and that
ultimately are to be performed by some sort of
computer hardware.

Programming language  A programming lan-
guage is a special form of language that has a
simple and unambiguous syntax and grammar.
It is designed so that programs written in the
language can be converted easily into forms that
can be executed by computer hardware.

Project  A project is a collection of program files
and other resources that can be brought to-
gether to produce a single assembly that can
be deployed as part of a solution to a problem.
XNA Game Studio manages projects and also
brings a number of projects together to create
a single solution.

Property  Properties are extremely useful and make
your code a lot cleaner. Essentially, you can have
code like the following:

x.Width = 99;

12	 Glossary

This looks like an assignment to a member of a
class, but it can be much more than that and can
result in additional code running. The Width
property could be managed like this:

class ThingWithWidth {
 private int widthValue;
 public int Width
 {
 get
 {
 return widthValue;
 }

 set
 {
 widthValue = value;
 }
 }
}

When a program performs the assignment to the
property, the set portion (the “setter”) runs. The
value keyword is set to the value of the incom-
ing property. This set code performs a simple
assignment to the widthValue data member,
but you could validate the value and throw an
exception if you don’t like it. I’ve decoupled the
name of the property value from the value of
the property (one convention is to put the word
value on the end of the name of the internal
value). Of course, you don’t actually have to have
a value inside the class; you could calculate a re-
sult rather than return a member.

When setting the value, you can run additional
code whenever the value of your property
changes. This makes creating state machines
easy. Furthermore, you don’t have to implement
both a get and a set behavior; you can have
just one so that you can create write-only
(or read-only) properties. You can have lots
of getters for the same property; perhaps you
would like to read the speed in kilometers per
hour as well as miles per hour.

The only downside is that you must be aware
that substantial amounts of code can run when
you perform innocent-looking assignments.

Protected  A protected member of a class is vis-
ible to methods in the class and to methods in
classes that extend this class. It is kind of a half-
way house between private (no access to meth-
ods outside this class) and public (everyone has
access). It lets you designate members in parent
classes as being visible in the child classes.

public  A public member of a class is visible to
methods outside the class. It is conventional to
make the method members of a class public so
that they can be used by code in other classes.
A public method is how a class provides services
to other classes.

Range  The range of a given type sets out the larg-
est and smallest values that can be held in a vari-
able of that type. Each C# type has a particular
range, and one of the tasks for programmers is
to select a type with a range that is appropriate
for the data they wish to store.

Reference  A reference is like a tag that can be
attached to an instance of a class and has a par-
ticular name. C# uses a reference to find its way
to an instance of the class and use its methods
and data:

class Player
{
 public string Name;
 public int Score;
}

Player p = new Player();
p.Score = 100;

The variable p is a reference variable that can
refer to instances of the class Player. It is set to
refer to a new Player instance. The reference
is then used to access the Score field inside the
instance referred to by p.

One reference can be assigned to another. If
you do this, the result is that there are now
two references that refer to a single object in
memory. In C#, references are type-safe in that
a reference to one particular object, such as a
Texture2D, would not be allowed to refer
to any other type of texture. This means that
when the reference is followed to an object, the
actions performed with that object are always
appropriate.

SDK  See Software Development Kit (SDK).

Signature  A given C# method has a particular
signature that allows it to be identified uniquely
in a program. The signature is the name of the
method and the type and order of the param-
eters to that method:

■	 void Silly(int a, int b) has the
signature of the name Silly and two
int parameters.

	 Glossary	 13

■	 void Silly(float a, int b)
has the signature of the name Silly
and a float parameter followed by an
integer parameter.

This means that the code

Silly(1, 2) ;

would call the first method, whereas

Silly(1.0f, 2) ;

would call the second.

Note that in C#, the return type of the method is
not part the method signature.

Software Development Kit (SDK)  A Software
Development Kit (SDK) is a collection of tools
and library resources that can be used to create
software on a particular platform.

Solution  XNA Game Studio brings together one
or more project files to produce a single solu-
tion. The same project file can be used in more
than one solution, which allows libraries of code
to be created and reused. Within a solution,
one of the projects is designated the startup
project and will be the one that runs when the
system produced by the solution is started.

Source code  Source code is the text written by
programmers. It is stored in plain text on the
development computer and converted by a
compiler into the machine code that actually
performs the program instructions on the target
machine.

State  At any given instant, a running program is in
a particular state. Many game programs contain
variables that explicitly manage the state of
items in the game. It is often the case that an
enumerated type is created to represent a par-
ticular state.

Statement  A statement is a single action that a
program performs. Statements in C# programs
are separated by the semicolon (;) character.

static  In the context of C#, the static keyword
makes a member of a class part of a class rather
than part of an instance of the class. This means
that you don’t need to create an instance of a
class to use a static member. It also means that
static members are accessed by means of the
name of their class rather than a reference to an
instance. Static members are useful for creating
class members that are to be shared with all the

instances, such as currency conversion rates for
all the accounts in a bank.

string  The string data type lets programs work
with strings of text. The string is held as a one-
dimensional array of characters. Strings can be
used with the + operator, which cause them to
be concatenated together. String literals are de-
noted in a program enclosed in double quotes.
A string literal can contain control characters;
see the Char entry in this glossary for details of
these. Here’s an example of strings in code:

string firstname = "Rob";
string surname = "Miles";
string fullname =
 firstname + " " + surname;

Structure  A structure is a collection of data items.
It is managed by value, not by reference, and
struct contents are copied on assignment:

struct Particle
{
 public int X;
 public int Y;
}

Particle position;
position.X = 99;
position.Y = 00;
Particle[] Smoke = new
Particle[1000];

The Particle structure simply holds the
X and Y positions of a particle. Because
it is a struct, I can declare a variable of
type Particle, and an instance is created
automatically. The Smoke array, which contains
1,000 particles, is also created automatically.
There is no need to use new to create any
Particle instance.

Structures are also passed by value into meth-
ods. Structures are useful for holding a simple
set of related data in a single unit. They are not
as flexible as objects (which are managed by
reference), but they can be more efficient to
use because accessing structure items does not
require a reference to be followed in the same
way as for an object. An array of struct val-
ues is stored in a single block of memory that
contains a row of the items. An array of items
managed by reference (for example, instances of
a class) is stored as an array of references, with

14	 Glossary

each element in the array able to refer to one
instance.

Subscript  A subscript is a value that is used to iden-
tify the element in an array. It must be an integer
value. Subscripts in C# always start at 0 (this iden-
tifies the initial element of the array) and extend
up to the size of the array minus 1. This means
that if you create a four-element array, you get
hold of elements in the array by subscript values
of 0, 1, 2, or 3. The best way to regard a subscript
is that it is the distance down the array that you
are going to move to get the element that you
want. This means that the first element in the ar-
ray must have a subscript value of 0.

switch  The switch construction allows a program
to select one option from several based on a
control expression. Switches are often used to
select particular behavior based on the value of
an enumerated type. Here’s an example:

switch (state)
{
 case GameState.titleScreen:
 drawTitle ();
 break;
 case GameState.playingGame:
 drawGame();
 break;
 case GameState.highScoreDisplay:
 drawHighScore();
 break;
 default:
 doShowError();
 break;
}

The switch construction uses the value of
the control expression to decide which option
to perform. It executes the case that matches
the value of the control expression. The break
statement after the call of the relevant method
is used to stop the program running on and per-
forming the code that immediately follows. In
the same way as you break out of a loop, when
the break is reached, the switch is finished and
the program continues running at the statement
after the switch.

Another useful feature is the default option,
which gives the switch somewhere to go if the
switch value doesn’t match any of the cases
available.

this  The this keyword means “a reference to the
current instance.” Its use is implied within meth-
ods in classes:

class Player
{
 public string Name;
 public int Score;

 public void IncreaseScore ()
 {
 this.Score = this.Score + 1;
 }
}

It would be possible to write Score rather than
this.Score in the IncreaseScore method
because the compiler inserts this. automati-
cally if required.

The this reference can also be used to pass
an instance as a parameter in a call to another
method:

DisplayScore(this);

The DisplayScore method accepts
a reference to a Player as a parameter. It can
be called from a method in the Player class to
display the score of that player instance.

Type  In C#, all data items have a particular type
associated with them. Some types are built into
the C# language. These types, such as int,
float, and bool, are available to all programs
written in the language. Other types can be
added from libraries, such as DateTime. Finally,
you can create your own types to hold a collec-
tion of data and behaviors that are specific to
the problem at hand.

The C# compiler ensures that whenever variables
of different types are used together, there is no
potential for errors to occur or data to be lost.
For example, an attempt to move a value from
a variable of floating-point type into an integer
results in the compiler generating an error unless
programmers use a cast to indicate that they are
aware of the issue, and in this context, the action
is valid. Type checking is performed at compile
time (which is called static type checking) and also
when the program runs. This means that even if
the programmer uses a cast to force one thing to
be used as another, at run time any inappropri-
ate mixing of types would be rejected. This extra
stage makes C# programs much safer, but the

	 Glossary	 15

extra run-time type checking slows down the
program.

Type-safe We have seen that C# is quite fussy about
combining things that should not be combined.
Try to put a float value into an int variable,
and the compiler rejects the code. The reason for
this is that the designers of the language have no-
ticed a few common programming mistakes and
have designed for these mistakes to be detected
before the program runs, not afterwards when it
has crashed. One of these mistakes is to use values
or items in contexts where it is either not mean-
ingful to do so (such as putting a string into
a bool) or where doing so could result in losing
data or accuracy (such as putting a double into a
byte). This kind of fussiness is called type safety,
and C# is very big on it. Some other languages
are much more relaxed when it comes to combin-
ing things, working on the assumption that the
programmer knows best. They assume that just
because code has been written to do something,
that thing must be the right thing. But C# is not
that way; and neither am I. I think it is important
that developers get all the help they can to stop
them doing stupid things, and a language that
stops you from combining things in a way that
might not be sensible is a good thing in my book.

Of course, if you really want to impose your will
on the compiler and force it to compile your
code in spite of any type-safety issues, you can
do this by using casting.

using  The word using can serve as either a com-
piler directive or a keyword in a program.
C# provides the using directive, which you can
use as follows:

using Audio;

The using directive must appear at the start of
a source file. It identifies a namespace that is to
be used to resolve the names of classes in that
file. If the Audio namespace contains a class
called Device, I could add a using directive
to my program so that I can create instances
of Device without having to add Audio to
qualify the name.

I can still use other Device classes, such as
Graphics.Device, but I need to give its
fully qualified name. You can add multiple us-
ing directives at the start of a source file; when
you create a new project, you often find that a
number of them have been added automatically.
If there is a name clash (for example, you use
two namespaces that each contain a class called

Device), the compiler requires you to use the
fully qualified name for that particular class. It
can also be sensible to use the fully qualified
name in circumstances where you want a reader
of the program source to identify easily where a
class is defined.
C# provides the using keyword, which lets you
state precisely where in a program a variable is
being used:

using (PongGame game = new
PongGame())
{
 game.Run();
}

The using keyword is followed by the declara-
tion of a variable to be used in the block which
follows the using statement. When the block is
complete, the garbage collector knows the vari-
able is no longer required and can be removed.
Without the using statement, the Garbage
Collector would have to deduce that there were
no remaining references to the variable game in
the preceding code.

Value type  A value type holds a simple value.
Value types are passed as values into method
calls, and their values are copied on assignment;
that is, x = y causes the value in y to be cop-
ied into x. Subsequent changes to the value in x
do not affect the value of y. Note that this is in
contrast to reference types, where the result of
this assignment would be that x and y refer to
the same instance.

Variable  A variable holds a value that is being used
by a program. A given variable has a unique
identifier and is declared as having a particular
type. Variables can be local to a block or they
can be members of a class.

Virtual method  I can call a method (a member
of a class) to do a job. Sometimes I may want
to extend a class to produce a child class that
is a more specialized version of that class. In
that case, I may want to replace (override) the
method in the parent with a new one in the child
class. For this to take place, the method in the
parent class must have been marked as vir-
tual. Only virtual methods can be overridden.
Making a method virtual slightly slows down
access to it because the program must look for
any overrides of the method before calling it.
This is why not all methods are made virtual
initially.

16	 Glossary

void  A void method performs a task but does not
return a value. A programmer who wants to cre-
ate a method that does not return a value can
tell the compiler this by making the type of the
method void.

while  The while keyword is used in looping con-
structions which are described in the do – while
item in this glossary.

Widening Widening is the reverse of narrowing.
When a value is widened, it is moved from a
type with a narrower range and precision into
one that has a wider range, such as from the
byte type (with a range of 0 to 255) into an
integer type (with a range of 2, 147, 483, 648 to
2, 147, 483, 647). The compiler is quite able to
produce code that performs this conversion be-
cause there is no chance of data being lost.

Workspace  A workspace is analogous to an XNA
Game Studio solution in that it contains pro-
gramming resources and projects that are used
to create a solution.

Xbox Live  Xbox Live is a networking solution for
Xbox 360 and PC games. Gamers pay a subscrip-
tion that gives them an identity on the Xbox Live
network and allows them to engage in network
play using Xbox games. They can also download
game demos and other content that is then
stored on the hard disk of their Xbox 360. An
Xbox Live account is required if you wish to join
the App Hub.

XNA  See Microsoft XNA.

